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Abstract— This paper proposes a method to use the omnidi-
rectional camera as a rangefinder by using color detection. The
omnicam rangefinder has been tested in USARSim for its accu-
racy and for its practical use to build maps of the environment.
The results of the test shows that an omnidirectional camera
can be used to accurately estimate distances to obstacles and
to create maps of unknown environment.

I. INTRODUCTION

An important aspect of robotics is the task of collecting
detailed information about unexplored or disaster struck
areas. A part of this task is to make a robot measure
distances to obstacles in order to localize itself and to create
a map of the environment. This paper proposes the use of an
omnidirectional camera combined with a color based free-
space classification system to create a rangefinder which can
estimate these distances. ’Can an omnidirectional camera be
used effectively as a rangefinder?’ is the research question
of this paper.

Until now, active sensors like laser scanners or sonar
are being used as rangefinders. Active sensors can generate
highly accurate measurements, but have their limitations.
They typically scan a surface, missing obstacles just above
or below this surface. Some highly reflective or absorbent
surfaces are invisible for these sensors. Further they have
limits on their range and field of view. Because it are
active sensors, they are relatively heavy and can consume a
substantial amount of the robots battery capacity. An active
sensor on a small or flying robot is therefore not a viable
choice.

This is why it is important to focus attention on alternative
sensors like a passive sensor as proposed in this paper. A
passive sensor based on omnidirectional camera can have
a 360° field of view by using an omnidirectional camera.
However a visual sensor tends to be inaccurate compared
to a laser sensor and it is hard to estimate the depth on an
image using an omnidirectional camera.

Again, this paper proposes a method to implement a
rangefinder for an omnidirectional camera. This rangefinder
uses a color histogram, which is a color based statistical
model, to identify free space in the immediate surroundings.
Furthermore a comparison between an omnicam and a laser
determines which sensor, in terms of accuracy and practical
use, performs better in what kind of environment or circum-
stance. Practical use is tested by letting a rangefinder sensor
build a map of an environment. Scanmatching algorithms
are used in combination with the rangefinder in order to
estimate its position on the map, which is an important part
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of mapping unknown environments. The implementation and
testing of this method is done in USARSim [1], which is a
simulation environment that can be used as a research tool
[2].

Section 3 describes the theory and method that have been
used for the development and validation of the omnicam
rangefinder. Section 4 describes how the experiments are
set up to test the omnicam rangefinder. Section 5 handles
the outcome of the test results while section 6 describes
the discussion and further work. The final section makes a
conclusion of this research.

II. RELATED WORK

Several methods of using a visual sensor to detect free
space have already been created. The winner of the DARPA
challenge 2005 used a visual classifier based on color in-
formation to estimate the road ahead [3]. Rauskolb et al.
[4] improved this algorithm so it can also be used in urban
environments.

Since the introduction of the omnidirectional camera in
USARSim [5] many new applications have been designed
for the omnicam. Roebert used the omnidirectional camera to
create a bird-eye view map of an environment [6]. However
these bird-eye view maps of the environment are not usable
by autonomous robots for navigation. The robots need to
have an obstacle detector, know what the free space is
and have the ability to create a map where the free space
and obstacles are shown in order to navigate through an
environment.

Maillette de Buy Wenniger [7] created a free-space detec-
tor that uses probabilistic methods to learn the appearance
of free space in a bird-eye view image based on the color
signature. This free space detector is extensively tested, but
not used for navigation or mapping yet. Scaramuzza [8] has
designed a rangefinder for a low-cost omnicam sensor that
can detect and measure the distance to obstacle points in a
simple black and white world. In this paper both approaches
are combined with a scanmatching algorithm [9], which
allows localization and mapping of an environment purely
on visual information.

III. METHOD

This section describes the method and theory behind the
omnicam rangefinder. The theory behind the rangefinder is to
use a trained color histogram to classify free space pixels in
an image. Maillette de Buy Wenniger’s work [7] has shown
that a color histogram can be used for reliable identifion of
free-space for a simulated and a real robot.



