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Abstract—The development of human-machine interfaces is
key to creating prosthetics that adapt to user intent. However,
there remains much incongruity between muscle activity and
the resulting torque. This study employs high-density surface
electromyography (HD-sEMG) in conjunction with the Fast-ICA
algorithm to decompose motor units (MUs), which play a crucial
role in the generation of movement. Multilayer perceptron (MLP)
architectures are evaluated for predicting joint torque from MU
activity, and transfer learning is explored to enhance training per-
formance. Results show that transfer learning enhances training
efficiency and that joint torque can be accurately predicted from
MU activity, thereby advancing the potential of control systems
in assistive technologies.

Index Terms—High-Density Surface Electromyography (HD-
sEMG), Motor Unit Decomposition, Multilayer Perceptron
(MLP), Machine Learning, Signal Processing, Transfer Learning,
Joint Torque Prediction

I. INTRODUCTION

An estimated 2.3 million individuals in the United States
are currently living with limb loss, a number projected to
increase by 145% by 2060 [1], [2]. Approximately 86% of
all amputations globally are lower-limb amputations [3]. This
growing population of lower-limb amputees underscores the
urgent need for effective medical solutions. One promising
approach is the use of prosthetic devices, which aim to
restore lost human function following amputation [4]. Despite
their potential, current prosthetics have limited effectiveness,
primarily due to the limited understanding of human-prosthesis
interactions, which hinders the development of devices capable
of adapting intuitively to user intent [5].

Research suggests that the ability of prosthetics to restore
human function largely depends on their ability to interface
with the central nervous system (CNS) [6]. The CNS, con-
sisting of the brain and spinal cord, controls muscles through
motor units. Each MU consists of a motor neuron, located
in the spinal cord, and all the muscle fibers it innervates.
Muscle activation is regulated by a pool of motor neurons;
therefore, multiple MUs coordinate to control each muscle [7].
The activation of an MU causes all the muscle fibers it controls

to contract simultaneously. This muscle contraction generates
force and joint torque, which then produces movement [2],
[8].

The firing of muscle fibers generates electrical activity that
can be detected on the skin surface using electrodes, which
is a process known as surface electromyography (sEMG).
Each time a MU fires, it produces a characteristic waveform
called a motor unit action potential (MUAP), which reflects the
summed electrical activity of the muscle fibers innervated by
that MU. However, since multiple MUs fire simultaneously, the
electrical signals recorded by sEMG often overlap, making it
difficult to determine which signal originates from which MU
[9]. To address this, high-density surface electromyography is
employed, which involves placing an array of closely spaced
electrodes over the muscle surface [10]. By leveraging spatial
information from multiple electrode channels, signal decompo-
sition techniques can be applied to isolate and identify activity
of individual MUs [11].

With the use of machine learning algorithms, complex
patterns can be captured in decomposed MU signals, enabling
the prediction of joint torque based on MU activity [12],
[13]. While substantial research has focused on upper-limb
prosthetics [14], the majority of amputations are lower-limb,
motivating this paper’s focus on investigating HD-sEMG sig-
nals recorded from leg muscles in relation to joint torque.

Much of the existing work frames this problem as a
classification task, predicting discrete movements [12], [13].
However, human movement is highly dynamic, which limits
the generalizability of such class-based models to novel or
transitional actions [15]–[17]. Therefore, this work approaches
this as a regression task, where torque is modeled as a
continuous function of MU activation recorded per muscle.

To predict torque, a multilayer perceptron is employed for
its ability to model continuous outputs, unlike previous studies
that used linear discriminant analysis and support vector
machines, which are limited to discrete class predictions [18].
This enables adaptation to scenarios that are not class-specific,
expanding the model’s predictive range beyond predefined
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categories. Deep neural networks, such as convolutional neural
networks, are prone to overfitting on small, subject-specific
datasets [19]. In contrast, the simpler architecture of the MLP
allows for accurate prediction with a relatively small number
of parameters, improving training efficiency and reducing the
risk of overfitting. Prior work has shown that MLPs can
achieve high accuracy on multiclass problems; for example,
reaching up to 82% accuracy on a 12-class problem [20].
This demonstrates their capacity to learn complex decision
boundaries, which is promising for regression tasks requiring
continuous value prediction.

