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Abstract. This study concentrates on a camera-based traffic sensor
that measures bicycle, vehicle and pedestrian trips called FlowCube™. To
achieve multi-object tracking, FlowCube uses a model chain consisting of
object detection, local tracking, trip filtering and re-identification (re-id).
Whereas FlowCube’s performance is fit-for-purpose during the daytime,
it degrades in more challenging nighttime conditions. With that, this
study is aimed at improving FlowCube’s nighttime re-id performance.
The hypothesis is that the poor nighttime re-id performance is due to a
lack of nighttime re-id training data. So, in this paper a Generative Ad-
verserial Network based data augmentation with alpha blending is pro-
posed to enrich FlowCube’s re-id training data with synthetic nighttime
imagery. The findings show that this method improves FlowCube’s mean
re-id F1 scores and reduces the variance between results across multiple
training runs, both for nighttime and general re-id. The same improve-
ment can be expected for other camera-based traffic sensors which use
multi-object tracking with re-identification.

1 Introduction

1.1 Context

Today, about 55% of the world’s population lives in cities [10]. Such a grand
amount of people will result in an abundance of commute which, if not managed
correctly, can lead to problematic traffic scenarios. Ideally, pedestrian, cyclist
and vehicle traffic have to be managed in an efficient manner that minimizes
congestion. To that aim, governments could create incentives to stimulate the
use of bicycles over cars for short distances, alter road infrastructure to remove
traffic flow bottlenecks, or make use of intelligent traffic light control based on
real-time traffic flow analysis. This can be done with the use of data driven traffic
management, where (real time) traffic flow data is the driving factor behind
infrastructure optimization. However, the problem that arises is a lack of fine-
grained measurement data on vehicle, pedestrian and cyclist traffic flows. So,
not only point measurements, but the complete overview of traffic throughput,
routes and travel time.

This is where the FlowCube™ can provide a solution [9]. FlowCube is a pro-
prietary camera-based traffic sensor developed by Technolution that can measure
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bicycle, vehicle and pedestrian trips between sensors in a privacy-safe manner4.
The system does not identify specific persons, nor does it use face recognition. It
translates certain object characteristics, such as color and shape, into an arith-
metic representation. This representation is sufficient to match traffic patterns,
but it is not so specific that it can be used to identify specific individuals. The
FlowCube™ combines several detection and matching techniques, but in this
paper the focus will be on improving the re-identification (re-id) model. This
project was initiated by Technolution and executed internally.

Fig. 1: Example of FlowCube’s multi-object tracking (Courtesy [9]).

Currently, multiple objects can be tracked in video streams very accurately
[11] as long as no occlusions occur, for instance by predicting the movement
directions of the objects. Yet, when occlusion occurs the objects merge and one
of the tracks is lost. When the tracks separate again it is essential to assign the
original ID again (re-id) to each of the two objects [5]. Otherwise, the algorithm
loses efficiency due to ID switches. To measure bicycle, vehicle and pedestrian
trips over longer periods one should maintain the correct ID for each of the
tracked objects over that period.

In this work, we address FlowCube’s current re-id limitations in the night-
time setting and propose an improvement by generating additional training data
with Generative Adverserial Network (GAN) data augmentation, introduced in
section 2. More specifically, AU-GAN [8] is used to augment FlowCube’s re-id
training set with synthetic nighttime imagery. The rationale behind using AU-
GAN for this purpose is its ability to learn how to realistically transform an
image from any source domain (e.g. daytime) to any target domain (e.g. night-
time). When combined with an alpha-blend between the original and AU-GAN
transformed imagery this method has the ability to produce generally higher
and more stable re-id results.

4 More details on the FlowCube™: https://www.technolution.com/move/flowcube/
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1.2 FlowCube

At Technolution, the FlowCube has been developed using a model chain con-
sisting of object detection, local tracking, trip filtering and re-id5. Here, object
detection and re-id models are trained on an in-house dataset that is created
with the use of pseudo-labeling. This dataset consists of 262403 images of 2693
different entities (Table 1), captured at any time of day. These entities can be
pedestrians, cyclists or vehicles. A few examples of such entities during night-
time can be seen in Fig. 2. Local tracking and trip filtering is done with the use
of the Kalman filter and Intersection Of Union (IOU); the Kalman filter is used
to predict the location of an object’s bounding box in the next frame, given its
previous boxes (inspired by [4]). Next, the IOU of the predicted box with the
actual box is calculated to create a tracklet (multiple image crops containing
a certain object of interest) [2]. This process of creating tracklets produces the
described pseudo-labeled dataset, where each tracklet has its own unique ID.

