
Learning to walk with a soft actor-critic approach

Gijs de Jong3[ ]
⋆
, Leon Eshuijs1,2,3[ ]*, and Arnoud Visser3[ ]

1 Intelligence Systems Group, Universiteit Utrecht
2 Computational Linguistics and Text Mining Lab, Vrije Universiteit

3 Intelligent Robotics Lab, Universiteit van Amsterdam

Abstract. Quadruped robots offer a promising alternative to wheeled
robots due to their ability to navigate diverse terrains and overcome var-
ious obstacles. However, the control problem for legged robots is chal-
lenging as it requires precise control of actuators and good coordination
between all four legs. With the advent of machine learning, learning-
based methods have shown promising results in both simulation and real-
world robots. This work investigates the application of learning-based
methods, specifically the Soft Actor-Critic (SAC) and Augmented Ran-
dom Search (ARS) algorithms, for gait modulation. The SpotMicroAI
and mini-Pupper-2 robots are used as a case study to demonstrate the
generalizability of the reinforcement learning algorithms. Afterward, the
learned policies of the SpotMicroAI are applied to a physical robot to
inspect the sim-to-real gap. Our results show that both SAC and ARS
can effectively be used to learn legged locomotion that provides a robust
and versatile solution for navigating diverse terrains.

Keywords: reinforcement learning · gait generation · robotics

1 Introduction

Legged robotics have the ability to walk through rough terrain, due to their
small selection of contact points [5]. However, locomotion for legged robots is a
challenging control problem as it requires precise control of actuators combined
with good coordination between all four legs. With the recent advancements in
machine learning, learning-based methods have shown promising results in both
simulation and real-world robots [18,15,7].

Until recent years, research on learning-based methods for locomotion has
mostly been limited to simulation [10]. One of the primary reasons is the high
cost and complexity associated with real-world electronics. Training on real-
world robotics is also significantly slower, since they need to be manually reset
whenever the robot falls over, whereas simulations can reset automatically [14].
Additionally, the discrepancies between the simulated environment and the real
world hinder the transfer of learned behavior, in a problem known as the sim-to-
real gap [9]. For instance, real-world physics are comprised of complex interac-
tions between objects such as friction, collisions, deformations, and contact forces
⋆ Equal contribution

https://orcid.org/0009-0007-8285-4606
https://orcid.org/0009-0007-8393-7083
https://orcid.org/0000-0002-7525-7017


2 G. de Jong et al.

making them hard to simulate accurately. Secondly, actuator dynamics are also
difficult to model due to latency in the physical response, and non-linear behav-
ior meaning their responses are not proportional to the applied input. Lastly, the
performance of actuators can change over time due to wear. Therefore, to bridge
the gap between simulation and reality, researchers often use robot platforms
equipped with state-of-the-art actuators and sensors. Typical examples of such
high-end platforms include the ANYmal robot by ANYbotics (Fig. 1a) and the
Spot robot by Boston Dynamics (Fig.1b).

(a) ANYmal (b) Spot

Fig. 1: Two examples of robots with state-of-the-art actuators and sensors.

These high-end robots tend to be expensive, limiting access primarily to well-
funded research groups. Therefore, recent developments have introduced more
accessible platforms, such as the Stanford Pupper robot released by Stanford
in 2021 [16] as seen in Fig. 2a. This low-cost open-source platform is designed
to reduce complexity and cost, thereby improving the accessibility of robotics
research. Importantly, recent work [20] has demonstrated that learning-based
models can be robust enough to apply to hobby robotics. By randomizing the
dynamics of the robot and the environment in simulation, their approach named
D2-GMBC bridged the sim-to-real gap on a variation of the open-source robotics
project SpotMicroAI 4, as seen in Fig. 2c. However, their Reinforcement Learn-
ing (RL) algorithm, called Augmented Random Search (ARS), consists of only a
single-layer Neural Network. To investigate how the D2-GMBC framework bene-
fits more complex RL algorithms, we apply it using the Soft Actor-Critic (SAC)
algorithm and use the mini-Pupper and SpotMicroAI as research platforms in
this study.

The primary contribution of this paper is to demonstrate the versatility of
the D2-GMBC learning approach to other Reinforcement Learning algorithms.
Moreover, we highlight some of the limitations of the original setup such as
the ARS learning scheme and the reward function. The main findings from our
experiments are:

– In the simulation, the SAC agent demonstrated competitive performance
and improved learning capabilities when deployed on the Pupper platform.

