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A Humanoid-Robotic Replica in USA RSim for H RI E xperiments
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Abstract— An important set of open questions in human-
robot interaction research, and to some extent cognitive science,
is centered around the difference in interactions humans have
with real versus simulated robots or agents. The goal of this
research is to understand the effects of the agent’s embodiment
on human perception and cognition.

In this paper, we present our work on providing computa-
tional tools to facilitate research in embodied situated cogni-
tion and human-robot interaction. Specifically, we introduce a
simulation model of our humanoid robot CRA M ER which we
developed in the UNREA L game engine using the USARSim
control interface. We provide details on its development and
the implementation of the control interface that allows it to
work seamlessly with our existing robot control architectures.
We also discus potential applications of the simulation model
as well as future plan to extend it.

I. I N T R O D U C T I O N

Simulated environments like USA RSim [1] have become
important tools for the development, testing and debugging
of robot control architectures in a variety of areas, including
single and multi-robot setups with and without human-
robot interaction (H RI). In addition to rapid prototyping of
control software, however, simulated robots can also serve
an important role in psychological research: they can be
used for the study of important psychological phenomena
related to embodiment and situatedness of agents, which are
of critical importance for human-computer and human-robot
interaction. Specifically, sufficiently accurate simulations of
real robots will allow us to study any possible differences
in how humans interact with real versus virtual agents.
These differences, then, will have significant implications
for the design, testing, and deployment of robots and robotic
architectures. For example, we have demonstrated that the
expression of affect in a robot’s voice can motivate people
to perform better at a joint task when the robot is physically
co-present in the same environment as opposed to just shown
on a video screen [6], [7], [8]. Similarly, a warning message
from a virtual character might be less believable than that
from a physical robot [3]. Hence, one important implication
for the design of robotic architectures in simulation is that
H RI mechanisms that work well with simulated robots might
not work well or work at all with physical robots and vice
versa.

In this paper, we describe our work developing a simulated
replica of our physical robot that can be used for H RI studies,

specifically to explore the effects of physical embodiment.
We will describe the details of the simulated robot, how it
was developed, how it can be controlled, and how it can be
used for future psychological experiments.

I I . B A C K G R O U N D

Multiple simulation packages are available that can be
used for the development of simulated robotic replicas
(including USA RSim, Gazebo, O D E, etc.). Some of the
packages already come with robot models and A PIs for
software control architectures (e.g., USA RSim or Gazebo),
while others provide only a core physics engine within which
both simulated robot models as well as software interfaces
will have to be developed. Our selection of USA RSim was
based on the fact that there is a fairly substantial user
community with increasing support for robot models and
environments.

USA RSim is a collection of modifications made to
U NREAL Tournament (a commercial “first-person shooter”
game) for the purpose of allowing a robotics control ar-
chitecture to interface the game engine. U N R E A L Tourna-
ment is a physics-based simulation, which supports rigid-
body physics and interactions. The USA RSim modifications
remove all game-related elements of U N R E A L, leaving only
the physics engine and some client software. USA RSim also
includes GameBots, freeware from a 3rd party developer,
which provides mechanisms for communication over a T CP
socket. This means of communication forms the basis for
the creation and control of agents within the simulated
environment at runtime. Because GameBots uses sockets for
communication, developers can construct their own client
software to connect to USA RSim. It is through this client
that one can place agents in (or remove agents from) the
simulation environment. A nd the client also allows robotic
control architectures to send commands to the simulated
robots (e.g., to control a robot’s wheels or actuators).

While we are using a variety of robots in our H RI studies,
we are particularly interested in human-robot interactions
with human-like robots. For this purpose, we employ our
robot C R A M E R (the “ Cognitive, Reflective, A ffective, Mo-
bile, E xpressive Robot”), which consists of a humanoid
upper torso (manufactured by the now defunct company
RoboMotio) mounted on a mobile Pioneer P3D X platform.
C R A M E R has two firewire cameras mounted in its eyes



and a series of eight microphones mounted in its torso.
Moreover, it has movable eyes, eye brows and lips to produce
facial expressions. The challenge for the simulated robot in
USA RSim was thus to replicate all of C R A M E R ’s effector
capabilities as closely as possible, including their timing and
their degrees of freedom. Our plan was for the replica to be
displayed on life-size 63in monitor so that the simulated and
real C R A M E R, placed side-by-side, would exhibit (close to)
identical motions if controlled by the same architecture.

The development effort consisted of the integration of
three primary tasks. F irst, we created a simulation model for
C R A M E R with the help of a number of 3rd party programs
and tools. Second, we produced the classfile structure and
configuration that U N R E A L Tournament uses to recognize
C R A M E R as a placeable agent. F inally, we wrote a client
for USA RSim building upon the basic functionality already
provided by USA RSim and GameBots, together with addi-
tional control software for our A D E control environment, to
allow us to connect our robotic architecture to the simulated
C R A M E R in exactly the same way it is connected to the
physical robot. In the following, we will describe all three
parts in more detail.

I I I. SI M U L AT I O N M O D E L S O F H U M A N O I D S I N
U S A RSI M

A fully functional simulacrum of a robot requires both
a model of the physical shape and behavior of the robot
as well as specifications of how some of the movable parts
can be controlled. Creating the physical model in USA RSim
consists of “modeling the robot’s parts”, “adding texture to
the surfaces” to make it look like the original, “organizing
various configuration files” that U N R E A L requires for the
parts to function as a whole, and “configuring the robot’s
joints to function properly”. Once the simulated robot is
assembled within U N R E A L, software can be developed to
control it. Our lab’s USA RSim client software currently
consists of three main components: the code that initializes
communication with USA RSim, the parser which interprets
all of the incoming data, and a set of methods that implement
the translation of the platform-independent action commands
of our robotic control architecture into platform-specific
commands of USA RSim.

A. Model C reation
The possible methods for creating the model of the sim-

ulated robot are varied, and the particular combination of
methods presented here is only one of many. A s part of our
commitment to open-source operating systems and software,
our lab chose to work as much as possible with free and
open-source tools available for L inux, which turned out to
be more complicated and time-consuming than what model
development would have been otherwise using proprietary
Windows-based software. To construct the three-dimensional
models of C R A M E R ’s parts, we used the free modelling
program Blender. The texturing was originally accomplished
using the raster image editor the G IMP, but later we moved
to the scalable vector graphics image editor Inkscape. Using

F ig. 1. Split shot of the model and texture in B lender, showing
how the texture is mapped to the model.

F ig. 2. Wireframe view of the C R A M E R head model.

these programs (after a significant learning phase), a smooth
workflow developed that proved quite efficient at producing
robot models.

The modelling software, B lender, handled both the form-
ing of the models, and their preparation for texturing, called
“wrapping” (see F ig. 1 and F ig. 2). The wrapping process
involves designating seams on the models in order to provide
a smooth, relatively distortion-free means of wrapping a
two-dimensional texture around a three-dimensional object.
There do exist other open source modelling tools that perhaps
could be used to create the 3D content for USA RSim, but
none seemed to be as mature and effective as B lender, and
so their use was not considered further. Once the model

F ig. 3. The blank texture before it is filled in using Inkscape.



was prepared, the wrapping template was exported to an
image editor, where it was colored and smoothened (see
F ig. 3). One significant benefit that using B lender brought
to this process was its ability to export the unwrapped
texture directly to a file with which vector graphics software
could work. Similarly to our work with B lender, there were
other programs that could have been used to fill in the
textures, such as X ara X treme L X , which is released under
the Gnu Public L icense. Inkscape initially seemed to be
more developed and robust than the alternatives, and so
further exploration was deemed unnecessary. Both the model
and the texture image were then exported into formats that
the U N R E A L Editor would accept (all content used by
USA RSim must be of in one of a few particular formats,
according to type). In order for U N R E A L to be able to use
the robot models, it had to first be packaged by the U N R E A L
Editor. While we were able to use open-source software
for physical modelling and texturing, only the proprietary
U N R E A L Editor can package up the collection of model,
texture, and configuration files and class files, the latter
of which define the robot as an entity and connect the
pieces into controllable groups of joints (for details on this
process, see the documentation in the USA RSim manual).
Configuration files give joints their limits, including range
of motion, maximum speed, maximum torque, along with
other parameters. With everything in place, the robot can
now be initiated and manually controlled through GameBots
through a simple telnet connection. For autonomous robot
behavior, however, a robot control architecture is needed.

B. USARSim C lient Software
In order to encapsulate USA RSim’s simulation capabilities

for the purpose of using it with our robotic software environ-
ment A D E, we developed our own client software to provide
functionality from a pre-established A PI that other robot
interface components implement (when they interface phys-
ical robots). This functionality was achieved by wrapping
the low-level joint command provided by USA RSim into
JAVA -based methods, such as mo v e A r m or mo v eHe a d, that
accept a number of arguments and forward the appropriate
command together with the arguments to USA RSim, which
then performs the appropriate action.

A s with all physical robots, however, the communication is
two-way and sensory data needs to be received from the robot
as well. In USA RSim, the sensory feedback is continuously
provided in special message packets, which need to be parsed
accordingly and translated into a format that the robotic
architecture can understand, another function performed by
our USA RSim client. F inally, the client is able to establish
communication with USA RSim and initialize the robot in the
environment in right location in a specified configuration.

C . Control Implementation
The procedures of control are all built around the USA R-

Sim defined protocol. A ll commands are issued to GameBots
over the established socket in raw line-based text format, des-
ignating which joint is to be moved as well as the magnitude

and order of the movements. This order defines what type of
command the message is, and can be a positional command,
velocity command, or torque command. The order, therefore,
determines the meaning of the magnitude, which is a number
whose units are either radians, radians per second, or in a
special unit used by U N R E A L to measure torque, respective
to the order. A significant challenge in implementing the
control of the simulated robot is the inherent difference in
methods of control between the simulated and real version.
U N R E A L Tournament accepts one of three orders of control
for any joint, allowing the user to specify a joint’s angle,
velocity, or torque. However, in some physical robots, servo
control allows for multiple orders to be issued simultaneously
(e.g., specifying that a joint move to a certain angle at a
particular velocity). Bridging this gap requires more sophis-
ticated control than is natively provided by USA RSim. The
general solution to this problem is to have the server issue a
velocity command, wait for a bit, and then send a command
which sets the velocity to zero when the joint is at the correct
angle. Two potential methods of ensuring correct timing for
the stop command have been implemented to produce the
highest fidelity between the physical and simulated robots’
movements. While one method seems to be significantly
more reliable than the other, there may be uses for which
either is better suited.

The first method — “check to stop” — relies upon U N-
R E A L Tournament’s incoming information about the joints.
Throughout the lifetime of a simulated robot, USA RSim is
constantly sending information about all of its joints—their
respective positions, velocities, and torques. This method
then waits for a return value from the parser for the ap-
propriate joint that indicates that it is in the correct position,
and so should be stopped from moving further. The method
works reliably at lower velocities (0 to ¾ 1:2 rad per sec)
and on movements that involve longer movements ( > ¾ 1 to
1:5 rad). However, as the rotational velocity increases, this
method’s limitation begins to show. USA RSim periodically
updates its joint information every ¾ 0:2 seconds. When the
velocity is too high, or the angle displacement is too small,
the number of updates received about the joint’s position
during the movement is reduced to zero, frequently causing
the joint to overshoot its intended angle. U ltimately, this
limitation prevents the “check to stop” method from being
the preferred method.

The second method relies instead on dead reckoning.
G iven a joint’s current angle, the desired angle, and a
rotational velocity, one can simply compute the time nec-
essary between start and stop commands using the formula
dt = v=dx. During initial testing, this method was thought
to be flawed by complications in the physical simulation
entailed in U N R E A L, but further development saw that these
errors were in fact being produced by limitations enforced
by the USA RSim configuration of the robot’s joints. In
the configuration, certain parameters are set for each joint,
including limits on range of motion, as well as limits on
the joint’s velocity. Because these limitations are enforced
internally in U N R E A L, it was not initially clear that they



were what was interfering with the calculations. If the client
were to order a movement that was faster than allowed by the
configured restrictions, the command would be sent without
any indication that it was being executed incorrectly except
for the updates from U N R E A L, which include data about
the joint’s velocity. The client software would make the
calculation based on its anticipated velocity, which would
produce a significant error due to the discrepancy of velocity.
This problem was bypassed by increasing the maximum
velocity of the joint in question. It was found that if the joint
was permitted by USA RSim to move at the correct velocity,
the accuracy of the calculation was restored, allowing this
dead-reckoning method to be used exclusively.

It should be noted that in the process of simulating
RoboMotio’s Reddy robot, we strove for realism of the mech-
anisms. The facial expressions were a particularly significant
point of interest to us, as the robot is intended for human
interaction purposes. On the physical robot, the eyebrows
consist of one degree-of-freedom (D O F) each, rotation in
the plane parallel to the face. Recreating the eyes, likewise,
was a relatively simple matter, as they consist of three
D O F: individual left-right pan, and a single up-down tilt,
linked to both eyes. A “dummy” object was used to link
the tilt D O F to both eyes. This object was a massless object
that was positioned inside of the head model, so as to be
invisible during normal simulation. The mouth, however,
presented a much more difficult problem. On the physical
robot, the mouth consists of two “ lips”. Both lips were
lengths of flexible rubber hose, bent into any given shape by
two servos, one at each end. These four servos could then
produce simple facial expressions, such as smiling, frowning,
or a tilde-shaped “confused” look, by turning to particular
positions, bending the rubber. The problem presented to the
simulation is the difficulty of simulating flexible objects. We
were also limited by the topology of the mouth, as each
defined joint part in USA RSim can have up to one parent
part. This directly conflicts with the concept of the rubber
hose mouth of the physical robot, as the shape of each lip
directly depends upon not one, but two joints. To solve this,
we broke each lip up into three visible components: Two end
sections and one middle section. The four end sections could
be rotated like normal joints, with the positions specified
by the method “moveMouth(a, b, c, d)”. The two middle
sections actually each consist of one normal rotational joint
and one prismatic joint, which has a linear up-down motion
instead of rotational. The positions of these “hidden” joints
could be calculated to provide the appearance of a seamless
curve. These mechanisms led to the ability to simulate the
robot’s facial expressions through exactly the same interface
of commands. For example, to frown, the robots both turn
their eyebrows to tilt downward in the center of the face, and
turn all four corners of the mouth upward, bending it into
the appropriate shape. The only difference between physical
and simulated expressions is that the physical mouth is made
out of rubber, and the simulated mouth is made of extra rigid
pieces which depend upon the hidden calculations to be put
in the correct positions. The commands which are sent to

the individual software components that control the physical
and the simulated robot are exactly the same.

D . C alibration
Once the simulation was set up, the remaining task re-

quired to complete the control functions was to adjust the
parameters in the simulated robot to match those on the
physical robot, specifically to map the numbers used for
velocity commands on the physical robot (using a PW M
signal) to the numbers that USA RSim uses (radians per sec-
ond). The physical servos’ necessary use of torque precludes
a linear or simple calculation. Instead, measurements were
taken on each joint, at varying speeds, to match the speeds of
the physical and simulated robots, through visual similarity.
These points, then, provided the data for a polynomial fitting
function that can provide a smooth translation between the
PW M signal and the corresponding radians per second. One
problem with this strategy, of course, is that physical servos
will degrade as they are used over time, and so the fitted
function will become obsolete at some point in the future,
and the function fitting will have to be repeated.1

E . Parsing Sensory and Joint Feedback
We implemented a simple parser to take the sensory output

from U N R E A L and translate it into a format that the robotic
architecture can use. The parser runs in a separate thread
from the rest of the client’s operations, and primarily consists
of a loop that decodes the incoming messages and attempts to
ascertain which type of message it has received by checking
for distinguishing tokens. For instance, a message that carries
information from one of the robot’s sensors will start with the
token “SE N ”, while a message with information about the
positional data of the robot’s joints will start with “ M ISSTA”.
The information gleaned from these messages can be used
for sensory processing, such as obstacle detection, or for
motion control, as discussed in the previous section.

I V. T H E U S A RSI M D I A R C / A D E I N T E G R AT I O N
The USA RSim model described above has been integrated

into the Agent Development Environment (A D E), an infras-
tructure toolkit for constructing complex robotic architec-
tures developed in our lab [5]. A D E allows developers to
create modular components called AD E servers that can
subsequently execute on any host with appropriate hardware
resources. A n AD E registry maintains information about all
servers currently running in the infrastructure; whenever a
new server starts, it checks in with the registry and provides
information about its resource needs and the functionality it
provides to the system. The registry is then able to provide a
reference to that server when another server requests a server
with that functionality. Some examples of other A D E servers
available to architecture developers are:

ž Goal Manager/A ction Sequencer
ž Speech Recognition

1 Note that it is unclear how to best address this problem without a
thorough model of motor degradation which is unlikely to be available to
owners of physical robots.



F ig. 4. A ngry real C R A M E R (A bove), A ngry virtual CR A M E R
(Below).

ž Speech Production
ž Natural Language Processing
ž Planning
ž Robot Base (e.g., Pioneer, Segway)

O f particular interest here is the action manager, A D E ’s goal
management and action sequencing component, as it is the
most frequent client of the USA RSim server’s services. The
action manager uses the utility of goals along with informa-
tion about goal deadlines to determine how resources should
be allocated. This allows the system to pursue multiple goals
simultaneously, so long as there are no resource conflicts
(e.g., between a goal that requires the robot to remain
stationary and a movement goal). When conflicts arise, the
action manager gives precedence to the higher-priority goal.
The action manager stores procedural knowledge in the form
of action scripts that allow it to sequence multiple sub-actions
together to accomplish a goal. For cases in which the action
manager does not have a pre-defined script to achieve a goal,
a planner component (based on the SapaReplan planner [4])
can construct scripts to achieve them.

The C R A M E R server and USA RSim server both imple-
ment the HumanoidTorso interface, which includes several
methods for manipulating the arms, head, facial features, etc.

F ig. 5. Side-by-side view, as during the lab introduction described
in the text.

Some of the methods are low-level, for example:
ž mo v e L e f t A r m / mo v eR i g h t A r m
ž mo v e E y e s
ž mo v eHe a d
ž mo v e E y e B r ow s

whereas others are complex, higher level actions that build
on the low-level interface, such as:

ž l o o k A t
ž p o i n t T o
ž F r own
ž S c ow l
ž Sm i l e .
Because the servers both implement the same interface,

other A D E servers (e.g., the action manager server) need
only request a reference to a HumanoidTorso server, and
it can use whichever implementing instance (i.e., a server
for the real or for the simulated robot) is returned. The
USA RSim server, in addition, implements the PioneerServer
and SIC K LaserServer interfaces, allowing access for A D E
servers to the Pioneer and SIC K laser range finder models
included with USA RSim.

V. R E A L V E RS U S V I RT U A L I N T E R A C T I O N S

The simulated version of the humanoid robot will allow
us to explore important questions in human-robot interaction
related to how people respond to simulated robots (see Sec-
tion V I below). However, the validity of those experiments
will depend, in part, on how closely the simulated robot
models the behaviors of the real robot. We have tested the
validity of the model in multiple contexts. Two of these
scenarios are described below: a “dialogue” with a simulated
and a real robot, and a “dance contest” in which the two
robots employ the same algorithm to react (i.e., dance) to
music. These scenarios allow us to evaluate the simulation
by having the real and simulated robots side-by-side in the
same environment; the simulated robot is displayed on a large



(63”) plasma monitor, and hence can be displayed full-size,
making it possible to eliminate the effect of size.

A. The D ialogue

In this scenario, the two robots perform the task of
introducing the research done in the lab to visitors. The
dialogue is fully scripted (very much in the way D isney
animatorics work), so there is no geniune interaction with
the people watching the robot. However, the two robots
are programmed to respond to each other throughout their
interactions. The real C R A M E R begins the introduction by
describing its own capabilities, explaining what its name
stands for, and how it can be used in experiments in the
lab. For example, because emotional expressions are very
important for human-human interactions, familiar “emotion”
expressions have been programmed for use by C R A M E R; in
the course of the dialogue, many of these emotional expres-
sions are demonstrated. The robots behaviors are controlled
by simple action sripts that are being executed by the action
manager. A script for making the robot look “angry”, for
example, could look like this:

script look A ngry
moveLeftA rm(5, 10, 90)
Scowl()
changeVoice(angry)
say Text(” For example, I can look angry!”)

Each of the script commands in this example invokes an
action in a corresponding A D E server (the C R A M E R or US-
A RSim servers for the first two, the speech production server
for the last two), producing a behavior in which the robot
speaks in an angry voice while scowling and pointing angrily.
mo v e L e f t A r m is a simple action in the robot servers,
whereas S c ow l is a compound action (also implemented in
the robot servers) that builds on multiple lower-level simple
actions to manipulate the robot’s eyebrows, lips, and eyes.

While real C R A M E R is introducing itself and the lab,
virtual C R A M E R “watches” it, nodding in (scripted) re-
sponse to important points. When real C R A M E R turns to and
introduces virtual C R A M E R, virtual C R A M E R then takes
over the introduction, demonstrating its own capabilities and
elaborating on how having a virtual replica is useful for
exploring the kinds of questions described in Section V I. The
two robots then alternate back and forth for the remainder
of the dialogue.

Note that the design of the servers plays an important role
in the ease with which these behaviors can be scripted by the
action manager. Because the USA RSim server implements
the same interface as the C R A M E R server (as described in
Section I V ), the action manager can use the same scripts
(such as l o o k An g r y above) to evoke identical actions in the
virtual agent. Hence, there is no need for the action manager
to have any understanding of the difference between the two
(or that there even is a difference).

B. The D ancing Robots
A nother scenario used to demonstrate the functionality of

the simulated version of C R A M E R is the “dance contest.”
Once again, the robots are placed side-by-side (i.e., the large
monitor is placed beside the read robot). The robot servers
(C R A M E R server and USA RSim server) perform waveform
analysis on the audio output of the selected song (K raftwerk ’s
We Are the Robots, naturally) to detect peaks. These are taken
to approximate the beat of the music, and the servers generate
random movements of various body parts to coincide with
the peaks in the music. The effect is of two robots dancing
to the music.

V I. D IS C U SSI O N
The above examples of simple dialogues or synchronized

behaviors between the real and the simulated robot are
intended only as a proof of the functionality of the current
interface, not as a demonstration of what its potential is
for empirical studies of humans interacting with robots.
Many empricial robot studies, particularly in the area of
human-robot interaction, employ an experimental method
that involves showing videos of real robots to subjects or
having subjects interact with simulated robots, rather than
having them interact directly with real robots. While there
are certainly substantial benefits to the use of simulations in
the development of complex robot architectures, it remains
an open question whether experimental results obtained using
simulations (or videos, images, etc.) are directly applicable
to “best practices” in the design of architectures for human-
robot interaction. In particular, the embodiment of the phys-
ically instantiated robot in the same physical space as the
human subject is likely to have some effect on how the
robot is perceived, how attention is allocated, where eye gaze
focuses, etc.

For example, the simulated model of C R A M E R will
allow us to replicate an experiment that we conducted with
C R A M E R in a real environment, where the robot had to
follow human eye gaze in real-time during a word learning
task [2]. The interesting question then is whether the eye gaze
patterns observed in humans interacting with the real robot
will end up matching those to be observed in interacting
with the simulated robot. If they match up, then we have
learned something about eye gaze, namely that simulated
robots do not necessarily have a different effect on attentional
mechanisms in humans from real robots. If, however, they
differ, then this effect will trigger a detailed investigation into
the nature of attention and how it interacts with physical
embodiment. A nd, of course, this is only one, immediate
example of how the simulated version of C R A M E R can be
an invaluable research tool for psychology and H RI.

V I I. C O N C L U SI O N A N D F U T U R E W O R K
In this paper, we presented a simulation model of our

humanoid robot C R A M E R in the U N R E A L simulation en-
gine using the USA RSim interface. We demonstrated how
a completely actuated robotic simulation model can be
developed with open-source tools and how the model can



be connected to a robotic architecture in such a way that
from the architecture’s perspective there is no difference
between controlling a simulated versus a real robot. We also
briefly discussed how such a simulated replica of a physical
robot that attempts to be as faithful as possible to both the
visual appearance as well as the physical behavior of the
robot can be a very useful tool for human-robot experiments.
In particular, we believe that such a tool is necessary for
the systematic exploration of the effects that the physical
embodiment of a robot has on humans interacting with it,
compared to possibly different effects of a two-dimensional
version of the same robot on a video screen.

We plan to expand the current USA RSim interface in the
future, in particular, the way in which the A D E USA RSim
server manages the sockets and lines of communication. Cur-
rently, we can only initialize one robot inside the U N R E A L
environment and control it through our A D E system. The
plan is to generalize the interface so that a single USA RSim
client can handle multiple connections. We are also planning
on developing “dummy objects”, which are initialized in the
same way as the robot agent, but with limited actuating
capabilities. A dummy object may be a box with a single
hinge, for example, on which an agent may perform such
actions as “open” or “close”. While such interactive objects
are already possible within U N R E A L, there is currently no
way for a remote client to manage and control them. Yet, we
believe that objects with limited behavioral and actuating
capabilities will be of great use (e.g., as props) in H RI
studies.
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Abstract We describe T eamTalk: A human-robot interface 
capable of interpreting spoken dialog interactions between 
humans and robots in consistent real-world and virtual-world 
scenarios. The system is used in real environments by human-
robot teams to perform tasks associated with treasure hunting. 
In order to conduct research exploring spoken human-robot 
interaction, we have developed a virtual platform using 
USA RSim. We describe the system, its use as a high-fidelity 
simulator with USA RSim, and cur rent experiments that benefit 
from a simulated environment and that would be difficult to 
implement in real-world scenarios.  

I. INTRODUCTION 
n enduring challenge in human-robot interaction is 
creating interfaces that are both effective, in that proper 

behaviors occur, and natural, in that humans can interact 
with robots on a level closer to goals at hand. We are 
interested in the scenario where humans need to interact with 
multiple robots at the same time, a situation that particularly 
stresses the need for effective communication. At the core of 
the problem is the management of human-robot teams and 
sub-teams, where each has different roles and 
responsibilities. Spoken language has the potential to reduce 
the complexity of this interaction, by allowing humans and 
robots to communicate on a more abstract task level rather 
than in terms of a more structured operator/device 
relationship. 
 This paper describes TeamTalk: a human-robot interface 
capable of interpreting spoken dialog interactions between 
humans and robots in virtual and real-world spaces [1]. This 
system currently manages goal-oriented dialog in a search 
domain (which we will refer to as the “Treasure Hunt”). 
TeamTalk was developed using the Olympus architecture for 
the dialog interface [2]. The system incorporates live map 
updates in virtual and real environments and allows the 
execution of complex action sequences, called “plays”. The 
PlayManager component is taken from RoboCup-related 
work [3]. Plays can be either individual or team-based 
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actions, such as searching an area for victims or treasures. 
Low-level task allocation is managed via the TraderBot 
component [4]. These components were integrated into a 
coherent single application as part of the TeamTalk system 
[5]. More details on these components can be found in 
Section IV. 
 The complexity of the full system (including major 
software components developed in separate sub-projects, as 
well as 3-4 robots) presented a logistical challenge that led 
us to implement a simulation-based analog that would allow 
us to experiment with the interaction component. 
Development and testing was facilitated through the use of 
USARSim as a virtual testing platform [6]. USARSim is a 
simulation platform designed for evaluating and conducting 
research with urban search-and-rescue robots. The simulated 
environment and robot models are rendered with the Unreal 
Tournament 2004 game engine. We run simulated robots 
using MOAST’s “SIMware” software, which serves as a 
replacement for real-world robotics hardware [7]. MOAST 
is a mobile robot framework that interfaces directly with 
USARSim. 
 Simulation allows us to make the development process 
more streamlined. At the same time, we maintained the same 
interface layer that is used for the real system, allowing us to 
move between the two environments with relative ease. 
Moreover, we designed the virtual world to mirror the 
environment in which the full system was being run.  
 TeamTalk with USARSim has also served as a robust 
testbed for conducting user studies that explore linguistic 
aspects of human-robot dialog. This virtual platform has a 
relatively low development and maintenance cost as 
compared to using actual robots. Current research focuses on 
multi-participant human-robot dialog, and on the 
interpretation of spatial language in human-robot dialog. 
Practical benefits of the virtual platform include the ability 
to perform user studies without incurring the logistical costs 
of a real-world full trial, and also reducing the chance that 
studies will experience technical difficulties. With TeamTalk 
interfaced to the virtual platform, we have collected several 
datasets of real-time spoken language interactions with 
virtual robots. By varying the scenario and mode of 
interaction, this platform permits us to explore what people 
say when speaking to robots in the context of goal-oriented 
tasks (e.g., exploring a room, moving to another teammate’s 
location).  
 The organization of this paper is as follows. Section II 
elaborates on previous work with speech interfaces in 
USARSim. Section III describes the Treasure Hunt task. 
TeamTalk system features are discussed in Section IV. The 
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TeamTalk architecture, including its connection to the 
virtual platform, is described in Section V. Research projects 
making use of the virtual platform are presented in Section 
VI. We offer concluding thoughts in Section VII. 

II. RELATED WORK 
Speech interfaces for USARSim-based systems have been 

previously explored. For example, a speech interface has 
been proposed for the airport tug domain, where robot tugs 
holding cargo could be commanded to move to different 
locations [8]. USARSim robots were used in simulation as 
part of a preliminary testing phase for cargo-moving tasks.  

Other speech-based simulations have robots working as 
assistants to people. With the LiSA platform, robots 
transport small lab equipment around well-structured, 
delicate biological lab settings [9]. LiSA-based robots are 
interfaced through speech and touchscreen interactions. 
USARSim has been used as a simulator for their platform, 
but the interaction was designed to be between just a single 
robot and a single human.  

“Smart home” robots have been developed using the 
Agent Development Environment (ADE), where agents such 
as robots share room-related information about the user [10]. 
Natural language dialog is made possible in ADE through 
the use of the SmartKom system [11]. ADE has used 
USARSim as part of a research platform that explores 
differences between human-robot interactions with virtual 
robots and with real-world robots.  

TeamTalk extends the use of speech with USARSim by 
addressing communications within teams of robots and 
humans performing goal-oriented tasks. 