The FlowCube is a productions system that despite its limited memory and
computing power still functions well during daylight. However, its performance
degrades in more challenging lighting conditions. Focusing on the re-id part of
FlowCube, this degradation in performance could be caused by multiple issues.

Fig. 2: Example nighttime imagery from FlowCube’s re-id training dataset.

Firstly, whereas the dataset used for training FlowCube’s re-id model con-
tains hundreds of thousands of images of vehicles, cyclists and pedestrians, it
mainly captures them in the daylight setting. This is assumed to be due to sub-
optimal object detection performance in the pseudo-labeling step for nighttime

5 This is proprietary code of Technolution and as such not published open source.
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imagery. As a result of producing few nighttime tracklets, the nighttime limita-
tions transfer over to the re-id model. Secondly, FlowCube uses a relatively small
sized camera module, which limits its ability to capture a lot of light in dimly
lit scenarios. With that, contrast and color information is lost, which makes the
task of re-id harder. Thirdly, for such a small camera a trade-off between bright-
ness, noise and motion blur has to be made in such dimly lit scenarios. The light
sensitivity (ISO) of the camera can be raised, which has the negative side effect
of introducing more shot-noise, or lower its shutter speed, which causes motion
blur. Figure 2 shows the result of these adjustments. The additional noise and
motion blur makes the task of re-id harder in dimly lit scenarios.

With these limitations in mind, there is a call for methodologies that can im-
prove FlowCube’s re-id performance, with an emphasis on nighttime conditions.
For this study, we explore the use of AU-GAN data augmentation to enlarge
FlowCube’s re-id training dataset with synthetic nighttime imagery, to see how
this affects the night-time and general re-id performance. AU-GAN was chosen
over alternative (symmetric) GAN’s – such as CycleGAN or ForkGAN – as it
utilizes an asymmetric architecture, which is better suited for disentangling the
domain-invariant (e.g. object) and domain-specific (e.g. noise and blur) features
for adverse domain (e.g. day and night) translation.

2 Generative Adversarial Networks

Generative Adversarial Networks can generate data which is not earlier encoun-
tered, by having two competing neural networks: a generator that generates new
data instances, and a discriminator (adversarial) that decides whether or not
each instance of generated data belongs to the actual training dataset. The goal
of the generator is then to generate new synthetic data that can fool the discrim-
inator into thinking that it’s real and, alternatively, the goal of the discriminator
is to identify images that come from the generator as fake [3].

2.1 Asymmetrical architecture

One such GAN image-to-image translator is the Asymmetric and Uncertainty
aware Generative Adversarial Network (AU-GAN [8]). An overview of the model
can be seen in Figure 3. Here, xA and xB denote two images from adverse
domains, i.e. rainy night and daytime respectively. One can also see two gen-
erators that are comprised of an encoder and a decoder. That is, GA→B =
{GE

A→B , G
D
A→B} and GB→A = {GE

B→A, G
D
B→A}. The former translates domain

A to B, and the latter translates domain B to A. For day → rainy night, the
objective is to construct a modified image x′

A from xB with generator GB→A.

Many of the GAN image-to-image models that strive towards this same ob-
jective are based on CycleGAN [13], which was the pioneer in performing this
task in an unsupervised manner. This means that they often exploit the property
of cycle consistency.
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Fig. 3: An overview of AU-GAN’s model (Courtesy Jeong-gi Kwak et al. [8]).
The upper side depicts the procedure for translating a rainy night image → day,
and the bottom side depicts the procedure for translating a day image → rainy
night. (G stands for generator, and the superscripts E and D specify whether G
is an encoder or decoder respectively.)

Cycle consistency means that the mapping functions GA→B and GB→A

should (approximately) be each other’s inverse. The cycle consistency loss en-
courages this cycle consistency. By exploiting the cycle consistency property we
can do translation procedures such as A → B → A, and end up with approxi-
mately the same initial image A. Most CycleGAN based models also include a
symmetrical opposite translation B → A → B for stability and balance opti-
mization. ForkGAN [12] expands upon this by proposing a fork-shaped gener-
ator, i.e. one encoder and two decoders, that disentangles the domain-specific
and domain-invariant information.