This paper suggests an omnicam rangefinder which uses
the free space detection system of Maillette de Buy Wenniger
to classify pixels as either free space or non-free space.
From there on the rangefinder uses this knowledge to detect
boundary points of an obstacle by using polar scanning
combined with false-negative and false-positive filters. The
robot can then estimate the metric distance between the
robot and the boundary point. After the distances have been
estimated an outlier rejection filter is used to reject the
estimated distances that have a high probability of being
inaccurate.

A. Free space pixel identification

The color histogram is a statistical model used to identify
free space pixels based on their color values. It needs to
be trained by using a set of training data which consists of
a collection of pixels where the class, which can be free
space or non-free space, is already known. A trained color
histogram can then calculate the probability if a certain color
value belongs to a certain class.

1) Collecting training data: When the robot is deployed
into an unexplored environment it is going to need a laser
scanner to create the training set for the color histogram.
After creating the training set the robot can venture further
into unexplored areas without using the laser scanner to
measure the distances to obstacles. In order to build the
training set the robot needs to provide a bird-eye view image
of the environment [6] and the laser measured distances
image of the environment. These two components are then
fused to create a bird-eye view image where the free space
is shown. The pixels that are classified as free space on that
image are used to train the histogram. This entire procedure
is visualized in figure 1. The laser rangefinder has a field of
view of 180° compared to the omnicam’s 360°, therefore the
created bird-eye view images of the omnicam has been cut
in half to make it synchronize with the laser image.
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Fig. 1: Procedure to create training data. The half circle on
the left part of the images is the base of the omnicam, this
will not be used for the training data.

A bird-eye view image can be created by following
Nayar’s described relation between a pixel on an omnicam
image and the corresponding pixel on the bird- eye view

image if nothing obstructs the view [10]. A pixel on an
omnicam image is described by Domn = (Tomn, Yomn)
and a pixel on the bird-eye view image is described by
DPve = (e, Ype ). These are the equations:

f = arccos %, (1)
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The constant R is the radius of the circle describing the
90° incidence angle on the omnicam effective viewpoint.
The variable z is used to describe the distance between
the effective viewpoint and the projection plane in pixels.
Roebert’s work [6] has shown that accurate bird-eye view
maps can be achieved by using these formulas.

An image of the laser measured distances can be con-
structed by using a laser rangefinder to measure the distances
on every scanline between a “hit point’ and the origin of the
laser, which is the sensor position on the robot. If the distance
of the hit point’ is bigger than the detection range, the laser
will return the maximum detection range for that scanline.
Multiple laser measurements can be done to increase the
probability that free space is detected on a certain scanline.
These measured distances can then be converted to an image
like in figure 1b.

Finally a combined image between these two components
can be created and the color pixels that are classified by the
laser rangefinder as free space on that image can be used as
the training data for the color histogram.

2) Color Histogram: The color histogram is trained by
counting how many times a certain RGB value exists in the
training data. Before the training can start a decision about
the number of bins (n) of the histogram has to be made.
In this study histograms with 13 bins are used. A trained
color histogram is usable to classify free space pixels in
new omnicam images. The trained color histogram uses this
discrete probability distribution to classify a pixel as either
free space or non-free space:

c[rgb]
T

Prsr(rgb) = 4)

Here, c[rgb] returns the count of the histogram bin that is
associated with the rgb color. T, returns the total count of all
the bins of the histogram. The outcome of a particular color
will thus have a value between 0 and 1. In order to filter out
the false positives the histogram uses a probability threshold
is set as 0 < 6§ < 1. Therefore a pixel is considered as free
space if

Prisr(rgb) > © )

In our experiments, a different threshold ©® was used to
accommodate for the circumstances in the different environ-
ments (as indicated in table I).



B. Omnicam Rangefinder

The basis of this method has been derived from Scara-
muzza’s black and white omnicam rangefinder [§8]. However
the proposed omnicam rangefinder in this article uses the
color-based free-space detection described in section 2.1
instead of only detecting black and white colors. This free-
space detector is combined with the rangefinders very own
detection method which uses polar scanning combined with
false-positive and false-negative filters to detect pixels of an
obstacles boundary point. These detected pixels are consid-
ered as the hit points of the scanlines. Having detected a hit
point the rangefinder estimates the metric distance between
the robot and that hit point. At the end of this method an
outlier rejection filter is used to reject the estimated mea-
surements that have a high probability of being inaccurate.