III. THE TREASURE HUNT DOMAIN 
 In the Treasure Hunt, a team consisting of robots and 
humans is tasked with locating “treasures” (color-coded 
objects) that are scattered throughout an indoor area. At the 
start of the task, the treasure locations are unknown and the 
area unexplored. In addition, team members may have roles 
assigned before the start of the task, based on their 
capabilities, such as exploration or treasure retrieval (the act 
of picking up a treasure and returning it to base). Teams may 
or may not have knowledge about the number of treasures in 
the environment, and are not aware of the hazards associated 
with the area. This makes the exploration task most 
appropriate for robot teammates. At any time, a human may 
query a team member’s location and status. A robot team 
member would respond with its current assigned task, if any, 
and location (e.g., “Alphie here. I am moving to home.”).  
 When a teammate locates a treasure, robots become aware 
of the location through internal communication while 
humans may view the treasure on their live map interface 
(displayed on a tablet computer). The Treasure Hunt GUI is 
shown in Figure 1. Currently, the treasure retrieval task is 
performed by a sub-team of a human (operating from a 
distance of about ten meters away from the remainder of the 
team), a navigation robot, and a robot specialized in locating 

the treasure. The team carrying a treasure must return to the 
home location to complete the task.  
 Humans have several roles: they must manage high-level 
goals to teams, query robot locations, and decide how robots 
should perform search tasks. At any time, a human can stop 
a current task or reassign a robot to a new task. Also, 
humans may also perform team-based subtasks, especially if 
they are most fit for the job, such as picking up a treasure 
from a safe location.  
 Robots have roles in the Treasure Hunt domain based on 
their capabilities. In both explorer and retrieval teams, 
Pioneer P2-DX robots traverse the area and collaboratively 
build an occupancy grid (using SICK laser range-finders) 
that notes obstructions, hallways, and doors. Currently, the 
Treasure Hunt scenario has Pioneers traverse a large open 
area used by several different robotics projects and thus a 
topography that varies over time. A low-level obstacle 
avoidance system prevents robots from colliding with other 
robots or with obstructions. The occupancy grid that teams 
of Pioneers build collaboratively is displayed on each 
human’s Treasure Hunt GUI. This environment has been 
replicated in the TeamTalk virtual system using USARSim 
and Unreal Tournament map-building tools. 

The treasure-hunting includes at least one Segway 
Robotic Mobility Platform (RMP). This robot is mounted 
with a high-resolution camera that allows it to follow a 
Pioneer robot and to spot treasures. As the Segway follows 
an exploring Pioneer, it shares its high-resolution images 
with the humans via the Treasure Hunt GUI. When a 
Segway locates a treasure, it notifies the team in two ways. 
First, it announces that a treasure has been found, via 
speech; the Treasure Hunt GUI also displays the treasure on 
a map. All of these roles are replicated in the USARSim-
based virtual system. 

IV. SYSTEM FEATURES 
 TeamTalk, the human-robot interface, is capable of 
interpreting speech, mouse clicks, and pen gestures from 
users. Although it is designed for tablet PCs, it may be run 
on any Windows-based platform. In the Treasure Hunt task, 
a human user operates TeamTalk with a tablet PC and an 
attached headset microphone. The user can instruct robots 

Fig. 1. The Treasure Hunt GUI, with a USARSim hallway 
overlaid in the upper-right corner. 



  

and robot teams with speech or pen-based gestures. As an 
alternative, TeamTalk interprets typed text as a substitute for 
speech.  
 TeamTalk also displays a live representation of the 
robots‘ environment via its GUI. This includes an occupancy 
grid that is updated using information generated by the 
Pioneer robots as they traverse the environment. In the 
virtual platform, USARSim range scanner sensors are 
attached to the Pioneers and have access to the ground truth 
map. A live feed of high-resolution images from the Segway 
robot is also displayed on the GUI; this is replaced by 
USARSim images in the virtual environment. TeamTalk 
also displays the status of all robots involved in the task, 
along with a trace of the conversation history from the start 
of the task. Robot status information displayed on the GUI 
includes the robots‘ locations and orientations to the best of 
their knowledge and their current task assignment.  
 A user can instruct a robot or team of robots with varying 
levels of detail. At the high end of commands, robots can 
move to named locations (such as their starting point), 
explore an area, and search an area for treasure. In the 
exploring task, Pioneers traverse an area specified by pen 
gestures on the occupancy grid. As they traverse the area, 
the TeamTalk map is updated to account for obstacles, open 
spaces, and moving objects. The search task has Pioneer 
robots explore the area, with at least one Segway following, 
looking for treasure in the environment. 
  Robots are also able to process low-level —turn-by-turn“ 
commands. At any time, a human can ask a robot to move a 
specified number of meters in any relative direction or 
cardinal direction (e.g., —Move forward five meters“). A 
human can also have a robot turn a specified number of 
degrees in any relative direction or cardinal direction (e.g., 
—Turn right ninety degrees“). TeamTalk is also capable of 
interpreting a natural language combination of moves and 
turns together in a single command. These may be used to 
get a robot out of a difficult situation or to navigate a 
delicate environment.  

Consider a task where a robot must process a series of 
instructions. Such scenarios demand a robot‘s understanding 
of task division and input requirements for each component 
subtask. The robot instantiates a conversation to receive 
inputs from the user and acknowledge the in-progress 
subtask. If more information is necessary, such as if a user 
simply asked a robot to —move forward“ without specifying 
a number of meters, the robot can prompt for this 
information. 

We call this plan of tasks a —play,“ a term borrowed from 
the RoboCup domain. As defined in [12], a play, P, is a 
fixed team plan which consists of a set of applicability 
conditions, termination conditions, and N roles, one for each 
team member. Each role defines a sequence of tactics {T1, 
T2…} and associated parameters to be performed by that role 
in the ordered sequence. Assignment of roles to team 
members is performed dynamically at run time. Upon role 
assignment, each robot is assigned its tactic Ti to execute 
from the current step of the sequence for that role. Tactics, 
therefore, form the action primitives for plays that influence 

the surrounding environment. PlayManager permits robots to 
perform these —plays“ [13].  
 TraderBot is a low-level robot team management system 
that dynamically assigns roles in plays to different robots, 
using an auction mechanism. For example, if the task is to 
explore a specified area, robots in the team —bid“ on the task, 
with the highest bidder being the one that is closest to the 
goal location and relatively idle. This low-level management 
is not directly controlled by the human user (nor is it 
intended to be). In principle the TraderBot mechanism 
allows tasks to be automatically rebid in case a team 
member drops out, and more generally permits robots to 
dynamically adjust their level of autonomy according to the 
given task [13]. TeamTalk, TraderBot, and PlayManager 
communicate directly with USARSim and MOAST 
components in the virtual system. 

V. SYSTEM ARCHITECTURE 
 The TeamTalk system consists of several major sub-
systems, which we now describe. TeamTalk coupled with 
the virtual system is no different than TeamTalk in real 
environments since the MOAST robots have been extended 
by incorporating the TraderBot and PlayManager 
components. The MOAST robots have been extended to use 
the BoeingLib communications protocol.  

A. Treasure Hunt Multimodal Interface  
 The front end for TeamTalk handles user input and 
displays the status of each robot involved in the Treasure 
Hunt task. The Treasure Hunt GUI displays all the controls 
necessary to manage the robot team. It also displays an 
occupancy grid of the robots’ shared representation of the 
environment, the locations of the robots, and the recent 
conversation history.  Commands may either be spoken 
through a headset microphone connected to the computer 
running the Treasure Hunt GUI or by typing directly into the 
GUI itself. Upon initialization, the Treasure Hunt GUI reads 
a configuration file that specifies the IP addresses of the 
robots (either real or virtual) and the map server. Once the 
session has been initiated, the robots involved in the task 
report their status and are ready to begin the Treasure Hunt 

Fig. 2. Overview of TeamTalk with USARSim 



  

task. As part of the Olympus Spoken Dialog Framework, the 
Treasure Hunt GUI uses the Galaxy Communicator 
architecture for message communication with Olympus-
based dialog components.  

B. Olympus Spoken Dialog F ramework 
This subsection elaborates on the underlying spoken 

dialog framework as shown in Figure 3. The speech 
component is implemented using Olympus [2]. It consists of 
all the processes that are necessary to maintain a task-based 
dialog with a human user. Among the components involved 
are those that keep track of conversation state, record 
speech, decode it (using Carnegie Mellon‘s PocketSphinx 
speech recognition engine), annotate speech for confidence, 
parse the input to extract its semantics, generate language 
and produce synthesized speech or display elements.  
 Olympus contains several components that handle the 
acquisition of user input. An audio server performs voice 
activity detection, acquires user input, sends the acoustic 
data to the PocketSphinx decoder, and collects recognition 
results. The Logios language model-building component is 
used to automatically create a dictionary and language 
model based on the grammar specified by the developer 
[14]. The Phoenix server parses decoded speech using a 
context-free grammar.  

TeamTalk contains multiple domain-specific instances of 
dialog managers, each associated with a robot. Each robot 
internalizes its own conversation state processes with an 
instance of the RavenClaw dialog manager [15]. This allows 
for multi-agent interaction. A dialog manager models the 
state of the conversation between interlocutors at each step 
of the interaction and tracks the next task that the robot 
should perform. For the Treasure Hunt domain, we declare a 
number of agencies, or tasks, that a robot can perform. A 
robot‘s capabilities are incorporated into a dialog manager, 
including the ability to report a location, move to a 
destination, or turn, or undertake an activity such as search. 
These abilities are hierarchically organized into tasks and 
subtasks. 

 
 Fig. 3. TeamTalk system architecture, which uses the Olympus Spoken 
 Dialog Framework. 

Every task that is assigned to a robot has certain 
requirements and prerequisite conditions that need to be 
fulfilled [15]. For example, a robot may need to move a 
certain distance before it can turn to the right. Such 

requirements are part of the dialog task. A dialog task is an 
ordered list of agents that is used to dispatch inputs to 
appropriate subagents in the task. An agent is a particular 
type of handler to the ongoing conversation. For instance, a 
REQUEST agent asks and listens for certain user inputs that 
are relevant for the current task. Similarly, an INFORM 
agent generates follow-up prompts as an acknowledgement 
to user input. User input is bound to agree with a concept 
type (e.g., a yes_no question is bounded to a Boolean 
concept type; a where_is-type request is bounded to a 
string concept type). Additionally, a RavenClaw instance 
can handle complex concept types like arrays, frames and 
structures that are necessary when we are not informed about 
the size of list-type inputs. 

Besides syntax-based bounding brought about by the 
speech recognizer‘s language model, RavenClaw allows us 
to restrict the scope of user input to certain semantic 
concepts using grammar mappings. Grammar mapping binds 
a particular user input as an instance of a semantic concept. 
For instance, if a user responded that his name is John, 
RavenClaw‘s grammar mapping binds user input to the 
semantic concept name. It is necessary to add an entry in the 
system vocabulary for the name John under the concept 
name. The TeamTalk backend is responsible for 
communicating with the robots involved in the task. When 
the dialog manager decides on the course of action that a 
robot should take, TeamTalk passes that message to the 
backend. The communication typically involves high- or 
low-level task instructions from the user. Messages are 
passed between TeamTalk and robot teammates via 
Boeing‘s communication libraries. 
 At any point in the dialog, a robot may have a concept it 
needs to convey to the user. This happens most often when a 
RavenClaw instance decides on the next task to perform. 
Rosetta-based natural language generation produces natural 
language text from RavenClaw dialog concepts. This 
component is customized for the Treasure Hunt domain, and 
consists of a set of templates with variables. We believe that 
this can be adapted to other domains, as the range of 
communications that a robot needs to convey is limited. 
Once natural language text is produced by Rosetta, Kalliope, 
the text-to-speech controller, synthesizes the text into speech 
and plays it in the user‘s headset. All components involved 
in the spoken dialog interaction are integrated in the 
Olympus architecture. 

C .  USARSim Configuration 
 An overview of USARSim integration with TeamTalk is 
shown in Figure 2. While robots are part of a treasure hunt 
rather than an urban search-and-rescue, we were able to 
modify the existing victim object (USARVictim) to be 
displayed as a color-coded treasure, which may be displayed 
in the virtual system. The virtual human could then pick up 
the treasure and return the item to home base.  

To simplify development of the TeamTalk component, we 
developed a map simulating the actual environment to use 
with USARSim. Digital blueprints from the CMU Robotics 
Institute High Bay along with pictures with the locations of 
windows, stairs, bridges, and tables were used to create the 



  

map. An example replication is shown in Figure 4. We 
measured each wall from the blueprint and created the 
proper areas, appropriately scaled to the USARSim 
environment. We were able to use the already-existing 
models in Unreal Tournament to add vehicles and stairs, 
which we also scaled to fit the map. The map also includes 
the stairs to the walkway on the second floor of the High 
Bay in addition to all of the rooms on the High Bay level of 
the building, providing us with an additional environment 
for testing. We also included an area representing the 
exterior in order to leave open the possibility of exploring 
outdoor scenarios. We found the tutorials on map 
development that came with the Unreal Tournament 2004 
Editors Choice Edition (UT) to be sufficient to create the 
map. We also found that even though the map has many 
blocks and was slow to render, UT was able to display it at 
normal speeds on machines satisfying the typical UT system 
requirements (Pentium 4 processor, video card with 128MB of memory). 

By default, USARSim starts the server in spectator-only 
mode. We modified the default game configuration 
(USARGame) and created a customized TreasureHuntGame 
which inserts an instance of a character into the simulation. 
A subclass of UnrealPawn, UT’s player scripting class, was 
created that enlarged the human player mesh to the 
appropriate scale in USARSim and set the player’s 
identification texture. Each time a human joins the 
environment, the TreasureHuntGame spawns a virtual 
character that has one of five uniform colors in a rotating 
order. A human player is necessary to open gates, doors, or 
the garage for the robots. The doors remain open for about 
five seconds to simulate real-world actions, but this length of 
time is configurable. The robots can then be asked to 
proceed through the opening. To make the player in the 
environment more appropriate for this task, we removed 
weapons attached to the player and in the environment. 
There is work in progress to add a tablet PC to the virtual 
character’s hands. We found character creation to be a 
challenge due to the need to replicate human-like 
movements; most characters available on the web are 
creatures suitable for gaming and not for our kind of work. 
A repository of reasonable human figures would be an asset 
to USARSim-based research. 

D . MOAST Integration 
MOAST is configured to launch a user-configurable 

number of USARSim P2-DX robots inside of the simulated 
High Bay as a default UT Map. We are able to then connect 
a UT client to the USARSim Server to observe the robots, 
which are controlled by TeamTalk’s connection to MOAST. 
We modified the USARSim game to load the virtual 
character model at an appropriate scale relative to the map. 
As a result, we are able to explore the room with the robots 
like a human teammate in the real-world scenario. We have 
also started work on a model of the Segway RMP. The 
USARSim manual clearly explained how to create a new 
robot, and the physics engine was able to keep the robot 
always upright.  

Since the Treasure Hunt task typically requires the use of 
several robots, system resources can be demanding, even in 

virtual simulations. Initially, TeamTalk’s MOAST 
configuration required one robot per computer. This proved 
ineffective as the number of robots outpaced the number of 
computers we had available. Currently, we use a single 
computer running VMWare, allowing us to instantiate 
multiple robots, each with its own network identity, 
maintaining compatibility with the real robot environment. 
Thus far, three robots can be instantiated on our equipment. 
Since each human runs the USARSim game within a UT 
client, any number of humans can be added to the 
environment. Two humans have successfully been added to 
the environment at any given time, though experiments with 
more humans are part of future plans. 

VI. CURRENT RESEARCH 

A. Multi-Participant Dialog 
 Dialog systems capable of handling multi-participant 
dialog may be beneficial to human robot interactions in 
domains such as treasure hunting and urban search-and-
rescue. In fact, they become necessary when multiple teams 
are involved and are working towards a common goal. 
Therefore, assumptions that traditionally work for single-
user dialog systems will fail. It becomes necessary to 
construct a policy that supports the needs of dynamic and 
asynchronous conversation between interlocutors.  
 USARSim provides us a reliable and relatively 
inexpensive manner in which to explore this challenge. 
Managing such conversations requires explicit 

Fig. 4. Comparison view of the real-world environment with the 
USARSim environment. 



  

representation of the contexts and reasons behind the current 
dialog. To understand the relevance of the dialog with 
respect to context and situation, additional information is 
needed. This additional information includes the topology of 
the environment and history of events in the task. This data 
can be acquired through simulation testing. With USARSim, 
we are free to include a series of robots and humans in the 
Treasure Hunt map. 
 As can be observed in everyday team-based tasks, the 
number of addressees for an utterance can vary from one 
teammate to many. Adding to this complexity are dialogs 
within sub-teams, which tends to happen in this domain. At 
this time, we are beginning to address this issue by studying 
how turn-taking processes occur in human-human dialog 
[16]. For instance, a person who wishes to barge into another 
dialog should be dealt with carefully, without disturbing the 
ongoing conversation. 
 Consider the following scenario. Alice and Robot A 
comprise one subteam, and Bob and robot B comprise 
another subteam. If Alice gives an instruction to robot B at 
any time, robot B has to decide whether to ignore the 
instruction by Alice or suspend the latest instruction by Bob 
to follow the command issued by Alice. A conversation 
policy for turn taking helps robot B in the above-mentioned 
decision-making problem. Table 1 presents a few simple 
strategies that could govern turn-taking in multi-participant 
dialog.  

TABLE I 
POTENTIAL MULTI-PARTICIPANT 

DIALOGUE STRATEGIES 

Strategy Comments 

Current speaker 
chooses the next 
speaker 

This strategy is simple, but it curbs the 
freedom of other participants. 

  

FIFO styled turn-
taking 

This strategy follows a typical meeting-
style conversation policy. 

  
Priority-centric yet 
dictated by 
external party. 

This strategy comes with an assumption of 
task ranking and participant ranking, so 
that it allows multiple possibilities for the 
next turn, ranging from a low profiled 
participant reporting a less critical task to 
high profiled participant reporting a highly 
critical task. Also, this strategy leverages 
on the fact that real-life conversation 
between people takes place with respect to 
a priority hierarchy among them. 

 
 As a fallback to the above turn-taking mechanisms, 
embodiment of the robots and humans in the USARSim 
environment allows them to signal their willingness to take 
the conversational floor. These simulated embodiments act 
like a fabric to the turn-taking policy at the behavioral level.  

B. Spatial language  
 An advantage to using a USARSim-based version of the 
Treasure Hunt task is the ability to rapidly obtain language 
data from users. Given the robustness of simulation testing, 
we are currently exploring spatial perspective-taking in 
human-robot dialog with USARSim. We intend to learn 
more about how people produce spatial language in 

reference to members of a human-robot team and later 
incorporate this knowledge into the TeamTalk platform. 
Such commands could include, for example, “Mok [a robot] 
move 4 meters to the right of Aki [another robot].” This has 
led us to design an experiment to assess how humans give 
simple dialog commands in reference to members of a 
human-robot team. We are in the process of extending 
spatial language processing to objects with associated 
ontologies. 
 In the study, the goal was to learn how people 
commanded a robot to move to a location in the 2-
dimensional world relative to another robot using spatial 
language (e.g., “right” “left” “around”). Participants spoke 
their requests into a headset microphone and their speech 
was transcribed. Key findings from this study dealt with the 
varying configurations of the two robots in each scenario 
and the location of the goal point for the robots. The number 
and type of commands people gave varied based on the goal 
location. "Mok” was the robot that was commanded by 
participants to move to a location that was near “Aki,” the 
second robot. We found that people generally spoke in terms 
of 90° (e.g., “turn right”, “turn left”) or 180° turns (e.g., 
“turn around”). Also, we found that the orientation of Mok, 
the robot that needed to move, mattered most when it was 
facing right. This was also when it was directly facing two 
of the four potential goal locations. 

 Mok's other orientations required speakers to exert more 
effort, in terms of thinking time and the number of discrete 
steps spoken to move the robot to the destination. Here, we 
define a discrete step as one that causes or intends to cause a 
robot to move. Also, we found that Aki's orientation does 
not vary the commands; people treated it as a landmark. An 
analysis of the speech transcriptions from the study suggests 
that humans may use some form of internal grid to organize 
spatial-movement instructions. This is because participants 
use the length of Mok as a unit called a “step”.  
 Using the results from the exploratory analysis, we are 
currently conducting a follow-up study in a three-
dimensional virtual setup with USARSim P2-DX robots, as 
shown in Figure 5. This required developing a USARSim 

Fig. 5. Example stimuli from spatial language study. The goal  destination 
is in purple. 



  

map that could permit participants to make decisions about 
moving Mok around a virtual environment while referring to 
Aki. The purpose of this second study is twofold: (1) to 
validate the results of the previous study and (2) to look into 
how the inclusion of metric units affects people’s production 
of spatial language. We are in the process of conducting this 
follow-up study. The results of this study will provide us 
direction for developing a spatial reasoning component for 
TeamTalk that will be applicable to both real-world and 
USARSim-based situations. 

VII. CONCLUSIONS AND FUTURE WORK 
 By integrating a virtual system component into TeamTalk 
using USARSim, its usability as a research platform has 
improved. Additionally, the TeamTalk project development 
strategy has shifted since the integration of the USARSim 
virtual testing platform. Enhancements to TeamTalk are 
more easily tested by using the USARSim-based virtual 
simulation, as compared to testing with real robots. The 
simulation still maintains all the communication protocols 
that are used by robots —in the field“. Furthermore, we can 
still elicit real-time human interactions with the virtual 
system. In addition, Unreal Tournament permits us to take 
the perspective of any robot or a bird‘s eye view of the scene 
in —Spectator Mode“. We can also test outdoor scenarios 
with the virtual platform. Another benefit to using the virtual 
platform is that it facilitates collaboration with remote 
colleagues. Despite using the virtual system as our primary 
research platform, interesting results can still be validated in 
real-world studies, if necessary.  
 Future work in spoken language interaction with robots 
will involve using USARSim in Wizard-of-Oz (WoZ) 
experiments and ontology-driven robot navigation. Given 
the results from the spatial language acquisition studies, we 
anticipate developing varied forms of system responses, and 
testing these tuned responses in WoZ user studies. A 
researcher in these experiments will be controlling each 
robot‘s interactions with the user. Similarly, the aim of 
incorporating a Treasure Hunt ontology is to generate spatial 
representations that allow a human robot team to refer to 
objects using common sense in an environment. It is 
necessary to have a symbolic representation of the objects 
and their relationships with other objects. Conceptualization 
of these objects avails the opportunity for the robot to infer 
complex queries, such as —Face the door and walk until you 
find a window“. Furthermore, we will assign attributes to 
each object to keep track of their status and update the 
sensory map, i.e., a robot‘s view of the world with the help 
of robot‘s sensory inputs. On the basis of detected objects (in 
the environment) and topological partitioning of the 
environment, a robot‘s knowledge about the world will be 
maintained. 
 Performing routine TeamTalk system checks is both 
necessary and relatively straightforward with USARSim. 
The transparency and flexibility of the USARSim project 
leads us to believe that we can expand the types of tasks 
associated with the TeamTalk project (e.g., collaborative 
problem-solving, robot learning by demonstration as done in 
[17]).  

For more information on the TeamTalk project, please 
refer to the wiki, http://wiki.speech.cs.cmu.edu/teamtalk. 
The maps associated with the Treasure Hunt task are located 
at the TeamTalk project‘s Subversion repository, 
http://trac.speech.cs.cmu.edu/repos/teamtalk/trunk/usarsim. 
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USARSim and HRI: from Teleoperated Cars to High Fidelity Teams 
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Abstract— USARSim began as a human-robot interaction  
(HRI) research tool but has since found use in a much wider 
community and for purposes we had never envisioned.  This 
paper describes a six year HRI research program at the 
University of Pittsburgh using the simulation.  Our original 
work involved teleoperated control of single robots and 
primitive simulations.  In the most recent experiment teams of 
operators were controlling 24 robot teams in a high fidelity 
environment.  In between we developed and tested measures of 
coordination demand, tried out news ways for managing video 
generated by teams, and investigated scaling effects as 
operators controlled increasing numbers of robots.  This paper 
provides a brief chronology of this research summarizing their 
designs and findings. 

 

I. INTRODUCTION 
n 2000 in response to rapidly rising costs of academic 
virtual reality software, we began experimenting with 
game software as an alternative.  After a review of the 

most suitable engines we chose Unreal Tournament [1] over 
Quake [2] because of its object-oriented design and 
convenient java-like scripting language.  Our first game 
engine-based application, CaveUT [3], software for creating 
multi-projector cave-like displays, was completed in 2001 
and reported in a special issue of Communications of the 
ACM [4] we organized to highlight research groups who 
had independently begun working with game engines.  We 
developed UTSAF [5], software using the game engine as a 
stealth viewer (3D visualization) for the ModSAF [6] 
military simulation shortly thereafter.     
 
Work on USARSim began in late 2002 under an NSF ITR 
grant to study Robot, Agent, Person (RAP) teams in Urban 
Search And Rescue (USAR).  Because our primary research 
interest was in human-robot interaction and most USAR 
robots rely on teleoperation from camera video, accurate 
simulation of video was our primary concern.  As work was 
beginning, Epic games released Unreal Tournament 2003 
which included the Karma physics engine [7] relieving us 
from simulating behavior manually and dramatically 
strengthening the engine as a simulation tool.  
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II. TELEOPERATION WITH SINGLE ROBOTS 
Our initial HRI research using USARSim explored two 
areas: situation awareness for attitude and camera and 
viewpoint control.  A review of findings such as 
McGovern’s [8] observation that all recorded robot rollovers 
at Sandia had involved teleoperation using an onboard 
camera led us to suspect that camera geometry was leading 
to what we called the “fixed camera” illusion.  You will 
notice this effect if you drive a robot up a ramp.  Because 
the camera is fixed to the robot chassis when the robot 
mounts an incline the camera will remain perpendicular to 
the surface making the ramp appear flat and level.  Even if 
attitude data is displayed nearby on an artificial horizon or 
other analog display it remains difficult for the operator to 
integrate that data with the camera video being used to drive 
the robot.  As a consequence operators controlling from a 
fixed camera are prone to driving robots onto dangerously 
slanted surfaces risking rollovers and other problems.  One 
potential solution is to reference the camera to gravity rather 
than the robot’s chassis.  Now when the robot moves onto a 
slanted surface it looks slanted rather than flat.   Because 
standard cameras do not come with gimbals for gravity 
referencing and delays associated with attitude sensing and 
servos might introduce even greater errors this potential 
solution would be expensive and difficult to test using real 
robots.  In simulation by contrast it was easy to program the 
viewpoints to reference the chassis or true vertical.  This 
first USARSim experiment reported in [9,10] compared 26 
participants controlling a robot using either a fixed (FC) or 
gravity referenced camera (GRC).  The robots were driven 
across irregular outdoor and indoor environments toward 
target beacons that could be seen from anywhere in the map.  
The GRC led to less extreme roll/distance traveled, lower 
times to completion, and less backing-up (needed to retreat 
from impassable terrain).  An examination of reported cues 
highlighted the importance of including some part of the 
chassis within the GRC view to help gauge robot orientation 
relative to the scene. 
 
The viewpoint control experiments were an outgrowth of 
earlier studies [11] of “attentive navigation”, a technique for 
automating viewpoint control.  As an actor moves through a 
(virtual) environment he/she may look straight ahead in the 
direction of travel or pan from side to side to capture a fuller 
understanding of what is visible from that location.  
Conventionally this process is automated by planning the 
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agent’s path so the viewer becomes a sight-seeing passenger 
able to look about freely.  In attentive navigation, control of 
gaze is automated instead.  Now the agent plans his own 
path through the world but control over where he looks is 
automated.  This can make a lot of sense in virtual 
environments where the author may wish to direct a user’s 
attention to some particular object or area but is less 
generally applicable to robotics.  There are, however, similar 
issues related to coupling camera views to the direction of 
motion (straight ahead), pan-able views, and object tracking 
views.  A long standing difficulty in mobile robotics 
involves moving cameras that are inadvertently left off axis 
when the robot is moved.  The path appears clear in the side-
pointing camera so the operator drives directly into an 
obstacle [12].  If the camera isn’t movable, however, the 
operator may need to execute an elaborate dance often 
losing sight of the target in order to maneuver to obtain a 
desired viewpoint on an object.   
 An initial experiment [13] compared 65 operators in five 
conditions. 
  
·  Single Fixed Camera, No orientation indicator 
·  Single moving Camera , No orientation indicator 
·  Single moving Camera, orientation indicator 
·  Multiple moving Cameras, No orientation indicator 
·  Multiple moving Cameras, orientation indicator 
 
For the first three conditions comparing single cameras the 
fixed camera eliminates the problem of off axis driving but 
at the cost of making it difficult to obtain different 
perspectives.  The moving camera makes it easy to inspect 
the environment but at the risk of off axis driving.  The 
orientation indicator provides an aid for restoring the 
moving camera to straight ahead before driving.  In the 
multiple camera conditions the operator has the option of 
keeping one camera pointed in the direction of travel for 
driving while using the other to search the environment.  
The orientation indication provides assistance for returning a 
camera to straight ahead for driving if the operator chooses 
to use both cameras to search the environment.  
 
Operators had a two step search task.  First they needed to 
locate red cubes scattered throughout an indoor and an 
outdoor environment.  After finding the cube they needed to 
maneuver closer in order to locate and read a letter on a side 
of the cube.  The experiment found no advantage for the 
orientation indication.  Both the moving camera and the two 
camera conditions led to identifying more targets suggesting 
that the ability to visually search the environment was more 
important to task performance than accurate driving.   
 
A follow on experiment [14] investigated object tracking.  
Object tracking, called orbiting by [15] is a variant of 
attentive navigation in which the viewpoint remains fixed on 

an object as its platform moves through the environment.  
So, in moving around an object, that object remains in view 
without panning or other effort by the operator.  This 
method is easy to write in simulation and could plausibly be 
implemented using laser or other ranging data to localize the 
object.  The experiment compared two groups of 13 
participants each performing the “lettered-cube” search task.  
In the control group operators used two moving cameras as 
in the earlier experiment.  In the experimental group one of 
the cameras assisted operators by initiating object tracking 
for nearby cubes.  Assisted operators identified more cubes 
and spend substantially less time maneuvering to read the 
letter.  These viewpoint control experiments support the use 
of multiple cameras and show that for task relevant 
assistance such as object tracking, automated control of 
view point is accepted and benefits operators. 
 
These first USARSim experiments addressed general issues 
in HRI and teleoperation that did not depend on the fidelity 
of the simulation.  All three studies investigated the 
teleoperation-from-camera-video   which required accurate 
reproduction of video but only approximate fidelity in other 
dimensions.  Simple car models based on the vehicle class 
were used in these studies and little attention was given to 
scaling of the platform or environment.   