In accordance with these ideas, but deviating from existing methods, AU-
GAN proposes an asymmetric framework for image-to-image translation. In
their paper, the authors of AU-GAN [8] explain the rationale behind this al-
teration. That is, let’s say the encoder GE

A→B could extract domain-invariant
features. With these domain-invariant features, the reconstructed image xrec

A and
transferred image x′

B are generated by GD
B→A and GD

A→B respectively, and then
GB→A generates the cyclic image xcyc

A from x′
B . During training, minimizing the

difference between the original and generated image is included in the objective.
This is done by aiming for a low reconstruction loss (Lrec) and cycle-consistency
loss (Lcyc). However, if the encoder extracts ’truly’ domain-invariant features,



Midas Amersfoort et al.

it is not feasible to fully reconstruct the original adverse weather image due
to some negative domain-specific properties such as rain, noise and reflections
being discarded from the feature. It is therefore key to retain some domain-
specific properties for the image reconstruction phase, but to not include them
in the translation. To that end, an additional transfer network (T -net), which is
comprised of residual blocks [6], is inserted into GA→B to extract an enhanced
and disentangled feature for domain translation. As a result, the two domain
translation functions, i.e. fA→B and fB→A, are not symmetrical [8], because of
presence of the transfer function T () in equation Eq. 1 and its absence in Eq. 2:

x′
B = fA→B(xA) = GD

A→B(T (G
E
A→B(xA))) (1)

x′
A = fB→A(xB) = GD

B→A(G
E
B→A(xB)) (2)

The transfer function T () is also present in the asymmetric feature matching
loss (Lfeat) for disentanglement is presented. This loss describes the discrepancy
between the encoded feature of the input image and that of the transformed
image:

Lfeat = ExA
[∥ T (GE

A→B(xA))−GE
B→A(x

′
B) ∥1]+

ExB
[∥ (GE

B→A(xB))−GE
A→B(x

′
A) ∥1] (3)

More details can be found in [1] and [8].

3 Methodology

3.1 Motion-based cropping

To train AU-GAN, it needed to be provided with many images from the source
and desired target domain, i.e. day and night imagery. This complicated matters,
as this project was initiated due to a lack of night imagery. Luckily for AU-GAN,
the requirements on training data are less demanding than those for FlowCube’s
re-id model. Whereas the pseudo-labeling algorithm was required to produce high
quality tracklets, AU-GAN only required any imagery from the two domains
it needed to translate between. One could for example provide AU-GAN with
images from the sky during the day and during the night, and AU-GAN would
be able to use this imagery to train itself. However, since AU-GAN would later
need to transform vehicles, cyclists and pedestrians in order to augment the re-id
training dataset, it was still deemed appropriate to use imagery of such objects
for AU-GAN’s training data.

In the day- and nighttime video data, the bulk of the content is not relevant
for the re-identification task, such as the static scenery of sky imagery. To focus
the augmentation’s learning to the task-relevant part of the content, the training
data was filtered to the regions where movement was present.

To that end, a custom cropping algorithm utilized frame differencing to high-
light all moving objects in the scene. Then, K-means clustering with a (high)
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fixed K was used to identify clusters of movement. Afterwards, agglomerative
clustering with a distance threshold was used to merge clusters that described
the same object. This resulted in the newly formed MBC dataset (see Table 1),
containing day- and nighttime imagery that could be used to train AU-GAN.

3.2 AU-GAN data augmentation

With AU-GAN trained and the re-id training dataset’s daytime imagery iden-
tified, the desired day-to-night augmentation could now be performed. Figure 4
illustrates some of these translations with their corresponding confidence maps.

Fig. 4: Examples of AU-GAN’s input imagery (top), i.e. imagery from
FlowCube’s re-id training dataset, their respective AU-GAN transformed night-
time equivalent (middle), and the corresponding confidence maps (bottom).

3.3 Alpha blending

Since AU-GAN could transform any image to the nighttime domain, we could
potentially double the size of FlowCube’s current re-id training dataset with
additional synthetic nighttime re-id imagery. Moreover, by incorporating the
gradual transition between the original image and the AU-GAN transformed
image, the effective dataset could grow even larger. This was done with the use
of an alpha blend. Alpha blending is a data-augmentation technique which is
computational inexpensive but provides a diversity of training samples which
are realistic enough to be encountered in reality (see Fig. 5). Alpha blending
takes two images and blends them together with a ratio α ∈ [0, 1], that specifies
the transparency (1 - α) and opaqueness (α) of the two images I∗ respectively,
as can be seen in equation 4:

Iblend = (1− α) · I1 + α · I2 (4)
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The use of alpha blending provided a more continuous approach to the AU-
GAN data augmentation. With that, it facilitated an exponentially larger num-
ber of possible augmentations to incorporate into the re-id dataset, as can be
seen in Figure 5.