4 https://spotmicroai.readthedocs.io/en/latest/

https://spotmicroai.readthedocs.io/en/latest/


Learning to walk with a soft actor-critic approach 3

(a) Stanford Pupper (b) mini-Pupper (c) SpotMicroAI

Fig. 2: Three low-cost open-source robot platforms. At the left is the Stanford
Pupper developed by [16]. At the center is the mini-Pupper robot developed by
MangDang Robotics based on the Stanford Pupper. At the right is the SpotMi-
croAI robot developed by Deok-yeon and further improved by [20].

– On the SpotMicroAI platform, the SAC algorithm exhibited faster learning,
whereas ARS achieved a higher training reward. However, ARS enjoys cer-
tain advantages during training, such as policy updates based on parallel
variations and the ability to reset the environment, making direct compar-
isons of training rewards challenging.

– When tested on the physical SpotMicroAI robot, the SAC agent demon-
strated dynamic falling prevention behavior, although neither agent man-
aged to enhance their speed beyond the fixed baseline gait.

2 Related work

In the RoboCup 4-Legged League, machine learning has been used to optimize
a quadruped gait [18]. In this work, policy gradient reinforcement learning was
used to find a set of parameters, which significantly outperformed a variety of
existing manually-tuned solutions. They demonstrated this for the Sony Aibo
ERS-210 robot. While the robot achieved a faster gait, it resulted in unsteady
camera motions that degraded the robot’s visual capabilities [21]. To address this
issue, [21] implemented the policy gradient algorithm with a learning objective
that optimizes for both speed and stability. The resulting gait was considerably
more stable while maintaining a sufficient speed compared to the gait developed
by [18].

The emergence of complex behavior in reinforcement learning agents has been
explored by Nicolas Heess et al [10]. Their work suggests that training agents
in rich environments, can facilitate the learning of complex behaviors without
relying on carefully designed reward functions. In the context of locomotion, [10]
demonstrated this principle by training simulated bodies on a variety of chal-
lenging terrains and obstacles. By exposing the agents to diverse environmental
conditions, the agents were able to learn robust and adaptive locomotion skills
that successfully transferred to unseen terrain types.

Such a transfer to unseen terrain is for instance demonstrated by Biao Hu
et al. [12] for the Doggo quadruped robot. The gait learned with reinforcement



4 G. de Jong et al.

learning not only increased the speed on flat ground, but also allowed the robot
to move uphill. This approach shows the potential of learning a quadruped gait
in simulation, although the authors are not explicit on how the validate the
learned gait on the physical robot.

Yet, as Jie Tan et al. [22] demonstrated, the reality gap is a major obstacle to
applying deep RL in robotics. They showed that the reality gap can be narrowed,
but this requires considerable effort to reduce the model discrepancies with com-
prehensive evaluations to the effect of incorporating information on for instance
weight distributions, frictions, and latency. For their Minitaur quadruped robot,
they showed that both trotting and galloping can be learned as gait.

3 Quadruped Gait Generators

A quadruped gait refers to the pattern of movement exhibited by a four-legged
robot. Typically, a gait consists of two phases, swing and stance. During the
swing phase, the foot moves through the air to its next position and during the
stance phase, the foot contacts the ground and moves the robot using ground
reaction forces. A typical gait alternates ground contact, moving the diagonal
legs concurrently, as seen in Fig. 3. Here, the front left (FL) and back right (BR)
legs initiate in the stance phase, while the front right (FR) and back left (BL)
legs start off in the swing phase.

Fig. 3: Leg phases for trotting from [20], where red is the stance phase.

Generating this gait requires creating coordinated limb movements that en-
sure stability, energy efficiency, and adaptability to various terrains [6]. This
process requires the integration of sensor feedback, control algorithms, and bio-
mechanical principles to generate robust and versatile gaits.

Methods for finding suitable gaits for legged locomotion can be broadly clas-
sified into methods that require handcrafted tuning [13], evolutionary approaches
[19,11] and learning-based approaches [18,7]. Our focus lies on a learning-based
method proposed by [20], which combines an extended version of the Bezier
curve-based gait generator initially proposed by [13] with reinforcement learning
techniques. A detailed explanation of this technique can be found in Section 4.



