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Abstract— In contrast to human soccer players, autonomous
robot soccer players often move according to a limited set
of predefined behavioral rules. This knowledge can be used
advantageously: If the opponent’s behavioral rules are learned,
it will be possible to detect these during a match and react
accordingly. A method for autonomous activity mining in
videos, called Probabilistic Latent Sequential Motifs, is used to
discover optical flow patterns in videos of a robot soccer player
during a penalty shootout. The discovered patterns are used
by a humanoid goalkeeper to predict and anticipate opponent
behavior. Effectiveness of the method is tested by comparing
the performance of this goalkeeper with predictive behavior to
that of an existing goalkeeper that only reacts when the ball
approaches at sufficient speed. The performance is measured
based on the ratio of number of goals to number of goals
prevented. Results show that the goalkeeper with predictive
behavior could prevent a fair amount of goals, but that it loses
in performance to the existing goalkeeper. Methods that may
improve performance are discussed.

I. INTRODUCTION

RoboCup is an international research and education initia-
tive, attempting to foster Artificial Intelligence and robotics
research by providing a standard problem where a wide range
of technologies can be integrated and examined. One of
these problems is teaching a robot to play soccer. At the
RoboCup, typically a rule-based approach is applied [1].
During matches, a reaction from the goalkeeping robot is
triggered by the perception of a ball which approaches at
sufficient speed. Other features in the scene, such as presence
of opponent players, could be relevant but are not taken into
account to keep the decision rules simple.

A more flexible solution enables the goalkeeper to find the
preconditions for these logical rules autonomously and in an
unsupervised manner. A method for unsupervised activity
mining in videos called Probabilistic Latent Sequential
Motifs (PLSM) is introduced by Varadarajan et al [2]. It
uses of topic models to find temporal activity patterns in
video data. Each of these patterns represents an activity in
a video, and relates to the video as combinations of syllabi
would relate to a word. A model that describes recurring
patterns in a dataset can be discovered offline. The detection
of these patterns during a match will enable a goalkeeper
to anticipate the opponent’s behavior. The effectiveness of
the method is tested by comparing performance in a penalty
shootout between a regular rule-based goalkeeper and the
goalkeeper that predicts to the opponent’s behavior using
patterns discovered by using PLSM.

II. RELATED WORK

Activity mining is a field of research that is often asso-
ciated with surveillance scenarios [3], e.g., to detect violent
behavior in a crowd or to analyze busy traffic scenes. In
activity mining, the use of topic models [4] is an approach
that has proven to be quite successful [5], [6]. This model is
a statistical type that enables discovery of so-called ‘topics’,
which are abstract occurrences in a document. Often, topic
model-based approaches first convert a video to documents
containing bags-of-words, where each word is a represen-
tation for quantized pixel motion at certain locations in
the image [2], [5], [6], [7]. Note that the ‘words’, the
visual features, are only a tag corresponding to the correct
optical flow vector, and do not contain the vector itself.
One document is thus the result of analysis of optical flow
data in one video. An activity pattern in a video can be
represented as a set of relative movement vectors along with
their respective starting positions and starting times. These
activity patterns are the topics that are to be learned. To
remain faithful to the terminology used by Varadarajan et al,
these topics will be referred to as ‘motifs’ in this paper.

When a regular bag-of-words approach is used, the tempo-
ral information is lost in the process [7]. To take this informa-
tion into account as well, methods have been proposed where
both the motifs and their starting times are jointly learned
by complementing the visual features with their respective
timestamps [2], [5]. In a method introduced by Emonet
et al [5] both the total number of motifs and the motifs
themselves are learned in an unsupervised manner using
the Hierarchical Dirichlet Process (HDP) [8], which allows
for an infinite amount of motifs on multiple levels. In the
problem addressed in this paper, two levels can be learned:
On the first, the total number of motifs that is shared by
all documents; on the second, the individual motifs and their
starting times in each document. The PLSM method can only
be applied to the second level, the method requires a priori
knowledge (e.g., the number of motifs) for the first level.
Although the HDP-based approach may be more complete
than PLSM, it would seem that the latter is sufficient to solve
the problem addressed in this paper: The number of strategies
for robot soccer may be theoretically infinite, in practice; it is
always limited to a certain number of re-occurring actions.
For example: Shooting at the goal can be described as a
motion in an infinite number of directions and can occur on
every position on the field. However, it only occurs when at



least one robot is moving and there are only as many possible
shooting directions as there are quantization categories. If
the number of possible activities is learned in an automatic
manner, it is likely that this number will be too high to be
useful. Instead, we will use a small number of motifs and
let PLSM determine what they are.

