
RoboCup 2012 Rescue Simulation League Winners

Francesco Amigoni1, Arnoud Visser2, and Masatoshi Tsushima3

1 Politecnico di Milano, Milano, Italy
francesco.amigoni@polimi.it

2 University of Amsterdam, Amsterdam, The Netherlands
a.visser@uva.nl

3 Ritsumeikan University, Shiga, Japan
is0077er@ed.ritsumei.ac.jp

Abstract. Inside the RoboCup Rescue Simulation League, the mission is to use robots to rescue as
many victims as possible after a disaster. The research challenge is to let the robots cooperate as a
team. This year in total 15 teams from 8 different countries have been active in the competition. This
paper highlights the approaches of the winners of the virtual robot competition, the infrastructure com-
petition, and the agent competition.

1 Introduction

The RoboCup Rescue Simulation League consists of three competitions:
The Virtual Robot competition has the goal to study how a team of robots can work together to get as

fast as possible a situation assessment of a devastated area which allows first responders to enter the danger
zone well informed. The simulation of the robots is realistic enough to apply the same algorithms to real
rescue robots.

The Infrastructure competition is a prize to stimulate the innovation factor and the impact of the
competition. Progress inside the RoboCup Rescue Simulation League can only be made when each year
the challenge gets harder. This can be accomplished by scaling the simulation environment up (larger
disaster areas, more agents) or by including more realism into the simulation models. The Infrastructure
competition is meant to foster innovation of models and components inside the simulation environment.

The Agent competition consists of a simulation platform which resembles a city after an earthquake. In
this environment intelligent agents can be spawned, which influence the cause of events in the simulation.
The agents have the role of police forces, fire brigades, and ambulance teams.

This paper presents the winner teams of the three competitions within the RoboCup Rescue Simulation
League.

2 Virtual Robot Competition Winner Team PoAReT

PoAReT (Politecnico di Milano Autonomous Robotic Rescue Team) won the Virtual Robot competition
of the Rescue Simulation League at RoboCup 2012. The PoAReT system is developed by six MSc stu-
dents in Computer Engineering at the Politecnico di Milano. Full information about the team, including
a link to the source code and the list of members with their roles is available at http://home.dei.polimi.it/
amigoni/research/PoAReT.html. In the following sections, we overview the PoAReT system architecture
and summarize the most interesting scientific results obtained during the competition.

2.1 System Architecture

This section outlines the main features of the PoAReT system, as reported in [1], to which the reader is
referred for further information. In developing PoAReT, we push along the autonomy axis, attempting to
equip the robotic system with methods that enable its autonomous operation for extended periods of time.
At the same time, the role of human operator is not neglected, but is empowered by the autonomous features
of the system.

avisser1
Text Box
This is the author's final version. The original publication is available at www.springerlink.com.
 

http://link.springer.com/chapter/10.1007/978-3-642-39250-4_3


Besides the base station, our PoAReT system is composed of mobile platforms (usually the Pioneer
All Terrain robot P3AT), each equipped with laser range finders, sonars, and a camera. Laser range finders
are used to build a geometrical map of the environment that is represented with two sets of line segments.
The first set contains the line segments that represent (the edges of) perceived obstacles. The second set
contains the line segments that represent the frontiers, namely the boundaries between the known and the
unknown portions of the environment.

The main cycle of activities of the PoAReT system is: (a) building a geometrical map of the environment
composed of line segments, (b) selecting the most convenient frontiers to reach, and (c) coordinating the
allocation of robots to the frontiers. A distinguishing feature of our system is that it maintains a semantic
map of the environment that labels areas of the geometrical map with human-like names, like ‘room’ or
‘corridor’. At the same time, the system performs the detection of victims on the basis of the images
returned by the onboard cameras and the interaction with the human operator via the user interface.

The architecture of our system is organized in two different types of processes, one related to the base
station and one related to the mobile robots, to have a clear separation between their functionalities. Fig. 1
shows the PoAReT system architecture.

Fig. 1: PoAReT system architecture. The base station module is in green, while the mobile robot modules
are in yellow.

The base station embeds the user interface module. The base station process can spawn new robots
in the USARSim environment [2]: for each robot, a new independent process is created and started. The
processes of the base station and of the robots communicate only through WSS [3] and do not share any
memory space, as required by the rules for the competition. A distance vector routing protocol [4] is
implemented to deliver messages. Although in principle there is no need to maintain a direct connection
between robots and base station (robots explore autonomously and, when connection is re-established,
they can report to the base station and share collected information with other robots), the routing protocol
maintains indirect connectivity between robots and base station in order to extend the operative range of
the human operator.