Learning to walk with a soft actor-critic approach 5

4 Gait Modulation with Bezier Curves

At the core of their method lies the Dynamics and Domain Randomized Gait
Modulation with Bezier Curves (D2-GMBC) framework as proposed by [20].
The framework builds upon previous work by [13], and uses an extended and
open-loop variation of the Bezier curve gaits. They achieve transverse, lateral,
and rotational motion by combining multiple 2D gaits into a single 3D gait.

4.1 Bezier Curve Gait

Fig. 4: Schematic of foot placement adapted from [20].

A gait trajectory of one leg is described by the path the foot takes over
a closed curve, as illustrated by the purple curve in Fig. 4. The trajectory is
parameterized by a phase variable S(t) ∈ [0, 2). Specifically, the leg is in stance
when S(t) ∈ [0, 1), and it is in swing when S(t) ∈ [1, 2). In their work [20], Rahme
et al use a trajectory that includes a Bezier curve during the swing phase and a
sinusoidal curve during the stance phase.

The Bezier curve generator, Γ , is controlled using three control inputs: ζ =[
ρ ω Lspan

]
. Here, ρ represents the rotation angle of the trajectory relative to

the robot’s forward direction within its frame, and ranges from −π
2 to π

2 . The
variable ω denotes the robot’s yaw velocity, while Lspan corresponds to half of
the stride length. The two last parameters include ψ, which shapes the trajectory
of the swing phase, while δ controls the shape of the sinusoidal curve trajectory
applied during the stance phase. The generator outputs fΓxyz, consisting of the
3D foot positions of each foot, relative to the body:

fΓxyz = Γ (S(t), ζ, ψ, δ) (1)

By manipulating these control inputs, planar trajectories are converted into
3D foot-position trajectories which are then converted into a frame relative to
each leg’s rest position to get the final output foot trajectory for leg l, denoted
as f lxyz in Fig. 4.



6 G. de Jong et al.

4.2 Problem Statement: Gait Modulation

To adaptively modify the gait of the robot during locomotion, the problem is
phrased as that of gait modulation which we will first formulate as a Partially
Observable Markov Decision Problem (POMDP). A POMDP is defined by the
tuple (S,A,O, r(s, a), P (s′|a, s)), consisting of the state space S, the action space
A, the observation space O, a reward function r(s, a) and the transition proba-
bility P (s′|a, s).

The policy of the model, π as parameterized by the learnable parameters θ,
is then tasked to find the best action for each state to maximize the expected
reward. For each observation o ∈ O, the agent takes the action a ∈ A based on
the policy, formalized as a = πθ(o).

To adjust the position of the individual legs, the action space contains a 3-
dimensional residual position is defined by ∆f lxyz ∈ R3, resulting in the total
residual set ∆fxyz. Additionally, the policy also outputs the mentioned param-
eters ψ and δ for the Bezier curve generator, which are used to generate the
foot positions fΓxyz. After adding the residuals, the final position of all the foot
endpoints is:

fxyz = fΓxyz +∆fxyz (2)

4.3 Reward

For the reward and training setup, we follow the procedure of [20] with a few ad-
justments. To reduce the training computation, we reduce the maximum length
of an episode from 5000 steps to 2000 steps, which translates to 20 seconds per
episode. An episode is terminated prematurely if the robot hits the ground or
exceeded a roll or pitch of 60 degrees. The reward function for each time step as
described in the paper of D2-GMBC is defined as:

rt = ∆d− 10(|r|+ |p|)− 0.03
∑

|ω| (3)

The term∆d is the distance traveled in the forward direction in one step, and the
penalty terms for r and p encourage the robot’s body to remain perpendicular
to the ground. The ω term further promotes a stable walk by punishing any
angular motions of the body.

However, the code implementation as provided by the authors5 uses d in
the reward instead of ∆d. This difference makes sense since the roll and pitch
are many orders of magnitude larger than the traversed distance per step, ∆d,
which is in meters. The downside of this approach is that the reward per step
for a given state becomes infeasible to determine with decent accuracy, since
the reward at the end is much higher than at the beginning, and the time is
not observed by the agent. To illustrate this problem, consider a speed of 0.2
m/s, the distance part of the reward can differ by 4.0 between the beginning and
end state of an episode. This is in the same range as the roll and pitch reward.
5 https://github.com/moribots/spot_mini_mini

https://github.com/moribots/spot_mini_mini


Learning to walk with a soft actor-critic approach 7

For the training of the ARS agent, his discrepancy is not a problem because,
as the following sections explain, the policy is updated only by the total reward
of an episode. Contrary, the SAC agent updates its policy based on the reward
obtained at each step. For better comparison of the RL agents, we train them
with the same objective and modify the reward to be:

rt = 100∆d− 10(|r|+ |p|)− 0.03
∑

|ω| (4)

This scaling factor was chosen to put the distance reward in the same range
as the orientation penalty and resulted in the best convergence on both agents
during early experiments.