III. MRCS AND HIGH FIDELITY SIMULATION 
 

A. MrCS 
Our initial studies satisfied us that the game-based 
simulation could provide a sound research tool but our 
project’s goal was to investigate much larger systems 
involving multiple robots and humans.  Such systems 
require a high degree of automation and to model that 
accurately required paying more detailed attention to robot 
configuration, sensors, and environmental models.  
USARSim first took on a recognizable form in this revision, 
reported in Wang [16] which replaced the original agent-
based [17] architecture with a more conventional 
organization, added conventional APIs ,and developed 
detailed models of existing platforms and sensors.  Jijun 
Wang [18] developed the MrCS (Multirobot Control 
System) around the same time to integrate USARSim with 
Machinetta, a proxy-based coordination infrastructure, and a 
GUI for interacting with the system.  The robot proxy 
provides low-level autonomy such as guarded motion, 
waypoint control and middle-level autonomy in path 
generation. It also communicates between the simulated 
robot and other proxies to enable the robot to execute the 
cooperative plan they have generated.  The user interacts 
with the system through the user interface which sends 



  

 
 

Figure 1.  Multirobot Control System (MrCS) user interface 
 
 messages to robot proxies and reacts to their responses. 
Sensor outputs from the camera and laser go directly to the 
interface without passing through any proxy. A typical 
interface configuration is shown in Figure 1. On the left side 
are the global information components: the thumbnails of 
the individual’s camera view (clicked to bring into focus); 
and the global Map (the bottom panel) that shows the 
explored areas and each robot’s position. In the center are 
the individual robot control components. The upper 
component displays the video of the robot being controlled. 
The bottom component shows the controlled 
robot’s local situation. The local map is camera up, always 
pointing in the camera’s direction.   Three increasingly 
sophisticated versions of MrCS can be downloaded from 
www.robocuprescue.org in the VR competition listings. 

A. Coordinating Teams 
The first experiment conducted using MrCS [18] compared 
manual and mixed-initiative control of 3 robots performing a 
USAR task followed shortly by an additional fully 
automated condition [19] to ensure that good mixed-
initiative performance had not hiding superior automated 
performance.  In the mixed-initiative condition operators 
could either teleoperate or assign waypoints.  If a robot 
became idle it chose a waypoint at the nearest frontier and 
continued exploring. 
In the experiment 14 participants searched for victims in 
both manual and mixed-initiative conditions in a 
counterbalanced repeated measures design.  More area was 

explored and victims found in the mixed-initiative condition.  
Interestingly, switches in focus among robots was found to 
be correlated with good performance and operators switched 
attention more often in the mixed-initiative condition. 

B. Coordination Demand 
A theoretical controversy over the equivalence of 
computational complexity and human difficulty motivated 
the next set of experiments.  Foraging tasks such as USAR 
allow robots to act more or less independently and we would 
expect increases in difficulty to be additive.  Where robot 
actions are more interdependent, however, more frequent 
control might be needed making the task more difficult.   
Simply assigning robot roles in a plan, for instance, has been 
shown by Gerkey & Mataric [20] to be O(mn).  If the 
complexity of choosing actions computationally 
approximates the difficulty of the task for a human, then it 
could be used to guide decisions about automation.  
Conversely, a human might be able to solve such problems 
heuristically making computational difficulty a bad 
estimator. 



  

 
Figure 2. Tight coordination for box pushing 

 
Figure 3. Explorer and Scout robots 

 
These experiments were designed to evaluate coordination 
demand (CD) a proposed measure of the demand one 
robot’s action(s) place on another.  The measure is intended 
to extend Crandall’s [21] neglect tolerance model to 
coordinating robot teams.  The first experiment examined 
control of robots performing a box pushing task [22] (Figure 
2).  Fourteen participants controlled pairs of simulated P2-
ATs using teleoperation or waypoint control and in the third 
condition a P2-AT paired with a P2-DX.  As predicted 
CD=1 in the teleoperation condition as operators did not 
have time to do anything else.  The heterogeneous pair 
showed higher CD, also as predicted.  In a follow on 
experiment [23] seeking measures for less tightly 
constrained coordination a new definition of CD based on 
robot types was tested.  The measure is based on the premise 
that CD involves marshalling the resources needed to 
perform a cooperative task.  Since resources are held in 
common by robots of a particular type demand may be more 
accurately expressed and measured between types.  
Operators in this experiment controlled teams of robot pairs 
consisting of laser equipped explorer robots and camera 
carrying scouts (Figure 3).  The operator needed to mark 
victims found using the scout’s camera on the map 
generated by the explorer.  Operators searched in three 

conditions with a 20 m explorer scan range (loosely 
coupled), a 5 m scan range (tightly coupled), or cooperative 
(explorer automatically follows the scout).  Performance 
was as expected with the 20 m range leading to more victims 
and better performance with automated coordination.  
 

C. Scaling to Larger Teams 
While the question of fan-out (how many robots can an 
operator control?) is of general interest the question of how 
effects grow with team size offers greater promise for 
identifying bottlenecks and aspects of control best suited for 
automation.  In a series of studies we have been 
investigating control of 4, 8, and 12 robot teams and in the 
most recent study teams of 24 robots.  An experiment using 
a standard USAR task for 4, 8, and 12 robots [24] found a 
sharp decline  

 
Figure 4. MrCS interface for 24 robots 

 
in victims found and a slight decline in area explored 
between 8 and 12 robots.  Two additional conditions [25] 
subdividing the operator’s task into exploration (navigation) 
and perceptual search (scanning for victims) showed that 
effort involved in exploration accounted for most of the 
difficulty of the task and that victim finding performance 
was maintained by the perceptual search participants.   
A similar investigation of scaling effects for use of static 
panoramas was less successful.  In an earlier study [26] we 
compared use of streaming video from a team or 4 robots 
with still panoramas taken by robots at their terminal 
waypoints.  The panoramas were marked on the map and 
could be accessed asynchronously as the operator found 
time to search them for victims.  In the streaming video 
condition operators found slightly more victims and marked 
them with somewhat greater accuracy.  We speculated that 
with more robots we might find an advantage for panoramas 
because of the greater moment-to-moment demand of 
monitoring streaming video.  An experiment comparing 
these conditions for 4, 8, and 12 robot teams, however, 
replicated our earlier findings and showed a small but 
persistent advantage for streaming video. 
In our most recent experiment [27] pairs of participants 
controlled 24 robots (Figure 4) in either a dedicated 
condition in which each was assigned control over 12 or a 
call center condition in which they were jointly assigned 



  

control over 24.  Results showed roughly comparable 
performance with slightly more area explored and victims 
found by participants in the dedicated condition.   This 
experiment was intended as a control for studies in which 
we predict increased automation will alter the relative 
advantages. 

IV. DISCUSSION 
USARSim was developed and remains an excellent platform 
for conducting HRI research.  In this paper we have 
described 12 experiments conducted over 6 years using the 
USARSim platform.  We are currently contributing to the 
UE3 port which we hope will lead to an even more effective 
experimental platform.  While the choice of game engines 
was relatively easy in 2000 there is now a much broader 
range to choose from including open or inexpensive source 
alternatives.  The advantages USARSim brings have shifted 
from the engine to the community.   The true value of the 
simulation now lies in the substantial collection of models 
and validation data and our ability to share and maintain this 
common infrastructure. 
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Abstract—In this paper we present a novel vision-based
word-learning model that was developed and first tested using
the USARSim simulation environment before being validated
in the real world. We describe the learning architecture and the
steps we took to integrate USARSim into the system. Models
that were trained in the simulator evolve similarly to those
trained on input from cameras, and perform comparably to
their real-world counterparts on a subsequent real-world color
recognition task.

I. INTRODUCTION

Robot control architectures are becoming increasingly
complex; prototyping and testing these systems can be time-
consuming and expensive. Simulated environments like US-
ARSim [5], [2] can facilitate the process by allowing faster
and easier debugging. They can also be invaluable tools for
developing and testing real-time models of embodied situated
cognition. Specifically, sufficiently accurate simulations of
real-robots will allow us to develop and test cognitive models
effectively, without the need for the physical robot to be
available throughout the process. Rather, the robot will
only be needed for the final validation of the already fully
developed and tested simulation model.
This paper describes work in our lab integrating USARSim

into a robot development environment for the development
of cognitive models, specifically to explore the effects of
physical embodiment and situatedness. We will describe the
details of the modeling setup using a specific neural network
model of word learning that is currently under development
in our lab. Using this model, we show the sequence of model
development and testing in USARSim, followed by a final
validation on the physical robot.

II. BACKGROUND

Cognitive modeling has a long tradition in cognitive
science, going back to the late 70ies when the main architec-
tures ACT and SOAR emerged ([1], [8]). Subsequently, var-
ious other symbolic architectures were introduced (including
EPIC [9] and Prodigy [4]) as well as different kinds of neural
network architectures. Typically, cognitive models developed
for these architectures are only run in simulation, i.e., with
simulated inputs and outputs, instead of being connected
to real sensors and effectors. Yet, for studying embodied

cognition, it is important to be true to the real-time real-
world nature of sensory input and motor outputs. Hence,
the model will either have to be run on a robot or in a
physical simulation environment that can faithfully simulate
the important physical aspects of sensors and actuators. Con-
necting a model to a real-time system (robot or simulation),
however, is challenging because cognitive architectures have
typically not been designed to support it.1 What is needed
is an infrastructure that can connect the inputs and outputs
of the architecture with the outputs and inputs of the sensors
and actuators. We will describe our ADE system that has
been successfully connected to the USARSim simulation
environment as well as several robots and embedded devices.

III. A BRIEF OVERVIEW OF THE ROBOT AND THE
SETUP

We integrated the USARSim environment into our robot
development infrastructure ADE, the Agent Development
Environment [12]. ADE allows users to construct agent ar-
chitectures using modular components (called ADE servers)
that provide services (e.g., access to sensors or effectors) to
other ADE servers, and can be distributed across multiple
hosts. An ADE registry serves as a “yellow-pages” service
for ADE servers to connect them with the other servers
they require. An ADE server submits a request for a service
(represented by an RMI interface) to the ADE registry, and
the registry checks the credentials of the requesting server
and forwards the information about the new resource. From
that point on, all communication between those two servers
is direct, without having to go through the registry (see [11]
for more details).
As noted, ADE servers interact via pre-defined interfaces.

Servers have been defined for many sensors (e.g., speech
recognition, laser rangefinder, and GPS localization) as well
as many effectors (e.g., robot bases such as the Pioneers
and Segways, and a humanoid RoboMotio torso). The ADE
USARSim server fits nicely into the system by instantiating
models of many of these sensors and effectors (some prede-
fined by USARSim, others constructed in our lab [6]) and

1However, note there are examples of both SOAR and ACT-R controlling
robots, and, of course, neural network architectures (e.g., [15]).



replicating their interfaces, allowing other ADE servers to
utilize those resources as if they were physically instantiated.
The USARSim server communicates with the simulation en-
vironment via a socket connection to the GameBots engine,
which allows the server to instantiate models and monitor
and manipulate their states. In addition to an interface for the
provided Pioneer robot and SICK laser rangefinder models,
we have constructed in our lab a full model of the RoboMotio
Reddy humanoid torso, including the head with manipulable
eyes, eyebrows, and lips, movable head, and arms with
three degrees of freedom. The model was created using a
combination of Blender, Inkscape, and the Unreal editor (for
details, refer to [6]).
The ADE vision server has been configured to work

with a variety of cameras (including IIDC Firewire and
USB cameras) and can provide information about visually
detected faces, color blobs, and environmental conditions
(e.g., darkness) to other ADE servers as requested. Using
the vision server in the USARSim environment required us
to extend the server to analyze frames from the UT virtual
camera instead of a real camera. Our solution is based on
the “SDL Hook for USARSim on Linux,” which modifies
the SDL library to intercept the frames and redirect copies
of them to a socket in addition to displaying them on-screen.2
When the vision server is directed to use USARSim instead
of a camera, the only difference is in the initialization (e.g.,
open a socket instead of initialize a camera) and the method
used to grab frames. All subsequent operations (i.e., analysis
performed on the frames) is performed in the same way
it would be if the frames were coming from a camera;
the analysis code does not need to be modified to operate
differently than it normally would. Similarly, because other
ADE servers only need to know the interface exported by
the vision server, whether the vision server is operating in
the real world or the UT environment is completely opaque
outside the vision server; other servers neither know nor care
from which environment the visual information comes any
more than they care what kind of camera provides the frames
in a real environment.
The tests described below (see Sec. V) were conducted

using the ADE vision server configured to use two “cam-
eras.” The tests conducted in the real world use a Unibrain
Fire-i IIDC Firewire camera, whereas the tests in the Unreal
environment use the virtual camera defined by the SDL
hook. Identical vision processing was performed in each case
before the results (in this case information about the color,
size, and relative location of each blob detected) was passed
on to the word learning model component, also encapsulated
as an ADE server.

IV. MODEL DEVELOPMENT: THE WORD
LEARNING MODEL

The word learning model is an associative, incremental
model implemented in several interconnected artificial neural

2The SDL hook is made available by Can Kavaklıoğlu at
http://cankavaklioglu.name.tr/shul.html.

networks. The desired behavior is to learn word-reference
associations in an unsupervised fashion. It has been hy-
pothesized that human infants learn such associations in
a statistical manner, tabulating co-occurrences, usually in
a batch-fashion (e.g., [14]). However, it has been shown
that such simple models are not sufficient to fit the human
data ([13], [7], [16]). Humans are embodied agents whose
experiences are inextricably situated in time and space [3].
In light of this, temporal aspects and environmental context
must be taken into account in the learning model.
We introduce a learning model in which learning is

incremental, i.e., the system is modified by every experience,
and then it is the modified system which goes on to encounter
further experiences. This type of model affords important
qualities, perhaps most importantly the ability to learn based
on co-occurrences in a non-linear fashion. In other words,
the association strength learned from experiencing some A
and B co-occuring two times will not be simply double the
association strength of experiencing them co-occurring once.
The model can be deconstructed into its two constituent

networks, one of which learns words (as phoneme-strings),
and the other which learns colors. Learned types (words
or colors) are represented by a set of “concept nodes”.
Lower-level perception is represented by a three-dimensional
feature-map on the color side, and as a set of nodes which
react to different phonemes on the word side. The primary
learning rule for associations based on co-occurrences is a
non-linear Hebbian-type rule, which can be generally stated
as:

wt
xy = wt − 1

xy + S ·
 

sig(  x  y ) · M eB e C w t − 1
x y − (wt − 1

xy · D )
 

where S is a scalar variable3 which scales with the magni-
tudes of the activations of nodes x and y, wxy represents
the association weight between nodes x and y, and  x
is the output activation of node x. sig is a sigmoid soft-
thresholding function.4 The doubly-exponentiated term is an
application of a Gompertz function to the previous weight,
and produces a horizontally asymptotic exponential growth
to the weight based on the previous magnitude of the weight,
but on a logrithmic scale. This is the primary factor causing
the non-linear incremental learning described earlier. The
coefficients B (− 4) and C (− 0.66) modulate the growth rate
and scale of the function, and M provides the upper bound.
D is a decay constant (0.02).

A. THE COLOR NETWORK

The color network is the simpler of the two. It is composed
of a three-dimensional feature map (with each dimension
accounting for one dimension of a color in RGB format),
with each node connected to concept nodes. Color concept
nodes are created when appropriate. In the case of our

3S = sig(  x +  y )
4sig(x) = 1

1 + e −  ( x − C ) , C is the displacement determining where the
soft threshold is set,  (6.0, as tested) is a parameter determining how
quickly (steeply) the function grows to its asymptote.



composite system, this is when a sufficiently new word-
color pair is experienced. Input comes into the color network
in the form of activation given to nodes in the color map.
Nodes to be activated are determined by finding the node in
the map which minimizes the distance between its feature
weights (i.e., R, G, B values) and the RGB values of the
incoming color. Nodes surrounding the winning node then
receive smaller amounts of activations based on their distance
from the winner.
For these experiments, we use a feature map of size

10 × 10 × 10, with each node in the feature map initialized to
evenly-spaced places between 0 and 255 in each dimension.
We find this an acceptable compromise between speed and
space concerns, while maintaining a sufficiently fine granu-
larity for discriminating different colors.
After a winner has been selected, activation of all other

nodes is set:
 xyz  C N ,  xyz = e

− d 2
x y z

2  2

 xyz is the activation of node with coordinates x, y, z in the
feature map.  is a parameter, which we have set to 0.8.
CN refers to the RGB feature map. d is a distance function
which determines the distance between the winner and the
node in question, and is defined as:

dx y z =

p
( r x y z − r w i n )2 + (gx y z − gw i n )2 + (bx y z − bw i n )2

d m a x

where r, g, b are the feature value of subscripted node
to that feature (r for red, g for green, b for blue), and
dmax is a constant, maximum distance used to normalize
the values into the desired range of activation [0, 1], which
is determined by the size of the color feature network, among
other things:

dmax =

 
255
10

2
· 3

10 is the width of our network in a given dimension (i.e.,
there are ten nodes), and 3 is the number of dimensions.
Energy then flows from the winning node to any connected

concept nodes, modulated by the weight of that connection,
i.e.,

 n  W N ,  t
n =  t − 1

n +  w i n · ww i n,n

where, again,  is the activation of the subscripted node at
the superscripted time (with time as measured by the number
of sounds heard since input began).

B. THE WORD NETWORK
The word network is a recurrent network, with a layer

representing the reactive activations to experienced aural
input, and a recurrent layer representing the activations of the
previously experienced input. These two layers are connected
to the (word) concept layer via an array of soft-thresholding
interneuron nodes. This network effectively recognizes words
based on the sequence of phonemes they contain. It does
this by incrementally pooling activation into word concept
nodes as phoneme-strings contained in that word-concept are
experienced.

The network is assumed to know when a word ends and
a word begins. Sounds enter the system as deconstructed
probabilities, one for each phoneme. These are the probabil-
ities that the uttered sound was an instance of that phoneme.
Thus, if a perfect /a/ is uttered, the probability for the /a/
phoneme will be very close to one, while others will be
close to zero. In the case of more ambiguous sounds, such
as /b/ and /p/, it may be that each receives relatively high
activation, especially if the environment is noisy.
The network is instantiated with the full score of these

“phoneme nodes”, one representing each salient phoneme
present in the language and dialect. Input thus enters the
system and induces an activation in each of those phoneme
nodes. There is also an equally sized recurrent layer of
phoneme-nodes, which hold the activation of the phoneme
layer from the previous sound. The activation spreads along
efferent links to arrays of “interneurons” (N for each word
node, where N is the number of phonemes). Each phoneme
node is connected to one interneuron node in each word
cluster, and each recurrent phoneme is connected to all
interneuron nodes. These interneuron nodes apply a soft
threshold to their activation (using a sigmoid as in footnote 4)
and pass that output on to a layer of “word nodes”. The
only weights which are currently trained are those of the
connections between the recurrent phoneme layer (nodes
notated po), and the interneuron layer. This weight is updated
using a Hebbian rule based on three values. For a recurrent
layer node po and an interneuron node i, the weight between
po and i will update according to the following rule:

wt
po ,i = wt − 1

po ,i +
 

S ·  · sig(  i  po  p n ) − wt − 1
po ,i

 

 is a learning rate (0.1), and S is (again) a scalar to reduce
undesired decay of weights when the connected nodes are
not activated, calculated as:

S = 0.01 + sig(  i +  p n +  po )

where pn is the normal phoneme node corresponding to the
recurrent phoneme in question po.
Throughout a word experience, there is a rising threshold

value which is applied to the activations of the word nodes.
This threshold depends on the number of sounds experienced
since the word began. The output activation of word nodes
(as used in learning rules involving links between word nodes
to other nodes) is also determined by the application of a
sigmoidal soft-thresholding function based on this threshold.
When a word ends, a winner is chosen from among the
word nodes based on highest activation. If the activation
of this winner surpasses the threshold, then the experienced
sequence of sounds is considered recognized. If it does not,
then the experienced sound sequence does not sufficiently
match any remembered words, and so a new word node is
added to the network (trained on the sound sequence).

C. THE INTEGRATED SYSTEM
We integrated the system by removing the color concept

nodes and simply connecting the word nodes directly to the
RGB feature map. This is justified since the color modality



Fig. 1. The integrated word-learning system. On the left is the 3-d feature
map representing red, green, blue dimensions of RGB color space. The
layered network on the right is the recurrent network recognizing phoneme-
sequences. Not all links are shown (only the top interneuron node of the
top word node has all of its afferent connections displayed).

is in a sense supervised by the word modality. It will only
carve out an area of color space and associate it with a word
when a word is presented.
The easiest way to understand how the composite system

functions is to observe that the word-learning side will
behave as it would alone, except that it will receive additional
activation energy from the visual modality. This energy flows
from feature map space, representing those colors which
were previously experienced simultaneous to a word being
experienced.
This additional information will have two interesting ef-

fects we would like to focus on. First, it will make word-
recognition more robust, providing sufficient activation to
a word-node if the associated color is present, even in
situations where all of the contained phonemes were not
sufficiently recognized to exceed the threshold for recogniz-
ing that word (a form of “perceptual co-modulation”). Sec-
ond, since the learning rules contain terms representing the
activations of the respective connected nodes, higher word
node activations will result in higher connection weights.
which translates to stronger memories. Stronger memories
will be forgotten more slowly and will be easier to recall
(recognize) later than memories of words which were less
strongly associated with visual color experiences.

D. SETTING UP THE SYSTEM FOR EXPERIMENTS

For the testing and experiments presented in this paper,
the system was set up to receive the necessary information
from both its modalities in a relatively simultaneous fashion.
The system is implemented as a C++ library, with functions
which allow the system to be fed input (causing updates to
the internal networks based on that input). To integrate this
C++ library with the ADE framework, it was necessary to
create an ADE server which calls the library. JNA was used
to allow access to the C++ library’s necessary function calls
from Java.
The color map side was then updated every 150ms by

querying the vision server for detected color blobs, their

Fig. 2. Blob detector’s view in the simulator of a typical bluebox situation.

RGB values, and their areas. The area was normalized into
the range [0,1]. This value was used to determine how much
to activate a winning RGB map node. Phoneme information
was fed from pre-configured files representing the output
the phoneme-deconstruction program described above would
produce on perfect or near-perfect input. These files were fed
into the system on cue, with one “sound” fed every 150ms.
For the simulated training sessions, the agent was nav-

igated to a block of the appropriate color and arranged so
that the block took up a significant portion of the visual field
(> 55%). In the real world training sessions a block of the
appropriate color was placed in front of the robot so that
it took up a similar portion of the visual field. For testing,
after the system had been trained, it was shown real-world
objects. To do this with a simulation-trained agent, it was
necessary to disconnect the ADE server running the network
from the vision server in the simulator, and reconnect to
a vision server connected to the real-world robot. This
was accomplished using ADE’s recovery abilities–by simply
killing the simulation server and having the ADE system
recover by connecting to a server operating on the real-world
robot.

V. MODEL VALIDATION: COMPARISON OF
SIMULATION AND ROBOT DATA

Our evaluation tests are intended to examine how closely
matched the behavior of the model is between the simulated
environment and the real world. The learning task involved
showing the robot a colored object during 10 presentations of
a 4-phoneme word. Each phoneme is presented for 150ms,
and there is a random (1–5s) time interval between presen-
tations. Although the camera was allowed to move between
training runs, it was held stationary while training. To prevent
possible speech recognition confounds, the phoneme input
was presented in perfect form so as to elicit the maximal
recognition probability for each phoneme. The target object
was a blue box in both the real world and USARSim. Fig. 2
shows the robot’s view of the simulated box, while Fig. 3
shows a frame from a real-world training session.



Fig. 3. Blob detector’s view in the real world of a typical bluebox situation.

The training results are presented in Fig. 4. These results
are averaged over multiple runs (16 in Unreal, 21 real-world).
The results demonstrate that the learning behavior of the
system is comparable in the simulator and in the real world.
Because the camera is held stationary, there is little change in
the average blob size as the training sessions progress. How-
ever, note the horizontally asymptotic exponential growth
behavior of the weight between the color and the associated
word node, caused by the learning rule proposed above. The
regular “dips” in association strength are actually an effect
of the implementation of word-recognition in the system.
They occur because the initial phoneme of a word will not
cause any major activation in a word node (since it is not
a sequence). Thus, at these times, the word and color may
actually be de-associated, but only by a small amount.
Regarding the real-virtual comparison, the growth of the

weights is very strongly correlated in the two environments
(Pearson’s r = .982, p < .001). There are minor differences
in the overall pattern of growth, caused by the difference
in average blob size and a greater blob size variance in the
simulated environment. However, the learning is clearly very
similar in the two environments. Moreover, as an additional
validation, we tested the “recognition” ability of the trained
systems in a real-world test. That is, we performed the
training as described above, then after a short interval (2s)
to allow the system to settle (due to decay), we presented
input from the real camera to both those trained in the real
world and those trained in USARSim. When presented with
the blue blob input, without any phoneme input, real-world
trained systems’ word activation rose from an average of
.0001 to .88, while the USARSim trained systems’ average
activation rose from .0001 to .77. That is, the activation of
the word associated with the color increased substantially
in virtue of being presented with that color. The increases
are quite similar, as confirmed by the lack of a significant
difference found by the t-test (t = − 1.1346, p = 0.2677).
It was difficult to get the blob sizes in the real world versus

the simulated tests to match up exactly, and this explains
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Fig. 4. Plot of blob size and color-word association weight over time

some of the small differences in the growth rate data. In
the controlled situations used in the experiments, and with
only pertinent aspects of the network extracted and reflected
in the results presented above, the effects of noise in the
blob-detection algorithm are not obvious. However, this is
justified. More so than visual noise or failures of the blob-
detection algorithm (which would often result in additional,
superfluous blobs being detected), it was differences in the
size of the blob that adversely affected the results. Since
the blob size has a doubly-exponential effect on the learning
rate of the system, we see an odd comparison in our data. On
the simulated side, blob size ranged over a larger variance
of values then in the real world, where control over the
positioning of the camera is not so coarse. This variance
resulted in a more awkwardly-shaped graph (i.e., differently
shaped than the curve that would be generated by the learning
algorithm discussed above) for the simulated side, since
functions with drastically different growths and shapes are
being averaged together with no account for the blob size, an
exponent. These small differences sometimes had the effect
of the system falling on two sides of a bifurcation, resulting
in relatively close blob sizes causing two drastically different
learning curves–one which grew to maximum within the
allotted time, and another which did not even come close
to doing so.
It is also important to recognize that the differences ob-

served in our results are not due to noise in the real world and
the lack thereof in the simulated world. Even if the simulated
image was somehow intentionally degredated to account
for noise, the effect would be more failures of the blob
detection algorithm in ambiguous or noisy visual situations,
which we endeavored to avoid in the experimental setup
presented in this paper and which are not reflected in the
results. It is entirely possible, however, that given a different
experiment (for example, one that examined the robustness
of recognition, as is discussed below) the differences in noise
in the real world versus the simulated one would be salient
in explaining the differences.



VI. CONCLUSION AND FUTURE WORK
This paper presented our integration of a vision-based

word learning architecture with the USARSim simulation
environment. The existing vision component of the ADE
robotic architecture infrastructure was extended to allow
input from Unreal, allowing us to use the simulated envi-
ronment as a drop-in replacement for real-world testing. We
demonstrated the validity of the integration by comparing
tests of the learning mechanism conducted using the sim-
ulator with tests conducted in the real world. The results
showed that the training progressed comparably in the two
environments. Moreover, on the real world color recognition
task, the system performed similarly regardless of whether
it was trained in the simulated environment or in the real
world.
Future work will involve further development of the word

learning system presented in this paper in multiple directions.
For these experiments, parameter values and even function
types were chosen using trial-and-error. In future work, a
genetic algorithm may be used to optimize these parameters
for the task at hand. The complexity of the word-learning
side of the network leaves a lot to be desired, only recog-
nizing contained phoneme-sequences. Modifications to the
network will also be performed to allow for other effects
on word-recognition, such as a phoneme being present in
a word. Eventually, we hope to match the word-learning
behavior of the system to data from real-world children’s
word-learning behaviors. Observations from that domain may
give important clues towards optimizing the parameters and
learning functions to match that behavior. Finally, an exciting
next step will be to move from only recognition to also
initiating action. Hearing a word or seeing a color could
actually cause the agent to respond, perhaps by refocusing its
attention. We expect this to result in an interesting dynamical
feedback loop: as attentional focus on an object increases
its proportion in the visual field, activations for that will
increase, causing faster learning to take place. The fast
learning would in turn cause higher activations the next time
around, resulting in more probable, stronger attention shift
towards that object. Research suggests that children may also
learn words in this fashion [10].
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Abstract— Object recognition is a well studied field of com-
puter vision, and has been applied with success to a variety of
robotics applications. However, little research has been done
towards applying pattern recognition techniques to robotic
search and rescue. This paper describes the development of
an object recognition system for robotic search and rescue
within the USARSim simulator, based on the algorithm of Viola
and Jones. After an introduction to the specifics of the object
recognition method used, we give a general overview of how
we integrate our real-time object recognition into our controller
software. Work so far has focused on victims’ heads (frontal
and profile views) as well as common objects such as chairs
and plants. We compare the results of our detection system
with those of USARSim’s existing simulated victim sensor, and
discuss the relevance to real search and rescue robot systems.

I. I N T R O D U C T I O N

The primary goal of robotic search and rescue is to
explore a disaster zone and provide as much information
as possible on the location and status of survivors. While
the development of advanced and robust robot platforms and
systems is essential, high-level problems such as mapping,
exploration and multi-agent coordination must be solved as
well. Development of such high-level techniques is the goal
of RoboCup’s Virtual Robots competition. This competition
uses USA RSim as a basis for its simulations due to this
simulator’s high quality image data and rendering.

Since the primary goal of robotic search and rescue is
finding victims, a simulated robot rescue team must be
able to complete this task in simulation. In real rescue sys-
tems, identification of victims is often performed by human
operators watching camera feedback. To lower the burden
on teams using USA RSim for rescue systems research, a
‘ VictimSensor’ has been developed for the simulator that
mimics recognition of victims in real systems [1]. Modeled
after template based human form detection, this sensor must
be associated with a camera and performs line-of-sight calcu-
lations to the victim. It starts reporting victims at a distance
of about 6 metres, and its accuracy improves with increased
proximity. However, in this paper we report on work-in-
progress towards providing a fast vision-based detector as an
alternative, based on the work of Viola and Jones. The hope
is that this will provide a more realistic simulation of real-
world victim detection, and bring USA RSim-related research
one step closer to reality.