The PoAReT User Interface (UI) allows a single human operator to control a relatively large group
of robots in an easy way. It displays data to the user and accepts commands from the user to control
the spawned robots. It reduces the workload of the operator and increases her/his situation awareness.
These two objectives are reached by our UI through a mixed-initiative approach [5]. The PoAReT UI
allows a single operator to control the system by issuing high level commands to robots, like “explore
along a direction”, by controlling a single robot using waypoints, and by directly teleoperating the robot
manually. The UI is also able to filter notifications arriving from the other modules, based on the operator’s
preferences, past behaviour, and situation parameters.



The robot process is structured in seven different modules, each one related to a high-level functionality:
motion control, path planning, SLAM, semantic mapping, victim detection, exploration, and coordination.
Almost all of these modules are threads that communicate through a queue system. The main of the above
modules are described in the following.

First, we briefly discuss the motion control module, which is straightforward, given the locomotion
model of P3AT, and the path planning module. Path planning is invoked to reach a position with a path that
lies entirely in the known space (e.g., the position can be a point on a frontier between known and unknown
space). The algorithm we use is a variant of RRT [6].

In our team, the simultaneous localization and mapping (SLAM) problem is tackled by adopting a
feature-based method similar to that described in [7]. The SLAM module associates the line segments of a
laser scan (points of a scan are approximated with line segments by using the split and merge algorithm [8])
to the the linear features in the map, with respect to distance measures, such as those described in [9, 10].
Then, the module executes an Iterative Closest Line (ICL) algorithm (like [10]) with constraints on the
maximum rotation and on the maximum translation to align the scan and the map. All the line segments of
a scan are added to the map; periodically a test is carried out to determine whether there is enough evidence
to support the hypothesis of two previously associated line segments being in fact the same; if so, they are
merged.

The semantic mapping module performs a semantic classification of places and works in parallel with
the SLAM module. This module takes as input the line segment map of an indoor environment (updated
by the SLAM module) and tries to extract more information than the basic geometrical features, exploiting
prior knowledge on the typical structure of buildings. Our approach aims at extending that presented in [11]
and [12] to line segment maps. The mapped area is divided into single rooms, identifying the area that
belongs to each room and the doorways that divide the rooms. With this information, the space portion
marked as room is divided into different parts representing every single room separately. Later, each room
is classified according to its own characteristic, as a small room, a large room, or a corridor.

The exploration module selects new frontiers to explore, in order to discover the largest possible amount
of the environment within the time allowed in the competition. This module evaluates the frontiers by
assigning them utilities and, finally, calls the coordination module to find an allocation of robots to the
frontiers. We employ an exploration strategy that tries to take advantage from the geometrical and seman-
tic information gathered by the robots. We take inspiration from [13], where the authors achieve a good
exploration performance by distinguishing if the robot is in a hallway or in a room. In our system, we inte-
grate this semantic information into a framework, called Multi-Criteria Decision-Making (MCDM), that is
described in [14].

The coordination module is responsible of allocating tasks to the robots. The mechanism we use to
allocate tasks is market-based and sets up auctions in which tasks (i.e., frontiers to reach) are auctioned to
robots [15]. Auctions provide a well-known mean to bypass problems like unreliable wireless connections
or robot malfunctions.

Finally, the victim detection module is responsible for searching victims inside the competition envi-
ronment. It works by analysing images coming from the robots’ cameras and classifying them according
to the presence or absence of victims. In the first case, the victim detection module signals the human
operator. We have chosen to implement a skin detector using HSV (Hue, Saturation, Value) color space,
followed by a version of the Viola-Jones algorithm [16], a well-known image analysis method already used
by many teams in previous editions of the competition.

2.2 Discussion on Competition Results

Besides the good performance that allowed the PoAReT team to win the Virtual Robot competition, some
potentially interesting scientific outcomes have been obtained, as discussed in this section.