In addition, patient data is often limited, restricting the
amount of training data available for machine learning algo-
rithms and potentially hindering performance [19]. To address
this, the proposed methodology incorporates transfer learning
to assess its ability to compensate for limited patient-specific
data. Transfer learning reduces data requirements by lever-
aging parameters previously learned from large datasets [21].
This approach enhances the applicability of neural-based lower
leg prosthetics, enabling models controlling these devices to
adapt to new users with improved training efficiency.

II. METHOD

This paper proposes a framework to predict joint torque
based on HD-sEMG signals recorded from multiple muscles
on the right leg of three subjects. To assess transfer learning,
models are first pretrained on data from one subject and then
evaluated on another subject to determine whether transfer
learning improves performance.

A. Data Collection

All experimental procedures were approved by the Univer-
sity Medical Center Göttingen Ethical Committee (Ethikkom-
mission der Universitätsmedizin Göttingen, approval number
01/10/12). After providing signed informed consent, data were
collected from four healthy men (weight: 68.3 ± 1.3 kg, age:
30 ± 1.9 years, height: 184 ± 2.1 cm) who volunteered for this
investigation [4], [22]. The data from one of these subjects was
excluded due to a task mismatch; therefore, the data from only
three subjects were used [2].

Muscle activity and joint angular moments were recorded
simultaneously at 2048 Hz from the subject’s right leg. Ankle
torque was measured using a dynamometer (M3, Biodex,
Medical Systems Inc., Shirley, NY, USA). HD-sEMG signals
were acquired using a 256-channel surface EMG system
(EMG-USB2, OT Bioelettronica, Torino, Italy). Recordings
were obtained from the subject’s right lower leg muscles using
two 32-channel grids and three 64-channel grids, each with 10
mm inter-electrode distance [2], [4].

The two 32-channel grids were applied to the gastrocnemius
lateralis (GL) and the peroneus group, which is split into
the peroneus tertius (PT) (active during dorsiflexion) and the
peroneus longus (PL) (active during plantarflexion). The three
64-channel grids were used for the tibialis anterior (TA), soleus
(SOL), and gastrocnemius medialis (GM) muscles (see Fig. 1).
Prior to electrode placement, the skin was shaved and lightly

abraded. Electrodes were applied to the skin using conductive
paste and secured with 1 mm-thick double-adhesive foam with
holes corresponding to each sensing site [2], [4], [17].

B. Experimental Protocol

The subjects performed a series of isometric dorsiflexion
and plantarflexion contractions, moving the ankle from rest
to target force levels expressed as percentages of maximum
voluntary contraction (MVC) in either dorsiflexion or plan-
tarflexion. The protocol included four target levels: 30%, 50%,
70%, and 90% of MVC [2], [4], [17].

C. Signal Preprocessing

A simplification of the HD-sEMG generation model [23] is
the linear instantaneous mixing model, in which the HD-sEMG
recordings are modeled as a linear mixture of the sources:

x(k) = As(k) (1)

where A is an unknown mixing matrix, x(k) represents
the observed HD-sEMG recordings, and s(k) are the source
signals corresponding to the motor unit spike trains, which
represent action potentials generated by individual motor units.
The variable k ∈ {1, . . . , D} represents the sample index [2],
[8], [10].

The HD-sEMG signals are high-pass filtered with a 30
Hz cut-off frequency to eliminate movement artifacts [4].
The filtered signals are then whitened and extended using
an extension factor of 16, which has been shown to yield
optimal results [10]. Extending the signals introduces time-
lagged versions of each channel to promote statistical indepen-
dence between sources. This preprocessing enables the source
extraction via a blind source separation method, which models
the sources as:

s(k) = Wz(k) (2)

where the sources s(k) are a linear combination of the
extended whitened observation z(k) and W is obtained using
the FAST-ICA algorithm [11] such that W ≈ A−1 [2], [8],
[10].

The recorded torque moments are low-pass filtered with
2 Hz cut-off frequency to remove high-frequency noise [4].
Moments are then averaged over a 5-s time window during
which the subjects exert no torque. This average is used to

Fig. 1: Placement of high-density sEMG grid electrodes on
lower leg muscles, including the soleus, gastrocnemius, tibialis
anterior, and peroneus muscles. Adapted from [4].



remove the torque offset from the recorded moments caused
by the weight of the subject’s leg [2], [4].