4.4 Dynamics and Domain (D2) Randomization

To promote the transferability of the learned policy from simulation to reality,
Rahme et al [20] combine different randomization techniques in their framework
D2-GMBC to address the significant differences between the simulated and real-
world dynamics. This involves randomization of the mass of each robot’s link
and the friction between the feet and the ground, which are crucial factors affect-
ing locomotion. Additionally, domain randomization is applied by introducing
variability in the terrain geometry encountered by the robot during training.

By incorporating both randomization techniques of Rahme et al [20], the
agent is exposed to a wide range of dynamic and environmental conditions dur-
ing training, leading to the acquisition of a more robust and adaptable gait.
Experimental results demonstrate that the learned gait exhibits enhanced sta-
bility and achieves greater distances when transferred to real robot platforms.
The successful transfer of the learned policy from simulation to reality highlights
the effectiveness of these randomization strategies in improving the generaliza-
tion capability of the trained agent.

5 Augmented Random Search for legged locomotion

Rahme et al applied the Augmented Random Search (ARS) algorithm to learn
the policy used to modulate the gait, achieving decent results [20]. ARS is a
method for training static, linear policies aimed at continuous control problems
and is, as the name suggests, based on Random Search but with a few augmen-
tations.

ARS applies different rollouts in parallel, where the sampled environment
variables remain the same. For training in simulation, this means that for each
episode, 16 rollouts are performed under the same parameters for the dynamics
and the domain. Each rollout contains a slightly different permutation of the
previous best policy, and by using the same dynamics and domain Random-
ization, the best mutated policy is found. The policy function of ARS consists
of a single-layer neural network θ that maps from the observation space O to
the action space A. By sampling a set of residual parameters ∆θi from a zero



8 G. de Jong et al.

mean normal distribution with a standard deviation of 0.05, each rollout i uses
a unique policy function θi = θ + ∆θi. We then use the best policy to update
the current policy, using the same learning rate η = 0.03 as [20].

An undocumented feature of ARS implementation is an additional action
filter. This filter works by slowly interpolating between two actions in order
to reduce the risk of abrupt motions during training, however, this makes it
impossible for the agent to get a good set of actions during the start of an episode.
To solve this, the agent is kept in a fixed position for the first 20 steps of each
episode in order to obtain a decent baseline for the action values. Unfortunately,
this alteration complicates the comparison of training procedures between SAC
and ARS due to the difference in their training environment.

Moreover, the requirement of ARS to train using multiple rollouts of the
same environment, makes it computationally expensive and impossible to scale
to settings where the environment cannot be controlled. Moreover, since ARS is
restricted to learning a linear policy, it has an inherent limitation on the policy’s
complexity.

6 Soft Actor-Critic for learning legged locomotion

An Actor-Critic algorithm is an off-policy method that computes both the policy
and the value function over states. The policy defines a distribution over the
actions for a given state. The value function V (s) estimates the expected return
for each state under the current policy. Similarly, the Q-function estimates the
expected return of each state-action pair and relates to the value function by
V (s) = Ea∼π(s)Qπ(s, a).
In this report, we apply the Soft Actor-Critic (SAC) algorithm as proposed by
[8], where the critic is the Q-function. To promote exploration, SAC introduces
an extra constraint to the loss function of the value and policy function by
maximizing the entropy H of the policy.

During each step of the training process, the replay buffer D stores the step
tuple (st,at, st+1, rt). After enough steps have been stored, a batch of steps is
sampled from the buffer to update the functions. A common problem with learn-
ing a Q-function is the influence of a positivity bias, where the model puts more
emphasis on positive rewards than negative rewards. To minimize the positivity
bias and improve learning speed, double Q-learning is applied, a method where
two Q-functions are trained in parallel, parameterized by µ1, µ2. More specifi-
cally, we apply the double Q-learning procedure as proposed in [4], by using the
minimum value of the two Q-functions for the value gradient. Minimizing the
loss:

JQ(µi) = E(st,at,st+1,rt)∼D

[
(Qµi

(st,at) − (rt + γVµ1,µ2
(st+1)))