Firstly, the geometrical maps built by the system and representing the environments of the competition
are of good quality, demonstrating the viability of using line segments to represent indoor environments.
For example, Fig. 2 shows the geometrical map built by the PoARet system for the environment of the Day
2 of the competition. Note that, in this run, the maps built by different robots are not merged together, in
order to reduce computational burden (this is why some obstacles are represented by multiple aligned line
segments). The structure of the environment is represented quite well for understanding by human operator



and, importantly, using a limited amount of data (each line segment can be naı̈vely represented by four
numbers). It is also interesting noting that on the Day 3 of the competition, a non-regular indoor environ-
ment has been used with several obstacles and with different vertical levels. In this case, the segment-based
approach has not been much effective to represent the environment.

Fig. 2: The geometrical map for the Day 2 competition. The solid line segments represent obstacles, the
dashed line segments represent the frontiers, and the blue triangles represent the positions of the robots.

Second, the availability of a semantic map has been exploited for improving path planning. In particular,
the identified doorways (i.e., openings between two rooms; an example is shown on the right of Fig. 2)
have been used by the path planner to set waypoints such that a robot crosses a doorway by heading
perpendicularly to the line segment representing it. In this way, the robots of our system have been able to
cross narrow doors, significantly enhancing their path planning capability.

Third, the high level of autonomy exhibited by the PoAReT system has allowed to explore structured
indoor environments very quickly. For example, the results of the first three days of the competition show
that PoAReT found 11 victims in 41 minutes, while the next two teams found the same number of victims
in 57 and 59 minutes, respectively.

Finally, the autonomy of the PoAReT system does not reduce the role of human operator. In some runs
at the competition, Kenaf and AirRobot mobile platforms have been used. Kenafs have been controlled
using a controller that is very similar to that of P3AT (without exploiting all the Kenaf abilities), while
AirRobots have been teleoperated manually. The increased workload for the human operator has been
compensated by the ability of the system to reach areas (e.g., requiring to climb a stair) that P3ATs cannot
reach. In general, teams mainly composed of P3ATs and of some Kenafs and AirRobots showed a good
level of adaptability to environments, autonomous behavior, and performance.

3 Infrastructure Competition Winner Team UvA Rescue

The University of Amsterdam is active in the Rescue Simulation League with the UvA Rescue team since
2003 [17,18]. For several years it had a close cooperation with Oxford University [19]. At several occasions
the team contributed to the infrastructure of the competition [20–24]. The system presented at the 2012
Infrastructure competition was developed by a master student in artificial Intelligence [25].



3.1 The Context

It is well known [26–28] that an aerial robot is valuable member of a robot team. Several teams indicated
the usage of aerial robots in their team [29–31], as illustrated in Fig. 3, but without a map it is difficult
to coordinate the action between the teammembers [28]. Because of the limited payload the aerial robots
can carry, it is difficult to equip those robots with range scanners. Without range scanners it is difficult for
aerial robots to navigate [32] and to create a map of the environment [33].

Fig. 3: An early example of the usage of an aerial robot in robot rescue team (courtesy [31]).

Nowadays, small quadrotors with on-board stabilization like the Parrot AR.Drone can be bought off-
the-shelf. These quadrotors make it possible to shift the research from basic control of the platform towards
applications that make use of their versatile scouting capabilities. Possible applications are surveillance, in-
spection, and search and rescue. The Parrot AR.Drone is attractive as platform, because it is stabilized both
horizontally and vertically. Horizontal movement is reduced based on the images of the bottom camera,
while the attitude is maintained based on the signal of a downlooking sonar sensor. Still, the limited sensor
suite and the fast movements make it quite a challenge to fully automate the navigation for such platforms.
One of the prerequisites for autonomous navigation is the capability to make a map of the environment.

Once such a map exists, a team of micro aerial vehicles could be used to explore an area like a city
block. The map is needed to coordinate the actions between the team members. After a disaster one could
not rely on prior satellite maps, part of the job of the rescue team is to do a situation assessment and an
estimation of damage (roads blocked, buildings on fire, locations of victims visible from the sky).

In the paper presented at the infrastructure competition [34] a method is described that shows how such
a visual map can be build. More details can be found in [25]. To summarize; the visual map consists of a
feature map which is built based on storing the most distinguishable SURF features on a grid. This map
can be used to estimate the movement from the AR.Drone on visual clues only, as described in previous
work [35]. In this paper the focus is on an extension of the previous method; an experimental method [25] to
create an elevation map by combining the feature map with ultrasound measurements. This elevation map
is combined with textures stored on a canvas and visualized in real time. An elevation map is a valuable
asset when the AR.Drone has to explore unstructured terrain, which is typically the case after a disaster (an
urban search and rescue scenario).