PLSM has been used in pedestrian and traffic analysis
[2], in scenarios in which the camera is stationary, to find
recurring activities in video data. In this paper, PLSM will
be applied in a new area. Instead of a camera placed above
the scene, all video data will come from the goalkeeper’s
point of view.

III. APPROACH

Several steps are performed to solve the addressed prob-
lem. The first step is the creation of temporal documents,
derived from video data. From these documents, a model
that describes the motifs can be derived using PLSM [2].
Next, a reaction that enables the goalkeeper to anticipate the
opponent’s activity has to be created. The final step is the
prediction of an opponent robot’s activity pattern, based on
detection of the first frames of a learned motif.

A. Probabilistic Latent Sequential Motifs

To find recurring activity patterns, a temporal document
d, that represents the image data as a bag-of-words, has to
be derived. This document is of size V � T , where V is
the vocabulary size and T is the number of timesteps the
document covers. At each timestep, the document d is filled
based on the presence of visual words w (See Fig. 1). PLSM
is applied on this document to find motifs z, and their starting
times ts.

Fig. 1: Graphical representation of a temporal document.
Image courtesy of Emonet et al [5].

The main assumption of the PLSM model is that given
a motif z, the occurrence of words within the document is
independent of the time of occurrence. Note that there is a
deterministic relation between the time variables ta = ts+tr,
enabling the use of variable tr to denote the relative time
since the start of a motif: In this model, occurrence of a
word depends only on the motif and the time it occurs in

the topic, not on the absolute time of occurrence ta. The
joint distribution of the model is given by:

p(w; ta; d; z; ts) = p(d) p(zjd) p(tsjz; d) p(wjz) : : : (1)
p(ta � tsjw; z) (2)

The Expectation-Maximization algorithm can be used to
estimate the set of model parameters �, by maximizing the
log-likelihood of the model for the observed data. It is an
iterative algorithm that is initialized using random values
as parameters, and is stopped when the increase in log-
likelihood is too small. The log-likelihood is given by:

E[L] =
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NwX

z=0

TdsX

ts=0

n(w; ta; d) : : : (3)

p(z; tsjw; ta; d) log p(w; ta; d; z; ts) (4)

where the normalized correlation n(w; ta; d) is the output
of the generative model as described in next section (equa-
tion (13)).

The posterior distribution of variables ts and z is calcu-
lated in the E-step of the Expectation-Maximization algo-
rithm, given w, the absolute time ta and the document d:

p(z; tsjw; ta; d) =
p(w; ta; d; z; ts)

p(w; ta; d)
(5)

with p(w; ta; d) =
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Next, in the M-step of the Expectation-Maximization
algorithm, � is updated accordingly:
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ptr (trjw; z) /
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p(z; tsjw; ts + tr; d) (10)

The motifs and their starting times can be discovered in the
optimized distributions p(zjd) and p(tsjz; d).



B. From images to documents

The content of temporal documents that will serve as input
for PLSM depends on how the visual words w that form
the vocabulary are defined. These words will be based on
optical flow in the image, so first, optical flow is computed
in areas of interest, namely the areas containing the ball and
opponent robot (See Fig. 2). If we set the robot so its camera
is stationary, the majority of the noise due to camera motion
will be eliminated. The resulting optical flow vectors are
quantized into four general directions (up, down, left and
right) or marked as static if the norm is not sufficiently large.
Based on their respective starting locations in the image
of 640 � 480, they are also quantized into 64 � 48 non-
overlapping cells of 10 � 10 pixels. It is possible to use
these categorized vectors and their timestamp as low-level
features in the temporal document. However, the resulting
documents are quite large, as the vocabulary would consist
of 64� 48� 5 = 15360 words.