(a) α=0 (b) α=0.25 (c) α=0.5 (d) α=0.75 (e) α=1

Fig. 5: Illustration of the influence of α with alpha blending.
(α=0 yields the original image and α=1 yields the AU-GAN transformed image)

3.4 Performing Alpha blending

The alpha blending procedure was implemented to transpire while training the
re-id model. That is, for each image in the re-id training set, if it was marked to
be alpha blended, also its AU-GAN transformed equivalent was loaded. Then, an
alpha blend between the two images – with α ∈ [0, 1] – was applied in a random
uniform manner, where α ≤ αmax ∈ [0, 1]. This alpha blended image was then
added to the re-id training batch. For reproducibility, the random uniform value
for α was ensured to, for each epoch-image combination, be similar across re-id
training runs with the use of a seed.

For the experiments, AU-GAN was pretrained on the motion-based cropped
(MBC) dataset (Table 1). Training was performed using 8 epochs with a batch
size of 1. During training, images were reduced from their original size of 500x500
to a ’fine size’ of 224x224 (i.e. the image size that the re-id model uses) by
randomly cropping an area of 224x224 from the original image. Furthermore,
following [8], we adopt an Adam [7] solver for which we set β1=0.5, β2=0.999
and ϵ = 1e−08. Coefficients of the full model objective were then set to λfeat = 1
and λrec = λcyc, and the learning rate = 0.0002.

With that, after training, AU-GAN was used to transform the TrainO to
TrainA image-to-night (I2N) translation (see Table 1). These datasets were used
for training. The result of this training was checked with the re-id F1 scores
on the validation datasets, i.e. Val and Val night, where the ’baseline’ repre-
sents the current implementation of the re-id algorithm, without any AU-GAN
data augmentation. Each specific setup of an experiment was repeated 8 times,
and validation results were averaged over the last 10 training steps of the re-id
model in an effort to reduce the influence of noise, caused by randomness in the
stochastic training process.
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Table 1: An overview of the used datasets. The MBC dataset holds the imagery
generated by the motion-based cropping algorithm. TrainO is the original re-
id training dataset, and TrainA is its (image-to-night) AU-GAN transformed
equivalent. Val is the re-id validation dataset, and Val night is a subset of Val,
holding only its nighttime imagery.

Dataset name # images # identities # sites day/night ratio

MBC 713141 - - 0.70/0.30

TrainO 262403 2693 29 0.79/0.21

TrainA 62403 2693 29 0.00/1.00 ∗

Val 3928 112 25 0.84/0.16

Val night 612 19 11 0.00/1.00

∗ Nighttime imagery is synthetic.

4 Experiment results

4.1 Augmentation ratio experiments

In the first experiment, it was tested how adding raw AU-GAN image-to-night
transformed imagery to the training set, without any alpha blending, affected the
re-id validation F1 scores on both Val and Val night compared to the baseline.
To that end, we set the augmentation ratio ∈ [0, 0.10, 0.20, 0.30, 0.40].

As can be seen in Figure 6, on Val the baseline produced a mean re-id F1
score of 91.3 and a spread of 4.3. In contrast, for augmentation ratios 0.10-
0.40 the mean re-id F1 scores were lower at 88.6, 87.5, 86.7 and 85.8 with a
spread reduced to 1.7, 1.7, 2.6 and 3.7 respectively. As for why adding the raw
AU-GAN transformed imagery to the training dataset decreased the mean re-id
performance but improved the spread. It was thought that adding some amount
of synthetic nighttime imagery provided the re-id model with a useful amount
of hard (synthetic) nighttime training examples that made the predictions more
stable. However, too many of such hard nighttime examples caused the model
to put too much emphasis on them. As such, this would have the adverse effect
of confusing the model.