1) Polar scanning: The omnicam rangefinder uses polar
scanning to create scanlines that are coming from the center
of an omnicam image, a visualization can be found in
figure 2b. Every pixel in each scanline gets classified as
either free space or non-free space according to the trained
color histogram. The omnicam rangefinder then uses its
false-positive and false-negative filters to find the correct hit
point for each scanline. These filters use a small number of
parameters which can be optimized on the environment or
situation, as indicated in table I.

(a) The original image of the omni- (b) The same image with scanlines
cam. visualized on it.

Fig. 2: A visualization of polar scanlines on an omnicam
image.

False-positive filter:
This filter determines if a non-free space pixel is a
hit point by checking if N pixels behind it are also
classified as non-free space pixels. An example of
this filter can be found in figure 3a.

False-negative filter:
This filter makes sure that a candidate hit
point does not get rejected because a free-space
pixel, which was actually misclassified, interrupts
the sequence of non-free space pixels described
in the false-positive filter. The parameter K
determines how long the sequence of free-space
pixels should be before rejecting the candidate hit
point. An example is given in figure 3b.

The metric distance from the robot to a pixel is calculated
whenever that pixel is classified as a hit point according to
the rangefinder. When there is no hit point on a scanline the
rangefinder returns the maximum range, which is another

(a) Example where /N = 4: The pixel with an *X’ has
been classified as a hit point because N pixels behind
it are classified as non-free space pixels.
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(b) Example where K = 2: Hit point has not been found because
there is more free space starting from the O’ pixel. This is because
K pixels behind it are also classified as free-space pixels. Note that
the free-space pixel between the two non-free space pixels is negated
because the next pixel behind it is classified as a non-free space pixel.

Fig. 3: Tllustration of the false-positive and false-negative
filters. The figures represent a set of pixels from a scanline,
green pixels are classified as free space and red pixels are
classified as non-free space pixels.

variable parameter. When the hit point is too close to the
position where the robot is, this would make the measured
distance unreliable, the rangefinder returns the minimum
range, which is also a variable parameter.

2) Measuring distance: The rangefinder calculates the
metric distances to each hit point that it can find. The
metric distance d is calculated by using the formula from
Scaramuzza [8]:

d = htan(f) (6)

where 6 is the incidence angle on the mirror and h is the
height in meters from the ground to the effective viewpoint
of the hyperbolic mirror. The metric distance d is calculated
in meters. The incidence angle 6 can be estimated by a
first order Taylor expansion 6 ~ £ when the shape of the
mirror is not well known. p represents the pixel distance
from the hit point to the center of the image, « is a constant
value that depends on the mirror shape and the camera-mirror
distance. The constant « can be estimated by calibrating the
omnicam sensor measurements against a laser range sensor
measurements. The variables 6, p, a and h are illustrated in
figure 4. In our case, the shape of the mirror is well known;

¢ = 2arctan( ).
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Fig. 4: Illustration of the location of the mirror, image plane
and ground floor, as used in equation (6).



Pixels which have a difference larger than 1.25m between
the distance estimate of the laser range scanner and the om-
nicam range scanner were not used for training or evaluation.

IV. EXPERIMENTAL SETUP

This section describes the testing environment and the
experiments that are used to test the omnicam rangefinder.
The implementation of the omnicam rangefinder and the
testing of it were done in USARSim which is a simulation
environment. The omnicam rangefinder was tested for its
accuracy and for its practical use to create a map of an
environment.

A. USARSim

USARSim is a 3D simulation environment that can sim-
ulate real world environments and situations. This program
is intended as a research tool to study the use of robots
in the real world. Robots in USARSim can therefore use
simulated realistic tools to complete their tasks. Experiments
have shown that perception algorithms that are developed
in USARSim can easily be converted and used for the real
world [2].