Fig. 2: Left: Selected features in frame f are indicated by
thin yellow circles. Only features in the area of interest are
considered, which is determined by location of the ball (thick
yellow circle) and waistband (thick purple circle). Right:
Optical flow vectors between frame f and frame f + 1,
indicated by red arrows.

Instead, Probabilistic Latent Semantic Analysis (PLSA)
[9], a dimensionality reduction method that makes use of
latent classes, will be used to reduce the size of this vo-
cabulary. This method was used by Varadarajan et al as
well, in order to reduce computation time [2]. Its generative
model, describing how each variable in the distribution can
be sampled, is given by Fig. 3. PLSA models the probability
of co-occurrence of words and documents as a mixture
p(!; d ), creating the assumption that the occurrence of a
word ! is independent of the video document d it belongs
to, given a latent class c:

p(!; d ) =
X

c

p(c)p(d jc)p(!jc) (11)

The documents d are defined as word count matrices of
size f � V extracted from overlapping clips of f frames.
The parameters of the model P (!jz); P (c) and P (d jc) are
estimated using the maximum likelihood principle. Given
a set of training documents D, the log-likelihood of the
parameters � is given by:

Fig. 3: The generative model of PLSA.

L(�jD) =
X

d2D

X

!

n(d ; !) log(p(!jd )) (12)

Similar to the PLSM model, the parameters are optimized
using the EM algorithm [10], which allows to learn distri-
butions p(!jc) for every latent class. The found distributions
are then used to define words w for PLSM, meaning that
w = c and Nw = Nc. By specifying the desired number of
latent classes Nc beforehand, we are able to reduce the size
of the vocabulary to any given number. To keep the runtime
low, Nc = 25 was chosen. The presence of each word w at
an absolute time ta in a document d is then defined as the
normalized correlation:

n(d; ta; w) =
1P

!2Wc
n(d; !)

X

!

n(d; !)p(!jc) (13)

In this equation, Wc indicates the set of all words in the
distribution p(!jc) with a non-zero probability. This ensures
us that the found presence of each word w is independent
of activities elsewhere in the scene.

A resulting temporal document, that is to be used by
PLSM, is of size Nw � T , where Nw is the vocabulary
size and T the range of absolute times (see Fig. 1). The
documents are used as input for the PLSM method. As stated
before, each word w in the vocabulary is a representation of
a temporal pattern from the distribution p(!jc), as found by
PLSA.

C. Prediction task: anticipation

The final step is detection of activities, and reacting if one
has been detected. The optical flow is calculated in areas
containing the ball and the waistband of the opponent robot
at one frame per second. The resulting vectors are quantized
and converted to the bag-of-words representation. The found
PLSA model is used to calculate presence for every latent
class c, resulting in a document of exactly one timestep. The
probability of dnew being a part of a motif is calculated as
follows, with 0 � � � 1:

p(z; tnjdnew) = (1� �) � p(z; tn�1jdnew) : : :

+ � �

NwX

w

n(w; dnew)p(zjw; dnew) (14)

In this equation, the probability that a new document of one
timestep is part of a motif z depends on previous probabilities
p(z; t1:::n�1jdnew). If, for several timesteps, this probability
is higher than a predefined threshold, we assume that the
rest of the activity will be similar to the rest of the motif,



and the goalkeeper will react accordingly. Note that the
goalkeeper’s reactions are intended to anticipate the end of
their respective corresponding motifs: How the reaction is
executed is independent of which of the timesteps in the
motif is perceived.

Robot soccer behavior is often limited to several different
strategies. Therefore, it is highly likely that mirroring will
enable us to reduce the number of motifs even further: The
reaction to an activity perceived on the right side of the
goalkeeper can be mirrored, this will result in a reaction that
can be used if the same activity, but mirrored, is perceived
on the left side of the goalkeeper. However, in practice,
mirroring the patterns results in more motifs, which increases
computation time (also see V-B). This renders it useless in
real-time applications for the Nao, which only has a single
ATOM processor. It will be possible to apply this method
for humanoids with greater computing power.