A secondary goal of search and rescue efforts is to produce
high quality maps. One of the reasons to generate a map is to
convey information, and this information is often represented
as attributes on the map. In addition to victim information,

useful maps contain information on the location of obstacles
or landmarks, as well as the paths that the individual robots
took.

With a view to improving map quality, we have developed
a system for the automated labeling of recognisable items in
USA RSim. In robotics, there is often a need for a system
that can locate objects in the environment – we refer to this
as ‘object detection’. Our detection system exploits the high
quality image data from USA RSim which allows for accurate
classifiers to be trained with a relatively low false positive
rate. Using images from USA RSim as training data, we have
trained various different classifiers to detect various objects,
including victims.

The paper is structured as follows. Section II describes
related work in object recognition and mapping. Section III
provides an overview of our system, including the object
detection method used and the training process. In Section
I V we detail the process of integrating object detection
and mapping into our controller software. In Section V we
present preliminary results. Several possible extensions to
our object detection systems exist. Some of these are detailed
in Section V I followed by concluding remarks in Section V II.

I I. R E L AT E D W O R K

Object recognition is a well-studied field of computer vi-
sion. Swain and Ballard [2] first proposed colour histograms
as an early view-based approach to object recognition. This
idea was further developed by Schiele and Crowley [3] who
recognised objects using histograms of filtered responses. In
[4], L inde and L indeberg evaluated more complex descriptor
combinations, forming histograms of up to 14 dimensions.
A lthough these methods are robust to changes in rotation,
position and deformation, they cannot cope with recognition
in a cluttered scene.

The issue of where in an image to measure has an impact
on the success of object recognition, and thus the need for
‘object detection’. G lobal histograms do not work well for
complex scenes. Schneiderman and K anade [5] were among
the first to address object categorisation in natural scenes, by
computing histograms of wavelet coefficients over localised
object parts. In a similar approach, the popular SIF T (scale-
invariant feature transform) descriptor [6] uses position-
dependent histograms computed in the neighbourhood of
selected image points.

In recent years there has been increasing interest in using
object detection in SL A M (simultaneous localisation and
mapping) to provide information additional to that provided



by laser scans. Such an approach is denoted as visual SL A M
(vSL A M). Cameras have an advantage over lasers in that
they can offer higher amounts of information and are less
expensive. D ifferent methods have been used to extract visual
landmarks from camera images. Lemaire and Lacroix [7] use
segments as landmarks together with an E xtended K alman
F ilter-based SL A M approach. Frintrop et al. [8] extract
regions of interest using the attentional system V O C US.
Others [9] have used SIF T descriptors as landmarks; Se et al.
[10] and G il et al. [11] track the SIF T features in successive
frames to identify the more robust ones; Valls M iro et al. [12]
use SIF T to map large environments. Davison and Murray
[13], and H ygounenc et al. [14] use Harris Point detectors as
landmarks in monocular SL A M. F inally, Murillo et al. [15]
propose a localisation method using SU R F keypoints.

Jensfelt et al. [16] integrate SL A M and object detection
into a service robot framework. In their system, the SL A M
process is augmented with a histogram based object recog-
nition system that detects specific objects in the environment
and puts them in the map generated by the SL A M system.
Later the robot is able to assist a human when he/she wants to
know where a particular object is. This situation is concerned
with the problem of detecting a specific object as opposed
to a general category of objects.

To the authors’ knowledge, little work has been done on
integrating object detection techniques into high fidelity sim-
ulation applications such as USA RSim. For the 2007 Virtual
Robot Competition Visser et al. [17] used a colour histogram
approach for victim detection. A 3D colour histogram is
constructed in which discrete probability distributions are
learned. G iven skin and non-skin histograms based on train-
ing sets it is possible to compute the probability that a given
colour belongs to the skin and non-skin classes. A drawback
of this approach is that in unstructured environments there
is no a priori data on the colours present in the environment,
which could result in a large number of false positives. In
this paper we focus on a more advanced method of detecting
general classes of objects in USA RSim, and putting them
into the environmental map as the exploration effort unfolds.

I I I. S Y S T E M O V E RV I E W
Viola/Jones Algorithm: The method we use is based on

Viola and Jones’ original algorithm for face detection [18],
which is the first object detection framework to provide
accurate object detection rates in real time. Used in real-time
applications, the original detector ran at 15 frames per second
on year 2000 hardware; it is therefore suitable for object
recognition in robot simulation. We also use this method
because it is suitable for detecting objects in complex scenes
and under varying lighting conditions, which is typical of
robot rescue scenarios.

The method uses a variant of the A daBoost algorithm
for machine learning which generates strong decision tree
classifiers from many weak ones. The weak learners are
based on features of three kinds, all of which can be
individually computed quickly at frame rates. However for
a 24 × 24 pixel sub-window there are more than 180,000
potential features. The task of the A daBoost algorithm is
to pick a few hundred of these features and assign weights

to each using a set of training images. Object detection is
then reduced to computing the weighted sum of the chosen
rectangle features and applying a threshold. Thus, although
training of the classifiers takes a lot of computer time, the
resultant classifiers can be run very quickly.

C ascade of Boosted C lassifiers: We adopt a fast approach
used in [19] where we cascade many such detectors, with
more complex detectors following simpler ones. Input (an
image from a robot’s camera) is passed to the first detec-
tor which decides true or false (victim or not victim, for
example). A false determination halts further computation;
otherwise the input is passed along to the next classifier
in the cascade. If all classifiers vote true then the input is
classified as a true example. A cascade architecture is very
efficient because the classifiers with the fewest features are
placed at the beginning of the cascade, minimising the total
computation time required.

Training classifiers: For each classifier, our training set
consisted of several thousand 400 × 300 images taken from
many different USA RSim worlds. In the positive examples
(i.e. images containing the object of interest), the object
was manually tagged with a bounding box and the location
recorded in an annotation file. Ideally each bounding box
should have the same scale. In addition to improving clas-
sification accuracy, this makes it easier to estimate the real
world location of detected objects. For faces we used square
bounding boxes.

A major issue with accurate object detection is the effect
of different viewpoints on how an object looks. For this
reason our training set contained images of objects from
many different angles.

Training was carried out over several weeks using the
popular open source computer vision library OpenC V 1. To
greatly speed up the process we employed the use of a 528
core SG I-IC E cluster at O xford University ’s Supercomputing
Centre (OSC), as described in the appendix. In the initial
phase separate classifiers were trained for frontal and profile
views of heads, both at close range and at further distances.
The larger the training set the better; in particular it helped
to have a very large number of negative examples. The
finished detectors contain a few thousand nodes each, with
each classifier having depth of a few tens of nodes. For
comparison, classifiers were also then trained for common
obstacles found in USA RSim environments, such as chairs
and potted plants.

We found that the false positive rate can be reduced by
using images that were misclassified in one stage as negative
examples for successive stages. Our initial face detectors
were incorrectly identifying wheels of cars quite often. When
we used images of car wheels as negative examples in the
training set, the rate of false alarm went down. A n example
of successful detections, along with one false positive, are
shown in F igure 1. (To date the rate of false positives seems
acceptable to us for a Robocup Rescue scenario, given that
they would presumably then be screened by the operator;
however the system is yet to be tested under competition
conditions.)

1 h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t s / o p e n c v l i b r a r y / f i l e s /
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F ig. 1. Our face detector can recognise faces at greater distances than the
VictimSensor. Some detections are false positives, but these can be used as
negative examples in subsequent levels of training.

I V. I N T E G R AT I O N O F O B J E C T D E T E C T I O N &
M A PPI N G

A key competence for a mobile robot is the ability to build
a map of the environment from sensor data. For SL A M we
use a method developed by Pfingsthorn et al. [20], inspired
by the manifold data structure [21], which combines grid-
based and topological representations. The method produces
highly detailed maps without sacrificing scalability. In this
section we describe how we augment our map with the
location of objects.

F ig. 2. A n object has been detected by the robot from three different
locations. The position estimate can be improved by triangulation.

Finding the position of objects: Each detector is defined
within a single small X M L file which is read by a robot’s
camera sensor; the detector is scanned across the image at
multiple scales and locations, using code from the OpenC V
library. When an object is detected, the image is saved
together with the location of the object in the image and the
robot’s current pose. The location is taken to be centre of the
bounding box. Using the size of an object’s bounding box as
a gauge of its distance from the robot and its angle relative
to the robot, an accurate position estimate is calculated. If
the same object is detected from several camera locations the
position estimate can be improved by triangulation (F igure
2). This is then placed in the map. A n annotated example of
a final map is shown in F igure 3.

A position estimate can be quite inaccurate if the bounding
box does not fit the object’s boundaries closely, since our
calculations are based on the real world dimensions of an
object.

Multi-robot object detection: Using USA RSim’s Multi-
View we can extend our object detection system to multiple
robots exploring the environment simultaneously. In this way
each robot has its own object detection capability. Ideally the
resolution of each subview should be no lower than that of
the training images.

Re-detection of objects: If a newly detected object is
within suitably close range of an existing object already
detected, this suggests that it is the same object. The position
estimate is made more accurate using triangulation. Re-
detection is key to the accuracy of our position estimates. Us-
ing triangulation, our position estimates are generally within
1 metre of ground truth. Moreover, re-detection helps us to
deal with false positives. Detections occurring only within
one frame are likely to be false positives, whereas repeated
detections in multiple frames increase the confidence that the
detection is correct.

V. R E S U LT S
Our object detection system is a work in progress. How-

ever, initial results are encouraging, and providing false alarm
rates can be reduced, object detection shows promise for use
in both high fidelity simulators like USA RSim and real robot
rescue systems.

C lassification accuracy: We tested our detector in several
standard USA RSim worlds, including the CompWo r l d and
Re a c t o r environments, using multi-robot teams. F igure 4
shows RO C curves for each of our classifiers, and F igure 5
shows some other examples of faces that have been correctly
identified by our system, even though they were not detected
by the simulated VictimSensor.

Results for faces and plants have detection rates of more
than 80% (for some more examples, see F igure 6). However,
false alarm rates increase with detection rates. G iven our
experience now with training for faces on the supercomputer
we intend to soon re-visit the issue of training for other
objects.

F ig. 5. Four other successful detections of faces.

Our results for hands are less impressive than those for
faces and plants. We surmise that there are two reasons for
this: firstly, hands come in a wide range of varying poses,
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F ig. 3. A completed map together with automatically saved images of detected objects. Green line is the robot’s path, orange stars are position estimates
and red dots are actual positions.

F ig. 4. RO C Curves showing the performance of our object detection system.

from outstretched to clenched fists to hands that are waving.
It is therefore difficult to extract the salient features. Faces,
conversely, exhibit common features which can easily be
learned by a classifier. Plants, particularly the generic potted
plants in USA RSim, tend to be (vertically) rotation invariant
and have the same general characteristics. Secondly, our hand
classifier was one of the first classifiers to be trained, before
we had access to the supercomputer, so we didn’t use as
large a training set as would have been optimal.

Detection time: To save computation time our detection
module searches for objects every n (say, 2 ≤ n ≤ 4) frames.
The lower n is the more likely an object is to be detected
quickly during fast robot motion. Computation time is also

dependent on the number of classifiers being passed over a
frame. Using an Image Server resolution of 400 × 300, objects
are detected in a few tens of milliseconds on a 2.4 G H z Intel
Core 2 processor.

Real images: To evaluate the usefulness of our vision-
based classifier as a simulation tool, we ran some real images
through it. While some faces are classified perfectly, false
positive rates significantly increased (for some examples, see
F igure 7). This was to be expected, given that real faces
exhibit a much higher degree of detail and a much wider
variety of features than those used to train our classifier.
However, the same classifier has been trained with greater
success on real faces by Viola and Jones [19], and the
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F ig. 6. E xamples of other objects detected: hand, plants, chair.

training process for classifiers of real rescue robot systems
would not differ from the training process we used within
USA RSim. In fact, our classifier correctly identifies faces in
approximately 88% of simulation images, while Viola and
Jones’ classifier correctly identifies faces in approximately
90% of real images. Consequently we believe that it is a valid
simulation tool: vision-based automated object recognition in
real rescue systems would provide similar data and need to be
integrated in a similar way to our simulation-based classifier.

F ig. 7. Results of running real images through our trained classifier. Some
faces are recognised well, but the rate of false positives and undetected faces
increases significantly.

V I. F U RT H E R W O R K
Several extensions to our object detection system could

lead to further improvements in victim detection and map
quality. Some of these are detailed here.

Improved detection range and detection of more object
types: We hope soon to train classifiers that can detect faces
at further distances than at present, using higher resolution
images from USA RSim. We further hope to train the classi-
fier on a wider range of objects.

E liminate need for the simulated VictimSensor: Currently
our face classifiers work for upright faces only. Since the
primary goal of robotic search and rescue is to find victims,
we plan to extend our victim detection system to victims in
differing poses, such as those that are lying down. We hope
also to train classifiers for other body parts so as to eliminate
reliance on the VictimSensor. If our vision-based victim
sensor proves to be very reliable, we envision eventually
integrating it either into the simulator itself or into the image

server, so that the classifier may be available to the wider
USA RSim community.

Tracking by AirRobots: Since A irRobots are increasingly
being used successfully in exploration efforts, most recently
in RoboCup 2009 where our team made extensive use
of A irRobots in various tests, we plan to use our object
recognition system to enable A irRobots to track objects on
the ground. This can in turn be used to improve mutual
localisation amongst ground robots within the team.

Object recognition using non-standard views: A recent
addition to USA RSim has been the catadioptric omnidirec-
tional camera which provides a full 360 degree view of a
robot’s surroundings. A dditionally, the Kenaf robot platform
uses a fish-eye lens to provide a top-down view of the robot.
We are interested in investigating whether object recognition
can be applied to such non-standard image data using an
internal representation of a given object, or using a separate
classifier.

Dust and Smoke: Real disaster scenes are likely to be
subject to dust and smoke; it would be interesting to evaluate
our system in the presence of such visual clutter.

V I I. C O N C L U SI O N S
We have developed a recognition system for faces and

common obstacles in disaster zones exploiting USA RSim’s
highly realistic visual rendering. A lthough the algorithms
that we have used are not new, our main contribution is
the integration of existing algorithms within a full robot
rescue system. One novel feature of our work is the use
of a super-computer to train the detectors; without that, the
results reported here would not have been achieved.

Our victim detection rivals USA RSim’s simulated Victim-
Sensor, both in terms of the number of victims found and
the distance at which victims may be identified. Detectors
for obstacles such as furniture and potted plants allow us
to produce richer maps which give a clearer view of an
environment’s topography. Since our object detectors consist
of single X M L files generated using open source libraries,
they can easily be integrated into any application interface
to USA RSim.

For chairs and hands the results were less impressive than
for faces and plants; chairs are difficult to recognise because
their shapes are complex and they are characterised by thin
stick-like components, and hands are even more difficult
to recognise because there are so many different gestures.
However with our recent experience in developing classifiers
with the help of the supercomputer cluster we hope to re-visit
such items to improve our current classifiers for them.

Our classifier does not perform as impressively on real-
world images. This makes sense however, given that it
has been trained on simulator images. Similar real-world
classifiers for real robot rescue systems could be trained in
the same way, as has already been performed by Viola and
Jones [19]. Consequently any future research in USA RSim
that draws conclusions based on a simulated vision-based
classifier such as ours is relevant to real-world systems.

In addition, many modern camera systems have the facility
to run small pieces of code on the raw image near the camera,
and to only then send the results to the main processor. G iven
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the small code size and simplicity of our classifier, it could be
run on the camera itself. The object detection results would
then be available to any system using the camera. Since
this is a realistic possibility in reality, we envision extending
USA RSim to behave in a similar manner: an object detection
system could be built into the image server or the simulator
itself, and the detection results would be available to the
wider USA RSim community.
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A PP E N D I X

Training a classifier to detect objects in USARSim
Collect images: A collection of both positive and negative

examples is required. Positive examples contain the object of
interest, whereas negative examples do not. In the positive
examples, rectangles must mark out the object of interest,
and these rectangles should be as close as possible to the
object’s boundaries. Ideally, the bounding boxes in every
image should have the same scale.

Four sets of images of required: a positive set containing
the object of interest; another positive set for testing pur-
poses; a negative (or ‘backgrounds’) set for training; and
a negative set for testing. The test sets should not contain
any images that were used for training. Several thousand
images are required, both for positive and negative samples.
For frontal faces we used 1500 positive training images, 100
positive testing images, 5000 negative training images and
100 negative testing images.

C reate samples: OpenC V ’s C r e a t e S amp l e s function
can be used to create positive training samples. If there
are not sufficient images for training (several thousand are
required) additional images may be created by distorting
existing images. However, the wider the range of reflections,
illuminations and backgrounds, the better the classifier is
likely to be trained.

The C r e a t e S amp l e s function generates a compressed
file which contains all positive images. A ssuming a sample
size of 20x20 is suitable for most objects, samples are
reduced to this size. We experimented with larger sizes, but
there was not any noticeable improvement.

Training: OpenC V ’s Ha a r T r a i n i n g function may be
used to train the classifiers. Custom parameters include
minimum hit rate, maximum false alarm, type of boosting
algorithm and the number of stages. OpenC V developers
recommend that at least 20 stages are required for a classifier
to be usable. We obtained the best results using 30 stages
and the default values for the other parameters.

For our training, we used an O xford Supercomputing Cen-
tre cluster having 66 nodes, each having 8 processors (2 quad
core Intel X eon 2.8G H z) and memory 16G iB D D R2. A n
essential advantage of this cluster was its parallel processing
capability, which allowed for the classifiers to be trained in
a reasonable time. Training took approximately 72 hours for
each classifier (for comparison, we estimate that the same
task on a single PC would take over a month).

Performance evaluation: Performance of a classifier can
be measured using OpenC V ’s performance utility. This eval-
uates the entire testing set and returns the number of correct
detections, missed detections and false positives.
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3D Mapping: testing algorithms and discovering new ideas with
USARSim

Paloma de la Puente, A lberto Valero, D iego Rodriguez-Losada

Abstract— It is usually not very convenient to use real robots
for software development, testing and evaluation. Having access
to a good simulator allows researchers to recreate special
experimental conditions and gain increased flexibility and reli-
ability, saving a lot of time. In the 3D mapping context specific
issues arise. Here we describe and compare our experiences in
this area with a real robot and with the Unified System for
Automation and Robot Simulation (USARSim).

I. I N T R O D U C T I O N

Most of the problems that direct experiments with real
robots pose are well known and recognized. Set up of
equipment and hardware configuration changes are time con-
suming and not always possible. Environmental conditions
may not be adequate at every moment, neither is it easy
to arrange real scenarios to be like we would want them
to. In addition, running out of battery in the middle of an
experiment may require to come back to a starting position
perhaps far away located. These are just a few examples, not
to talk about the risk it implies testing new software on a
mobile, probably expensive, platform. Hence the important
role simulators play in the development and validation of
algorithms and techniques in the research field [1].

In contrast with some existing robotic simulators which
only offer 2D virtual worlds, like MobileSim [2], by
A ctiveMedia Robotics [3], or Stage, belonging to the
Player/Stage/Gazebo project [4], USA RSim [5] provides a
wide variety of 3D highly realistic models of different
environments, more than 23 robotic comercial platforms
and more than 15 sensors [6]. The available world models
can be edited to generate new desired ones. USA RSim
also approximates kinematics and dynamics with a good
precision. Furthermore, the user can easily see that perceptual
fidelity for a better human-robot interaction (H RI) is one of
the most outstanding features that USA RSim presents.

Recently, we have been working with USA RSim with two
main purposes. A t first, we wanted to collect data to obtain
3D point clouds associated to odometry data as the robot
operated in a stop-scan-go manner. E ven though we do have
a 3D mapper real robot working, for the afore-mentioned
reasons this allowed us to speed up our 3D data gathering
processes and increment the number and variety of data
sets we could use to test and tune our data processing and
mapping algorithms [7]. A fterwards, we got involved in the
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F ig. 1. Left:3D data acquisition system, mounted on our robot Nemo.

RoboCup’09 Search and Rescue Virtual Robots Competition
[8], [9]. For the integration of the 3D mapping components
[10] and aiming to get a suitable functional solution ac-
cording to the competition’s goals and conditions, different
modifications and adaptations were incorporated and a new
robot configuration was designed.

The paper is organized as follows. Section 2 is a descrip-
tion of our P3AT robot, Nemo, and its 3D laser sensor, along
with a brief report on how we operate with it. Section 3 is
about our simulated Nemo P2AT, emphasizing its similarities
and differences with the real robot. Section 4 presents
AT RV Jr3D, the final robot configuration we chose for the
competition. In Section 5 we outline some of the techniques
we developed for the competition. Section 6 presents some
experiments and analyzes the performance of our models.
The paper finishes with our conclusions.

I I . T H E R E A L R O B O T, N E M O

Our real robot is a Pioneer 3AT by MobileRobots.Inc [11],
we call it Nemo (F ig. 1). A t its front we have mounted a
SIC K L MS200 laser sensor on top of a servo pan-tilt unit.
This device’s model is PowerCube Wrist 070 (PW70), by
A mtec Robotics [12]. The wrist requires 24V cc, which are
obtained by means of a dc/dc converter from 12 to 24V. Both
the laser and the wrist are connected to a mini laptop onboard
the robot with USB to RS-232/422/485 adapters. A data
server processes the data and sends synchronized updated
information about odometry, PW70 and laser measurements
at clients’ cyclical requests. The port’s baud rate for the laser
scanner is set at 500 kb so as to gain velocity and allow for
a good precision in the synchronization with the PW70. This
is of utmost importance to avoid distortions when applying
the relative transformations to calculate each point’s cartesian
3D coordinates.



F ig. 2. D istribution schema for our work with the real robot

F ig. 2 depicts the general configuration schema that we
use.

The pan/tilt unit presents a robust and compact design,
yet being light enough to permit a good turning speed (a
maximum of 248Ž /sec for the tilt angle). The movement is
smooth and quiet. The tilt angle is in the š 120Ž range,
with a repeatability of š 0:02Ž . The PowerCube device can
receive position, speed and torque commands for each joint,
and can provide feedback about the pan and tilt angles at
any given moment.

The data collection procedure is implemented as a finite
state machine. A s the scan order is given, a command to
move the wrist up to its final superior position is sent. When
the error between that value and the actual tilt value given
by the reading from the wrist sensor is below a threshold,the
3D data acquisition process is ready to begin. The wrist
is commanded to go down and the laser measurements
associated to the tilt value at every cycle are stored in both
memory and text files. When the difference between the tilt
value and the due final tilt value downwards looking is below
the threshold, a command to get the wrist up again is sent
and the data are stored in reverse order, to keep the point
cloud structured for further processing. A s mentioned before,
this process is controlled by a scan parameter that sets the
frequency with which the point clouds are obtained.

A t first, we teleoperated the robot and made it stop before
manually demanding to take a 3D scan, collecting data only
when the wrist was going down. Owing to the fact that for
the competition we required continuous updating to achieve
real 3D obstacle avoidance capabilities, we decided to make
it capture data when coming up as well.

I I I. T H E SI M U L AT E D R O B O T N E M O P2 AT

Building a robot able to take 3D scans in USA RSim is not
a complicated task. There are 2 straightforward possibilities:

ž The first one is to use the 3D range scanner sensor.
USA RSim includes with its stable release a 3D range
scanner that returns 3D point clouds within a range that
can be configured by the sensor parameters.

ž The second one is to use the already available robot
Kurt3D. Kurt3D is a robot which has a SIC K range
scanner mounted on a device that can be tilted and it is
included in the latest versions of USA RSim. Its tilting
device accepts position commands, so that you can bring
the laser to a desired angle. The device does not accept
speed, nor torque, commands, and it does not provide
the tilt angle either. Kurt3D ’s scanner does not have pan
motion.

However, none of these two solutions could reproduce
properly our real robot’s behavior.

-The 3D range scanner is significantly different from our
real sensor. Using it, one cannot control the scan’s limits. We
could want, for example, to initiate our scan 45 degrees under
the zenit and end it at a tilt value of 10 degrees above it,
which is not possible with this kind of sensor. Furthermore,
it does not let us control the tilt angle interval between two
consecutive 2D scans.

-Kurt3D was a close solution albeit it also presents some
drawbacks. The most relevant one is the fact that it cannot
provide feedback about the value of the tilt angle. This can be
solved in two ways. The first option is to give a small angle
increment and wait long enough in order to make sure that
the commanded angle has been reached. A n alternative may
be to mount an additional sensor, like an INS (to get the angle
directly), or an encoder. Both solutions are relatively easy to
implement in USA RSim. A nother problem this configuration
presents is the fact that you cannot control the tilt device
using speed or torque commands.

In our first experiments to gather 3D data from the
simulator we used Kurt3D ’s tilt unit and implemented a step
by step motor system as described in [7]. Our simulated
Nemo is shown in F ig. 3. Its basis is a robotic P2AT standard
platform. We added Kurt3D ’s scannersides sensor to the
USA R Bot.NemoP2AT model we had created and set it as
the parent for the SIC K L MS laser. The main modifications
introduced to the USA R Bot.ini file are the following.

J o i n t P a r t s = ( P a r t Name = " S c a n n e r S i d e s " ,
P a r t C l a s s = c l a s s ’ USARMo d e l s . Ku r t 3DS c a n n e r S i d e s ’ ,
D r awS c a l e 3D= ( X= 1 . 0 , Y= 0 . 4 , Z = 1 . 0 ) ,
bS t e e r i n g L o c k e d = t r u e , bSu s p e n s i o n L o c k e d = t r u e ,
B r a k e T o r q u e = 1 0 0 . 0 , P a r e n t = " " ,
J o i n t C l a s s = c l a s s ’ KC a r Wh e e l J o i n t ’ ,
P a r e n t Po s = ( X= 0 . 1 6 , Y= 0 . 0 0 9 5 , Z = - 0 . 1 6 ) ,
P a r e n t A x i s = ( Z = 1 . 0 ) , P a r e n t A x i s 2 = ( Y= 1 . 0 ) ,
S e l f Po s = ( Z = 0 . 0 ) , S e l f A x i s = ( Z = 1 . 0 ) ,
S e l f A x i s 2 = ( Y= 1 . 0 ) )
S e n s o r s = ( I t emC l a s s = c l a s s ’ USARMo d e l s . S I CKLMS ’ ,
I t emName = " S c a n n e r 1 " , P a r e n t = " S c a n n e r S i d e s " ,
Po s i t i o n = ( X= 0 , Y= - 0 . 0 0 9 5 , Z = - 0 . 1 1 ) ,
D i r e c t i o n = ( X= 0 , Y= 0 , Z = 0 ) )



F ig. 3. Our simulated Nemo P2AT

The corresponding NemoP2AT.uc file to create the class
was based upon the existing one for the standard P2AT.

A fter adjusting the 3D laser height parameters, this sim-
ulated robot performed well and let us obtain 3D point
clouds from several different environments. In Section 6
more details about parameters’ values and results will be
given.

I V. T H E SI M U L AT E D R O B O T AT RV J R3 D

The configuration described in the previous section was
fine to acquire 3D data in a stop-scan-go manner, but that
system was too slow to work in more realistic conditions.
We added an encoder to avoid needing to wait every time
we sent a command and be able to move the scannersides
all at once to its final position up or downwards looking.
However, as the device’s speed could not be regulated, the
readings did not arrive on time and the error was much larger;
it was difficult to configure the settings to obtain consistent
data.

For these reasons, we decided to build a pan/tilt device
emulating the real PowerCube070 wrist. In USA RSim this
is quite easy to do thanks to the mission packages. We built
a laserpantilt mission package which consisted of two rota-
tional joints. These joints can be controlled independently
with angle, speed and torque, and they provide feedback
about their position. A similar example of a mission package
is the camerapantilt package, distributed with USA RSim.
Once the SIC K range scanner was mounted on top of such
a device we were able to acquire 3D data in pretty much the
same way as with our real robot.

For the RoboCup 2009 competition, we mounted this
3D device on an AT RV Jr platform; we called our robot
AT RV Jr3D. The reason why we did so is simple, a P3AT
cannot afford to carry two SIC K range scanners without
compromising the dynamics of the platform. We wanted to
have both a 2D and a 3D range scanner on the same robot,
the 2D one for 2D SL A M and the 3D one to obtain the
point clouds that would be processed afterwards. We opted
to use a SIC K laser for the 3D data acquisition rather than an
Hokuyo laser device as proposed in our Team Description
Paper [10] mainly to cover a wider distance range and to
have less noise. We also took into consideration the fact that

F ig. 4. Our simulated AT RV Jr3D

Hokuyo lasers scan a wider field of view and therefore make
ray tracing in USA RSim get notably heavier.

With the P3AT, equipped with just one SIC K as described
in Section 2, we acquire the 3D scans with the robot still,
for the robot’s position cannot be accurately corrected in the
meantime, while the laser has not yet finished the acquisition
of a complete 3d point cloud. With the simulated AT RV Jr3D,
as the robot can be localized using the fixed SIC K while the
other laser may be still collecting data, we can continuously
acquire 3D data, stopping the robot only when requiring
enhanced precision. The simulated AT RV Jr3D is shown in
F ig. 4.

For this robot we created the USA R Bot.AT RV Jr3D class
and added the following lines to its definition in the USA R-
Bot.ini file so that the new sensor be properly positioned, on
top of the robot without colliding or seeing the camera and
the other laser scanner.

M i s P k g s = ( P k gName = " L a s e r P a n T i l t " ,
L o c a t i o n = ( X= 0 . 1 6 , Y= 0 . 0 0 9 5 , Z = - 0 . 2 5 ) ,
P k gC l a s s =C l a s s ’ USARM i s P k g . L a s e r P a n T i l t ’ )

S e n s o r s = ( I t emC l a s s = c l a s s ’ USARMo d e l s . S I CKLMS r ’ ,
I t emName = " S c a n n e r 3D " , P a r e n t = " L a s e r P a n T i l t L i n k 2 " ,
Po s i t i o n = ( X= 0 , Y= - 0 . 0 0 9 5 , Z = - 0 . 0 6 ) ,
D i r e c t i o n = ( X= 0 , Y= 0 , Z = 0 ) )

The SIC K L MSr is a normal SIC K L MS laser except for
the fact that it is drawn downwards looking in the simulator
(F ig. 4 must not lead the reader to confusion, it was taken
before the last changes only for esthetic purposes). We
used this class during the competition because we could not
add yet another laser model and we wanted to change the
maximum range in order to reduce the simulator’s burden.