More details about how the feature map can be used to localize the AR.Drone can be found in [35].
What is really innovative is how the 2D feature map is extended with a method to build an elevation map
based on sonar measurements, which was published in the paper for the infrastructure competition [34].
This paper demonstrates how the elevation mapping method was validated with experiments.



3.2 Elevation Mapping Method

An elevation map can be used to improve navigation capabilities of both aerial and ground robots. For
example, ground robots can use elevation information to plan routes that avoid obstacles.

The elevation information is stored in a grid that is similar to the feature map described in [35]. For
each ultrasound distance measurement, elevation �t is computed and stored in the grid cell that corresponds
to the world coordinates where a line perpendicular to the AR.Drone body intersects the world plane.
These world coordinates are the position where the center of the ultrasound sensor’s cone hits the floor.
Because the exact size of an object is unknown, the elevation is written to all grid cells within a radius

elevationRadius around the intersection point. This process is visualized in Figs. 4a and 4b.

(a) Obstacle enters range (b) Obstacle in range (c) Obstacle out of range

Fig. 4: Overview of the elevation map updates. The green cone indicates the range of the ultrasound sensor.
The red line inside the cone represents the center of the cone, perpendicular to the AR.Drone body. In 4a
and 4b an elevation is measured. All grid cells within a radius 
elevationRadius around the center of the
cone (red line) are updated to store the measured elevation. 4c Describes the refinement step. When no
elevation is measured, all grid cells within the cone (red cubes) are reset to zero elevation.

This approach may lead to cases where the size of an obstacle is overestimated in the elevation map,
as can be seen in Fig. 4b. Therefore, an additional refinement step was added to the elevation mapping
method. If no elevation is measured (�t � 0), it can be assumed there is no obstacle inside the cone of the
ultrasound sensor. Using this assumption, all grid cells within the cone can be reset to zero elevation and
locked to prevent future changes. This refinement step is visualized in Fig. 4c. The radius of the cone is
computed using the following equation:

r = tan(�ultrasound � zsensor) (1)

where r is the radius of a cone of height zsensor and �ultrasound is the opening angle of the ultrasound
sensor.

3.3 Elevation Mapping Results

The elevation mapping approach has been validated with several experiments. As shown in Fig. 5, the
AR.Drone is able to estimate the height and length of two obstacles (a grey and blue box). The brown box
is not detected due its limited height. Therefore, the measured (ultrasound) acceleration is insufficient to
trigger an elevation event. As expected, the ramp was not detected. The gradual elevation change does not
produce a significant acceleration.

Elevation changes are detected using a filtered second order derivative (acceleration) of the sonar mea-
surement zsensor, as illustrated in Fig. 6.

Obstacles that enter or leave the range of the ultrasound sensor result in sudden changes in ultrasound
distance measurements. These changes are detected when the second order derivative exceeds a certain



Fig. 5: Elevation map of a flight over several obstacles. On the left the experimental setting (including
4 obstacles) is visible, augmented in red with the path of AR.Drone. On the right the resulting map is
displayed, with at the back to elevated areas, representing the white and blue box. For convenience the grid
cells of the elevation map are colored with the texture at that point as perceived by the downlooking camera
of the AR.Drone.

threshold 
elevationEvent and an elevation event is triggered. The threshold 
elevationEvent was carefully
chosen such that altitude corrections performed by the AR.Drone altitude stabilization are not detected
as being elevation events. An elevation event ends when the sign of the second order derivative switches.
This happens when the AR.Drone altitude stabilization starts to change the absolute altitude to compensate
for the change in measured altitude. Now, the elevation change can be recovered by subtracting the mea-
sured distance at the end of the elevation event from the measured distance before the elevation event was
triggered, as illustrated in Fig. 7.

In a final experiment, the AR.Drone flew with a constant speed over a large stair (Fig. 8). The depth of
each step is 30 cm and the height of each step is 18 cm. The total height of the stair is 480 cm. After the
stair is fully traversed by the AR.Drone, the estimated elevation is compared against the actual height of
the stair.