IV. RESULTS

The used robot is the Aldebaran Nao 4.0 [11] which is
a humanoid robot with an Intel ATOM 1,6ghz CPU. It has
two cameras, capable of taking snapshots of 640�480 pixels.
The dataset used for training consists of 2370 images, taken
at one frame per second, from one of these cameras. Higher
framerates are possible, but 1 frame per second is chosen
to guarantee that there is enough difference between the
frames. The set of images is split into 43 groups, each of
which is between 20 and 128 frames long and describes a
single recording of a penalty shootout by one opponent robot,
as seen from the goalkeeper’s point of view. An average
duration of a penalty shootout recording is 55 seconds. PLSA
was applied on the optical flow detected in these images as
described in subsection III-B, with Nc = 25, resulting in 43
temporal documents. PLSM was applied on these documents
to find reoccurring motifs. For comparison, activity patterns
were discovered in the data for various numbers of motifs
Nz and its maximum duration Tz , as activities in the image
sequence may vary in length (see Fig. 4).

For instance, one can see that the last motif of Fig. 4.b
is mainly due to movement detected at the beginning of the
activity, while the motif directly left from it is mainly due
to movement detected at the end of the activity.

A fitting reaction was created manually for each motif
after analyzing the pattern of optical flow that it describes.
The reaction consists of at least one action: Either walking,
diving or a combination of the two. The walking direction
and distance and the diving direction (left or right) were
adjusted as well. As the reactions themselves are not part of
the training, there is no guarantee that these are the optimal
anticipating reactions for a specific motif.

The optical flow vectors that correspond to a motif were
found by taking distribution p(!jz) and, for each motif,
calculating the presence of a word in the scene at a timestep
t, given the motif, as:

n(!; t; z) = p(!jz)n(!; t) (15)

(a) Reoccurring temporal motifs for number of motifs Nz = 5 and
maximum number of timesteps Tz = 10.

(b) Reoccurring temporal motifs for number of motifs Nz = 10

and maximum number of timesteps Tz = 20.

Fig. 4: Graphical representations of two of the reoccurring
sets of motifs, for different numbers of motifs Nz and
maximum duration Tz . Motifs are of size Tz � Nc, with
the number of PLSA patterns Nc = 25.

During the anticipation task, p(z) is calculated for real
scenes once every second. If, for any motif, this probability
exceeds a predefined threshold for five successive seconds,
the goalkeeper assumes this motif is perceived and executes
the corresponding reaction regardless of what happens after
the start of the reaction. The effectiveness of these reactions
was compared to performance of a ‘regular’ goalkeeper,
which only reacts if the ball approaches at sufficient speed
by diving, through a total of 15 penalty shootouts. So, the
’regular’ goalkeeper makes its decision after the ball is
shot, the goalkeeper trained with PLSM can anticipate its
decision. These shootouts were conducted by a Nao with a
basic behavior model: Find the ball, walk towards it, locate
the goal and shoot. In theory this behavior will always
result in the same movements, in practice there is enough
variation in how the robot positions itself behind the ball
and how it shoots, due to sensor and actuator noise. Fig. 5
depicts the starting positions of both robots and the ball in
a penalty shootout.

We say that a goalkeeper interferes if the ball would
have gone into the goal, were it not for the goalkeeper.
A miss is when the ball does not reach the goal at all.
A hit is, obviously, when the ball passes the keeper, in
between the poles of the goal. If the keeper does not react
but prevents the hit by standing still, this is counted as
a hit. The rationale behind this decision is that standing
still was not selected as a fitting reaction for any of the
motifs. Interestingly, the goalkeepers that were the result of
PLSM did not react in case of a miss, whereas the regular
goalkeeper did, although this may be due to chance. There
is no time limit for a single shootout: It ends when the
player scores, the ball is kicked out of the field (behind the



Fig. 5: Typical start of a penalty shootout. The opposing
player (left) starts at the center line, with a distance of 3
meters from the goal, walks towards the ball and kicks it.
The goalkeeper starts at the goalline.

goal line), or the goalkeeper has made a save. Details on
specifications the field and rules of the penalty shootout can
be found in [12]. The results can be seen in Table I:

Nz / Tz Hit Miss Goalkeeper
interferes

5 / 10 8 3 4
5 / 20 9 4 2
10 / 10 9 3 3
10 / 20 11 4 0

TABLE I: The interception results for a trained goalkeeper.