2
]

(5)

This loss minimizes the squared error between the current state-action value and
what it should be according to the minibatch, namely the real reward plus the
state value of the next state, according to the current policy. The value function



Learning to walk with a soft actor-critic approach 9

in equation 5 is implicitly defined by the policy and the Q-function as:

Vµ1,µ2(st) = Eat∼πθ

[
min

i∈{1,2}
Qµi (st,at)− α log πθ (at | st)

]
(6)

The policy is learned by minimizing the Kullback-Leibner distance between
the action distribution and the state-action distribution, for a sampled minibatch
of states. This policy loss, as defined below, is the same as the policy loss of the
original SAC [8] but uses the explicit temperature parameter α, which relates to
the entropy.

Jπ(θ) = Est∼D,at∼πθ

[
α log πθ (at | st)− min

i∈{1,2}
Qµi

(st,at)

]
(7)

Because the action batch is sampled from the policy, the loss could not be back-
propagated to update θ. Therefore, the action is sampled using the reparameter-
ization trick [17], where the stochasticity of the sampling arises from an external
sampled noise variable. Given this noise variable, the action resulting from the
policy is obtained in a deterministic manner. Lastly, the temperature parameter
is updated by minimizing:

J(α) = Est∼D,at∼πθ
[−α log πθ (at | st)− αH] (8)

7 The robots

The first robot utilized in this study is the mini-Pupper 2, a recent creation
by MangDang Robotics, as depicted in Fig. 5a. It is an enhanced version of
Stanford’s original mini-Pupper, which was introduced in 2021 [16]. The mini-
Pupper 2 incorporates several improvements to enhance its functionality and
performance.

One notable enhancement is the upgraded servo system, which enables the
robot to collect real-time feedback from its environment. This feedback allows
for better control and interaction with the surroundings. Additionally, the mini-
Pupper 2 is equipped with an Inertial Measurement Unit (IMU) that includes a
gyroscope to measure angular rate and an accelerometer to measure acceleration.
This IMU provides crucial data about the robot’s orientation and motion.

The second robot is a modified open-source hardware design of the SpotMi-
croAI (see Fig. 5c). The body of the robot is 3D printed from Polylactic Acid
(PLA) material except for the feet, which are made of rubber for better shock
absorption. To handle the weight of the robot all the servos have a maximum
torque of 20kg/cm. Although plenty of schematics of the SpotMicroAI are avail-
able online, there is no good solution that merges the Jetson Nano with the
actuators and IMU sensor. Through careful examination, a new schematic is
created (see [2] for details).

The simulation used in this study is based on the PyBullet physics engine6. As
the mini-Pupper 2 is an open-source platform, MangDang Robotics provides the
6 http://pybullet.org/

http://pybullet.org/


10 G. de Jong et al.

(a) Physical mini-Pupper 2 (b) Simulated mini-Pupper 2

(c) Physical SpotMicroAI (d) Simulated SpotMicroAI

Fig. 5: The mini-Pupper 2 robot and SpotMicroAI, both real and simulated.

Fig. 6: SpotMicroAI on the left vs. mini-Pupper 2 on the right.

mesh of the robot body alongside a physical description of each component of the
robot in URDF format, enabling an accurate representation of the robot in the
simulator. To reduce potential adverse effects of inaccurate physical parameters,
we employ the aforementioned technique of randomizing the robot’s dynamics.

The SpotMicroAI is simulated with the same PyBullet physics engine. The
mesh used to 3D print the components is transferred into a 3D model. Additional
weight is placed inside the robot to mimic the weight influence of the Jetson
Nano and the battery. Because these are estimates, again a domain randomizing
technique is used to reduce the dependence on the precise values. By doing so, we
aim to develop a policy that exhibits sufficient generality to effectively transfer
to the real-world environment.

8 Experiments

In this study, a reinforcement learning agent is trained using both SAC and
ARS for both robots, whereafter the results are compared. The Bezier Curve



Learning to walk with a soft actor-critic approach 11

gait provides 3D foot-position trajectories, which can be converted into joint
angles for each of the actuators with inverse kinematics. For the mini-Pupper
2, Mangdang Robotics provides an inverse kinematics implementation7, which
was adapted to work with the D2-GMBC gait generator. Similarly, an inverse
kinematics implementation for the SpotMicroAI exists8 and we make the code
for this platform available online9.