B. Accuracy Test

This first experiment compares the measured ranges from
an omnicam against the measured ranges from a laser. The
laser sensor is highly accurate' and can therefore be used
as a reference measurement. The ranges are collected by
letting the robot drive around in an environment while mea-
suring the distances using both the omnicam and the laser.
Each scanline measurement from the laser gets compared
to the appropriate scanline measurement of the omnicam.
By subtracting the omnicam measurements from the laser
measurements one can get the differences between them.
These differences can then be plotted in a histogram to show
the omnicam’s accuracy compared to the laser’s accuracy.

C. Map Building Test

The second experiment tests if the omnicam sensor can
actually be used for localization and building maps. The
sensor has to create accurate maps of environments in order
to achieve this. Again, the laser sensor is used to create a
reference map of the environment. The omnicam then drives
exactly the same route as the laser to create an omnicam map.
The omnicam map is then compared with the reference map
to determine how different the map is.

The map building is done using two different ways:

o Using Deadreckoning with the GroundTruth as the
sensor. This reference setting makes sure that the robot
always knows where it is on the map. This means that
the robot can always localize itself without scanmatch-
ing, therefore the quality of the map fully depends on
the accuracy of the sensor.

o Using Quad Weighted ScanMatching (QWSM) [11]
with an Inertial Navigation System (INS) as the initial
pose estimate. INS uses the robots acceleration sensors

TA SICK LMS 200 has indoors a statistical error < 5mm

to estimate the current pose. That pose estimate is
checked on consistency with the observations of the
range scanner, which results in a new estimate of the
current pose. This setting is a more realistic setting and
must be used when the robot is venturing into unknown
terrain.

Using QWSM and INS results in a less accurate map, but
the omnicam needs to be evaluated with this setting in order
to proof that it can be used in a realistic configuration.

D. Environments and robot model

Two different environments are used to test the omnicam
rangefinder. The first one is a maze as shown in figure 5a.
This environment consists of very small corridors, lots of
turns and the hedge has nearly the same color as the floor,
which is covered with grass. The challenge is to correctly
map the small corridors and to make a distinction between
the hedge and the grass. The second environment is a factory
as seen in figure 5b, this environment has relatively wide
corridors, less turns and it contains a number of unique
objects. The challenge in this map is also to detect those
unique objects as obstacles, figure 6 shows a couple of
examples of these obstacles.

(a) The maze environment. (b) The factory environment.

Fig. 5: Environments in USARSim to train and test the
omnicam rangefinder.

(a) A cabinet. (b) A pipe with liquid metal.

Fig. 6: Some unique objects in the factory environment.

The type of robot that is used to do these experiments is
the OmniP2DX (Figure 7), which is a robot equipped with
a laser scanner and an omnicam sensor. The height of the
omnicam’s effective viewpoint A to the ground is 0.931m.

Before starting the experiments it is important to choose
a maximum range of the algorithm described in section III-
B. The maximum range is dependent on the curvature of
the mirror of the OmniP2DX. The maximum range can be
estimated by rewriting the equation (6) and performing sev-
eral sample distance measurements by letting a range sensor



Sick laser range scanner.

measure a distance in meters and letting the omnicam sensor
measure that same distance in pixels. Having estimated the
« the distance formula can be used to plot the relation
between the pixel distance and the metric distance. Figure 8
shows this relation and it also shows that the discretization
error between pixels increases hyperbolically. This means
that having an off-by-one-pixel-error misclassification on a
distance far away from the robot can result into a high metric
distance error. Setting the maximum range at 3.8 meters is
therefore a good tradeoff between the maximum range and
the accuracy of the omnicam. The number of scanlines used
was 360.

Relation between pixel distance and metric distance
T T T

— Pixelto-Distance formula
*Max Range set on the omnicam

120
X (Pixel distance)

Fig. 8: The relation between the pixel distance and the metric
distance.

V. RESULTS

This section deals with the results of the experiments with
the omnicam rangefinder. The results have been obtained
by using the parameters stated in table I. These are the
optimal parameters that have been derived by hand. At the
time of writing there exists no learning algorithm for finding
the optimal parameters for every situation is applied. The
laser sensor used for these experiments is the SICK laser
which has a maximum range of 19.8 meters compared to the
omnicam’s maximum range of 3.8 meters. The image reso-
lution for the omnicam images used for these experiments is
1024x768 (R=192 pixels).