0 1 2 3 4 5 6 7 8 9

−400

−200

0

200

400

600

800

Time (seconds)

U
ltr

as
ou

nd
 d

is
ta

nc
e 

m
ea

su
re

m
en

t (
m

m
)

 

 

Event 1 (UP)

Event 2 (DOWN)

z
sensor

z
sensor

 (EKF)

z
sensor

’ x 10−2 (EKF)

z
sensor

’’ x 10−4 (EKF)

Fig. 6: Response of the ultrasound sensor when flying over an object of approximately (60; 60; 40) mm.
The light-gray lines indicate the threshold 
elevationEvent and null-line. When the second order derivative
(magenta line) exceeds the threshold, an event is started (lightgrey rectangle). An event ends when the
derivative swaps sign. Each arrow indicates the change in elevation caused by the event. The first event
increases the elevation when entering an object and the second event decreases the elevation when leaving
the object. Between both events, the AR.Drone performs an altitude correction, as can be seen by the
relatively slow increase of the distance. This increase is not informative about the elevation and is ignored
by the elevation mapping method.



0 1 2 3 4 5 6 7 8 9
0

200

400

Time (seconds)

E
le

va
tio

n 
(m

m
)

Fig. 7: Elevation � below the AR.Drone over time. The elevation increases to approximately 40 cm when
flying above an obstacle. The elevation is decreased when the obstacle is out of the ultrasound sensor’s
range. There is a small error between both elevation events, resulting in a small false elevation (�50 mm)
after the AR.Drone flew over the obstacle and is flying above the floor again.

Fig. 8: Photo and map of a large stair at our university which is traversed by the AR.Drone. The depth of
each step is 30 cm and the height of each step is 18 cm. The total height of the stair is 480 cm.

After fully traversing the stair, the measured elevation is 313 cm and the error is 480�313

480
�100 = 35%.

The shape of the measured elevation corresponds with the shape of the stair. However, the approach un-
derestimates the elevation. When traversing the stair, the AR.Drone’s altitude stabilization increases the
altitude smoothly, which causes a continuous altitude increase. Therefore, the observed altitude difference
within an elevation event is smaller than the actual altitude difference caused by an object. Another expla-
nation of the underestimation is the error in the triggering of elevation events (due to thresholds). When an
elevation event is triggered at a suboptimal timestamp, the full altitude difference is not observed.

3.4 Summary

The experiments demonstrate what is possible for rapid development when a realistic simulation environ-
ment for the AR.Drone is available. The simulation model of the AR.Drone is made publicly available?

inside the USARSim environment. The validation of this model was described in [35]. We hope that the
availability of such a model inside the infrastructure of the RoboCup Rescue Simulation League will con-
tribute in attracting researchers to develop advanced algorithms for such a system.

The mapping method described in [34] is able to map areas visually with sufficient quality for both
human and artificial navigation purposes. Both the real and simulated AR.Drone can be used as platform
for the mapping algorithm. The visual map created by the simulated AR.Drone contains fewer errors than
the map of the real AR.Drone. The difference can be explained by the variance in the lighting conditions
encountered by the real AR.Drone. Notice that the USARSim environment is based on a commercial game
engine (Unreal Tournement) which already simulates many lighting conditions (e.g. shadows, reflections)
quite realisticly.

Earlier work [35] shows that the visual map can be used to localize the AR.Drone and significantly
reduce the error of the estimated position when places are revisited. Important for a good visual map is
that sufficient information is available on the ground; for instance when long straight lines in a gym are
followed the travelled distance is underestimated. To conclude; visual mapping is an important capability
to scale up the robot team to the level where they can explore a city block, which is close to the current
challenge in the Agent competition of the RoboCup Rescue Simulation league.

? http://sourceforge.net/apps/mediawiki/usarsim/index.php?title=Aerial Robots#AR.Drone



4 Agent Competition Winner Team Ri-one

This section describes the RoboCup 2012 Rescue Simulation League Agent competition champion team,
Ri-one. Our team consists of four students from the Faculty of Information Science and Engineering at
Ritsumeikan University. The basic structure of our agent is divided into models and skills.

4.1 Models

The agents have to make informed decisions. The decisions are based on information which is embedded
in a World Model. The World Model not only stores a priori and perceived information, but also makes
inferences to allow more efficient actions of the agents.