D. Feature Extraction

The estimated sources s(k) are used to predict torque using
an MLP. However, since the number of extracted sources can
vary per muscle [17], the sources are aggregated per muscle:

sm(k) =

nm∑
j=1

sj,m(k) (3)

where nm denotes the number of estimated sources for
muscle m, with m ∈ M = {TA, SOL, GM, GL, PL, PT}.
This summation produces a single source signal per muscle,
sm(k), resulting in a feature vector of size 6 corresponding
to the six recorded muscles. This allows for a consistent input
format to the MLP model.

Next, the summed sources per muscle are transformed
into muscle-specific feature functions by applying a twitch
contraction model, which predicts muscle activation based on
the sources:

fm(k) =

(
2 · exp

−T
tpeak

)
· f(k − 1)−

(
exp

(−2·T )
tpeak

)
·

f(k − 2) +
(Apeak · T 2)

tpeak
· exp1−

T
tpeak ·sm(k − 1)

(4)

where Apeak is the peak, and tpeak is the time to peak (or
contraction time) of the twitch. fm(k) models the muscle
activation generated by the summed sources sm(k − 1),
and T denotes the sampling period (time between samples),
T = 1

2024 [17], [24]. This results in a muscle-specific feature
function. For this paper, values 0.1 were used for both Apeak
and tpeak, aligning with previous research on twitch functions
[17].

The 6 muscle-specific feature functions are used as input
to the MLP. Based on these features, the MLP predicts the
low-pass filtered torque for each subject, performing a specific
movement type at a specific MVC level (See Section II-B):

Torque(k) ≈ MLP(fM (k)),where fM (k) =


fTA(k)
fSOL(k)
fGM(k)
fGL(k)
fPL(k)
fPT(k)

 (5)

Different MLP architectures are tested with 3, 5, and
9 layers, each containing 8, 16, or 32 nodes, as these
configurations have demonstrated high predictive accuracy in
previous studies [25], [26]. Following established practices in
related work, the learning rate is set to 0.0009, and training
is conducted for 500 epochs [27].

E. Time Series Cross-Validation

Time series cross-validation is used to evaluate the model’s
ability to predict torque while fully respecting the temporal
order of the data, thereby preventing unrealistic data leakage
that would occur if future observations were used to predict
the past. To avoid such leakage across training and test sets,
the continuous signal is divided into four discrete blocks
corresponding to individual contractions. For each fold, the
model is trained on all blocks up to a certain block, and tested
on the subsequent block, resulting in three folds: fold 1 trains
on block 1 and tests on block 2, fold 2 trains on blocks 1 and
2 and tests on block 3, and fold 3 trains on blocks 1 to 3 and
tests on block 4 (See Fig. 3a). This ensures that information
from future contractions does not appear in the training data
[28], [29].

F. Transfer Learning

To investigate the effect of transfer learning, the perfor-
mance of multiple baseline MLPs is compared to that of
pretrained MLPs. Each pretrained model is initially trained
on data from one subject performing a specific movement and
then fine-tuned on data from only block 1 (a smaller portion
of data) and tested on block 4 (See Fig. 4b) from the target
subject performing the same movement. The baseline model
is trained and tested on blocks 1 and 4, respectively, from the
target subject. This setup evaluates whether pertaining reduces
the amount of subject-specific data required for accurate
prediction. To ensure fair comparison, each subject is used
once as the pretraining source and once as the fine-tuning
target for every combination of movement type and MVC
level. Final results are averaged across all subject pairs and
conditions.

To assess training efficiency, the training loss curves are
compared between pretrained and baseline models. To assess
data efficiency, the test loss of pretrained models is compared
to that of baseline models when trained on reduced amounts
of data.

III. RESULTS

The first step was to obtain the raw EMG and torque record-
ings (see Figs. 4a and 2a). The surface EMG recordings were
decomposed into spike trains using the Fast-ICA algorithm
[11] and subsequently summed, as illustrated in Fig. 4b. These
summed spike trains were then used to derive muscle-specific
feature functions fm(k), as shown in Fig. 4c. Each raw torque
measurement contained a baseline offset, which was estimated
using the first 5 seconds of data (indicated by the orange band
in Fig. 2b). The torque signals were then filtered and corrected
for this offset as shown in Fig. 2c.

Different MLP architectures were evaluated using features
extracted from subject 1 during a dorsiflexion task at 30%
MVC, employing 3-fold time series cross-validation. Exper-
iments were conducted to determine the optimal width and
number of hidden layers. The best-performing architecture
consisted of five hidden layers with 32 nodes each (See
Table I). The table shows that increasing the number of



(a) (b) (c)

Fig. 2: (a) Raw torque recordings from subject 1 performing
four repeated movements at 30% MVC. these raw measure-
ments are smoothed with a low-pass filter (b), and offset
corrected such that the baseline has a torque of 0.0 Nm (c).