From these results, we can conclude that the most effective
goalkeeper that was reacting on activity patterns discovered
using PLSM uses a small number of motifs. A likely cause
for this is that PLSM is forced to map a large number
of reoccuring patterns to a limited and predefined number
of motifs: The smaller the number of motifs, the more
general they will be. Results also indicate that effectiveness
is increased if Tz is low. This seems counterintuitive, as the
longer motif contains more timesteps that could match the
new document. However, the activities that are represented
by motifs of Tz = 10 are forced to represent short and
concise patterns that match typical recurring actions, whereas
the motifs of Tz = 20 may represent an entire penalty
shootout. An indication for this is that, when shown a real-
life scene, p(z) is large for almost every motif, for Tz = 20,
whereas there is more contrast for Tz = 20 (see Fig. 7).

The goalkeepers that were trained using PLSM were
compared to the regular goalkeeper model. This model
bases its actions on the speed of the ball. If this speed
exceeds a certain threshold, the direction is calculated and
the keeper dives left or right. The direction is based on the
expected location where the ball will cross the goal line.
Results are shown in Table II:

Clearly, the results of the regular goalkeeper show that

Hit Miss Goalkeeper
interferes

Regular goal-
keeper 2 4 9

TABLE II: The interception results for a regular goalkeeper.

the parameters of this behavior are optimized to perform well
during soccer games at the yearly RoboCup competition. The
results of the goalkeeper trained with PLSM are still poor
when compared to those of the regular goalkeeper. This can
partly be due to the limited training set of 40 minutes and
partly due to the noise and redundant information that each
motif contains, as Fig. 6 indicates.

Fig. 6: Two consecutive timesteps of a noisy motif z for
Nz = 5, Tz = 10. Circles indicate cells where optical flow
is detected, with the thickness of the circle corresponding
to presence p(wjz). As optical flow is detected throughout
almost the entire image, this motif is too general to be of
use.

The noise may render a motif too general to be useful, as
features that do not contribute to the action represented by the
motif are included in it as well. Such a motif generally has a
high p(z), even if the activity it represents is not perceived.
The opposite can also be true: Fig. 7 shows us that the fourth
motif is, compared to the other motifs, a motif with very
low probability of occurring, given the document dnew that
describes the scene. There are two possible causes: Either
the motif is the result of a specific activity that does not
occur in the scene, or the motif is the result of noisy optical
flow and will therefore always have low probability. In the
second case, this motif will not be of any use, which would
influence goalkeeper performance.

V. DISCUSSION

In this paper, PLSM is applied in an environment in which
an activity can occur at every position on the field, with
different orientations. This in contrast to, for example, traffic
analysis scenarios, in which cars are always on the road and
can move in a limited number of directions. It seems that
for this problem, the location cue can be discarded: Optical
flow vectors on which the activity patterns are based can
be translated and scaled to find the pattern that describes
the activity when it is perceived at a different location. If
this technique was applied, an action can be represented by
optical flow alone. Whether this will improve results, and



Fig. 7: Probability p(z) for Nz = 5, for two identical static
scenes (left) and two similar non-static scenes (right), for 14
timesteps. Top: Results for Tz = 10. Bottom: Results for
Tz = 20.

several other factors that are likely to influence results, are
discussed in this section.