The two robots also differ in size (see Fig. 6), which means that obstacles and
slopes are relatively more difficult for the smaller mini-Pupper 2. Therefore, the
domain randomization part of the DD2-GMBC training is adjusted to compen-
sate for the height differences. For the mini-Pupper the offset from the base-plane
ranged within [−0.035, 0.035], while the SpotMicroAI was implemented using a
range of [−0.08, 0.08]. See [1] for more details.

9 Results

The experiments are performed for the two robots in simulation and for the
SpotMicroAI also with the real platform. Unfortunately, the kickstarter program
from MangDang robotics10 failed to finalize the design of the mini-Pupper 2 Pro
in the timeline advertised at the beginning of the campaign, so the sim-to-real
transfer could not yet be demonstrated for this platform. At the conference the
learned walking-behavior of both robots [3] will be demonstrated.

9.1 mini-Pupper 2 simulation

The training performance on the mini-Pupper 2, for both the SAC and ARS
agents using a stable gait is illustrated in Fig. 7. The dark lines represent the
moving average window over 50 episodes.

The results demonstrate that the SAC agent exhibits notably faster learning
compared to the ARS agent. This outcome is consistent with our expectations,
as the ARS agent updates its policy only once per episode, whereas the SAC
agent initiates updates as soon as the replay buffer contains a sufficient num-
ber of samples. This disparity in the update frequency contributes to the SAC
agent’s accelerated learning rate, enabling it to converge more quickly. The ac-
celerated learning rate also results in the ARS agent starting out with a slightly
lower reward, because the SAC agent is able to adapt before the first episode is
completed.

9.2 SpotMicroAI simulation

The training performance on the SpotMicroAI, for both the SAC and ARS
agents using a stable gait is illustrated in Fig. 8. Again, the dark line represents
7 https://github.com/mangdangroboticsclub/StanfordQuadruped/
8 https://github.com/OpenQuadruped/spot_mini_mini/
9 https://github.com/watermeleon/spot_micro

10 https://www.kickstarter.com/projects/336477435/mini-pupper-2-open-source-ros2-
robot-kit-for-dreamers/description

https://github.com/mangdangroboticsclub/StanfordQuadruped/
https://github.com/OpenQuadruped/spot_mini_mini/
https://github.com/watermeleon/spot_micro


12 G. de Jong et al.

(a) SAC (b) ARS

Fig. 7: Training curves of the mini-Pupper 2 in simulation for the two agents
using D2 Randomization. Left in green the agent trained with SAC, right in red
the agent trained with ARS.

the mean of these experiments, and the lighter area represents the standard
deviation.

(a) SAC (b) ARS

Fig. 8: Training curves of the SpotMicroAI in simulation for the two agents using
D2 Randomization. Left in green the agent trained with SAC, right in red the
agent trained with ARS.

From the learning curves in Fig. 8 we see that although the starting reward
of SAC is much lower, it learns much faster than ARS. However, we can see
that ARS achieves a much higher reward than SAC and that the reward of
ARS always increases over time. Both this non-decreasing reward and the much
higher reward of ARS training are a result of the multiple rollouts. For each
of the episodes, one of the 16 rollouts will likely lead to a policy with a higher
reward. To estimate the quality of these agents we need to investigate if ARS



Learning to walk with a soft actor-critic approach 13

retains its advantage beyond the benefit of its privileged information provided
by the rollouts.

9.3 Sim-to-real transfer

To test if the walking behavior also works when applied to a real robot, the gait
learned for the SpotMicroAI in a simulated environment is now transferred to
the real SpotMicroAI robot. This is a replication of the experiment performed
by Rahme et al [20], but now extended with our implementations of both rein-
forcement learning (RL) algorithms: the ARS and SAC method. The goal of the
experiment is to let the robot walk a track of one meter. To reduce the impact of
the legs touching the floor, the track consists of a thin flexible mat with a height
of 0.5 cm. The robot is tasked to walk this path ten times for each RL agent
and for the baseline model which uses a fixed gait. Details about the calibra-
tion of the IMU values of the same movement applied to the simulated and the
physical robot are provided in Appendix A. Table 1 summarizes the results of
the experiments. For each agent, the mean and standard deviation of the results
are shown. For each RL agent, one run was considered failed because the robot
became stuck in continual erratic behavior that prevented it from going forward.