TABLE I: Average 3-fold time series cross-validation loss
(mean squared error) for MLP architectures trained and tested
on subject 1, performing a dorsiflexion movement at 30%
MVC. The architectures used a consistent number of nodes
per hidden layer.

Hidden Layers Width 8 Width 16 Width 32
3 0.82 0.78 0.76
5 0.81 0.75 0.72
9 0.77 0.79 0.72

nodes per layer reduces mean squared error (MSE), while
increasing the number of layers has minimal effect. All tested
architectures used a consistent number of nodes per hidden
layer; for example, an MLP with five hidden layers and width
8 corresponds to the structure MLP6×8×8×8×8×8×1.

The MLP architecture, comprising 5 hidden layers with 32
nodes per layer, was able to accurately predict the shape of
the filtered torque curve, as illustrated in Fig. 5.

The same MLP architecture was used to evaluate improve-
ments in training and data efficiency through transfer learning.
As shown in Fig. 6b, pretrained models reached the same
MSE in fewer epochs across all MVC levels compared to the
baseline models, indicating reduced computational cost. Ad-
ditionally, Fig. 6a shows that the average MSE increased with
MVC level for both the pretrained and baseline models. This

(a) (b)

Fig. 3: (a) Muscle-specific feature functions from six different
muscle groups, and (b) filtered torque recordings from sub-
ject 1 performing four repeated movements at 30% MVC.
These repeated movements are collected in four blocks, each
including both EMG recordings and corresponding torque
measurements, which are used for time-series cross-validation
and transfer learning assessments.

(a) (b) (c)

Fig. 4: (a) Raw EMG recordings from subject 1 performing
four repeated dorsiflexion movements at 30% MVC, recorded
from the first electrode over the tibialis anterior muscle. These
raw measurements are aggregated into spike trains (b), which
are turned into muscle-specific feature functions (c).

(a) (b)

Fig. 5: Torque predictions made by the multilayer perceptron
(MLP6×32×32×32×32×32×1) after training on the first two
blocks (45 seconds) of subject 1 performing a dorsiflexion
movement at 30% MVC. (a) Shows both the predicted and
actual torque curves, while (b) zooms in on block 4, high-
lighting the largest remaining error occurring during the sharp
decline around 66.0 seconds.

trend likely stems from the increased complexity of the HD-
sEMG signal at higher force levels [30]. Greater force recruits
more MUs, causing more overlapping action potentials that
hinder MU identification and may reduce model accuracy [7],
[9], [31]. However, pretrained models showed marginal, if any,
improvements in test accuracy. This observation aligns with
prior findings that transfer learning tends to be less effective
for tasks involving simpler or lower-dimensional input data,
where the complexity of learned feature representations offers
limited benefit [19], [32].

Compared to state-of-the-art musculoskeletal approaches on
the same dataset (reported normalized RMSEs <0.4 in Mas-
simo et al. [4] and <0.3 in Gogeascoeche et al. [17]), Fig. 5
shows peak errors below 4 Nm on a 23.5 Nm contraction, over
which we calculated a normalized RMSE of 0.154. While this
is only an illustrative example for a single subject at 30%
MVC, it highlights the potential of the proposed approach.

IV. CONCLUSION

The results show that increasing the number of nodes per
hidden layer in MLP architectures improves prediction accu-
racy, while the number of hidden layers has minimal impact.
Transfer learning provides marginal gains in data efficiency but
significantly reduces training time compared to MLPs trained
from scratch. This improvement enhances the applicability of



(a) (b)

Fig. 6: Training loss curves (mean squared error ± standard
error of the mean) and average test loss (mean squared
error) for pretrained and baseline MLPs. (a) Bars represent
the average test loss across all subject pairs performing the
same movement type at the same MVC level. (b) Plots show
average training loss across subject pairs performing the same
movement type at the same MVC level.

MLP-driven prosthetics in scenarios with limited computa-
tional resources, suggesting that EMG-driven prosthetics could
benefit from shared learned parameters across users. Overall,
this approach enables accurate torque prediction by interfacing
with the nervous system, supporting the development of leg
prostheses that adapt to user intent.
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