V. N E W T E C H N I Q U E S I N T R O D U C E D F O R T H E
C O M P E T I T I O N

The major novelty we introduced for the competition was
the creation of a ground map to make sure that the robot
would not fall into holes nor collide with low obstacles
when in autonomous operation. To do so, we checked the 3D
points obtained from the data provided by the tilting laser.
The points whose z coordinate’s absolute value was below
a threshold were converted to 2D points in the map image’s
reference frame and considered as belonging to an area the
robot could safely traverse. We established several criteria to
overwrite the colors in the 2D grid map generated with the



data coming from the horizontal laser. Our list of colors is
the following:

ž B lack: obstacles in the map generated with the 2D data
ž White: free areas in the map generated with the 2D data
ž B lue: unexplored areas in the map generated with the

2D data
ž Gray: obstacles detected by the 3D laser
ž Green: solid ground free of holes and 3D obstacles

(traversable areas)
The three first colors were used as defined in the rules for

the competition. We added the other two colors to provide
more information for the operator and to exclusively use the
green areas for safe navigation.

A t first, the ground map was not updated until a whole
3D point cloud was acquired, and green was never allowed
to overwrite gray. This method overloaded the system a bit,
and whenever a 3D scan was completed an important delay
prevented the robot’s pose from being properly updated. So,
we decided to update the ground map periodically, with a
relatively small period, only using the data that had been
obtained within the last cycle.

Not letting green substitute gray was important to avoid
removing obstacles situated at intermediate heights when the
wrist was driving the laser down. However, we did want to
remove 3D obstacles which were no longer there: dynamic
objects (other robots), nonexisting small obstacles generated
by noisy measurements . . . . We also wanted to eliminate
some ugly lines that cropped up from time to time as a result
of suddenly stopping the robot, as severe decelerations made
it incline.

Our choice was to allow green overwrite gray only when
the 3D laser was capturing data towards its upper position.
This way, real 3D obstacles detected below the robot’s height
were not permanently there but as soon as the 3D laser saw
them again when coming up, they were restituted so that
reactive control could avoid them.

When the robot was spawned to operate autonomously
right from the beginning of a mission it would not move,
since the wrist does not get the laser to capture data below
it. The same thing could happen as well when the robot
explored new narrow areas appearing from behind a corner,
for example. To solve that problem a fixed size green square
was created around the robot’s pose on the assumption that
there would not be a hole in the closest surroundings, so
that the movement towards the chosen frontiers for the
autonomous exploration could be initiated. F ig. 5 shows
some examples of ground maps generated like this.

The areas explored by the 3D laser sensor were sometimes
not continuous due to the discrete distribution of the laser’s
beams, whose effect is most noticeable when the, normally
slightly tilted, laser scans further obstacles. To reduce this
undesirable result which did not always let the robot advance
we adopted two measures.

The first one was rather simple and came to not only
coloring green the pixels corresponding to a single 3D point
considered an obstacle but also those in a window around
that pixel in the map image. This worked quite well, as we

F ig. 5. Creation of a green square around the robot’s pose so that it can
start autonomous exploration. Left: small square. Right: larger square

kept on making sure that these pixels could not erase gray
or black obstacles. Still, there remained some small white
holes inside clearly green safe areas and this made the robot’s
motion slower.

To get green areas even, we decided to apply a closing
(dilate + erode) morphological operation to the map image.
What we did in the end was to iteratively apply a floodfilling
algorithm to every white pixel in the map image, filling the
area they belonged to with a different color. A fterwards, the
new colored areas’ size was checked to avoid removing real
holes from the ground map; small holes were filled with
green while bigger holes were turned white again. F ig. 6 is
one such map image before classifying and recoloring the
detected holes.

For the implementation of the algorithm we used the
OpenC V libraries [13]. A ll our software is composed of a
collection of self-developed and open-source libraries and
modules, within the OpenR D K framework [14].

When there were a lot of white points inside green areas
(due to excessive noise, in certain world models. . . ) the
execution of the closing module took too long and the
whole system was affected. Therefore, the application of
the floodfilling algorithm was restricted to a smaller region
of the image containing the robot’s pose and this technique
was performed only when significant changes in the robot’s
pose were appreciated. Moreover, we introduced a limit in
the number of holes so that when there were too many
small white points close to the robot some of them were
left white for subsequent cycles. A ll this yielded an overall
good performance of the system.

F ig. 6. Map image after applying a floodfilling algorithm with white pixels
as seeds



F ig. 7. 3D point cloud obtained with our real scanner

F ig. 8. Segmentation image obtained from the 3D scan in F ig. 7

V I. E X P E R I M E N T S A N D R E S U LT S

USA RSim has served us as a great tool for development
and experimentation. A s commented in the introduction, at
fist we used it as a means to obtain new data to validate
our already developed 3D mapping algorithms [7]. Our main
concerns in the initial stage dealt with the resolution of
the 3D point cloud. To capture the 3D data with the real
robot, the laser is tilted from -25 degrees (upwards looking)
to 30 degrees (downwards looking) at a constant speed of
0.05 rad/s, which typically results in a 70x181 matrix of
measurements. F ig. 7 and F ig. 8 show a point cloud gathered
with our real system and the segmentation image obtained
from it by applying the algorithms described in [15], [7], of
which a brief account follows.

The residuals from fitting each points neighborhood to
a plane are used as measurements to generate a range
image from the structured 3D data acquired by the laser
scanner. A second order closing (dilate + erode) morpho-
logical operation is applied to the image so as to help edges
be better defined, without breaking improperly.To eliminate
false borders caused by the presence of noise, the image
is binarized so that only important edges are left. Once
this has been accomplished, a floodfilling algorithm is used
to assign the same color to the pixels inside each large
enough region enclosed by the remaining borders. This way,
taking advantage of the ordered nature of the data, real-
time capabilities are achieved. A final check comparing local
normal vectors is performed to make sure different surfaces
are correctly separated even if some edges in the image are
not satisfactorily closed. This allows for further robustness
without being significantly more time consuming.

When working with the simulated Nemo P2AT, at first we
set the tilt limits at 23 degrees and -30 degrees (notice that
the tilt’s sign is inverted in relation with the real PowerCube
wrist) and got a laser 2D scan at every 0.25 degrees in order
to obtain continuous data from the floor and the ceiling.

F ig. 9. Segmentation image with too many rows and not covering lower
parts

F ig. 10. A point cloud captured with the simulated Nemo P2AT in the
D M Mapping 2006 USA RSim world. View from above, the floor is depicted
in cyan. Only the rear part of the car can be seen from the robot’s current
pose, marked in green, with the robot facing the shortest axis

This, however, led to having too many rows in the 3D data
structure and the images created did not allow for an easy
recognition of the objects in the scene. Furthermore, the tilt
variation proved not be enough. A n example of this is shown
in F ig. 9, obtained from a 3D scan got from the PlayerStart
pose in D M Mapping.

With the final configuration, using the mission package
and commanding the wrist with a final angle, the results
improved significantly. F ig. 10 shows a 3D point cloud
obtained from the same pose and F ig. 11 is the segmentation
image corresponding to that point cloud. The threshold
referred to in Section 2 is slightly smaller than the one we
used when operating with the step by step motor system,
for a more precise final position of the laser is desired.
A part from that, the other parameters are kept the same. A
useful comparison to perform may be to acquire some data
sets with both the real robot and its simulated model and
analyze the discrepancies in the number of 2D scans (rows
in the corresponding image) integrating the 3D scans of both
categories.

The uncountable series of experiments we conducted for

F ig. 11. Segmentation image obtained with the final configuration obtained
from the same pose as the one shown in F ig. 9. The car can be better
identified now



F ig. 12. Ground map corresponding to the point cloud in F ig. 10

F ig. 13. Ground map corresponding to a 3D scan acquired at robot1 pose
in D M Mapping

the competition were not reproduced with the real robot, for
two main reasons: lack of time and the fact that our robot is
not equipped with two laser range finders.

The segmentation of the simulated data worked quite well
with no changes in the parameter’s values with respect to
those used with the real data. However, if the threshold used
for the image binarization is smaller, somewhat better results
are obtained if the laser’s noise presents its standard value
for the SIC K L MS200.

Tests with USA RSim let us decide on the values of the
parameters for the construction of the ground map so that
in the end it was quite effective. F ig. 12 and F ig. 13 show
some images of such maps.

V I I. C O N C L U SI O N S

In this paper we have presented the robot models we have
used to acquire 3D data from USA RSim environments along
with some comparisons regarding our work with the real
robot and some of the innovations we have introduced for the
RoboCup’09 Search and Rescue Virtual Robots Competition.
USA RSim has undoubtedly been a very valuable tool for
acquiring a wide variety of data to validate our algorithms
and it has saved us a lot of time, making things convenient
and realistic.
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A Color Based Rangefinder for an Omnidirectional Camera

Quang Nguyen and A rnoud Visser

Abstract— This paper proposes a method to use the omnidi-
rectional camera as a rangefinder by using color detection. The
omnicam rangefinder has been tested in USARSim for its accu-
racy and for its practical use to build maps of the environment.
The results of the test shows that an omnidirectional camera
can be used to accurately estimate distances to obstacles and
to create maps of unknown environment.

I. I N T R O D U C T I O N
A n important aspect of robotics is the task of collecting

detailed information about unexplored or disaster struck
areas. A part of this task is to make a robot measure
distances to obstacles in order to localize itself and to create
a map of the environment. This paper proposes the use of an
omnidirectional camera combined with a color based free-
space classification system to create a rangefinder which can
estimate these distances. ’ Can an omnidirectional camera be
used effectively as a rangefinder?’ is the research question
of this paper.

Until now, active sensors like laser scanners or sonar
are being used as rangefinders. A ctive sensors can generate
highly accurate measurements, but have their limitations.
They typically scan a surface, missing obstacles just above
or below this surface. Some highly reflective or absorbent
surfaces are invisible for these sensors. Further they have
limits on their range and field of view. Because it are
active sensors, they are relatively heavy and can consume a
substantial amount of the robots battery capacity. A n active
sensor on a small or flying robot is therefore not a viable
choice.

This is why it is important to focus attention on alternative
sensors like a passive sensor as proposed in this paper. A
passive sensor based on omnidirectional camera can have
a 360o field of view by using an omnidirectional camera.
However a visual sensor tends to be inaccurate compared
to a laser sensor and it is hard to estimate the depth on an
image using an omnidirectional camera.

A gain, this paper proposes a method to implement a
rangefinder for an omnidirectional camera. This rangefinder
uses a color histogram, which is a color based statistical
model, to identify free space in the immediate surroundings.
Furthermore a comparison between an omnicam and a laser
determines which sensor, in terms of accuracy and practical
use, performs better in what kind of environment or circum-
stance. Practical use is tested by letting a rangefinder sensor
build a map of an environment. Scanmatching algorithms
are used in combination with the rangefinder in order to
estimate its position on the map, which is an important part

Intelligent Systems Laboratory A msterdam, Universiteit van A msterdam,
Science Park 105, 1098 X H A msterdam, The Netherlands

of mapping unknown environments. The implementation and
testing of this method is done in USA RSim [1], which is a
simulation environment that can be used as a research tool
[2].

Section 3 describes the theory and method that have been
used for the development and validation of the omnicam
rangefinder. Section 4 describes how the experiments are
set up to test the omnicam rangefinder. Section 5 handles
the outcome of the test results while section 6 describes
the discussion and further work. The final section makes a
conclusion of this research.

I I. R E L AT E D W O R K

Several methods of using a visual sensor to detect free
space have already been created. The winner of the D A RPA
challenge 2005 used a visual classifier based on color in-
formation to estimate the road ahead [3]. Rauskolb et al.
[4] improved this algorithm so it can also be used in urban
environments.

Since the introduction of the omnidirectional camera in
USA RSim [5] many new applications have been designed
for the omnicam. Roebert used the omnidirectional camera to
create a bird-eye view map of an environment [6]. However
these bird-eye view maps of the environment are not usable
by autonomous robots for navigation. The robots need to
have an obstacle detector, know what the free space is
and have the ability to create a map where the free space
and obstacles are shown in order to navigate through an
environment.

Maillette de Buy Wenniger [7] created a free-space detec-
tor that uses probabilistic methods to learn the appearance
of free space in a bird-eye view image based on the color
signature. This free space detector is extensively tested, but
not used for navigation or mapping yet. Scaramuzza [8] has
designed a rangefinder for a low-cost omnicam sensor that
can detect and measure the distance to obstacle points in a
simple black and white world. In this paper both approaches
are combined with a scanmatching algorithm [9], which
allows localization and mapping of an environment purely
on visual information.

I I I. M E T H O D

This section describes the method and theory behind the
omnicam rangefinder. The theory behind the rangefinder is to
use a trained color histogram to classify free space pixels in
an image. Maillette de Buy Wenniger’s work [7] has shown
that a color histogram can be used for reliable identifion of
free-space for a simulated and a real robot.



This paper suggests an omnicam rangefinder which uses
the free space detection system of Maillette de Buy Wenniger
to classify pixels as either free space or non-free space.
From there on the rangefinder uses this knowledge to detect
boundary points of an obstacle by using polar scanning
combined with false-negative and false-positive filters. The
robot can then estimate the metric distance between the
robot and the boundary point. A fter the distances have been
estimated an outlier rejection filter is used to reject the
estimated distances that have a high probability of being
inaccurate.

A. Free space pixel identification
The color histogram is a statistical model used to identify

free space pixels based on their color values. It needs to
be trained by using a set of training data which consists of
a collection of pixels where the class, which can be free
space or non-free space, is already known. A trained color
histogram can then calculate the probability if a certain color
value belongs to a certain class.

1) Collecting training data: When the robot is deployed
into an unexplored environment it is going to need a laser
scanner to create the training set for the color histogram.
A fter creating the training set the robot can venture further
into unexplored areas without using the laser scanner to
measure the distances to obstacles. In order to build the
training set the robot needs to provide a bird-eye view image
of the environment [6] and the laser measured distances
image of the environment. These two components are then
fused to create a bird-eye view image where the free space
is shown. The pixels that are classified as free space on that
image are used to train the histogram. This entire procedure
is visualized in figure 1. The laser rangefinder has a field of
view of 180o compared to the omnicam’s 360o, therefore the
created bird-eye view images of the omnicam has been cut
in half to make it synchronize with the laser image.

(a) B ird-eye
view in
the factory
environment.

(b) Image
create by the
laser range
measurements.

(c) The
combined
image of the
bird-eye view
image and the
laser image.

(d) The result-
ing image that is
used for training.

F ig. 1: Procedure to create training data. The half circle on
the left part of the images is the base of the omnicam, this
will not be used for the training data.

A bird-eye view image can be created by following
Nayar’s described relation between a pixel on an omnicam
image and the corresponding pixel on the bird- eye view

image if nothing obstructs the view [10]. A pixel on an
omnicam image is described by po m n = (xo m n , yo m n )
and a pixel on the bird-eye view image is described by
pbe = (xbe , ybe ). These are the equations:

 = arccos
z

 
x2

be + y2
be + z 2

, (1)

 = arctan
ybe

xbe
, r =

R
1 + cos  

(2)

xo m n = r sin  cos  , yo m n = r sin  sin  (3)

The constant R is the radius of the circle describing the
90o incidence angle on the omnicam effective viewpoint.
The variable z is used to describe the distance between
the effective viewpoint and the projection plane in pixels.
Roebert’s work [6] has shown that accurate bird-eye view
maps can be achieved by using these formulas.

A n image of the laser measured distances can be con-
structed by using a laser rangefinder to measure the distances
on every scanline between a ’hit point’ and the origin of the
laser, which is the sensor position on the robot. If the distance
of the ’hit point’ is bigger than the detection range, the laser
will return the maximum detection range for that scanline.
Multiple laser measurements can be done to increase the
probability that free space is detected on a certain scanline.
These measured distances can then be converted to an image
like in figure 1b.

F inally a combined image between these two components
can be created and the color pixels that are classified by the
laser rangefinder as free space on that image can be used as
the training data for the color histogram.

2) Color H istogram: The color histogram is trained by
counting how many times a certain R G B value exists in the
training data. Before the training can start a decision about
the number of bins (n) of the histogram has to be made.
In this study histograms with 13 bins are used. A trained
color histogram is usable to classify free space pixels in
new omnicam images. The trained color histogram uses this
discrete probability distribution to classify a pixel as either
free space or non-free space:

PHIST (rgb) =
c[rgb]

Tc
(4)

Here, c[rgb] returns the count of the histogram bin that is
associated with the rgb color. Tc returns the total count of all
the bins of the histogram. The outcome of a particular color
will thus have a value between 0 and 1. In order to filter out
the false positives the histogram uses a probability threshold
is set as 0 ≤  ≤ 1. Therefore a pixel is considered as free
space if

PHIST (rgb) ≥  (5)

In our experiments, a different threshold  was used to
accommodate for the circumstances in the different environ-
ments (as indicated in table I).



B. Omnicam Rangefinder
The basis of this method has been derived from Scara-

muzza’s black and white omnicam rangefinder [8]. However
the proposed omnicam rangefinder in this article uses the
color-based free-space detection described in section 2.1
instead of only detecting black and white colors. This free-
space detector is combined with the rangefinders very own
detection method which uses polar scanning combined with
false-positive and false-negative filters to detect pixels of an
obstacles boundary point. These detected pixels are consid-
ered as the hit points of the scanlines. Having detected a hit
point the rangefinder estimates the metric distance between
the robot and that hit point. A t the end of this method an
outlier rejection filter is used to reject the estimated mea-
surements that have a high probability of being inaccurate.

1) Polar scanning: The omnicam rangefinder uses polar
scanning to create scanlines that are coming from the center
of an omnicam image, a visualization can be found in
figure 2b. E very pixel in each scanline gets classified as
either free space or non-free space according to the trained
color histogram. The omnicam rangefinder then uses its
false-positive and false-negative filters to find the correct hit
point for each scanline. These filters use a small number of
parameters which can be optimized on the environment or
situation, as indicated in table I.

(a) The original image of the omni-
cam.

(b) The same image with scanlines
visualized on it.

F ig. 2: A visualization of polar scanlines on an omnicam
image.

False-positive filter:
This filter determines if a non-free space pixel is a
hit point by checking if N pixels behind it are also
classified as non-free space pixels. A n example of
this filter can be found in figure 3a.

False-negative filter:
This filter makes sure that a candidate hit
point does not get rejected because a free-space
pixel, which was actually misclassified, interrupts
the sequence of non-free space pixels described
in the false-positive filter. The parameter K
determines how long the sequence of free-space
pixels should be before rejecting the candidate hit
point. A n example is given in figure 3b.

The metric distance from the robot to a pixel is calculated
whenever that pixel is classified as a hit point according to
the rangefinder. When there is no hit point on a scanline the
rangefinder returns the maximum range, which is another

(a) E xample where N = 4: The pixel with an ’ X ’ has
been classified as a hit point because N pixels behind
it are classified as non-free space pixels.

(b) E xample where K = 2: H it point has not been found because
there is more free space starting from the ’ O ’ pixel. This is because
K pixels behind it are also classified as free-space pixels. Note that

the free-space pixel between the two non-free space pixels is negated
because the next pixel behind it is classified as a non-free space pixel.

F ig. 3: Illustration of the false-positive and false-negative
filters. The figures represent a set of pixels from a scanline,
green pixels are classified as free space and red pixels are
classified as non-free space pixels.

variable parameter. When the hit point is too close to the
position where the robot is, this would make the measured
distance unreliable, the rangefinder returns the minimum
range, which is also a variable parameter.

2) Measuring distance: The rangefinder calculates the
metric distances to each hit point that it can find. The
metric distance d is calculated by using the formula from
Scaramuzza [8]:

d = h tan(  ) (6)

where  is the incidence angle on the mirror and h is the
height in meters from the ground to the effective viewpoint
of the hyperbolic mirror. The metric distance d is calculated
in meters. The incidence angle  can be estimated by a
first order Taylor expansion  ≈  

 when the shape of the
mirror is not well known.  represents the pixel distance
from the hit point to the center of the image,  is a constant
value that depends on the mirror shape and the camera-mirror
distance. The constant  can be estimated by calibrating the
omnicam sensor measurements against a laser range sensor
measurements. The variables  ,  ,  and h are illustrated in
figure 4. In our case, the shape of the mirror is well known;
 = 2 arctan( r

R ).

F ig. 4: Illustration of the location of the mirror, image plane
and ground floor, as used in equation (6).



Pixels which have a difference larger than 1.25m between
the distance estimate of the laser range scanner and the om-
nicam range scanner were not used for training or evaluation.

I V. E X P E R I M E N T A L S E T U P
This section describes the testing environment and the

experiments that are used to test the omnicam rangefinder.
The implementation of the omnicam rangefinder and the
testing of it were done in USA RSim which is a simulation
environment. The omnicam rangefinder was tested for its
accuracy and for its practical use to create a map of an
environment.

A. USARSim
USA RSim is a 3D simulation environment that can sim-

ulate real world environments and situations. This program
is intended as a research tool to study the use of robots
in the real world. Robots in USA RSim can therefore use
simulated realistic tools to complete their tasks. E xperiments
have shown that perception algorithms that are developed
in USA RSim can easily be converted and used for the real
world [2].

B. Accuracy Test
This first experiment compares the measured ranges from

an omnicam against the measured ranges from a laser. The
laser sensor is highly accurate1 and can therefore be used
as a reference measurement. The ranges are collected by
letting the robot drive around in an environment while mea-
suring the distances using both the omnicam and the laser.
Each scanline measurement from the laser gets compared
to the appropriate scanline measurement of the omnicam.
B y subtracting the omnicam measurements from the laser
measurements one can get the differences between them.
These differences can then be plotted in a histogram to show
the omnicam’s accuracy compared to the laser’s accuracy.

C . Map Building Test
The second experiment tests if the omnicam sensor can

actually be used for localization and building maps. The
sensor has to create accurate maps of environments in order
to achieve this. A gain, the laser sensor is used to create a
reference map of the environment. The omnicam then drives
exactly the same route as the laser to create an omnicam map.
The omnicam map is then compared with the reference map
to determine how different the map is.

The map building is done using two different ways:
• Using Deadreckoning with the GroundTruth as the

sensor. This reference setting makes sure that the robot
always knows where it is on the map. This means that
the robot can always localize itself without scanmatch-
ing, therefore the quality of the map fully depends on
the accuracy of the sensor.

• Using Quad Weighted ScanMatching (Q WSM) [11]
with an Inertial Navigation System (INS) as the initial
pose estimate. INS uses the robots acceleration sensors

1 A SIC K L MS 200 has indoors a statistical error < 5 m m

to estimate the current pose. That pose estimate is
checked on consistency with the observations of the
range scanner, which results in a new estimate of the
current pose. This setting is a more realistic setting and
must be used when the robot is venturing into unknown
terrain.

Using Q WSM and INS results in a less accurate map, but
the omnicam needs to be evaluated with this setting in order
to proof that it can be used in a realistic configuration.

D . Environments and robot model
Two different environments are used to test the omnicam

rangefinder. The first one is a maze as shown in figure 5a.
This environment consists of very small corridors, lots of
turns and the hedge has nearly the same color as the floor,
which is covered with grass. The challenge is to correctly
map the small corridors and to make a distinction between
the hedge and the grass. The second environment is a factory
as seen in figure 5b, this environment has relatively wide
corridors, less turns and it contains a number of unique
objects. The challenge in this map is also to detect those
unique objects as obstacles, figure 6 shows a couple of
examples of these obstacles.

(a) The maze environment. (b) The factory environment.

F ig. 5: Environments in USA RSim to train and test the
omnicam rangefinder.

(a) A cabinet. (b) A pipe with liquid metal.

F ig. 6: Some unique objects in the factory environment.

The type of robot that is used to do these experiments is
the OmniP2D X (F igure 7), which is a robot equipped with
a laser scanner and an omnicam sensor. The height of the
omnicam’s effective viewpoint h to the ground is 0.931m.

Before starting the experiments it is important to choose a
maximum range of the algorithm described in section ??. The
maximum range is dependent on the curvature of the mirror
of the OmniP2D X . The maximum range can be estimated
by rewriting the equation (6) and performing several sample
distance measurements by letting a range sensor measure a



F ig. 7: OmniP2D X , with the omnicam sensor high above the
Sick laser range scanner.

Map Nonfreepixels Groupedpixels Probabilitythreshold
Maze 20 2 0.05
Factory 20 2 0.075

TA B L E I: Parameters used in the algorithm

distance in meters and letting the omnicam sensor measure
that same distance in pixels. Having estimated the  the
distance formula can be used to plot the relation between
the pixel distance and the metric distance. F igure 8 shows
this relation and it also shows that the discretization error be-
tween pixels increases hyperbolically. This means that having
an off-by-one-pixel-error misclassification on a distance far
away from the robot can result into a high metric distance
error. Setting the maximum range at 3.8 meters is therefore a
good tradeoff between the maximum range and the accuracy
of the omnicam. The number of scanlines used was 360.

F ig. 8: The relation between the pixel distance and the metric
distance.

V. R E S U LT S

This section deals with the results of the experiments with
the omnicam rangefinder. The results have been obtained
by using the parameters stated in table I. These are the
optimal parameters that have been derived by hand. A t the
time of writing there exists no learning algorithm for finding
the optimal parameters for every situation is applied. The
laser sensor used for these experiments is the SIC K laser
which has a maximum range of 19.8 meters compared to the
omnicam’s maximum range of 3.8 meters. The image reso-
lution for the omnicam images used for these experiments is
1024x768 (R =192 pixels).

(a) Maze: H istogram of the omnicam accuracy

(b) Factory: H istogram of the omnicam accuracy

F ig. 9: The omnicam accuracy compared to the laser accu-
racy measured in both environments

A. Accuracy Results
F igures 9a and 9b shows the results of the accuracy test

of the omnicam rangefinder for respectively the maze and
the factory. The figures show a bigger measurement error is
made for the maze, but also that this error mainly due to the
tail of the distribution. The factory measurements are quite
symmetric whereas the maze measurement are skewed to the
left, as can be seen in the histograms of figure 9. For the maze
measurements the systematic error is nearly zero, while for
the factory measurements the mean of the distribution is a
few centimeters to the right.

The measurements of the factory environment were done
in wide corridors, which means that the factory ’s histogram
is showing the accuracy of the omnicam in a more optimal
situation. The environment did not have a lot of corners
compared to the maze environment which was chosen to
stresstest the omnicam rangefinder.

Table II shows that the omnicam rangefinder has an
average absolute accuracy difference of 8.09cm in the factory
compared to 13.75cm in the maze. Notice that the route
driven with the robot in the factory was shorter then the
route through the maze, but nicely closes a loop.

Map Avg A bsolute D ifference Avg Percentage D ifference
Maze 0.1375m 7.639%
Factory 0.0809m 4.493%

TA B L E II: Table with differences between laser and omni-
cam range measurements



(a) Omnicam sensor fac-
tory map

(b) Laser sensor factory map

F ig. 10: Factory map created with localization on ground
truth

B. Map Building Results

Factory environment: F igure 10a and 10b shows the
results of building a map of the factory environment using an
omnicam sensor and a laser sensor combined with the ground
truth (available in simulation) as localization. Because of its
accuracy the laser created map serves as an indication for
what the ground truth map should look like. Comparing both
maps shows that the omnicam map does not differ that much
from the laser created map. The black dots and lines on the
map represents detected obstacles, the gray color represents
the safe space while the white color represents the free space
detect by the rangefinder. Both gray and white indicates
areas free of obstacles, but grey indicates areas that are well
explored, while white indicates areas that could be further
explored. The main difference by the maps generated with
the omnicam and the laser, is the thickness of the walls. The
omnicam map is not as razorsharp as the map generated with
the laser scanner.

A less obvious difference between both maps is visible
at the bottom of the map, indicated with a red rectangle.
The omnicam map has found a obstacle at that location
while on the laser map only four small dots are visible. The
omnicam map is correct at this situation, there is indeed a
big obstacle (figure 6a) present on this location. The laser
scammer looked right through the cabinet, because no shelf
was present at measurement height of the sensor. A nother
obstacle which had the potential to be difficult to detect, the
pipe with liquid metal from figure 6b, was detected without
problems by both sensors. This pipe is visible on both maps
as the curved upper left wall.

F igure 11 shows the results of the same route using
Q WSM scanmatching with INS. Comparing these maps with
the maps from figure 10 shows that the map from figure 11b
is more accurate than the map from figure 11a. These maps
show that localization with the omnicam sensor performs
worse than localization with a laser sensor for this situation.

The reason for this is that if the corridors are relatively

(a) Omnicam sensor factory
map

(b) Laser sensor factory map

F ig. 11: Factory map created with Q WSM and INS

wide, the omnicam with its limited range of 3.8 meters
sees not that many features. The walls on other side of the
crossing are out of range. When the robot is turning on a a
location with sparse features, an error in the precise value
of this rotation is easily made. In figure 11a small rotation
errors are made on multiple locations.

This rotational error could be corrected by post-
processing, when loop closure is detected. Note that this are
initial results, the used scanmatching algorithms were devel-
oped and optimized for the laser range sensor measurements.
A lthough the applied scanmatching algorithms do not have
that many parameters, no sensitivity study is performed to
study the optimal parameter values for the omnicam range
measurements.

Maze environment: F igure 12 shows the results using
localization on the ground truth to build a map of the maze.
Because of the turns in the maze the SIC K laser loses its
advantage to measure distances up to 20 meters. The robot
started in the middle of the maze and made its way to the
exit of it. A part from the noise on the path both maps look
quite similar to each other. The laser could sometimes look
through the hedge because of the very small holes in the
hedge. The laser would then have a preview on the path on
the other side of the hedge. This could be a benefit, but it can
also create some distortions like the area in the upper part of
its map. The omnicam map does not have those problems.

F igure 13 shows the created maps of the maze with
Q WSM and INS. The localization for the laser sensor went
wrong on this map. This can have several reasons. F irstly,
the measurements right through hedges which creates outliers
that can breakdown the scanmatcher. Further, the corridors on
the outer edge are quite long. The laser range measurements
could not detect the end of the corridor, which makes
it difficult to notice progress in movement through such
corridor. The omnicam has an even shorter range and can also
not see the end of the corridor, but detects more structure in
the walls which can be used to detect progress in movement.
The omnicam map looks good, the map only has a small



(a) Omnicam sensor maze map

(b) Laser sensor maze map

F ig. 12: Maze map created localization on ground truth

rotational error when compared with the maps from figure
12.

The maze proofs that the omnicam combined with local-
ization can work in an environment with narrow corridors,
lots of turns and a wall with nearly the same color as the
floor.