On Val night, the baseline produced a mean re-id F1 score of 89.5 and an even
higher spread of 9.6. In comparison, for augmentation ratios 0.10-0.40, the mean
re-id F1 scores turned out higher at 91.6, 91.0, 90.4 and 89.2, and the spread was
reduced to 4.4, 5.6, 3.8 and 6.7 respectively. Overall, we see that augmentations
with a small ratio can yield a small improvement on the re-id results at night.
The presumed reason for this is that, contrary to Val, the Val night dataset
relatively contained more imagery that was similar to the AU-GAN generated
imagery, thus the re-id model performed better here.
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Fig. 6: The re-id F1 scores on the Val (left) and Val night (right) dataset, trained
on TrainO and TrainA using varying augmentation ratios.

4.2 Alpha blend experiments

Since simply increasing the augmentation ratio without alpha blending increased
the performance for Val night only slightly, and actually decreased performance
for the Val dataset, now an experiment with alpha blending was performed. We
review the influence of αmax when alpha blending TrainO to TrainA versions,
with the aim of optimizing the augmentation. For this experiment, the augmen-
tation ratio was set to 1.00, and αmax ∈ [0, 0.15, 0.25, 0.35, 0.50, 0.75, 1.00].

In Figure 7, we see that for Val, the baseline produced a mean re-id F1 score
and spread of 91.3 and 4.3 respectively. In comparison, αmax values of 0.15 and
0.25 produced higher mean re-id F1 scores of 91.5 and 91.9, and lower spreads of
1.6 and 1.4, respectively. For αmax values equaling 0.35, 0.50, 0.75 and 1.00, the
mean re-id F1 scores declined again to 91.3, 90.4, 88.5 and 86.6, with increased
spreads of 1.9, 3.6, 1.7 and 2.0 respectively. With that, we identify an arch-like
trend with an optimum at αmax = 0.25. If we reason why this arch-like trend
occurred, logically, we can say that the higher values for αmax generated harder,
i.e. darker and more noisy, nighttime training imagery. As we saw in Fig. 7, such
training imagery could already make predictions more stable on Val. However,
now we also see that, for lower magnitudes of αmax, the mean re-id F1 score can
also be improved. Presumably by providing more difficult – but not too difficult
– training data, making the re-id model more stable and better performing.

When the same experiment was repeated for Val night, we can again see
that the baseline produced a mean re-id F1 score and spread of 89.5 and of 9.6
respectively. Moreover, it can be seen that αmax = 0.15 produced the highest
mean re-id F1 scores of 92.1 and a spread of 3.0. As for αmax values for 0.25, 0.35
and 0.50, the mean re-id F1 score decreased to 91.4, 90.6 and 89.6 with greatly
diminishing spreads of 4.4, 2.8 and 0.9 respectively. After that, for αmax val-
ues of 0.75 and 1.00, the mean re-id F1 scores increased slightly to 89.9 and
90.1, with higher spreads of 4.8 and 3.7 respectively. With that, it is apparent
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Fig. 7: The re-id F1 scores on the Val (left) and Val night (right) dataset, trained
on TrainO and alpha-blended TrainA with varying values for αmax.

that the AU-GAN image-to-night augmentation was able to improve both the
mean re-id performance and the spread. As for why performance decreased for
higher values for αmax, it could be that the nighttime training imagery for AU-
GAN was darker/more noisy than that in Val night. Or, since the image-to-night
translation also includes night-to-night translations, it could be that the night-
to-night augmentations resulted in a magnified ’night effect’ that was too strong
for higher αmax values, which confused the re-id model.

5 Conclusion

In this study, the usage of AU-GAN data augmentation for improving FlowCube’s
re-id performance was introduced. To that end, FlowCube’s re-id training dataset
was augmented with synthetic AU-GAN generated nighttime imagery. This im-
agery was generated by transforming the original re-id training dataset into an
AU-GAN transformed equivalent. During training, the original and AU-GAN
transformed imagery was then alpha blended to create an augmentation with a
modifiable magnitude α, which greatly enlarged the effective training dataset’s
size.

This made it possible to demonstrate that the AU-GAN image-to-night aug-
mentation, alpha blended with the original imagery, was able to increase the
mean nighttime re-id F1 score, maintain the same mean general re-id F1 score,
and greatly reduce the variance in performance between training runs for both
general and nighttime re-id. The proposed AU-GAN augmentation shows much
more consistency and reproducibility.

Overall, we can conclude that the AU-GAN augmentation, combined with an
alpha blend, can positively affect FlowCube’s re-id performance, when applied
in a low magnitude, i.e. with αmax ∈ [0.15, 0.25]. The augmentation introduces
color adjustments and adds noise, which at the least have a positive effect on
robustness; an useful characteristic for any camera-based traffic sensor.
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