A. Location quantization and scaling

As mentioned in III-B, the possibility exists that the same
activity is perceived at different locations. As a result, a
set of perceived patterns, in reality consisting of only one
activity but seen at different locations, will not necessarily be
mapped to the same motif. One reason for this phenomenon
is difference in distance: An opponent robot that is close to
the goalkeeper appears larger in the image than when it is far
away, and will thus occupy a larger part of the grid. Possible
solutions for this problem involve use of a cell grid that
uses a logarithmic scale, or dividing the image into larger
cells, both of which reduce the number of possible features.
However, each activity pattern represents a possible activity
of an opponent robot, and these activities affect the game
differently if they occur on unusual positions on the field.
Therefore, it is impossible to group patterns that are a result
of optical flow detected on an unusual position, with the
already learned motifs, even if they describe the same action
by the robot player.

For example: When a player shoots the ball to the left
of the goalkeeper and is close, the goalkeeper may want to
move left as well to defend the goal, while the same action,
when perceived at a greater distance, may not pose a threat
at all and not require a reaction. A second reason is that
the number of features may be reduced, but it is hard to tell
whether we can afford to lose these features: This method
may cause PLSM to find motifs that are too general to be
used.

B. Mirroring

If we assume that a perceived pattern is the result of an
action in arbitrary reaction, it should be possible to reduce
the number of motifs by mapping patterns that are mirrored
versions of each other to a single motif. The disadvantage

of this approach is that it increases computation time for the
prediction, as each motif that is mirrored requires calculation
of p(z). Even if the mirrored versions are mapped to the
same motif, it will be necessary to check which of the
two versions is perceived before a fitting reaction can be
given. Additionally, there may be exceptions to the rule, or
the mirrored motif may be too similar to a different motif,
causing the goalkeeper to react wrongly.

C. Motion

In this paper, the difficulty of the problem is greatly
reduced by removing camera motion. The calculation of
optical flow is quite different for a non-stationary camera,
even if the absolute camera motion is known. However, the
Nao does not stand perfectly still due to the servos not
being able to keep a pose exactly the same. As a result,
there is always some noise present in calculation of optical
flow in a static scene. This slight movement also makes it
hard to use background subtraction [13], a method which
may improve results due to the removal of objects that are
not of interest. If the Nao is able to stand perfectly still
during motif detection, it will still be hard to use background
subtraction: Camera calibration is needed after the robot has
moved (e.g., walking towards an opponent, diving to stop
the ball) and this will cost time. Additionally, the Nao’s
camera moves inside the head after an impact or sudden
movement, making any method that assumes that the camera
is stationary very susceptible to noise. It is imperative that
the goalkeeper reacts as fast as possible, and therefore,
background subtraction was not applied.

VI. FUTURE RESEARCH

The RoboCup consists of several leagues, each league
having its own rules and fields of research. The league in
which the Nao is used is the Standard Platform League,
a soccer competition for humanoid robots. Although op-
timization of soccer behavior is one field of research in
the league, detection of opponent’s behavioral patterns has
not been attempted before. The main reason for this is
that participating teams are constantly adjusting behavior; it
would be futile to analyze the opponent to create opponent-
specific strategies manually.

Automatic activity mining has been used in the Small
Size League of the RoboCup, where an overhead camera is
available. For example by Ball et al [14], who use Bayesian
approaches to find patterns in opponent behavior. Similar to
the goal of the research in this paper, the patterns are used to
predict the opponent’s behavior, and effective strategies are
created to exploit the opponent’s weak points. An important
difference between this league and the Standard Platform
League is that data is retrieved from two stationary cameras
that are placed above the playing surface, whereas in the
humanoid leagues, the camera feed of the robots is the only
available source of visual information. It is likely that results
for PLSM will improve when, instead of point-of-view image
data from the goalkeeper, an external camera that gives a
top view is used. However, as the Standard Platform League



rules do not allow use of sensor data other than that of the
robots [12], any method that uses external sensors cannot be
applied in an official match.

The use of similar automated activity mining methods in
official competitions may prove to be advantageous: Detec-
tion and prediction of an opponent’s movement will make
complex actions such as defending the goal by blocking, or
passing the ball without it being intercepted, a lot simpler.
It is likely that eventually, the detection of an opponent’s
behavioral patterns will become a necessary part of any robot
soccer team, as adapting to the opponent’s strategy is a basic
element of soccer.