V I. D IS C U SSI O N A N D F U T U R E W O R K

Accuracy
The difference in accuracy between an omnicam and

a laser lies in the detection of object boundaries. Using
color distinction to detect these boundaries does not provide
perfect results. Using color detection can sometimes get a
pixel misclassified as a hit point. These misclassifications
are fatal for long distance measurements because of the
hyperbolic shape of the mirror of the omnicam, as indicated
in figure 8.

The accuracy tests also shows that the omnicam measures
longer distances slightly further away than they in fact are.
This is a good way to estimate the location of obstacles,
as shown in the maps created by omnicam rangefinder. The
first measurements on a large distance are initially drawn a
bit away from the free space that could become a path for the
robot. When the robot gets near that location, more accurate
measurements indicate the precise boundaries of the path.

(a) Omnicam sensor maze map

(b) Laser sensor maze map

F ig. 13: Maze map created with Q WSM and INS

F igure 8 shows that the metric distance error between those
pixels on such a small distance is very small.

Future work for the accuracy improvement using color
detection is trying other color spaces. This is also useful to
let the omnicam rangefinder work in other areas where the
R G B color space might fail. A fast way to increase accuracy
is to use a higher image resolution, however higher resolution
images need more time to process.

Thick lines

This next problem of the omnicam is a result of its
inaccuracy. The omnicam draws thick lines because the
distance measurements taken from different angles are not
relative to each other. This leads into multiple obstacle points
on the map that are close to each other instead of points that
overlap with each other like with the accurate laser sensor.
These inaccuracies therefore results into a thick line on the
map. This problem needs to be solved because navigating
through narrow corridors is undesirable if the thick lines are
drawn half on the pathway.

The solution for this problem is creating a function that
can smooth thick lines. The function would first need to
identify the thick lines on the map so it can turn those thick
lines into thin lines by taking the average of its points.



Automatic parameter learning
The experiments were set up by using parameters that were

derived by hand. Future work would therefore include an
automatic parameter learning algorithm. A n approach would
be to use the training set of the histogram to train the
rangefinder parameters.

F urther Improvements
The omnicam rangefinder does not work on a slope or

other height differences. This is because the pixel to meters
formula does not incorporate height differences, this can be
seen in figure 4. Further improvements lies in the theory of
detecting free space based on color detection. The free-space
detection does not work well when the walls or objects all
have the same color. This situation might happen literally
but having a dark room can also create this situation. The
free-space detector might also break down when it has to deal
with different lighting conditions, a solution for this problem
might be to adapt the color histogram to a HSV color space
because this color space can remove color intensity. Future
work should also include a method that can detect when the
floor color changes.

V I I. C O N C L U SI O N
Based on the results found in section 5 it can be concluded

that an omnidirectional camera can be used efficiently as a
rangefinder. The omnicam rangefinder can have an accuracy
of 8.09cm compared to the laser sensor. The results also
shows that the omnicam rangefinder can use scanmatching
algorithms that were optimized for a laser sensor to create
accurate maps of an environment even though it does not
possess the precise accuracy of a laser sensor. The omni-
directional camera can also detect obstacles, like an empty
cabinet (figure 6a), that a laser sensor can not detect. The
omnicam rangefinder is based on color detection and is
therefore unusable when the obstacles have exactly the same
color as the floor.

This research can lead to the development of small and
flying robots that can use the lightweight, energy efficient
and inexpensive omnidirectional camera to quickly create a
map of an environment. These robots need to work together
with a large robot equipped with a laser sensor to provide a
color histogram. This color histogram can be learned by the
large robot and distributed wirelessly to the small and flying
robots.
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A USARSim-based Framework for the Development of Robotic Games:
An Intruder-pursuit Example

Paul Ng, Damjan M iklic, and Rafael F ierro

Abstract— This paper presents an example of using USAR-
Sim as a testbed for developing and experimenting with Robotic
Games. We use the term Robotic Games to refer to a variety of
scenarios in which autonomous and remotely controlled robots
interact with each other and their environment, according to a
predefined set of rules. Such scenarios can be used in robotics
education as well as in scientific research. In this work we
introduce a framework for facilitating the development and
testing of different game algorithms. Our framework is based
on the USARSim simulator, which provides a rich, realistic and
extensible environment for robot interaction. To demonstrate
our approach, we describe an implementation of a pursuit-
evasion game, where a group of pursuers needs to locate and
capture intruders entering the designated game area.

I. I N T R O D U C T I O N

A s technology progresses, the capabilities of robots and
their usefulness in everyday life is expanding. Industrial
robots are already being used extensively, particularly in the
automotive industry. A n emerging class of robotics is service
robots [1]. Service robots can range from small personal
devices for vacuum cleaning to large robots for construction
or demolition. A s robots are finding their way into more
and more areas of everyday life, human-robot interaction is
becoming an increasingly important topic. In order to be
efficient and productive, humans will have to learn to interact
and work with these machines. University engineering curric-
ula have already begun to incorporate robotics as a practical
application of theory. A dditional efforts have been made to
introduce younger students to the problems and challenges of
controls and robotics through practical experiments, educa-
tional programs and robotic games. We use the term robotic
games to refer to a variety of scenarios in which autonomous
and remotely controlled robots interact with each other and
their environment, according to a predefined set of rules.
E xamples of robotic games include RoboCup soccer [2],
RoboF lag [3] and Marco Polo [4]. In addition to their value
as an educational tool, robotic games are useful as tools
for studying topics such as human-robot interaction, motion
planning and cooperative control.

Because the complexity and cost of operating a real multi-
robot system can be a limiting factor when designing new
scenarios and games, a realistic simulation environment can
be an invaluable development tool. A simulation environment
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should provide realistic 3D rendering and physical simula-
tion and good correspondence with real-world experiments.
Furthermore, it should be extensible, portable to various
operating systems and enable a transparent transition from
simulation to real robot hardware. USA RSim is an open-
source multi-robot simulator that meets all of the above
requirements [5]. It has successfully been used for testing
and comparison of control algorithms [6], validation of new
robot designs [7] and studying human-robot interaction [8].
A uthors in [9] show that simulated robots with realistically
modeled dimensions and mass in USA RSim exhibit a per-
formance similar to that of real robots. Using the simulator
in combination with the Player robot device server enables
transparent porting of control programs to robot hardware
[10].

In this paper, we extend the work described in [4] to
complement the Robotic Games Framework with a realistic
and extensible 3D simulator. A s our motivating example, we
present a simplified version of the pursuit-evasion problem
described in [11]. In an environment realistically modeled
after the Centennial Engineering Center at the University
of New Mexico (U N M), a group of robots must detect and
intercept intruders entering the designated surveillance area.

The rest of the paper is organized as follows. In Section
II we describe the proposed Robotic Games Framework.
Details of the intruder-pursuit scenario that we are con-
sidering are given in Section III. Simulation results from
the USA RSim environment are presented in Section I V .
In Section V we give concluding remarks and outline our
directions for future work.

I I. T H E R O B O T I C G A M E S F R A M E W O R K

The Robotic Games Framework that we are proposing
is a software architecture aimed at facilitating the design,
implementation and testing of robotic games and research
scenarios. Our goal is to design the system components nec-
essary for game scenario creation and define the interfaces
between them. The envisioned framework is based on the
work presented in [4].

The main components of the framework and general
system architecture are shown in F igure 1. The three main
modules are the robot device module, the user interface
module and the game manager module.

The robot device module encapsulates interfaces to the
robotic platforms or ”players”. In our previous work, these
platforms were E volution Robotics’ Scorpion robots and the
control algorithms were implemented using the E RSP SD K .
To achieve platform and vendor independence, and enable



F ig. 1. Main components of the Robotic Games framework.

seamless integration with the USA RSim simulation engine,
we are basing our new development on the Player robot
server [12]. Player is an open-source robot programming
framework that has become a de facto standard in the
academic community. It features a flexible and extensible
architecture, supports a wide variety of robotic hardware,
and has interfaces to several robot simulators. Player is also
supported by an actively contributing international developer
community. B y using Player to implement the robot device
module, we hide all the robot hardware details from the
rest of our system. In fact, we can easily switch between
simulation and real hardware, without making any changes
to the other modules.

The user interface module enables human users to interact
with the robots. It provides player input through joysticks,
gamepads or other devices envisioned by the game designer.
A n interesting user input method is through hand gesture
recognition, which can be implemented using the HandVu
library. The user interface module also provides gameplay
visualization for human players. Visualization includes a
simple 2D representation of the environment and relevant
game statistics. A possible extension, based on the USA R-
Sim simulator, would include a full 3D view of the game
environment. E xcept for players, the user interface module
also provides referees with visualization and control over

the game flow. The module is based on the Q t Application
Framework, an open-source, cross-platform C ++ application
and user interface framework.

The game manager module loads and configures game
scenarios and establishes connections between user inter-
faces and robot players. It communicates with other system
components through a custom message-based protocol built
on top of the standard U DP/IP and T CP/IP networking
protocols. In order to interact with game implementations,
the game manager module requires that every game support
at least the following messages:

ž Load Game
ž Start Game
ž Stop Game
ž Pause Game
ž Query Status

A t the beginning of the game, the game manager module
loads the appropriate game. The robot device module es-
tablishes connections to the robots that are going to take
part in the game and performs any necessary initialization
procedures. A fter the game has been loaded, user interface
clients can send requests to the game manager module
in order to get connections to the robots. If the request
is approved by the game manager module, the client can
establish a direct connection to the robot through the robot
device module. Once the necessary conditions have been met,
the game manager module can start the game. To minimize
communication overhead, human players maintain a direct
connection to their robotic counterparts during the course of
the game.

I I I. T H E I N T R U D E R-P U R S U I T G A M E

The framework described in the previous section is being
implemented, based on the existing system described in
[4]. Currently, we have developed prototypes of the game
manager module and robot device modules and tested them
in a simple, fully automated (without human interaction)
pursuit-evasion scenario described in the following section.
A t this point these modules are not yet integrated with the
existing user interface module.

A. G ame Description
The game we have implemented is a simple intruder

detection and capture scenario. Three mobile robots equipped
with range sensors are designated as pursuers. They are
initially placed within a bounded space called the surveil-
lance area. The two robots playing the role of intruders start
the game outside of the surveillance area. A t random time
intervals, the intruders enter the surveillance area moving
along straight line paths. The pursuers are required to make
two independent intruder detections before being dispatched
to capture. A n intruder is considered to be captured when a
pursuer has intercepted its path at a distance less than one
meter. The intercepting pursuer can then continue monitoring
the surveillance area.

To make game simulations more realistic, we have built an
accurate model of the U N M Centennial Engineering Center



F ig. 2. Photo of the Centennial Engineering Center courtyard at U N M.

F ig. 3. USA RSim model of the Centennial Engineering Center courtyard.

using the Unreal Editor 2.5. On F igures 2 and 3, a photo
taken at the actual building is shown above a snapshot of
the model. In our scenario, the surveillance area is restricted
to the space between the landscape areas in the courtyard.
The floor plan of the surveillance area is shown in F igure 4.

B. Detection and C apture Algorithms

Vehicle models used in the simulations are MobileRobots’
Pioneer2-AT as pursuers and iRobot’s AT RV-Jr as intruders.
Detailed mechanical and physical models of both platforms
are available in the USA RSim distribution. For the purposes
of our control algorithms, pursuer vehicle kinematics can be
described by the unicycle model:

_xp = vp cos  p ;
_yp = vp sin  p ; (1)
_ p = ! p ;

where pursuer input is linear and rotational velocity, up =
[vp ! p ]T . The kinematic model of the intruders is given by

_x i = v i cos  i (0);
_y i = v i sin  i (0); (2)

F ig. 4. Surveillance area. Pursuer initial positions are denoted with blue
circles.

reflecting the fact that intruder motion is restricted to straight
lines.

Pursuers are relying on laser range finders for intruder
detection. Generally speaking, video cameras would be a
better option; however, the Player robot server currently
lacks a driver for accessing video from USA RSim. To be
able to detect intruders using only laser range finders, we
must assume that the pursuers have full information about
their static environment and about each other. Under this
assumption, each robot provides a pair of coordinates (x i ; y i )
for every intruder detection made by its laser scanner. B y
taking into account all the detections made by all robots we
can write

Y = X
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6666
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...

...

3

7777
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; (3)

where Y = [y1 : : : y i : : :]T . Then, by linear least squares
fitting, we can estimate the slope and intercept of the intruder
path as  

a
b

½
=

 
X T X

Ð  1
X T Y : (4)

In our software implementation, we used the C G A L [13]
C ++ libraries for least squares fitting.

Once the intruder path has been estimated from two
independent sets of readings by two different robots, a
pursuer is dispatched for interception. To find the capture
point, we search for a point on the intruder’s estimated path
for which the equation

dp

¼vp
= k

d i

¼v i
; 0 < k  1 (5)

holds. Maximum velocities of the intruder and pursuer are
denoted by ¼vp and ¼v i . In other words, we are looking for a
point on the intruder’s path which can be reached 1=k times
faster by the pursuer than the intruder. Equation 5 can be
solved from geometric conditions depicted in F igure 5. We



F ig. 5. Intruder interception.

F ig. 6. Communication diagram between program components.

are using a feedback linearization [14] to drive the pursuer
to the capture point. From the kinematic model (2), robot
inputs are computed as

 
vp
! p

½
=

 
cos(  p ) sin(  p )
 si n (  p )

d
cos(  p )

d

½  
xc
yc

½
; (6)

where xc and yc denote the desired capture point. The
quantity d is the distance from the robot’s center of mass to
the controlled off-axis point, introduced to avoid singularities
in the solution.

C . Software Implementation
The software implementation of the game can be broken

down into three classes, corresponding to the game manager
module and robot device module from F igure 1. A n object
of the G ameManager class runs the game and interacts
with Intruder and Pursuer objects as depicted in the U M L
communication diagram [15] in F igure 6.

Intruder and Pursuer behavior can be modeled by two
parallel finite state machines, as depicted in figure 7. A t
the start of the game, G ameManager object connects to
all the robots and initializes pursuers to the ” No Intruder”
state and intruders to the ”Idle” state. It then continuously
polls Pursuer objects for intruder detections. A t random
time intervals it activates one of the intruders. A fter the
pursuers have collected two independent intruder sightings, it

F ig. 7. F inite state machine model of intruder and pursuer behavior.

Velocites and Coefficents
Pursuer Velocity 0.25 m/s
Intruder Velocity 0.1 m/s
k 0.3
Laser Scanning Range 10 Degrees Centered at 0

TA B L E I
PA R A M E T E R S O F T H E C A P T U R E A L G O R I T H M

dispatches the closest pursuer to capture. When the pursuer
approaches the intruder to one meter intercepting its path,
the G ameManager switches intruder state to ” Captured” and
resets the pursuer to ” Detection” mode. A fter all intruders
have been captured, the G ameManager ends the game.

I V. SI M U L A T I O N S I N U S A RSI M

The following simulation is implemented on an A pple
Macbook Pro 3.1 running Ubuntu 9.04. Unreal Tournament
2004 is installed with the 3369.1 L inux Patch applied and
USA RSim version 3.37 is used. The controller is imple-
mented through Player robot server Subversion revision 7945
and the USA RSim Player drivers are downloaded from
Stefan Stiene [16].

The experiment is set up as an intruder-pursuit game.
There are three Pioneer2-AT robots (P2AT) as pursuers, each
equipped with a Sick Laser Scanner L MS200. The intruders
are represented by the two iRobot AT RV-Jr robots (AT RV Jr).
Initial positions are denoted by circles in F igure 8 and are
presented in tabular form in Table II. The experiment starts
when the G ameManager initializes each robot. The velocities
and coefficients for the capture algorithms are shown in Table
I.

The pursuers begin by recording the initial ranges detected
by their laser scanner. The environment ranges could be a
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F ig. 8. E xperiment data.

Name X Y Theta
Pursuer 1 -7.00 -20.00 0:00 Ž

Pursuer 2 3.00 -22.00 180:00 Ž

Pursuer 3 -3.00 -26.00 0:00 Ž

Intruder 1 -7.50 -16.00  60:00 Ž

Intruder 2 -1.30 -28.40 105:00 Ž

TA B L E II
P U R S U E R A N D I N T R U D E R S T A R T I N G P O S I T I O N S A N D Y A W

detection of a wall or another pursuer, but the environment
is assumed to be static. A fter the environment snapshot has
been recorded, pursuers begin scanning for intruders.

A fter the pursuers have finished recording their environ-
ments, the G ameManager tells one intruder to begin its path.
Since we restrict intruder motion to following a straight line,
the robot is initially placed on its path and rotated to the
correct bearing. In F igure 9, an intruder moves into the
laser scanning range of a pursuer, the laser readings are
recorded and positive detection status is sent back to the
G ameManager. A t this point the G ameManager interpolates
a capture point. This capture point is sent to the third pursuer
who is then dispatched to capture the intruder. A successful
capture is shown in F igure 10.

F ig. 9. The first intruder is detected.

F ig. 10. The first intruder is intercepted and captured.

F ig. 11. Both intruders are captured.

Before the next intruder is activated, the G ameManager
repositions all pursuers to adequately scan the environment
and resets their laser scans of the static environment. The
G ameManager repeatedly repositions and resets the pursuers
until all the intruders are captured. In our specific game, the
capture of the second intruder denotes the end of the game
as shown in F igure 11.

Data recorded during the simulation run is plotted in
F igure 8. The pursuers and intruders are prompted by the
G ameManager to log their location and intruder detection
data to file. The files are compiled together later in M AT L A B
for the plot. Intruder paths are shown in red and pursuer paths
in blue. Initial positions are denoted by circles and final
position by crosses. Laser detection data and interpolated
pursuer paths are plotted green.

We are currently looking at ways to obtain video camera
images from the simulated robots. A t the time of this writing,
the USA RSim team has developed an image server capable
of recording images during the simulation. It seems like a
camera driver for Player could be implemented based on
the USA RSim image server and this could be furthered as
a video input which allows us to distinguish simultaneous
intruders. A lso, since the simulation is centralized, the cur-
rent experiment is limited by the machine’s computational



performance. We have noticed that the experiments could, at
most, have twelve robots on the field. The K arma Engine fails
to correctly render the thirteenth robot and the experiment
will not begin.

V. C O N C L U SI O N S A N D F U T U R E W O R K

We have presented a framework for developing and test-
ing different robotic scenarios that we call Robotic Games
Framework. These scenarios have applicability to education
as well as research. The described framework is based on
the Player robot server and USA RSim simulator to enable
fast prototyping and testing with a smooth transition from
simulation to real-world experiments. Software flexibility
and re-use are promoted by decoupling the framework into
three distinct modules.

We have described a prototype implementation of a sim-
ple, fully automated intruder-pursuit game, based on the pro-
posed framework. Prototypes of the game manager module
and robot device module have been implemented as C ++
objects. We have tested the game scenario with five robots
in USA RSim simulations within a realistically modeled en-
vironment. Simulations have enabled us to test, improve and
validate our code much faster and more conveniently than
would have been possible if experimenting on real robotic
platforms.

The work presented in this paper is just a starting point
for further research. F irst of all, implementing the USA RSim
image server to work with the camera drivers in Player would
greatly help us introduce computer vision. Using cameras
instead of (or in combination with) laser range finders would
enable more robust intruder detection as well as simultaneous
detection of multiple intruders. A lso, to improve scalability,
the framework could be distributed among several computers;
dedicating the USA RSim server, Player robot server, and
each robot device to their own respective machine.

Results from [17] could be applied to the scenario, pro-
viding certain optimality guarantees to sensor area coverage.
The intruder’s linear path assumption might be appropriate
in several applications. Dropping the restrictive assumptions
on intruder paths would open up challenging problems of
trajectory prediction and the possibility of including human
players for intruder control. The game manager module
and the robot device module would integrate with the user
interface module as described in [4].

F inally, at the time of this writing, the framework is still
under development. A dding recursive execution of different
game scenarios and robot configurations can enable batch
mode to test the framework ’s robustness. These game sce-
narios could include the Marco Polo game [18], L ion and
Man game [19] and others. The framework currently has a
simple error handling algorithm, which only checks if the
distance between the pursuer and intruder increases during
a pursuit. A more elaborate error handling can identify a
more comprehensive list of errors and the game manager
module would act accordingly. The experiments should also
be conducted using real-world robots to verify and validate
the simulation results.
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Abstract—MATLAB® and Simulink®, useful tools for 

modeling and simulation of a wide variety of dynamic systems, 
lack a high quality integrated visualization environment with 
realistic rendering of real-world effects. We describe a 
methodology to interface these tools with USARSim and Unreal 
Tournament® to create an easy to use simulator with the ability 
to represent high-fidelity (vehicle) dynamic models, provide 
feature-rich interactive graphics capabilities as well as support 
data passing for a variety of sensor types. Our approach takes a 
preexisting physical simulator with all the physics and 
dynamics modeled (something MATLAB®/ Simulink® excels 
at) and adding a world for entities in the simulator to explore 
(something USARSim and Unreal Tournament® work well for). 
This results in an integrated simulator that is straightforward 
to implement. 

I. INTRODUCTION 
N this paper we combine MATLAB®, Simulink®, 
USARSim, and Unreal Tournament® into a simulation 
and visualization tool for the Samarai project at Lockheed 

Martin Advanced Technology Laboratories. Samarai [9] is a 
nano-class (an unmanned aerial vehicles (UAV) 
approximately no larger than 10 cm) monowing UAV 
designed to be operated manually or autonomously and 
controlled by the modulation of a trailing edge wing flap and 
the speed of rotation. These vehicles exhibit complicated 
dynamic behavior due to the interaction of rotary wing aero- 
dynamics with mechanisms for generation of forces and 
moments at very small scales. Creating a high-fidelity 
simulator for this system involves modeling complex 
aerodynamic effects and capturing multitudes of parameters 
that specify various physical properties of the vehicle. The 
simulator and a significant portion of the operational code 
were written in MATLAB®/Simulink®, and are being 
updated as development continues.  

The other half of the simulator was written using 
USARSim [7] and Unreal Tournament® (UT) [8] to test an 
optical flow algorithm that estimates ground speed, vehicle 
attitude rates, and provides collision alerts. A user can 
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interface with the simulator via a joystick and explore the 
environment while collecting data for the algorithm in real 
time. USARSim was chosen for the image quality  produced 
by UT, and because it is well documented, open source 
software with an active development community. 

MATLAB® and Simulink®, both produced by The 
Mathworks™ [6], are a commonly available development 
platform for many different types of systems. UT, produced 
by Epic Games™, is a computer game with a high quality 
graphics engine and a world builder, allowing the user to 
design any sort of environment within the Unreal Editor®. 
However, UT is proprietary and was not designed with the 
research community in mind. In order to access its features, 
one must use USARSim, currently maintained by the 
National Institute of Standards and Technology (NIST), a 
system that integrates with UT to allow two way 
communications between the agents or bots, acting within 
UT and the research software.   

The two portions of the Samarai simulation are 
individually useful and become even more so when 
combined. The collision detection becomes more accurate 
when the collected data is based on the current physical 
abilities of the prototype, while the physical simulator gains 
through ease of error checking. Although data on how well 
Samarai is following its commands may be easily produced 
in graph form, it is more intuitive to watch it complete a 
maneuver. The combination of MATLAB®/Simulink® with 
UT and USARSim allows data to be viewed in any manner at 
any time, providing flexibility and control to the researcher.  

II. RELATED WORK 
There have been a number of prior interfaces between 

USARSim and other simulation programs, such as the 
Mobility Open Architecture Simulation and Tools 
(MOAST), Pyro©, and Player. MOAST, created at NIST to 
complement USARSim, is a four dimensional environment 
for running and analyzing multi-agent simulations. It allows 
the user to test under specified conditions and test algorithms 
prior to real world deployment [1]. Like MOAST, Pyro© is 
also designed to abstract away the hardware to allow the user 
to interact with various types of robots without having to 
worry about the peculiarities of the various platforms. It 
supports a variety of commercially available robots and can 
take algorithms written for simulation and translate them into 
the appropriate format [5]. Player, a robot control program, 
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with its simulator, Stage, is another program with a number 
of robots and components pre-built and ready for use in 
testing. Programs may be written in any language, and there 
is no set structure. This allows the user a great deal of 
freedom in designing simulations [2]. 

Although The Mathworks™ offers the Virtual Reality 
(VR) toolbox, it is not suitable for robot simulation 
applications due to its poor image quality and the lack of 
available feedback. As may be seen in Figure 1, UT presents 
a more realistic environment, which aids work with 
algorithms such as optical flow, as well as providing a more 
interesting experience for the user. Unlike USARSim, which 
keeps track of the objects in the environment and can 
provide simulated sensor readings, VR toolbox is only as a 
visualizer, and is a passive tool.  

 

   
Fig. 1. Comparison of scenes from UT (a) and the VR toolbox (b). 

 
In many prior works that used high quality visualizations, 

the vehicles navigating in the environment were represented 
by very simplistic models that may not adequately capture 
the vehicle’s full behavior at a sufficient level of fidelity. Our 
system offers a high quality interactive visualization of 
entities/environments driven by high fidelity models of the 
vehicles operating in these environments—all in the same 
system.  

In the UAV context, full vehicle dynamics (including 
aerodynamic and propulsion data obtained from wind tunnel 
experiments) are easily modeled in MATLAB®/Simulink®. 
When this is connected to USARSim/UT, it results in a truly 
powerful design, training and visualization tool for a variety 
of applications. 

Another advantage of the MATLAB® interface is the ease 
with which preexisting systems may be integrated with the 
USARSim environment. Code does not need to be 

reformatted or otherwise altered – a few lines added, an 
inexpensive game, a free download and the system is 
operational and ready to run. 

Given the advantages, we expect that many teams 
currently using either Simulink® or MATLAB® will decide 
that our approach will allow them to create interactive 
visualizations, with realistic underlying vehicle dynamics, 
quickly and easily. 

III. IMPLEMENTATION AND ARCHITECTURE 
The work presented here was done using MATLAB® 

2007b, and requires The Mathworks’™ Instrument Control 
Toolbox (ICT), Unreal Tournament® 2004 and the 
corresponding version of USARSim. The Samarai simulation 
which has been integrated with USARSim and UT is written 
in Simulink®, however interfaces for both Simulink® and 
MATLAB® have been included in this paper, as it is thought 
that they are equally useful.  

MATLAB® and Simulink®, while complementary and 
easily integrated with each other, require different coding 
structures. Accordingly, the following discussion has been 
broken down into two main sections, with a short additional 
portion that describes how to create a hybrid of all three.  

To aid the following explanation, we assume a scenario in 
which a user wishes to send a drive command to the bot that 
will result in forward motion. As depicted in Figure 2, this is 
done by generating a velocity command, formatting that 
command into a form accepted by USARSim, sending the 
command, and then receiving the results, as shown by an 
updated visualization and sensor data returned to the user. 
While simplistic, the block diagram is an accurate 
representation of the steps involved in the integrated system.  
 

 
Fig. 2. Block diagram of scenario full system path. 

 
The simulation in Figure 2 refers to the entire system 

within MATLAB® and Simulink® which represents the 
vehicle dynamics and input responses, with the exception of 
the portion that processes the commands to send to 
USARSim/UT. As mentioned in the introduction, it is a 
highly complex and project specific model and is outside the 
scope of this paper. The processing of the commands by 
MATLAB® or Simulink®, as well as the method of sending 
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the data to USARSim/UT is discussed in the next few 
sections.  

The visualization updates as well as the collection of the 
sensor data are both automatically performed by 
USARSim/UT. For instructions on accessing various types 
of sensor data, see the section on sensors in [10]. Any 
sensors attached to the bot in USARSim will automatically 
pass back information, which may be collected using the 
“fscanf” command on the TCPIP connection, as shown in the 
Checking For Message Data section below. For the purpose 
of the Samarai project the data returned to the simulator is 
solely images produced by the internal UT “camera” rather 
than the more usual range or odometry information. As such, 
this data is passed to MATLAB® and Simulink® through 
different channels. The USARSim project offers an image 
server to collect and return the data to the user, but in its 
current form it does not interface as anticipated with 
MATLAB®/Simulink®. While a rudimentary method of 
collecting and sending the images has been implemented, the 
final version is still in progress and will be shared when 
complete.  

A. MATLAB® to USARSim/UT Interface 
The MATLAB® interface is straight forward. First, one 

creates a TCPIP connection to the proper port, and sets the 
terminator to carriage return / line feed. Because using other 
terminators will cause message parsing to fail, it is 
imperative in this scheme to either set the type in the script 
(recommended) or with the dialog box produced by the 
inspect(connectionName) command. 

The standard method of putting variables into a print 
statement does not work with this interface. Commands to 
the bot, such as how fast to drive, are sent by “printing” to 
the TCPIP connection. However, when conversion specifiers 
and variables are used, it is printed as is, and cannot be 
properly parsed. Instead, the commands must be assembled 
as a string, with each variable converted to string form and 
concatenated in the correct order. An example of the 
required formatting may be found in the “Commanding the 
Bot” section of the sample code.  
 
SAMPLE CODE:  
SETTING UP CONNECTION 
Connection2UT = tcpip('localhost', 3000) 
 
SETTING THE PROPER TERMINATOR 
set(Connection2UT, 'Terminator', 
{'CR/LF','CR/LF'}); 
 
OPENING A CONNECTION 
fopen(Connection2UT);  
 
 
CHECKING FOR MESSAGES OR DATA 
fscanf(Connection2UT); 
or 
ConStat = get(Connection2UT,'Status'); 

 
INSTANTIATING A BOT 
fprintf(Connection2UT,'INIT {ClassName 
USARBot.bot_Type}{Location 0,-50,-
20}{Name bot_Name }'); 
 
COMMANDING THE BOT 
s1 = 'Drive {Name bot_Name} 
{LinearVelocity '; 
s2 = int2str(variable1); 
s3 = '}{LateralVelocity '; 
s4 = int2str(variable2); 
s5 = '}{AltitudeVelocity '; 
s6 = int2str(variable3); 
s7 = '}{RotationalVelocity '; 
s8 = int2str(variable4); 
s9 = '}';  
  
CommandString = 
[s1,s2,s3,s4,s5,s6,s7,s8,s9]; 
fprintf(Connection2UT,CommandString) 

B. Simulink® to USARSim/UT Interface 
There is no Simulink® block to connect to USARSim, so 

an S-function must be used in its place. S-functions provide a 
way to embed a script inside a Simulink® block and are used 
where the functionality provided by the usual block diagrams 
are either inadequate or would be too time-consuming to 
implement. The script may appear complex, but by following 
several rules outlined at [11], the distinctive syntax becomes 
familiar. S-functions can be written in almost any language, 
but it was found that the level 2 m-file type is the easiest to 
use, as it is written in native MATLAB® script and can use 
the built-in editor. It also gives the user control over the type 
and dimensionality of the inputs and outputs. The code that 
goes within the S-function is identical to the MATLAB® 
interface, however due to the iterative nature of Simulink®, 
it has a few extra peculiarities.  