Applying Point of Visibility Navigation Graph When the agents have the intention to move somewhere
in the simulated city, they must send their path as a list of areas (cells) to the server. The agents get the
map without any obstacle at the start of simulation, and receive information about nearby open space and
obstacles via their sensors at each step. Information given to agents about open space has the form of
connected two-dimensional closed shapes, as illustrated in Fig. 9. Obstacles blocking routes have also the
closed shapes. With this information, the agents must plan their path in limited time. The path planning is
typically performed with a graph search algorithm [36]. The map cannot be converted directly into a graph
of connected nodes because the shapes of the cells are not always a convex polygon. The map has to be
converted to a new graph which is called a Point of Visibility Navigation Graph when the simulation starts.
Therefore, we developed the following method to generate the Navigation Graph automatically.

In order to generate the graph, we have to consider the relation between nodes and areas defined by the
closed shapes. First of all, nodes can be defined as the points (do not need to be centers) within the areas.
This is necessary since the path to move along is determined by the list of areas to be visited. However,
when connecting the points whose areas are adjacent does not guarantee a collision free path, as shown
in red in Fig. 9. Hence, we added additional nodes to the graph to solve this problem. These intermediate
nodes are placed on the boundaries of adjacent areas and not explicitly shown in Fig. 9. Therefore, the
end result is the undirected bipartite graph which has two kinds of nodes, terminal nodes and non-terminal
nodes. Terminal nodes can be used as a start- or end-point of a path, and they must inside an area. On the
other hand, non-terminal nodes are intermediate points, on the edges between areas and cannot be a start
or an end node to any path.

The algorithm to generate Point of Visibility Navigation Graph with the following pseudo code:

1. Set a terminal node to all areas.
2. List all pairs of adjacent areas.
3. For all pairs of areas, define the middle point of the shortest line segment of two (refer to two buildings

as A and B, edge of A to B and B to A) as non-terminal node.
4. Relate terminal nodes and non-terminal nodes mutually, according to their visibility.

This method creates new traversable edges according to the visibility of nodes. Fig. 10 shows these lines.
With the Point of Visibility Navigation Graph the agents can efficiently perform collision free path plan-
ning.

Estimating Fires This estimation makes two assumptions. The first assumption is that an influence of the
building’s temperature depends on the temperature of another building on fire. The other assumption is that
heat spreads in the form of concentric spheres centered on the burning building. When a building whose
temperature is t affects another building r meters away from the center of the building, and a surface area
of sphere with radius r is defined to be S, and a coefficient defined to be k, the influence I satisfies the
following relation:

I
S

IdS = kt (2)



Fig. 9: Connecting areas by connecting
the center of the cells. Blue and red line
segments represent traversable and non-
traversable paths, respectively.

Fig. 10: Generated Point of Visibility Nav-
igation Graph. Cyan line segments repre-
sent edges.

This I is the influence within the sphere. Then, the angle formed by the lines from the burning building to
the intercept of the affected building and affected edge is defined to be �. An influence I of an infinitesimal
surface of the sphere is defined as follows:

I = sin �
kt

4�r2
(3)

Fig. 11 shows this idea. This will make it possible to estimate the probability that an invisible building is
on fire or not, by calculating the value of I in relation to the temperature of that building.

Fig. 11: Influence of temperature t of a
building on another building at distance r

and angle �.

Fig. 12: The result of using Point of Vis-
ibility Navigation Graph. The traversable
edges are represented by cyan line seg-
ments and the non-traversable edges are
represented by red line segments.

4.2 Agent Skills

Agents select the best actions from the World Model in order to carry out the operations. The main idea to
success of Team Ri-one is the Police Force’s skill.

Police Force Police forces clear the obstacles caused by the disaster. They must clear the obstacles effi-
ciently to help actions of other agents including Ambulance Teams and Fire Brigades. Therefore, police
forces have to choose an obstacle and decide the amount to clear. In order to solve this problem, we use



Point of Visibility Navigation Graph from Section 4.1 to decide the obstacle which the police forces will
clear. First, a police force computes the shortest path to a target entity without considering obstacles. Sec-
ondly, they consider the line segments which compose the shortest path in cleared range. Since each line
segment belongs to a single area because of the way the graph has been defined, it is evaluated whether
intersections of the line segments and the shapes of all obstacles expanded by a fixed amount exist or not.
When an intersection exists on the path, they clear the obstacle. When an intersection does not exist on
the path, they move along the path. After that, if an intersection appears on the path, they clear the ob-
stacle likewise when they discover the new obstacle. By repeating this method, they can reach the target
entity without clearing obstacles which do not need to be cleared. Fig.12 shows the result of the algorithm
application.