A. Accuracy Results

Figures 9a and 9b shows the results of the accuracy test
of the omnicam rangefinder for respectively the maze and

Map Nonfreepixels | Groupedpixels | Probabilitythreshold
Maze 20 2 0.05
Factory | 20 2 0.075

TABLE I: Parameters used in the algorithm
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(a) Maze: Histogram of the omnicam accuracy
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(b) Factory: Histogram of the omnicam accuracy

Fig. 9: The omnicam accuracy compared to the laser accu-
racy measured in both environments

the factory. The figures show a bigger measurement error is
made for the maze, but also that this error mainly due to the
tail of the distribution. The factory measurements are quite
symmetric whereas the maze measurement are skewed to the
left, as can be seen in the histograms of figure 9. For the maze
measurements the systematic error is nearly zero, while for
the factory measurements the mean of the distribution is a
few centimeters to the right.

The measurements of the factory environment were done
in wide corridors, which means that the factory’s histogram
is showing the accuracy of the omnicam in a more optimal
situation. The environment did not have a lot of corners
compared to the maze environment which was chosen to
stresstest the omnicam rangefinder.

Table II shows that the omnicam rangefinder has an
average absolute accuracy difference of 8.09cm in the factory
compared to 13.75cm in the maze. Notice that the route
driven with the robot in the factory was shorter then the
route through the maze, but nicely closes a loop.

Map Avg Absolute Difference | Avg Percentage Difference
Maze 0.1375m 7.639%
Factory | 0.0809m 4.493%

TABLE II: Table with differences between laser and omni-
cam range measurements



(a) Omnicam sensor fac-
tory map

(b) Laser sensor factory map

Fig. 10: Factory map created with localization on ground
truth

B. Map Building Results

Factory environment: Figure 10a and 10b shows the
results of building a map of the factory environment using an
omnicam sensor and a laser sensor combined with the ground
truth (available in simulation) as localization. Because of its
accuracy the laser created map serves as an indication for
what the ground truth map should look like. Comparing both
maps shows that the omnicam map does not differ that much
from the laser created map. The black dots and lines on the
map represents detected obstacles, the gray color represents
the safe space while the white color represents the free space
detect by the rangefinder. Both gray and white indicates
areas free of obstacles, but grey indicates areas that are well
explored, while white indicates areas that could be further
explored. The main difference by the maps generated with
the omnicam and the laser, is the thickness of the walls. The
omnicam map is not as razorsharp as the map generated with
the laser scanner.

A less obvious difference between both maps is visible
at the bottom of the map, indicated with a red rectangle.
The omnicam map has found a obstacle at that location
while on the laser map only four small dots are visible. The
omnicam map is correct at this situation, there is indeed a
big obstacle (figure 6a) present on this location. The laser
scammer looked right through the cabinet, because no shelf
was present at measurement height of the sensor. Another
obstacle which had the potential to be difficult to detect, the
pipe with liquid metal from figure 6b, was detected without
problems by both sensors. This pipe is visible on both maps
as the curved upper left wall.

Figure 11 shows the results of the same route using
QWSM scanmatching with INS. Comparing these maps with
the maps from figure 10 shows that the map from figure 11b
is more accurate than the map from figure 11a. These maps
show that localization with the omnicam sensor performs
worse than localization with a laser sensor for this situation.

(a) Omnicam sensor factory
map

Fig. 11: Factory map created with QWSM and INS

(b) Laser sensor factory map

The reason for this is that if the corridors are relatively
wide, the omnicam with its limited range of 3.8 meters
sees not that many features. The walls on other side of the
crossing are out of range. When the robot is turning on a a
location with sparse features, an error in the precise value
of this rotation is easily made. In figure 11a small rotation
errors are made on multiple locations.

This rotational error could be corrected by post-
processing, when loop closure is detected. Note that this are
initial results, the used scanmatching algorithms were devel-
oped and optimized for the laser range sensor measurements.
Although the applied scanmatching algorithms do not have
that many parameters, no sensitivity study is performed to
study the optimal parameter values for the omnicam range
measurements.