Table 1: The results of real-world experiments of traversing one meter.
mean standard failed

deviation runs
Baseline 15.20 2.56 0
ARS 15.33 0.94 1
SAC 21.22 1.47 1

From Table 1 we notice that neither of the agents was able to improve the
forward walking speed above that of the baseline. When looking at the standard
deviation we do note that the ARS agent has a more predictable walking speed,
as indicated by the low standard deviation. The SAC agent is significantly slower
than the other two and has an average walking speed of 21 seconds per meter
compared to the 15 seconds per meter of the other two models. However, the
walking speed was only one part of the reward signal, so to evaluate the walking
stability we need to inspect the quality of the walk itself.

The quality of the walk can be inspected visually. Three short representative
clips of each gait are available11. A closer inspection of those clips shows that the
baseline implementation demonstrates a suboptimal walk. Even after meticulous
calibration and reconfiguration of the servos, the robot falls through its hind legs
on multiple occasions, likely due to the weight of the body from the addition of
both a Jetson Nano control board and the extra battery.

11 https://youtu.be/Ji8rXjD60mU



14 G. de Jong et al.

The ARS clip shows adaptive behavior when the robot threatens to fall back-
ward or forward. However, in the video it is also visible that the agent sometimes
overcompensates, causing the body to swing from left to right or from front to
back. Therefore, we hypothesize that the reduced traversal time likely arises from
the falling prevention behavior.

The SAC agent displays even more complex falling prevention behavior. In
the video, this is visible when the roll or pitch becomes too high, causing the
agent to stand still for a short term. So, the agent can not only modify one or
two legs based on the body angles but when the IMU values diverge significantly
enough, the agent even seems to halt all movement. However, from the start of
the SAC clip, we see this falling prevention can significantly impede the gait, as
it encounters difficulties in starting the gait. Yet, after the agent has achieved a
stable gait, the SAC agent demonstrates significant adaptive behavior.

10 Conclusion

In this study, the work of Rahme et al was extended with another reinforce-
ment learning method (SAC algorithm). It was applied on two different robot
platforms.

For both robot platforms, the training in simulation showed the same pattern:
the SAC agent demonstrated a faster learning rate, while the ARS agent achieved
a higher overall reward. This discrepancy is anticipated since the SAC algorithm
begins updating the policy as soon as the replay buffer contains a sufficient
number of actions, whereas the ARS agent updates its policy once per episode.

The experiments with the real SpotMicroAI robot showed that the learned
gaits exhibited falling prevention behaviors. The resulting walking behavior were
not faster than the baseline gait, but potentially more stable. Future research
should demonstrate if an increase in the traversal speed is possible by adjusting
the reward the agent receives so that is less concerned with minor deviations in
the body orientation.

References

1. de Jong, G.: A soft-actor-critic approach to quadruped locomotion. Bachelor thesis,
Universiteit van Amsterdam (Jun 2023)

2. Eshuijs, L.: Spotmicroai: a micro step towards intelligent locomotion. Project re-
port, Universiteit van Amsterdam (Feb 2023)

3. Eshuijs, L., de Jong, G., Visser, A.: Demonstrating reinforcement-learned gaits
with two small quadrupeds. In: Proceedings of the 35th Benelux Conference on
Artificial Intelligence (BNAIC) (Nov 2023)

4. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error
in actor-critic methods. In: Proceedings of the 35th International Conference on
Machine Learning. PMRL, vol. 80, pp. 1587–1596 (Jul 2018)

5. Fukuhara, A., Gunji, M., Masuda, Y.: Comparative anatomy of quadruped robots
and animals: a review. Advanced Robotics 36(13), 612–630 (Jun 2022)



Learning to walk with a soft actor-critic approach 15

6. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped
robot on irregular terrain based on biological concepts. The International Journal
of Robotics Research 22(3-4), 187–202 (Mar 2003)

7. Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., Levine, S.: Learning to walk via
deep reinforcement learning. In: Robotics: Science and Systems XV (June 2019)

8. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: Proceedings
of the 35th International Conference on Machine Learning. PMLR, vol. 80, pp.
1861–1870 (Jul 2018)

9. Hanna, J.P., Desai, S., Karnan, H., Warnell, G., Stone, P.: Grounded action trans-
formation for sim-to-real reinforcement learning. Machine Learning 110(9), 2469–
2499 (May 2021)

10. Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez,
T., Wang, Z., Eslami, S.M.A., Riedmiller, M., Silver, D.: Emergence of locomotion
behaviours in rich environments. preprint arXiv 1707.02286 (Jul 2017)