Ordinarily, Simulink® will reset all variables inside a 
block each time it is called. This will result in the simulation 
losing track of where the messages are supposed to go, even 
though the connection is still open, thus, the connection 
variable must be set to “persistent.” Similarly, it is important 
to name the bot and to use that name when sending 
commands, otherwise commands will not be paired to the 
correct entity.  

To ensure that each bot is only instantiated once, it is 
necessary to set a flag to be checked by an IF statement 
within the S-function. The “Stop Instantiating” flag should 
be set after the initial iteration to prevent any more 
instantatiation of bots (in one test, it was observed that 
neglecting this step resulted in almost instantaneous creation 
of 8 bots, which overloaded the system and caused it to 
crash!).  

The default update rate of Simulink® is faster than UT 
can handle, and every message sent will be stored in a queue, 
resulting in a lag of a few minutes between a user’s 
command and its execution. This may be resolved by setting 
the simulator step size to an appropriate number in the 



  

Simulink® configuration parameters or, in the case of the 
drive command, by down-sampling the velocities being 
generated by the controller to produced real-time execution 
and visualization. 

C. MATLAB®/Simulink® to USARSim/UT Interface 
Linking Simulink® and MATLAB® for simulation 

purposes is identical to linking them normally. The two 
options are to use the “to workspace” block or the “assignin” 
command to get the data into memory where it can be 
generally accessed, gathered up by MATLAB® and then 
dealt with in the standard MATLAB® manner.  

D. Logging Data in USARSim to Aid Debugging 
While the setup of USARSim and its attachment to UT is 

not within the scope of this paper, there is one step which 
can be useful for debugging the interface with MATLAB®/ 
Simulink®. When creating the batch file to start UT, include 
the line  
 
-log=usar_server.log 
 
that will produce a real time log of messages received and 
actions taken, such as that shown in Figure 3.  
 
SAMPLE BATCH FILE CODE:  
Start C:\UT2004\System\ut2004 
DMNAV2?game=USARBot.USARDeathmatch? 
spectatoronly=1?TimeLimit=0?quickstart=t
rue -ini=usarsim.ini 
-log=usar_server.log 
 

 
Fig. 3.  UT Runtime Log. 

 
For more details on how to set up a batch file and why this 

is useful, see the section on running the simulator in the 
USARSim manual [10].  

If a command has been properly received and parsed it 
will be shown in the log (INIT {ClassName..), followed by 
the program acknowledging what sort of command it was 
(commandType: INIT) and then that is has been received 
(InitRecieved), as shown in the first three lines of Figure 3. If 
the log does not show this, check to make sure the 
terminators have been properly set and that the syntax of the 
command is exactly, space by space, that of the examples in 
the USARSim manual [10].  

E. Matlab to Image Server Interface 
USARSim does not currently include a camera-type 

sensor which can return data for manipulation, instead, 
images must be collected using an image sever which 
connects directly to UT and USARSim.   Carnegie Mellon’s 
Intelligent Software Agents laboratory has released a user 
friendly image server, UPIS, which may be downloaded at 
[12]. Unlike prior image servers, UPIS is run from the batch 
file, and can be fully incorporated into the USARSim side of 
the system, simplifying system start-up and runs.    
 
SAMPLE BATCH FILE CODE:  
upis.exe -l 
"C:\ut2004\System\ut2004.exe" "DM-
NAV2?spectatoronly=1?game=USARBot.USARDe
athMatch?TimeLimit=0?quickstart=true -
ini=usarsim.ini" 
 

UPIS is capable of sending images of varying quality; for 
more information on how these are set in the batch file, see 
the interface description portion of [12].   

While the connection between MATLAB® and UPIS is 
also conducted via sockets, unlike the previous connection 
this one uses java sockets to access the data stream that 
would otherwise overload the TCIP protocol.    

MATLAB® allows a form of java to be used within the 
m-files, and to be interspersed with the MATLAB® code – 
however it is not standard java, but rather a sort of hybrid of 
MATLAB® and java syntax and commands that is not 
terribly intuitive. For more information, see the 
documentation in [13].  

MATLAB® does not recognize the primitive data type 
required for the java command “readBytes”, forcing the use 
of “readByte” in its place.   This makes real time integrated 
use of the image server impossible for some applications, as 
approximately 30 seconds are required to read in an image. 
As a result, an alternate method of collecting image data for 
immediate use in MATLAB® has been developed, and will 
be referred to as the Fast Unintegrated Image Collection 
(FUIC), as opposed to the Image Server, which refers to the 
integration with UPIS. FUIC takes a partial screen shot [14] 
bounded by coordinates chosen by the user. As such, the UT 
must always be open, on top and remain in the same place 
during the entire run.    

 
IMAGE SERVER SAMPLE CODE:  
ACCESSING JAVA IN MATLAB® 
import java.net.Socket 
import java.io.* 
 
SETTING UP CONNECTION 
input_socket = Socket('localhost', 5003); 
 
RECEIVING DATA 
input_stream = input_socket.getInputStream; 
d_input_stream = DataInputStream(input_stream); 
 
GETTING IMAGE INFORMATION 
imageType = d_input_stream.readUnsignedByte(); 
imageSize = d_input_stream.readInt(); 
bytes_available = d_input_stream.available; 



  

 
READING IN AN INDIVIDUAL BYTE 
aByte = d_input_stream.readByte; 
if sign(aByte) == -1 
     aByte = - aByte +128; 
end 
 
IMPLEMENTATION NOTES 
The byte stream should be read as a unit8s, and there should  
be a brief pause between reading the image size and 
checking the number of bytes still available on the stream. 
 
There are a number of jpeg decoders available on the 
MATLAB® Central Exchange, however they were not 
immediately applicable and time was not available to modify 
them as needed for this application.   
 
FUIC  SAMPLE CODE:  
RECORDING THE POSITION OF THE MOUSE 
aCorner = get(0,'PointerLocation');  
 
TAKING A SCREEN SHOT 
[ScreenShot,colormap]=getscreen(coordinates); 

IV. RESULTS 
The current version of the integrated simulator uses the 

Simulink® model of the Samarai dynamics and responses, 
produces velocity commands, sends them into USARSim/UT 
and controls the motion of the bot within the simulation 
environment. Image data is collected and stored by a 
separate MATLAB® program. Another program to collect 
image data is being developed to work with the USARSim 
Image Server produced by Carnegie Mellon.  

The integrated simulator allows the user to switch almost 
instantaneously from a simulation environment to the real 
world by simply removing a single block (Simulink®) or 
commenting out a single function (MATLAB®).   There are 
no limits to the types of scenarios that may be modeled, nor 
to the robots which may inhabit them, as anything which can 
be mathematically modeled is possible. Due to the ubiquity 
of MATLAB®, one may easily share code with fellow 
researchers who are not using USARSim, as well as adapting 
prior work for simulation with little more than cut and paste. 

V. CONCLUSION 
While many possible applications exist for the integrated 

simulator, the two most useful to date for the Samarai project 
are the updated optic-flow based obstacle 
detection/avoidance and the ability to demonstrate the 
system to its potential user community. Development and 
tuning of optical flow algorithms are significantly aided by 
the accurate modeling of the physical capabilities of the 
platform in MATLAB®® and the richness of visual data 
produced by the image server of Unreal Tournament. When 
demonstrating Samarai to potential users, having an interface 
that allows users to “fly” around an environment gives them 
a realistic experience than charts, graphs or video clips.  

The interface between MATLAB® and the UPIS image 
server is still a work in progress. While time was not 
available to continue with it in order to overcome the 
difficulties involved in the MATLAB®/Java interface prior 
to publication, we anticipate an alternate method will be 
found, and the reader should either look forward to sharing 
or hearing about it. 

Overall, we find the interface between MATLAB®/ 
Simulink®, USARSim and UT to be easy to set up and use. 
It will simplify the simulation process for teams coding 
robots in either MATLAB® or Simulink®, as well as adding 
a great deal of functionality, such as sensor feedback in a 
complex environment, that would not be available. 
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Abstract—Neuromorphic systems are a particular class of AI 
efforts directed at creating biologically analogous systems 
functioning in a natural environment. The development, 
testing, and training of neuromorphic systems are difficult 
given the complexity and implementation issues of real physical 
worlds. Certainly, creating physical environments that allow 
for incremental development of these systems would be time-
consuming and expensive. The best solution was to employ a 
high-fidelity virtual world that can vary in task complexity and 
be quickly reconfigured. For this we chose to use USARSim---
an open source high-fidelity robot simulator with a high degree 
of modularity and ease-of-use. We were able to accelerate our 
testing and demonstration efforts by extending the functionality 
of USARSim for testing neuromorphic systems. Future 
directions for extensions and requirements are discussed. 

I. INTRODUCTION 
Artificial intelligence (AI) has always been a vastly broad 

and multidisciplinary field including everything from 
decision making agents in economic models to pattern 
recognition systems, to learning models, to natural language 
processing algorithms to name a few (see [1]). While some 
approaches are biologically inspired, many treat the system 
like a black-box such that only the observable behavior need 
show intelligent or human-like qualities. In contrast, 
neuromorphic systems are a particular class of AI systems 
aimed not at just biologically inspired models, but 
biologically and psychologically analogous systems.  
Neuromorphic systems can model many levels including 
intra-cellular processes, neuron growth and learning, as well 
as whole brain systems and connections among them. 
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However, due to the complexity of many nervous systems 
(i.e., mammalian brains), neuromorphic systems work 
usually involves an attempt to model only a part or 
subsystem of an entire nervous system. 

Neuromorphic systems research in the software domain 
has focused on creating simulations of biological systems at 
all scales. A strong push in this direction was seen in the 
explosion of research on neural networks and parallel 
distributed processing in the 1980s [2]. Much of this work 
was inspired by theoretical considerations of neural 
organization going back to the 1950s. Such is the case with 
the Perceptron [3] (a simple feed-forward network of 
simulated neurons) and Hebbian learning theory [4]. A 
digital simulation of a “large” 512 neuron neural network 
was also conducted in IBM Research at this time [5].  

In contrast the software simulation, neuromorphic systems 
research in the hardware domain involves building actual 
circuits that represent a brain or brain subsystem.  A growing 
interest group has been in existence from the 1980s and the 
bulk to research focuses on intelligent robotics, low-level 
perception and motor control.  

Neuromorphic technology that replaces programmable 
systems with learning or adaptive systems would be a 
significant step forward. If we subscribe to Turing’s idea 
that intelligent systems merely need to demonstrate 
intelligent behavior, then programmable systems will be 
sufficient. However, there is a growing consensus that 
intelligence involves more than just the demonstration of 
intelligent behavior through specific task performance. 

Neuromorphic System Testing and Training in a Virtual 
Environment based on USARSim 

Christopher S. Campbell, Ankur Chandra, Ben Shaw, Paul P. Maglio, Christopher Kello 

Fig. 1. Synapse 3D Virtual Environment. 



  

Rather intelligence requires that good outcomes in task 
performance are accompanied by additional characteristics 
such as flexibility, efficiency, generalizability, and 
creativity. In other words, intelligence is not necessarily just 
solving a problem, but also the manner in which the problem 
is solved. Thus neuromorphic systems solve problems in a 
desirable manner which produces a host of useful qualities: 
 

- managing complex, real-world, dynamic 
environments 

- efficient energy use in terms of power  
- efficient information processing 
- robustness to damage 
- self-organizing and scalable systems 
- creative and adaptive use of the environment 

 
The development of neuromorphic systems is without 

question challenging and complex. Even the simplest 
mammalian nervous systems have tens of millions of 
neurons and thousands of interconnected brain structures.  
To build such a system would require an unprecedented 
multi-disciplinary team that can work in areas such as 
computational neuroscience, artificial neural networks, 
large-scale computation, neuromorphic VLSI, information 
science, cognitive science, materials science, unconventional 
nanometer-scale electronics, and CMOS design and 
fabrication.   

II. BUILDING A NEUROMORPHIC SYSTEM 
The Cognitive Computing via Synaptronics and 

Supercomputing (C2S2) project is a large multi-organization 
and multi disciplinary effort aimed at creating both the 
hardware and software components of a neuromorphic 
system on the scale of a small mammal (i.e., rat). The goal is 
to create hardware components that behave like biological 
synapses so the term synaptronics is used to refer to the 
hardware. These collaborating organizations include at IBM 
Almaden Research Center, Stanford University, Cornell, 
Columbia University, The University of Wisconsin-
Madison, and The University of California-Merced.  Each 
organization may have multiple teams.  This effort is in 

response to a DARPA BAA (i.e., DARPA-BAA 08-28) 
called Systems of Neuromorphic Adaptive Plastic Scalable 
Electronics (Synapse) requesting proposals for the 
development of a neuromorphic system. 

There are four main areas if the project and these various 
teams may work in one or more of these areas.  They 
include: 
 
• Hardware: The hardware teams are responsible for 

building the circuitry for the synaptronic brain from the 
materials all the way to the full-scale system. They are 
responsible for creating components that mimic 
biological synapses showing spike-based information 
encoding and spike time dependent plasticity (STDP).   

• Architecture: The architecture teams will evaluate and 
compile the literature on brain anatomy, physiology, 
and function.  They are responsible for designing the 
architecture of the synaptronic brain such that it 
approximates the connectivity, modularity, hierarchical 
organization, self-organization, reinforcement, and 
inhibition systems of a biological brain.  Processing will 
should also be distributed, inherently noise-tolerant, and 
robust to damage.  

• Simulations : The simulations teams are responsible for 
creating software to test and explore subsystems to 
ensure they perform as expected before development of 
the synaptronic brain.  While many of the subsystems 
can be developed and standard workstations, the large 
scale simulations will require the use of a 
supercomputer. 

• Environments: The environments teams will develop an 
environment to test, train, and benchmark both the 
software simulations and the final synaptronic brain. 
The environments teams will also need to create tests 
incrementally increase task complexity and intelligent 
response to evaluate the progress of the project.   

 
The initial coordination plan for C2S2 includes the 

following. While the hardware team evaluates materials and 
designs to approximate synapses and brain sub-systems, the 
simulations and architecture teams start to build a fully 
simulated prototype of the neuromorphic system. In parallel, 
the environments team is to create a virtual environment 
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Fig 2.  C2S2 team coordination and data flow through several quasi-biological neuromorphic systems. This effort is an attempt to approximate the future 
final system design with a software prototype.  Each box is a different team. 



  

(VE) to bind coordination efforts and integrate simulations. 
 

III. ENVIRONMENT FOR BENCHMARKING AND TRAINING 

A. Motivation 
Our goal as part of the Environments and testing team was to 
create a testing and training environment to support all other 
teams in the development and benchmarking of their 
components of the system. Our mission was that the 
environment had to support 
 

1. fast environment development 
2. accelerated training 
3. incremental testing 
4. benchmarking 
5. wide range of environment fidelity 
6. wide range of task complexity 

 
In response to these requirements, we created the Synapse 
Virtual Environments Server (Synapse VE Server) as a 
common interface layer for all the teams working on the 
C2S2 project. The Synapse VE Server is integrated with a 
system called the Unified System for Automation and Robot 
Simulation (USARSim) [6] which provides a framework for 
creating, controlling, and interacting with a robot in a VE 
(see Fig 1).  While it is true that each C2S2 team could use 
USARSim to do their own development and testing, 
providing one common interface has several benefits: 

- removes redundant work,  
- standardizes the training and benchmarking, 
- provides a unified look-and-feel to the project 
- serves as a point of integration for the 

neuromorphic system components 
 

Using USARSim was logical given that it solves many of 
the problems we would encounter attempting to interface 
with a VE. Another benefit is that USARSim provides a way 
to control and monitor a player in a commercially available 
game called Unreal Tournament 2004 produced by Epic 
Games [7].  This game is a standard multi-player networked 
combat-oriented first-person for both Windows and Linux 
operating systems. Commercially available VEs tend to be 
of higher quality---e.g., more realistic, provide development 
tools, and have a pre-built physics engines. The labor and 
cost of developing our own VE of similar quality would be 
far beyond the resources of this project.  No doubt, if we 
were forced to created our own VE, it would not have the 
complexity and realism necessary to test and train 
neuromorphic systems. Another benefit is that every 
improvement in the Unreal Tournament game can be 
realized quickly to the benefit of the C2S2 project. Any new 
objects and art created for the game can be used 
immediately.  

B. USARSim 
USARSim was created to be a research and education tool 

to provide researchers with an easy-to-use robot controller 
(e.g., Human Robot Interaction [8]) and automation 
interface. USARSim also makes it easy for students to learn 
and explore controlling robots. USARSim is currently 
heavily used in the Robot World Cup Initiative (i.e., 
Robocup) community---an international community of 
researchers and educators working to foster intelligent robots 
research [9]. This is achieved by providing a standardized 
problem (the Robocup competition) around which a range of 
technologies can be developed and benchmarked. The 
Robocup competition has three main components: 1) 
Robocup soccer, 2) Robocup rescue, and 3) Robocup Junior. 
USARSim has been developed with these uses in mind so 
the tool comes with many prebuilt robots, sensors, and 
arenas. Much of these materials are robot specific such as 
sensors for sonar distance and laser range finders, for 
example. Also included is preprioceptive feedback like robot 
battery power and wheel speed. These are hardly of interest 
for developing neuromorphic systems yet, they provide an 
excellent starting point for, say, more biologically relevant 
proprioceptive feedback (i.e., muscle tension and vestibular).   

USARSim is already being used for benchmarking robots 
performing in a search and rescue environment. The 
National Institute of Standards’ (NIST) Reference Test 
Facility for Autonomous Mobile Robots for Urban Search 
and Rescue was designed as a physical benchmarking 
environment. USARSim has the robots, environments, and 

Fig. 3. Top image shows stereoscopic camera view from robot 
perspective. Bottom image is robot position in a low complexity task.  



  

sensors to recreate this testing facility to a high degree of 
realism in the virtual world. Realism in an urban search and 
rescue environment usually includes damaged walls, chairs, 
and other objects found inside of buildings. It also includes 
rubble blocked paths, and injured people. The NIST USAR 
virtual test environment has three levels of increasing 
difficulty (just like the physical facility) including yellow 
(i.e., easiest), orange, and red (i.e., most difficult). 

Specifically, USARSim uses the Unreal Engine 2.0 
through an interface called Gamebots, This interface allows 
an external application to exchange information, control and 
monitor, with the engine. While the internals of Unreal 
Engine 2.0 are proprietary and closed, Epic Games does 
provide a modding capability for extending “classes” of 
objects in that run in the engine and the Unreal Virtual 
Machine. This comes in the form of a Javascript like 

language called Unrealscript in which objects in the game 
can be defined and subclassed.  

IV. SYNAPSE VE SERVER 

A. Motivation 
While USARSim is could be used by each team on the 

C2S2 project individually, the DARPA requirement for 
project integration required us to create a special layer---i.e., 
the Synapse VE Server. The purpose of this layer is to 
provide a simple ready-to-run virtual testing environment 
where research teams could select task complexity and 
training runs. Then they would process the input with their 
part of the system (neuromorphic subsystem) and output 
control signals to the Synapse VE server. The Synapse VE 
provides all of the sensors, effectors, environments, and 

Fig. 4. Screenshot of the Synapse VE Server GUI. In the upper-left corner the complexity of the task can be selected by the map drop-down list.  The 
robot can also be selected. On the left side of the GUI is all the control functions.  The robot can be controlled manually in real-time for testing purposes 
with the forward, left, right, back buttons. Output is shown on the right with real-time video (third-person or robot camera) and sensor data output at 15 
updates per second. 



  

testing experiments needed while gathering all the 
customized project elements into one place.  

Development of the neuromorphic system has necessarily 
required a layered team approach in which one team 
develops a base layer (i.e., the VE). Another team takes data 
from the environment into a retinal model for processing. 
Another team takes the data from the retinal model into a 
liquid state machine classifier. Another team takes output 
from the classifier into a navigation attractor network and so 
on.  As shown in Fig 2, the teams are broken down into 
general layers to create a software model of the 
neuromorphic system. Additional layers, details, subsystems, 
and microcircuitry will be added later. 

 Another problem with each team creating their own task 
and training environments is that creating environments is 
rather complex and time consuming. While Epic Games 
provides the Unreal Editor (UnrealEd) in order to 
graphically create environments, the process is really quite 
complex and error prone. If customized geometry (3D 
objects) and textures need to be created, it becomes even 
more difficult requiring a additional set of tools and 
applications.  Each team would probably have to dedicate 
one person to VE development. 

B. Server Overview 
The Synapse VE Server was designed to provide multiple 

channels of output from the VE and allow for multiple 
channels of input (see Fig. 5). This supports ground-truth 
testing at almost any level of system development. Ideally, 
the neuromorphic system should be able to transduce raw 
data into spike-pulse codes and output spike-pulse muscle 
responses. But, until all the low-level component systems 
are built this is not a reality.  Are we to wait for the entire 
system to be completed before testing? This seems 
inefficient. So, the server supports channels of input and 
output with pre-transformed data. For example, the Synapse 
VE Server provides a channel of output from the VE that is a 
raw image showing what the robot is currently viewing. 
Another simultaneous channel of output is the current visual 
objects or perceptual cues that the robot is viewing. Any 
team working on perception and classification can use these 

channels to test or train their system. Likewise, a team that is 
working on robot navigation can use the perceptual cues as 
input and system testing without needing a working 
perceptual system component to transform the raw image.  

C. Server architecture 
The Synapse VE Server is a stand-alone Java application 

that was built on a standard client-server model---the 
neuromorphic system or subsystem is the client. The client 
connects to the server via HTTP at port 8080 to send 
commands in plain text (i.e., post) and receives the requested 
data. This architecture allows clients to be written in any 
programming language that can interact with HTTP (most 
modern languages and systems).  This approach also allows 
the work of the client to be distributed to multiple machines, 
and also allows for geographic separation of client and 
server if desired. 

A “pull” or request model of data exchange was used as 
the processing requirements/capabilities of the client would 
not be known ahead of time. Additional benefits of this 
model include, 1) off-loading of computation to a separate 
machine that runs the VE and 2) different APIs are not 
required for each client language. The Synapse VE Server, 
however, must run on the same machine as USARSim and 
Unreal Tournatment as it starts both the Unreal server and 
client with the needed settings. The server communicates 
with USARSim through the standard message port (i.e., 
3000).  

A custom C++ DLL was created to provide raw image 
data to clients and to improve performance. This was 
achieved using Hook.dll to pull video data directly from the 
Microsoft DirectX framebuffer for the Unreal Tournament 
client thereby capturing the robot camera. The Java Native 
Interface provides a way for the Synapse VE Server to 
interface with the custom DLL. Performance tests show that 
640x480 24bit image arrays can be captured as fast as 25 
times per second (fps) or near real-time. Improvements will 
be required in this performance as the retinal model becomes 
more sophisticated. Given that there are about 126 million 
rods and cones in the human retina, the spatial resolution 
will have to be much higher. 

Thus far, only one customized sensor has been created to 
detect visual (perceptual) cues in the VE. This sensor, called 
the perceptual cue sensor, was written in Unrealscript as a 
subclass of the USARSim Sensor class. It was added to the 
StereoP2AT robot in the USARBots.ini configuration file. 
This sensor runs in the game engine and scans through all 
the visible (i.e., the robot’s field of view) staticmeshes (i.e., 
3D objects) and reports back on the ones with the keyword 
cue in the label field. Thus, one can make any staticmesh in 
the environment a visual cue that is reported by the 
perceptual cue sensor simply by changing the label to have 
the word cue somewhere in the string. The perceptual cue 
sensor also computes the angle off center, the absolute x,y,z 
location, and the x.y.z distance of the visual cue. This 
information is included in the sensor message that is 
returned. Figure 3 shows the robot field of view on the top 

Fig. 5. Synapse VE Server general architecture. 



  

for each of the two cameras and its location in the 
environment on the bottom. 

One of the task environments is shown in Fig. 3 on the 
bottom. This indoor maze in with four rooms and corridors 
was created using a set of wall “objects” and other 
staticmeshes. This environment provides a template to 
quickly construct a maze with any number of rooms and 
branches. The Unreal Editor allows whole branches and 
sections to be selected, copied, and pasted. Also, the 
environments team can take any image file and put it in the 
maze as a perceptual object. Thus, almost any type of task or 
level of complexity can be rapidly created using this 
template environment. 

D. Interface 
The server has two interfaces. The first is a standard GUI 

that supports debugging and monitoring for the server (see 
Fig. 4). The second is a web-based interface that supports 
remote manual and programmatic control. 

The GUI displays a real-time robot camera view at the 
upper right by acquiring video from the game engine’s 
display window.  Movement commands (left, right, forward, 
back) are used to move the robot. Both the GUI window and 
the game engine’s display window are dynamically updated. 
The GUI can also be used to send specific commands to the 
robot and the real-time environment through the two 
command windows. To send USARSim Commands, the user 
enters commands in the appropriate window and presses 
“Execute” (for a list of all commands, see the USARSim 
manual. To send specific VE Commands, the user enters 
commands in the window and presses “Execute” (commands 
include: “face <cue>,” which instructs the robot to rotate 
until it is facing the named perceptual cue; and “gotoward 
<cue>,” which instructs the robot to rotate as above and then 
proceed toward the named perceptual cue).  The GUI also 
displays sensor information, including “Ground Truth,” 
which displays the robot location (in meters) and orientation 
(in radians) with respect to the (x,y,z) axes; “Perceptual 
Cue,” which is a list of all labeled cues in the robot's 
unobstructed field of view with location of each cue (x,y,z) 
in the environment; and “Ground Vehicle,” which contains 
additional detail on various parameters related to the robot’s 
operation and state. 

A web server embedded in the Synapse VE Server allows 
commands to be sent to the robot in the VE via HTTP 
through a browser window or programmatically.  To use this 
interface, the user launches a web browser and types the 
following URL: http://{host_name}:8080/.  The 
response “welcome to the Synapse VE Server” indicates the 
server is working correctly.  Commands are passed to the 
robot using the following request syntax:   
http://{host_name}:8080/command where 
“/command” can be any one of the following: /robot to 
obtain details about the robot, such as location and 
orientation. Location is given in meters and orientation is in 
radians on the (x,y,z) axes; /cues to obtain a formatted list 

of all the labeled cues in the robot's unobstructed field of 
view; /image.png or /image.jpg  to fetch either a 
PNG or JPEG image from the current game engine display 
window; /forward, /backward, /left, /right 
or /halt to move the robot forward, backward, left or 
right—note that motion continues until a halt command is 
issued. 

V. VE TASK COMPLEXITY 
 

Sensory-motor interaction with an evolving, changing 
environment is a key to intelligent behavior, as all intelligent 
must be both situated and embodied. The behavioral tasks 
for the neuromorphic system fall into three broad cognitive 
categories, highlighting problems of perception, planning, 
and navigation.  Though the original proposal outlined three 
separate environments (one for each category of task), we 
revised the plan such that a single 3D virtual world was used 
to develop tasks that highlight each of the three kinds of 
problems.  This change made for a uniform and elegant 
conceptual design of the VE. All tasks are conceived as 
traversals on state-space graph, with perception as state 
identification based solely on the current state, navigation as 
action selection based on the current state and previous 
states, and planning as action selection based on prediction 
of the consequences of future possible actions.  In the state-
space framework, all tasks are versatile, extensible, 
indefinitely scalable in complexity, and are amenable to 
objective, quantitative, and comparative performance 
evaluation. The tasks can be extended to provide interaction 
over a wide range of space and time scales, and can offer 
comparison to behavioral studies. 

Figure 6 shows a relatively simple task environment with 
only four states (decision points) shown by the four 
interconnected rooms. The retinal spiking model takes the 
raw image data and transforms it into edges and perceptual 
objects (right-bottom part of Fig. 6). The attractor spiking 
network takes the perceptual objects as input (spiking input) 

Fig 6. Testing of retinal model and spiking navigation systems in the 
VE with a low complexity four room/state task. The response of spiking 
neurons for navigation is shown right-top and the retinal spike response 
is shown right-bottom. 



  

to detect a) current state and b) next desired state. The 
attractor network response is shown in the right-top part of 
Fig. 6. 

While the current maze-like task environment appears 
somewhat artificial, it may be desirable in future work to 
allow the actual VE to take on different visual characteristics 
of other, more realistic-naturalistic environments. We have 
formulated an approach whereby the graph traversal 
formalization (and its attendant benefits of comparability 
and quantification) can be maintained and applied to more 
naturalistically-rendered environments. Such is 
diagrammatically illustrated in Fig. 7. In this an 
environment, task complexity is conceived in terms of three 
dimensions: the number of different perceptual states 
processed by the agent, the degree of memory (history) 
and/or prediction (anticipation), and the level of symbolic 
abstraction involved in the perception-action relation. Actual 
traversals would involve tasks of systematically-varying 
perceptual difficulty and complexity, with local and global 
orientation cues made available or obscured in a controlled 
(and perhaps dynamic) manner. 
 

VI. CONCLUSION & FUTURE WORK 
 

Our goal as part of the Environments and testing team was to 
create a benchmarking and training environment to support 
all other teams in the development of their components of 
the neuromorphic system. Our mission was that the 
environment had to support 
 

1. fast environment development 
2. accelerated training 
3. incremental testing 
4. benchmarking 
5. wide range of environment fidelity 
6. wide range of task complexity 

 
We have made significant strides in achieving fast VE 

development, incremental testing, and high VE fidelity given 
the use of the USARSim framework. Because parts of the 
task environment can be copied and pasted, components are 
be reused and new task configurations can be quickly 
created. Environment development is clearly faster than 
using a physical test facility. VE fidelity too can be easily 
decreased or increased depending on what would provide a 
challenge for any part of the neuromorphic system. For 
example, the lighting can be manipulated so that there is no 
directional lighting or shadows (low fidelity) or there is only 
directional lighting with many different types of lightsources 
(high fidelity). Having this capability means that incremental 
testing is possible. 