Maze environment: Figure 12 shows the results using
localization on the ground truth to build a map of the maze.
Because of the turns in the maze the SICK laser loses its
advantage to measure distances up to 20 meters. The robot
started in the middle of the maze and made its way to the
exit of it. Apart from the noise on the path both maps look
quite similar to each other. The laser could sometimes look
through the hedge because of the very small holes in the
hedge. The laser would then have a preview on the path on
the other side of the hedge. This could be a benefit, but it can
also create some distortions like the area in the upper part of
its map. The omnicam map does not have those problems.

Figure 13 shows the created maps of the maze with
QWSM and INS. The localization for the laser sensor went
wrong on this map. This can have several reasons. Firstly,
the measurements right through hedges which creates outliers
that can breakdown the scanmatcher. Further, the corridors on
the outer edge are quite long. The laser range measurements
could not detect the end of the corridor, which makes
it difficult to notice progress in movement through such
corridor. The omnicam has an even shorter range and can also
not see the end of the corridor, but detects more structure in
the walls which can be used to detect progress in movement.



(b) Laser sensor maze map

Fig. 12: Maze map created localization on ground truth

The omnicam map looks good, the map only has a small
rotational error when compared with the maps from figure
12.

The maze proofs that the omnicam combined with local-
ization can work in an environment with narrow corridors,
lots of turns and a wall with nearly the same color as the
floor.

VI. DISCUSSION AND FUTURE WORK
Accuracy

The difference in accuracy between an omnicam and
a laser lies in the detection of object boundaries. Using
color distinction to detect these boundaries does not provide
perfect results. Using color detection can sometimes get a
pixel misclassified as a hit point. These misclassifications
are fatal for long distance measurements because of the
hyperbolic shape of the mirror of the omnicam, as indicated
in figure 8.

The accuracy tests also shows that the omnicam measures
longer distances slightly further away than they in fact are.
This is a good way to estimate the location of obstacles,
as shown in the maps created by omnicam rangefinder. The
first measurements on a large distance are initially drawn a
bit away from the free space that could become a path for the
robot. When the robot gets near that location, more accurate

(b) Laser sensor maze map

Fig. 13: Maze map created with QWSM and INS

measurements indicate the precise boundaries of the path.
Figure 8 shows that the metric distance error between those
pixels on such a small distance is very small.

Future work for the accuracy improvement using color
detection is trying other color spaces. This is also useful to
let the omnicam rangefinder work in other areas where the
RGB color space might fail. A fast way to increase accuracy
is to use a higher image resolution, however higher resolution
images need more time to process.

Thick lines

This next problem of the omnicam is a result of its
inaccuracy. The omnicam draws thick lines because the
distance measurements taken from different angles are not
relative to each other. This leads into multiple obstacle points
on the map that are close to each other instead of points that
overlap with each other like with the accurate laser sensor.
These inaccuracies therefore results into a thick line on the
map. This problem needs to be solved because navigating
through narrow corridors is undesirable if the thick lines are
drawn half on the pathway.

The solution for this problem is creating a function that
can smooth thick lines. The function would first need to
identify the thick lines on the map so it can turn those thick
lines into thin lines by taking the average of its points.



Automatic parameter learning

The experiments were set up by using parameters that were
derived by hand. Future work would therefore include an
automatic parameter learning algorithm. An approach would
be to use the training set of the histogram to train the
rangefinder parameters.

Further Improvements

The omnicam rangefinder does not work on a slope or
other height differences. This is because the pixel to meters
formula does not incorporate height differences, this can be
seen in figure 4. Further improvements lies in the theory of
detecting free space based on color detection. The free-space
detection does not work well when the walls or objects all
have the same color. This situation might happen literally
but having a dark room can also create this situation. The
free-space detector might also break down when it has to deal
with different lighting conditions, a solution for this problem
might be to adapt the color histogram to a HSV color space
because this color space can remove color intensity. Future
work should also include a method that can detect when the
floor color changes.