4.3 RoboCup 2012 Rescue Simulation League Agent Competition Results

In RoboCup 2012, the Ri-one team won the competition. The success was based on the reduction of unnec-
essary steps in the planning (for instance the improved Police Force’s skill which ignores obstacles which
don’t have to be cleared) and the prediction of the dynamics of the simulation (for instance the estimation
of the spread of a fire). The improved efficiency was enough to beat our competitors with a narrow margin?.
The ZJUBase team from Institute of Cyber-Systems and Control, Zhejiang University, China, won second
place, and the S.O.S team from Amirkabir University of Technology, Iran, won third place.

5 Conclusion

This paper gives a brief insight in the methods applied by the three winners of the Rescue Simulation
League. It demonstrates the variety of methods which have to be integrated to create a robot team which is
able to cooperate to accomplish the mission to rescue as many victims as possible. The Rescue Simulation
League is a competition which keeps on innovating. The DARPA organization has chosen robot rescue as
the next challenge and it will be task of the RoboCup community to demonstrate the value of its benchmarks
with relation to the scenario of the DARPA Challenge.

Acknowledgement

The PoAReT team gratefully thanks the Fondazione Banca del Monte di Lombardia for the financial sup-
port. The UvA research is partly funded by the EuroStars project ‘SmartINSIDE’ and the Dutch ICT
Innovation Platform Cooperation Challenge ‘SI4MS’.

References

1. Amigoni, F., Caltieri, A., Cipolleschi, R., Conconi, G., Giusto, M., Luperto, M., Mazuran, M.: PoAReT Team
Description Paper. RoboCup2012 CD (2012)

2. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Usarsim: a robot simulator for research and education.
In: Proceedings of the International Conference on Robotics and Automation (ICRA’07). (2007) 1400–1405

3. Pfingsthorn, M.: Robocup rescue virtual robots: Wireless simulation server documentation. Technical Report,
Jacobs University (2008)

4. Comer, D.: Internetworking with TCP/IP - Volume 1. Addison-Wesley (2006)
5. Wang, J., Lewis, M.: Human control for cooperating robot teams. In: Proc. HRI. (2007) 9–16
6. LaValle, A., Kuffner, J.: Rapidly-exploring random trees: Progress and prospects. In Donald, B., Lynch, K., Rus,

D., eds.: Algorithmic and Computational Robotics: New Directions. (2001) 293–308
7. Garulli, A., Giannitrapani, A., Rossi, A., Vicino, A.: Simultaneous localization and map building using linear

features. In: Proc. ECMR. (2005) 44–49
8. Nguyen, V., Gächter, S., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms

using 2d range data for indoor mobile robotics. Autonomous Robots 23(2) (2007) 97–111

? The detailed competition results can be found at: http://roborescue.sourceforge.net/



9. Elseberg, J., Creed, R., Lakaemper, R.: A line segment based system for 2D global mapping. In: Proc. ICRA.
(2010) 3924–3931

10. Li, Q., Griffiths, J.: Iterative closest geometric objects registration. Computers & Mathematics with Applications
40(10-11) (2000) 1171–1188

11. Pronobis, A., Martinez Mozos, O., Caputo, B., Jensfelt, P.: Multi-modal semantic place classification. International
Journal of Robotics Research 29(2-3) (2009) 298–320

12. Martinez Mozos, O.: Semantic Labeling of Places with Mobile Robots. Springer-Verlag (2010)
13. C. Stachniss, O.M.M., Burgard, W.: Speeding up multi-robot exploration by considering semantic place informa-

tion. In: Proc. ICRA. (2006) 1692–1697
14. Basilico, N., Amigoni, F.: Exploration strategies based on multi-criteria decision making for searching environ-

ments in rescue operations. Autonomous Robots 31(4) (2011) 401–417
15. Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proc.