11. Hornby, G., Fujita, M., Takamura, S., Yamamoto, T., Hanagata, O.: Autonomous
evolution of gaits with the sony quadruped robot. In: Proceedings of the 1st Annual
Conference on Genetic and Evolutionary Computation. vol. 2, pp. 1297–1304 (Jul
1999)

12. Hu, B., Shao, S., Cao, Z., Xiao, Q., Li, Q., Ma, C.: Learning a faster locomo-
tion gait for a quadruped robot with model-free deep reinforcement learning. In:
International Conference on Robotics and Biomimetics (ROBIO). pp. 1097–1102
(2019)

13. Hyun, D.J., Seok, S., Lee, J., Kim, S.: High speed trot-running: Implementation of a
hierarchical controller using proprioceptive impedance control on the mit cheetah.
The International Journal of Robotics Research 33(11), 1417–1445 (Aug 2014)

14. Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., Levine, S.: How to train
your robot with deep reinforcement learning: lessons we have learned. The Inter-
national Journal of Robotics Research 40(4-5), 698–721 (Apr 2021)

15. Iscen, A., Caluwaerts, K., Tan, J., Zhang, T., Coumans, E., Sindhwani, V., Van-
houcke, V.: Policies modulating trajectory generators. In: Proceedings of the 2nd
Conference on Robot Learning. pp. 916–926 (Oct 2018)

16. Kau, N.: Stanford pupper: A low-cost agile quadruped robot for benchmarking and
education. preprint arXiv 2110.00736 (Feb 2022)

17. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local repa-
rameterization trick. Advances in neural information processing systems 28 (2015)

18. Kohl, N., Stone, P.: Policy gradient reinforcement learning for fast quadrupedal lo-
comotion. In: IEEE International Conference on Robotics and Automation (ICRA
’04). vol. 3, pp. 2619–2624 (Apr 2004)

19. Lipson, H., Malone, E.: Evolutionary robotics for legged machines: From simu-
lation to physical reality. In: Proceedings of the 9th International Conference on
Intelligent Autonomous Systems (IAS-9) (Mar 2006)

20. Rahme, M., Abraham, I., Elwin, M.L., Murphey, T.D.: Dynamics and domain
randomized gait modulation with bezier curves for sim-to-real legged locomotion.
preprint arXiv 2010.12070 (Oct 2020)

21. Saggar, M., D’Silva, T., Kohl, N., Stone, P.: Autonomous learning of stable
quadruped locomotion. In: RoboCup 2006: Robot Soccer World Cup X. Lecture
Notes in Artificial Intelligence, vol. 4434, pp. 98–109. Springer (Dec 2006)

22. Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., Bohez, S., Van-
houcke, V.: Sim-to-real: Learning agile locomotion for quadruped robots. In: Pro-
ceedings of Robotics: Science and Systems XIV (June 2018)



16 G. de Jong et al.

Appendix A: IMU values

(a) Roll (b) Pitch

(c) Angular twist: x-direction (d) Angular twist: y-direction

(e) Angular twist: z-direction
(f) Linear Acceleration: x-
direction

(g) Linear Acceleration: y-
direction

(h) Linear Acceleration: z-
direction

Fig. 9: IMU results of the same movement in simulation and on the real robot,
for the SpotMicroAI. In red are the results of the real robot and in blue are the
results of the simulation. The performed movement consisted of a negative and
positive pitch movement, followed by a positive and negative roll movement



Learning to walk with a soft actor-critic approach 17

Before the quality of the RL agents on the real robot can be inspected we first
compare the IMU data between the simulation and the real robot. To achieve
this comparison, we use IK to make the robot apply a roll in both directions
followed by a pitch in both directions. All displayed values were as returned by
the IMU, except for the linear acceleration, which was reduced by a factor of 10
to match the values in the simulation. As seen from the Figures, the roll and
pitch measurements are similar to those in the simulation. The angular twist
also follows the same values as the simulation but already contains much more
noise, especially in the z-direction. Lastly, the linear acceleration looks much
more chaotic in real life than in simulation but importantly has spikes at the
same points in the graph which suggests it still contains useful information. Even
though the angular twist and linear acceleration contain more noise on the real
sensor than in the simulation, the results in the simulation also show erratic
behavior, we thus expect the agents to put more weight on the values of the roll
and pitch. From these results, we conclude that the sensor data provided by the
IMU is faithful enough for the sim-to-real transfer of the RL agents.


	Learning to walk with a soft actor-critic approach