VII. CONCLUSION

Based on the results found in section 5 it can be concluded
that an omnidirectional camera can be used efficiently as a
rangefinder. The omnicam rangefinder can have an accuracy
of 8.09cm compared to the laser sensor. The results also
shows that the omnicam rangefinder can use scanmatching
algorithms that were optimized for a laser sensor to create
accurate maps of an environment even though it does not
possess the precise accuracy of a laser sensor. The omni-
directional camera can also detect obstacles, like an empty
cabinet (figure 6a), that a laser sensor can not detect. The
omnicam rangefinder is based on color detection and is
therefore unusable when the obstacles have exactly the same
color as the floor.

This research can lead to the development of small and
flying robots that can use the lightweight, energy efficient
and inexpensive omnidirectional camera to quickly create a
map of an environment. These robots need to work together
with a large robot equipped with a laser sensor to provide a
color histogram. This color histogram can be learned by the
large robot and distributed wirelessly to the small and flying
robots.

Acknowledgements

We want to thank Gideon Maillette de Buy Wenniger for
providing inside information about the free-space detection
algorithm. We would also want to thank Tijn Schmits for his
explanation about the specification and precise construction
of the OmniP2DX in USARSim.

REFERENCES

[1] S. Carpin, C. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “Us-
arsim: a robot simulator for research and education,” pp. 1400-1405,
April 2007, proceedings of the 2007 IEEE Conference on Robotics
and Automation.

[2]

[3]

[5]

[6]

[7]

[8]

[10]

(1]

S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“Bridging the gap between simulation and reality in urban search and
rescue.” in RoboCup 2006: Robot Soccer World Cup X, ser. Lecture
Notes on Artificial Intelligence, G. Lakemeyer, E. Sklar, D. Sorrenti,
and T. Takahashi, Eds., vol. 4434. Springer, October 2007, pp. 1-12.
S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “The robot that won the darpa
grand challenge.” Journal of Field Robotics, vol. 23, no. 9, pp. 661—
692, 2006.

F. W. Rauskolb, K. Berger, C. Lipski, M. Magnor, K. Cornelsen,
J. Effertz, T. Form, F. Graefe, S. Ohl, W. Schumacher, Peter, T. Noth-
durft, M. Doering, K. Homeier, J. Morgenroth, L. Wolf, C. Basarke,
T. Berger, F. Klose, and B. Rumpe, “An autonomously driving vehicle
for urban environments.” Journal of Field Robotics, vol. 25, no. 9, pp.
674-724, 2008.

T. Schmits and A. Visser, “An omnidirectional camera simulation for
the usarsim world,” in RoboCup 2008: Robot Soccer World Cup XII,
ser. Lecture Notes on Artificial Intelligence series, vol. 5339. Berlin
Heidelberg New York: Springer, June 2009, pp. 296-307.

S. Roebert, T. Schmits, and A. Visser, “Creating a bird-eye view
map using an omnidirectional camera,” in Proceedings of the 20th
Belgian-Netherlands Conference on Artificial Intell igence (BNAIC
2008), A. Nijholt, M. Pantic, M. Poel, and H. Hondorp, Eds., October
2008, pp. 233-240.

G. Maillette de Buy Wenniger and A. Visser, “Identifying free space in
a robot bird-eye view,” in Proceedings of the 4th European Conference
on Mobile Robots (ECMR 2009), September 2009.

D. Scaramuzza and S. Géchter, “Exercise 3: How to build a range
finder using an omnidirectional camera,” Autonomous Systems Lab
Swiss Federal Institute of Technology, Zurich, April 2009, version
14.

M. Pfingsthorn, B. Slamet, and A. Visser, “A scalable hybrid multi-
robot slam method for highly detailed maps,” in RoboCup 2007: Robot
Soccer World Cup XI, ser. Lecture Notes on Artificial Intelligence, vol.
5001. Springer, July 2009, pp. 457-464.

S. K. Nayar, “Catadioptric omnidirectional camera,” in CVPR ’97:
Proceedings of the 1997 Conference on Computer Vision and Pattern
Recognition (CVPR ’97). Washington, DC, USA: IEEE Computer
Society, 1997, p. 482.

A. Visser, B. A. Slamet, and M. Pfingsthorn, “Robust weighted scan
matching with quadtrees,” in Proceedings of the 5th International
Workshop on Synthetic Simulation and Robotics to Mitigate Earth-
quake Disaster (SRMED 2009), July 2009.