This study demonstrates that Probabilistic Latent Sequen-
tial Motifs can be applied to predict opponent’s behavior
in soccer. Previously, its value was already demonstrated in
the analysis of traffic and pedestrian streams. This successful
application indicates that this method could also be attractive
for other applications.

VII. CONCLUSION

This paper describes the application of automatic unsu-
pervised activity mining in videos for a humanoid soccer
robot, and its effectiveness when used for the prediction
and anticipation of opponent actions. A topic model-based
method called Probabilistic Latent Sequential Motifs [2] is
used to find recurring patterns of optical flow, referred to
as motifs, in a dataset of short image sequences. This is
the first time that Probabilistic Latent Sequential Motifs
are used in this setting. The number of motifs and the
maximum length of such a motif is specified beforehand. The
discovered activity patterns are then used by the goalkeeper
to predict an opponent’s action and react accordingly. The
effectiveness of the used method was tested by comparing
performance (i.e., the ratio of the number of prevented goals
to the number of scored goals) of the resulting goalkeeper
to that of a simpler goalkeeper model, that only reacts when
the ball is approaching, through a penalty shootout. Results
indicate that setting the desired number of motifs relatively
low contributes to performance, but that a goalkeeper with
a predefined set of behavioral rules performs better overall.
Nevertheless, the paper shows that automatic activity mining
is a promising field of research in robot soccer.

ACKNOWLEDGMENT

We would like to thank Jagannadan Varadarajan, Remi
Emonet and Jean-Marc Odobez for the distribution of their
Matlab source code for Probabilistic Latent Sequential Mo-
tifs.

REFERENCES

[1] T. J. de Haas, T. Laue, and T. Rofer, “A scripting-based approach to
robot behavior engineering using hierarchical generators,” in Robotics
and Automation (ICRA), 2012 IEEE International Conference on.
IEEE, 2012, pp. 4736–4741.

[2] J. Varadarajan, R. Emonet, and J. Odobez, “Probabilistic latent sequen-
tial motifs: Discovering temporal activity patterns in video scenes,”
in Proceedings of the British Machine Vision Conference, September
2010.

[3] J. Varadarajan and J. Odobez, “Topic models for scene analysis
and abnormality detection,” in ICCV 12th International Workshop on
Visual Surveillance, 2009, pp. 1338–1345.

[4] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “Latent
semantic indexing: A probabilistic analysis,” in Proceedings of ACM
PODS, 1998.

[5] R. Emonet, J. Varadarajan, and J. Odobez, “Extracting and locating
temporal motifs in video scenes using a hierarchical non parametric
bayesian model,” in IEEE Conference on Computer Vision and Pattern
Recognition, June 2011, pp. 3233–3240.

[6] D. Kuettel, M. D. Breitenstein, L. van Gool, and V. Ferrari, “What‘s
going on? Discovering spatio-temporal dependencies in dynamic
scenes,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, June 2010.

[7] X. Wang, X. Ma, and W. E. L. Grimson, “Unsupervised activity
perception in crowded and complicated scenes using hierarchical
bayesian models,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 31, no. 3, 2000.

[8] Y. W. Teh, M. Jordan, M. Beal, and D. Blei, “Hierarchical dirichlet
processes,” Journal of the American Statistical Association, vol. 101,
no. 476, 2006.

[9] T. Hofmann, “Probabilistic latent semantic indexing,” in In Proceed-
ings of the 22th International Conference on Research and Develop-
ment in Information Retrieval (SIGIR), 1999.

[10] ——, “Unsupervised learning by probability latent semantic analysis,”
Machine Learning, vol. 42, pp. 177–196, 2001.

[11] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-
cade, B. Marnier, J. Serre, and B. Maisonnier, “Mechatronic design of
nao humanoid,” in Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, May, pp. 769–774.

[12] R. T. Committee, “Robocup standard platform league (nao) rule book,”
May 2012.

[13] A. McIvor, “Background subtraction techniques,” in Image and Vision
Computing New Zealand, 2000.

[14] D. Ball and G. Wyeth, “Classifying an opponents behaviour in robot
soccer,” in Proceedings of the 2003 Australasian Conference on
Robotics and Automation, 2003.