ICRA. (2002) 3016–3023
16. Viola, P., Jones, J.J.: Robust real-time face detection. International Journal of Computer Vision 57(2) (2004)

137–154
17. Fassaert, M.L., Post, S.B.M., Visser, A.: The common knowledge model of a team of rescue agents. In: Proc. 1th

International Workshop on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster. (2003)
18. Post, S.B.M., Fassaert, M.L., Visser, A.: The high-level communication model for multiagent coordination in the

robocuprescue simulator. In Polani, D., Browning, B., Bonarini, A., Yoshida, K., eds.: 7th RoboCup International
Symposium. Volume 3020 of LNAI., Springer (2004) 503–509

19. de Hoog, J.: Role-Based Multi-Robot Exploration. PhD thesis, University of Oxford (2011)
20. Schmits, T., Visser, A.: An Omnidirectional Camera Simulation for the USARSim World. In Iocchi, L., Matsub-

ara, H., Weitzenfeld, A., Zhou, C., eds.: RoboCup 2008: Robot Soccer World Cup XII. Volume 5339 of LNAI.,
Springer (2009) 296–307

21. Balaguer, B., Balakirsky, S., Carpin, S., Visser, A.: Evaluating maps produced by urban search and rescue robots:
lessons learned from robocup. Autonomous Robots 27(4) (2009) 449–464

22. Terwijn, B., Formsma, O., Dijkshoorn, N., van Noort, S., de Hoog, J., Out, N., Bastiaan, C., Visser, A.: Amsterdam
Oxford Joint Rescue Forces: Community Contribution. Published online (2010)

23. Formsma, O., Dijkshoorn, N., van Noort, S., Visser, A.: Realistic Simulation of Laser Range Finder Behavior in a
Smoky Environment. In: RoboCup 2010: Robot Soccer World Cup XIV. Volume 6556 of LNAI., Springer (2011)
336–349

24. van Noort, S., Visser, A.: Validation of the dynamics of an humanoid robot in usarsim. In: Proc. PerMIS. (2012)
25. Dijkshoorn, N.: Simultaneous localization and mapping with the AR.Drone. Masters thesis, Universiteit van

Amsterdam (2012)
26. Davids, A.: Urban search and rescue robots: from tragedy to technology. IEEE Intelligent Systems 17(2) (2002)

81 –83
27. Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., Ziparo, V.A.: Towards heterogeneous robot

teams for disaster mitigation: Results and Performance Metrics from RoboCup Rescue. Journal of Field Robotics
24(11-12) (2007) 943–967

28. Alnajar, F., Nijhuis, H., Visser, A.: Coordinated action in a Heterogeneous Rescue Team. In: RoboCup 2009:
Robot Soccer World Cup XIII. Volume 5949 of LNAI., Springer (2010) 1–10

29. Pfingsthorn, M., Rathnam, R., Stoyanov, T., Nevatia, Y., Ambrus, R., Birk, A.: Jacobs Virtual Robot 2008 Team -
Jacobs University Bremen, Germany. In: RoboCup2008 CD. (2008)

30. Calisi, D., Randelli, G., Valero, A., Iocchi, L., Nardi, D.: SPQR Rescue Virtual Robots Team Description Paper.
In: RoboCup2008 CD. (2008)

31. Balaguer, B., Carpin, S.: UC Mercenary Team Description Paper: RoboCup 2008 Virtual Robot Rescue Simulation
League. In: RoboCup2008 CD. (2008)

32. Visser, A., Nguyen, Q., Terwijn, B., Hueting, M., Jurriaans, R., van der Veen, M., Formsma, O., Dijkshoorn, N.,
van Noort, S., Sobolewski, R., Flynn, H., Jankowska, M., Rath, S., de Hoog, J.: Amsterdam Oxford Joint Rescue
Forces - Team Description Paper - Virtual Robot competition - Rescue Simulation League - RoboCup 2010. In:
Proc. 14th RoboCup International Symposium. (2010)

33. Nguyen, Q., Visser, A.: A color based rangefinder for an omnidirectional camera. In Balakirsky, S., Carpin, S.,
Lewis, M., eds.: Proc. IROS Workshop on Robots, Games, and Research: Success stories in USARSim. (2009)
41–48

34. Dijkshoorn, N., Visser, A.: An elevation map from a micro aerial vehicle for urban search and rescue. In: Pro-
ceedings CD of the 16th RoboCup International Symposium. (2012)

35. Dijkshoorn, N., Visser, A.: Integrating sensor and motion models to localize an autonomous AR.Drone. Interna-
tional Journal of Micro Air Vehicles 3(4) (2011) 183–200

36. Buckland, M.: Programming Game AI by Example. Wordware Publishing (2005)


	Untitled