Still, further technical work is needed to increase fidelity 
in certain areas. One such area includes increasing the 
number of input channels to more than just vision and some 
types of proprioceptive feedback. This would mean adding 

sensors for hearing, touch, olfactory, and taste channels. 
Also, these modalities may have to be added to the Unreal 
Tournament environment as it was not designed to provide 
olfaction simulation, for example. Another area in which 
fidelity could be increased includes adding reward and 
energy (e.g., food, heat) feedback channels. Such objects 
would need to be added to the VE along with internal 
functions to the robot or game actor. 

This would also mean that the data rate of information for 
each of these channels was high enough to simulate real-
world stimuli. As stated earlier, the current image data rate is 
only a 640x480 24bit pixel array 25 times per second. That 
is merely 23 Mbps---a bitrate that is only a small proportion 
of the data entering the eye. To improve performance the 
system architecture may need to be redesigned with a faster 
UDP-based protocol such as RTSP instead of HTTP. 

Accelerated training is the least known among all the 
goals. Technical research needs to be conducted to see 1) if 
the Unreal Engine can be accelerated and by how much, 2) 
how USARSim sensors and other components can be 
accelerated in a unified and consistent manner, 3) how this 
acceleration interacts with performance characteristics of the 
server hardware, 4) how much can the input and output data 
rates be accelerated? 

We have defined the environment in terms of transversals 
in a state-space graph. This graph then could lead to a 
method for measuring task complexity. However more 
theoretical work is needed before a quantitative measure of 
task complexity can be achieved. Also, providing a 
quantitative measure for task complexity would be central to 
efforts at benchmarking neuromorphic system performance. 

Finally, future work will be aimed at creating a player in 
the VE that resembles a mammal rather than a robot. The 
mammal should have articulated joints with fairly realistic 
skeletal muscle control. This will allow for the development 
of neuromorphic motor cortex and cerebellum subsystems.  

Fig 7. Illustration of a possible “gameboard” structure to underlie 
future VE renderings of more naturalistic environments while 
preserving the formalization of state-space graph transitions. 
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I. INTRODUCTION 

 

Abstract— This paper presents the implementation of an 
acoustic sensor for Unreal Tournament 3 based USARSim. The 
sensor is able to provide the bearing, volume, and delay to 
specific sound sources and is also able to eavesdrop on general 
game sound. General information on the addition of a sensor to 
UT3 based USARSim as well as specific aspects of the acoustic 
sensor and sound server are presented.   

HE Unified System for Automation and Robot 
Simulation (USARSim) is a high-fidelity simulation of 

robots and environments based on the Unreal Tournament 
game engine1

 USARSim concentrates on providing a consistent 
application programmer’s interface (API) and validated 
models that are supported by a world-class graphics and 
physics engine. Therefore, as time progresses it becomes 
necessary to change the underlying simulation engine. The 
USARSim developer’s community is currently porting the 
body of software to the newer UT3 game engine from Epic 
Games. This paper outlines the general development scheme 
that must be followed to add a new sensor to the UT3 
version of USARSim. It then follows the specific 
implementation of a novel acoustic sensor framework that 
has been made available to the general community for test 

. The USARSim project was originally created 
in 2002 by Carnegie Mellon University (CMU) and the 
University of Pittsburgh to study human-robot interaction in 
the area of Urban Search and Rescue (USAR) (4, 5). One 
main feature of USARSim that sets it apart from other 
simulation systems is the extensive effort that has been 
performed in validating the robot and sensor models used in 
the simulation (2).  This validation has allowed numerous 
robotic controllers to be developed in simulation and directly 
ported to real robotic hardware (1). In addition to providing 
valid models of existing sensors, the simulation environment 
allows developers to imagine new sensors that have yet to be 
created. The utility of these sensors may then be 
approximated through the simulation without incurring the 
expense of developing the actual hardware. 
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and comment. This framework consists of an acoustic 
sensor, a sound generator, and a client/server application for 
the receipt of observed acoustic signals. 
 To date, the simulation has not had a realistic acoustic 
sensor. Therefore, the entire concept of working with sound 
in USARSim was a new task for the project.  This required 
an understanding of how sound worked in UT3 and how 
sound could be manipulated.  The objective was to give the 
operator the ability to hear sound emulating from the 
environment, and to also pick out specific classes of sounds 
that would receive additional processing to determine 
attributes related to the sound source. 
 To complete this objective, the UT3 system, how it deals 
with sounds, and techniques for modifying UT3 must be 
understood.  The UT3 system is designed to be modified 
with an API into the game engine being provided by Epic 
Games. Game modifications are performed through the use 
of Unreal Script code which is the basis for developing in 
UT3.  Unreal Script is much like java, c++, or any other 
object oriented programming language.  The main problem 
with coding for the game API in Unreal Script is the lack of 
documentation. However, finding the correct function in 
Unreal Script allows for full use of the system’s design.   

Trying to figure out how the engine deals with sound is an 
important part of creating an acoustic sensor.  While Unreal 
Script is fairly accessible for developers, there is a lot of 
hidden code to allow Epic Games to protect its product.  
This means that many of the calculations that UT3 performs 
are in hidden code and cannot be accessed by developers.  
This was the case for the sound calculations. Therefore, 
when hearing sounds, the new sensor had to perform similar 
calculations as the game engine to create similar effects. 
 The remainder of this paper is organized as follows. 
Section two explains the steps of adding a sensor to 
USARSim.  Section three explains the different techniques 
used to add the Acoustic Sensor while Section four 
compares these techniques.  Section five addresses problems 
with the current implementation.  Finally, Section six draws 
conclusions from the work. 

II. USARSIM SENSORS 

A. Implementing Sensors in USARSim 
Without sensors, robots cannot obtain any information 

about their surroundings or self, and will have difficulty in 
operating to meet goals and satisfy objectives.  Thus, 
integrating sensors into a robotic simulation is a critical step. 
Once one adds data from sensors, the construction of a world 
model as well as reactive behaviors are possible.  Operators 
and developers gain the ability to obtain information from 
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the robot’s surroundings and can work to meet the objective 
of developing automated algorithms. 

 To add a sensor to USARSim, a developer has to first 
understand what information is trying to be obtained from 
the environment or the robot.  Then, one may look through 
Unreal Script API’s to attempt to understand how the 
gaming engine stores that information. Online information is 
available on the API from sites such as (3, 6).  Careful 
examination of the API will lead the developer to the classes 
they will want to use to obtain the necessary information 
when he/she begins developing the code for the sensor. 

 When adding a sensor to USARSim, two classes must be 
added to the code.  One class is directly below the Sensor 
class.  This class, which we will refer to as sensorChild, 
performs all of the calculations necessary to obtain the 
information, and output it.  The SensorChild must follow 
some guidelines to work with the rest of the USARSim code.  
The class must have a PostBetginPlay function, a periodic 
“timer” function, as well as a GetData function. The 
PostBeginPlay function initializes the sensor and sets the 
interval that this sensor will use when gathering its data. 
This is accomplished by installing a periodically triggered 
timer function.  Each call of the timer is based on the 
interval set in this function.  The timer function sets all of 
the data that this sensor finds and stores it in a global string 
variable that the class owns.  The timer function keeps 
adding the data to the string until the USARSim network 
accesses the GetData function in this sensorChild.  When 
called, the GetData function adds necessary header 
information to the global string and returns it for 
transmission over the USARSim socket2

 
2 USARSim provides for all commands into the system and data out of 

the system to be transmitted over a TCP/IP ASCII based socket. 

.  Other functions 
for returning sensor configuration information and setting 
operating parameters are also usually provided. 

 After following these steps, the developer has created a 
new sensor for the simulation, but there is still work that 
needs to be done.  A visual representation of the sensor must 
be modeled and added to the simulation so that the sensor 
shows up when it is attached to the robot.  This class, which 
we will refer to as sensorGrandchild, extends below 
sensorChild and is the class that will set the skeletal mesh to 
use as the model for the new sensor.  SensorGrandchild only 
has default properties that modify the operation of the 
sensorChild class.  Next, the developer must test the sensor 
to validate it.  The simulation loses its realism and cannot 
meet its objectives if the sensor does not return realistic 
results.  This validation requires the developer to check not 
only the accuracy of the information returned, but to also 
validate that the sensor returns the correct amount of noise.  
Sensors all have some inaccuracies and it is the developer’s 
responsibility to add these inaccuracies to ensure realistic 
results from the sensor when other developers try to use 
these results to create their own automated algorithms. 

III. ACOUSTIC SENSOR 

A. Acoustic Sensor Specs 
For our acoustic sensor, it was desired that the sensor 

could detect a specific sound with a volume of 140 dBA 
within 8000 m of the sensor.  This figure is based on 
providing realistic results to aid robots and operators in 
finding victims in an USAR disaster scenario.  To meet this 
objective, listening for human noises is very important. In 
addition, it was desired that the sensor provide an 
“eavesdrop” mode that would allow direct playback of any 
sounds that are detectable by the robot. The sensor is made 
up of an array of microphones which will only report sounds 
produced from another newly created sound generator class. 
Sounds resulting from hazards, (e.g. gas leaks), and sounds 
from distressed humans (e.g. cries, or heartbeats) have been 
instantiated in USARSim.  This array of microphones gives 
the volume of the sound, the amount of time that speakers 
recreating the sound must delay the sound (in seconds) 
before playing it to account for distance, and the direction, 
as a unit vector, that the sound came from.  This is a 
prototype of what future acoustic sensors could do, since no 
sensor is known to the authors that  filters data based on 
searching only for hazards or distressed humans.  The 
functions of the acoustic array can be tuned so that this class 
of acoustic sensor can be reproduced when it becomes 
available. 

Figure 1 depicts the graphical representation of the sensor 
that was created for the simulation.  This representation 
contains three coplanar microphones, and one additional 
microphone located above the plane. This combination of 
microphones allows for the detection of the direction of a 
sound in three dimensions.  The four microphones are 
modeled after the ICP Array Microphone, Model 130A40 
from PCB Piezotronics Vibration Division. 

 

 
Figure 1: The left side shows the real ICP Array Microphone, 
Model 130A40 from PCB Piezotronics Vibration Division.  The 
right side shows the virtual example of an acoustic array sensor. 

B. Acoustic Array Implementation Method 1 
 The first attempt, referred to as method 1, at completing 
this task was to derive acoustic information from the 
Controller class.  The Controller class is a child of the Actor 
class, as shown in Figure 2. This class can be used to get 
feedback from an individual Pawn’s senses (e.g. touch and 
hearing). Pawns are the class below Actor which represents 



  

all vehicles or characters in UT3.  Actors produce sounds by 
making a call to a MakeNoise function. The Controller class 
has a HearNoise event that is supposed to be triggered 
anytime the MakeNoise function in the Actor class is called 
to produce a sound.  Data included with this event includes 
the actor object that made the sound and the loudness of the 
sound (as a float).  The loudness value is based on a 
parameter that is specified in the MakeNoise function’s call. 
 

 
Figure 2:  The Hierarchy of classes used for the acoustic sensor. 

To access this data, a class called HearController was 
created that extended the Controller class.  This class had a 
global array to hold the actors which made noises and the 
noises’ loudness.  The HearNoise event was overridden to 
simply store the data that triggered the event into this global 
array.  Another function was created to remove the data from 
this array and to reset the variables after the data was 
extracted.   

The AcousticArraySensor class, which as shown in Figure 
2 extends from USARSim’s Sensor class, contains the 
working code for Acoustic Sensors.  This class must spawn a 
HearController object and set necessary variables.  For the 
Controller events to work properly, some variables inherited 
from the Pawn class must be set.  To set this variable, some 
knowledge of the inner workings of USARSim, UT3, and 
polymorphism are necessary. As shown in Figure 2, the 
USARVehicle class may be traced back to a Pawn, so the 
variables are accessible from the USARVehicle class. In 
addition, sensors may be traced back to Items that are 
attached to robots, and the robot object which this sensor is 
attached to may be accessed through inheritance from the 
Item class.  Through using this object, the necessary 
variables from the Pawn class can bet set.   

During operation, each call to the timer function causes 
the sensor to access the data that is stored in its 
HearController object, reset the object’s arrays, and perform 
the necessary calculations with the accessed data. 

C. AccousticArraySensor Implementation Method 2 
As described in the previous section and depicted in Figure 

2, the AcousticArraySensor extends from the basic sensor 
class. This corresponds to the concept of a sensorChild. The 
actual model of this sensor is provided in the 
ExampleAcousticArray, which corresponds to the concept of 
a sensorGrandChild.  

The AcousticArraySensor class calls its GetSoundData 
function every timer cycle. This function loops through all 
of the detected sounds produced by a special SoundActor 
class and calculates all of the specified information from the 
previous section (e.g. volume, delay, and direction).  This 
information is appended to its global string (the soundStr 
variable). This string is packaged and transmitted over the 
USARSim socket by the GetData function, after which it is 
reset and cleared. This cycle continues as long as the sensor 
exists. 

D. Sounds in USARSim for Method 2 
A sound that is detectable by the AcousticArraySensor is 

made when a class that extends from AcousticActor creates a 
sound.  Sound creation mimics the standard UT3 sound 
mechanism. The class hierarchy for AcousticActor may be 
found in Figure 2. USARSim currently instantiates  Victims 
and Hazards as AcousticActors.  These AcousticActors have 
SoundCue objects that are generally set in their properties 
when placed in the world.  These sound cues are the special 
sounds that the sensors are designed to react to (i.e. provide 
the volume, delay, and direction of).   

A sound is propagated from an AcousticActor to the 
AcousticArraySensor through the use of the AcousticActor’s 
PlayAcousticSound function.  This function cycles through 
all instantiations of the AcousticArraySensor class and calls 
the AcousticArraySensor’s HearSound function which 
computes if the sound is able to be heard.  The 
AcousticActor is responsible for setting an initial volume 
that is scaled correctly by the AcousticArraySensor.  Scaling 
is based on a value of 1.0 representing the volume of a 
gunshot at close proximity, which is approximately 140 
dBA.  If necessary, the HearSound function in the 
AcousticArraySensor adds the information from the sound to 
its sound array. This array  is made up of a structure called 
SoundInfo, which stores the sound’s volume, location, 
duration, and timestamp all relative to the time and location 
that the sound was made. 

E. AcousticArraySensor’s Calculations 
Both methods described above have to make calculations 

to extract the data from the sounds that the sensor “heard”.  
Recall that all detected sounds are placed in a global sound 
array. If this sound array contains data, then the timer will 
cycle through the array calling GetSoundData for each item. 
The functionality of GetSoundData is illustrated in Figure 3. 
This function computes data for each sound and adds the 
data to soundStr for future transmission over the USARSim 
socket. 
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function string GetSoundData{ 

 string result; 

 // Get distance from sound source to sensor 

 // Calculate the time to delay playing the sound 

 // Calculate the attenuation of the sound’s volume 
 //   from the source to the sensor 

 // Calculate the direction from the sensor to the 
 //   source as a unit vector 

 result = // Calculated values and headers for the data 

 return result; 

} 
Figure 3: This is pseudo code for the GetSoundData function where 
all of the calculations are completed. 

In GetSoundData the sensor calculates the initial distance, 
based on the location of the sensor and the location of the 
sound.  In order to apply an appropriate delay to the playing 
of a sound, the SOUND_SPEED constant and the computed 
distance are used to formulate the correct delay that occurs 
between sound generation and the sensor receiving the 
sound. Without this computation, the sensor will know of the 
sound as soon as it is played, which is unrealistic.  This 
equation also takes the time that the sound was played into 
consideration, so if the sound should have already been 
played, then the time is automatically set to 0 thus causing 
the sound to be played immediately.   

The function must also calculate the volume of the sound 
relative to the sensor.  The code first checks to see if the 
sound needs to be muffled. This is done by checking to see if 
there is a world obstruction between the sensor and the 
sound location.  If necessary, it “muffles” the sound by 
doubling the distance the sound must travel.  While not 
perfectly accurate, this technique removes the requirement 
of computing multi-path and actual material sound 
attenuation.  The sound drop-off is then calculated so that 
the loudness relative to the sensor is determined. This is 
shown by Equation 1 below.   

[1]   
Equation 1: This equation determines the volume of the sound at 
the sensor’s location. 

 In Equation 1,  is the initial loudness (1.0 for guns), 
GUN_LOUDNESS is a constant currently set to 140 dBA 
A-weighted decibels, and the DROP_OFF_RATE is an 
environmentally dependent constant that is currently set to 
4.5 dBA every time you double the distance.  is the 
distance from the initial sound in Unreal Units (UU), and 

where  is the radius of no 
drop-off (this value needs to be validated, but until a test is 
developed 1 m is used). The simulation uses a conversion 
constant UU_TO_M_CONVERT, which is currently 250 
UU = 1 meter, so  is the radius of no drop-off converted 
into UU. 

 

The sensor also calculates the direction to the generated 
sound by computing a vector from the sensor to the sound’s 
location.  Using this vector and the direction that the sensor 
is currently facing, the function is able to calculate the 
sound’s direction relative to the sensor’s heading by using a 
rotational matrix.  This information is formulated as a unit 
vector, giving the direction in a unit vector whose origin is 
centered at the sensor’s location and oriented so that x+ is 
straight ahead, y+ is to the right, and z+ is straight up 
relative to the sensor. This is shown in Figure 4, all relative 
to the sensor’s heading.  The function also stores the sound’s 
duration. 

 

 
Figure 4: Representation of the axes of the sensor's unit vector 
towards the sound source.  The front of the sensor is in the positive 
x direction. Note that it is the responsibility of the static mesh 
designer to set the “front” of the mesh when designing the 
graphical representation of the sensor. 

After storing this data in the global soundStr, the 
soundInfo is removed from the array and the loop is 
restarted until all sounds since the last call to timer have 
been calculated.  All data is added to the string which is 
returned and cleared when called on by the GetData function 
for use in other programs. 

ExampleAcousticArray is the actual sensor.  The model 
package is included as AcousticArraySensor.upk in 
USARSimSkeletalMeshedVehicles that is available from the 
SVN repository of the USARSim site. 

F. USARSim Sound Server 
The next task was to decide how to realistically allow the 

operator to actually hear the sounds in the robot’s 
environment.  The game engine automatically handles 
playing the sounds correctly over the system’s speakers from 
a player’s position. This extends to USARSim’s robots when 
the operator is viewing what the robot sees.  However, many 
more issues arise when considering the needs of the users.   

Many users run the simulation system on one computer 
and operate the robots from another. This is facilitated 
through the socket interface that is provided by USARSim 
which allows for connections from any application that can 

X 
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open a TCP/IP socket.  Currently, the simulation supports 
this relationship for sending/receiving commands/data 
to/from the server and for allowing camera images to be sent 
out over a separate socket.  However, since sound was not a 
part of the simulation, there was no support for sound 
transmission over a socket interface.  This need required the 
creation of a new server that runs concurrently with the 
simulation, which we call the SoundServer.  This server 
provides the audio output stream from the computer and 
sends it to multiple connected clients known as SoundClient 
programs.  This data exchange between the client and server 
needed to be completed with as little lag as possible.  
However, in actual systems there is lag between sound 
receipt by the robot and receipt by the control station. This 
lag may be modeled in a future release in order to increase 
the realism of the sound simulation. 

Once the client and server were completed, sound could be 
played across a network.  This provided a system 
independent technique for users to hear the sound from the 
simulation.   However, one more issue with regard to realism 
now remained.  Through the use of the sound server/client, 
users could hear sounds even if they did not have an acoustic 
sensor attached to the robot.   

This was addressed by creating a way to mute the system’s 
sound.  In the USARVehicle class, a boolean variable was 
added to determine whether or not the robot had a sensor of 
type Acoustic.  If the robot has an acoustic sensor, the 
volume is normalized.  If the robot does not have an acoustic 
sensor, then the volume is muted within UT3 so that no 
sounds will be played.  This works well when only a single 
robot is being utilized in the simulation.  However, if 
multiple robots are desired (which of course they are!), then 
this check will have to take place when changing views from 
one robot to another. 

IV. EXPERIMENTAL RESULTS 
 Method 1 appeared to work with early tests since the 
sensor was picking up data from a UT3 character in the 
room that was creating sounds by shooting and jumping.  
Unfortunately as testing proceeded, the MakeNoise function 
was not the only factor that determined when the HearNoise 
event was triggered.  There are more requirements for 
triggering this event, but these requirements are hidden and 
it was determined that this method will not work for the 
sensor.   

This problem created the need for method 2, which gives 
developers more control over what sounds are heard and 
what data is passed to the sensor.  This is backwards from 
real life since the sound determines whether or not it is heard 
by the sensor and what data is passed, but this is the only 
way USARSim developers can be sure that the sound will be 
heard by the sensor.    

V. FUTURE WORK 
 This newly acquired ability works well for a single robot, 
but further progress is still necessary to obtain the full 

potential of this sensor.  Firstly, the sensor must be 
validated.  Currently all of the data that is output is 100 
percent accurate, which makes this an unrealistic sensor.  
Noise must be added to the sensor to try to gain the realism 
expected by the users of USARSim.   

The calculation on sound attenuation, as well as sound 
delay, and the way in which the sensor muffles obstructed 
sounds must also be validated.  These are important 
calculations which can allow for more realism with the 
sensor, so determining ways to test these equations will be 
an important part of validating this sensor.  It is not expected 
that the current techniques will produce values that are 
consistent with actual sound transmission. However, 
knowing that shortfalls exist, and what form these shortfalls 
take, is important for determining limitations on the use of 
the new sensor. 

The efficiency of the code behind the sensor must also 
come in question.  Each time a sound is made, the 
AcousticActor class searches through all actors looking for 
AcousticArraySensor objects.  This is not very efficient, but 
works with the current set up.  Understanding method 1 and 
the efficiencies embedded into it could help fix these 
inefficiency problems.  Another option would be to 
understand how events work in Unreal Script and creating an 
event that does something similar to the HearNoise event 
used in method 1, but would give the developers more 
control. 

Finally, the sensor must be extended to be compatible 
with the use of multiple robots. Sound switching for 
eavesdropping must be developed as well as the ability to 
listen to multiple robots simultaneously.  

VI. CONCLUSION 
This paper presented a novel acoustic sensor, sound 

generator, and sound client/server application for use with 
USARSim. In addition, the general methodology for adding 
a new sensor to UT3 based USARSim was examined. 

The ability to detect sounds will greatly increase the 
realism of USARSim with respect to USAR scenarios.  
Hearing sounds in a USAR scenario is important for 
operators to find victims or hazards.  It can save first 
responders from searching an area that is leaking hazardous 
gases and can help locate victims that are out of sight.  
Adding this ability gets this simulation one step closer to 
accomplishing the goal of becoming a training tool for 
USAR squads.  It might also spur a creation of algorithms 
that use sound to coordinate multiple robots, or the creation 
of new sound detecting hardware 
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Abstract—. This paper presents current efforts to migrate 
USARSim, an open source high fidelity robot simulator, 
from the Epic Games UT2004

 

1

I. INTRODUCTION 

 gamming platform to UT3.  
This software “port” is a non-trivial effort which includes 
software recoding to support unreal script syntax changes, 
use of a better physics engine and new graphics 
representations.  In addition, this porting effort has marked 
an ideal opportunity to improve the USARSim 
implementation through code clean-up/consolidation, 
architecture redesign, improvements to client/server 
distributed processing, and a more detailed simulation 
environment characterization.  This major effort provides 
many benefits to the USARSim user community including 
detailed graphics, improved physics effects, a more 
organized software structure, faster processing of 
distributed objects, support for manufacturing 
environments and improved validation of the simulation 
environment. 
 

HE National Institute of Standards and Technology is 
leading an effort to upgrade the USARSim (Unified 

System for Automation and Robotic Simulation) [1] 
software implementation.  This upgrade will ultimately 
provide more detailed graphics, improved physics effects, 
faster processing of distributed objects, and improved 
validation of the simulation environment. 
 
USARSim is a high-fidelity simulation of robots and 
environments based on the Unreal Tournament game 
engine.  MOAST (Mobility Open Architecture Simulation 
and Tools) [2] is a control framework that aids in the 
development of autonomous robots.  It includes an 
architecture, control modules, interface specs, and data 
sets.  When used together, USARSim and MOAST 
provide a comprehensive set of open source tools for the 
development and evaluation of robotic systems where 
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initial control development is validated in simulation with 
eventual transition to real hardware.   
 
Epic Games’ Unreal Tournament (UT) is a widely used 
and affordable state of the art commercial game engine.  
USARSim was originally developed using 
UT2003/UT2004 and Unreal Engine 2 (UE2).  This paper 
describes an ongoing effort to port the USARSim 
UT2004/UE2 implementation to Unreal Tournament 3 
(UT3). UT3 is Epic games’ latest UT release that uses 
their new Unreal Engine 3 (UE3).   
 
UT3/UE3 provides significant improvements through its 
change from using Karma Physics to the Nvidia PhysX 
engine, support for more sophisticated models, and 
enhancements to lighting, animation, and interactions 
with the simulation environment. However, these 
significant changes require major design changes to the 
USARSim implementation.  In addition, this major 
overhaul of USARSim provides an opportunity to 
improve the overall USARSim implementation through 
code clean-up/consolidation, architecture redesign, 
improvements to client/server distributed processing, and 
a more detailed simulation environment characterization. 
 

II. OVERVIEW OF THE PORTING EFFORT 
The Nvidia PhysX physics engine of UE3 will provide 
more realistic physics as compared to the Karma physics 
engine of UE2 and provides the opportunity to install a 
hardware accelerator to offload physics calculations from 
the CPU; ultimately producing a more realistic 
simulation.  However, deprecation of Karma physics in 
UE3 has eliminated the UT2004 KVehicle class. This 
KVehicle class is the parent of the USARSim KRobot 
class from which all USARSim robots are derived.  The 
new base class for vehicle implementation is the SVehicle 
class which provides many simplifications over the 
KVehicle class. However, this change of classes requires 
a redesigned KRobot, now called USARVehicle.  
 
Another major effort of this port is remodeling.  This 
includes changes in how both environment and vehicle 
component models are created. For environments, the 
editor for world creation in UT2004 used subtractive 
geometry. The environments start as a solid lump of mater 
and the designer carves out the world. The new UT3 
editor uses additive geometry where the world is empty 
and objects must be added. Therefore, UT2004 worlds are 
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not compatible with UT3 and must be remodeled from 
scratch in the Unreal Editor environment.   
 
In UT2004, vehicles were constructed by composing 
multiple individual static meshes into a single object. In 
UT3, vehicles must now be modeled by using skeletal 
meshes.  These skeletal meshes are modeled in a 3rd party 
software package such as 3D Studio Max or Maya, and 
then wrapped in a UT package using Unreal Editor. UT3 
unreal script must then be created to support vehicle 
operation.  The same effort is required for mission 
packages which are now also implemented using skeletal 
meshes. 
 
Other tasks at hand include code clean-up/consolidation 
and architecture redesign.  USARSim has been in 
existence since 2002 with involvement by many 
organizations and hundreds of individual code 
contributions via its open source development portal 
located on SourceForge [3].  This has resulted in many 
code formats that are often difficult to read and 
deprecated code that has never been purged from the 
implementation.  A major aspect of this porting effort is 
to provide consistent code formatting and commenting as 
well as the elimination of code that is no longer in use.  In 
addition, this port is implementing a repackaging scheme 
and improving naming conventions to provide a better 
organization of the USARSim implementation. 
 

III. USARSIM API AND UNITS 

While improvements are being made throughout the 
USARSim framework, a strong emphasis is being placed 
on maintaining backward compatibility with the previous 
USARSim API. USARSim currently uses SI units for all 
information exchanges and this policy will remain in 
place. In addition, the current scale of 250 Unreal Units 
(UU) equals 1 m will be maintained. The original intent 
behind this figure was to balance physics fidelity that 
improves with higher uu-to-m density against the 
maximum extent of a world (UT2 and UT3 support a 
rectangular world of at most 524288 UU per side). The 
value of 250 UU provides for a maximum world size of 
approximately 2 km per side. 
 
In order to maintain this figure for UT3, gravity needed to 
be revalidated. Through freefall experiments, it was 
determined that the native relationship between UU and 
Meters is 104 UU = 1 m. To compensate for this, the 
gravity for any generated world must be set to -1245 by 
adding a physics volume into the map. 
 

IV. PORT ARCHITECTURE & OBJECT COMMUNICATION 
The class based Unified Modeling Language (UML) 
architecture diagram in Figure 1 depicts the progress of 
the current port.  Green boxes with the yellow folders 
represent unreal script packages.  Blue boxes represent 

native classes of interest while orange boxes represent 
unreal script that has been implemented as part of this 
porting effort.  UML generalizations and associations are 
shown for major classes within USARSIM.  Note that not 
all classes are shown to simplify the figure. 
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Figure 1:   The UT3 Port Architecture shows the current status 
of the USARSim UT3 port. 
 
This port results in the USARSim architecture being 
broken up into significantly more packages than the 
UT2004 implementation which only consisted of 
USARBotAPI, USARBot, USARMisPkg, USARModels, 
and USARVictim.  The new packaging scheme 



 
 
 

 

essentially breaks the massive USARBot package into 
smaller, more concise packages.  Current packages 
include: USARBase, USARBot, USARBotAPI, 
USARDeco, USAREffector, USARMisPkg, 
USARSensor, USARUtility, and USARVictim.   
 
USARBase contains base classes that define children 
classes appearing in more than one package.  This 
package was created to compensate for the fact that unreal 
script does not support statements to makes types 
available within a compilation unit such as the C++ 
“include” statement or the Java “import” statement, but 
rather depends on a package compile order to recognize 
subsequent types.  This compile order is configured in the 
DefaultEditor.ini file and was not an issue prior to 
repackaging, sensors, mission packages, and robot 
vehicles, when they all resided within the USARBot 
package. USARBotAPI contains the socket based 
communications API.  USARDeco contains model 
packages for brackets and mounting plates that support 
sensors and mission packages.  Keeping the models 
separate from the actual sensor and mission packages 
allows for reconfigurable mounting schemes.  
USAREffector contains gripper tools while USARMisPkg 
contains mission packages such as robot arms and pan/tilt 
units. USARSensor contains all sensors used in the 
simulation environment whether mounted to vehicles or a 
UT world.  USARUtility contains all utilities such as 
conversion, random noise generators, and tool for 
querying world information.  USARVictim contains all 
victim models used in urban search and rescue 
applications.  Additional packages may be added as this 
porting activity progresses. 
 

V. UT3 VEHICLES 
Vehicles in UE3 are rendered through the use of a skeletal 
mesh.  Skeletal meshes consist of a series of bones and 
skins that are designed and assembled for each vehicle in 
a 3rd party package as shown in Figure 2.  NIST is 
currently using 3D Studio Max for this effort [4].  A 
vehicle skeletal mesh is designed with a static chassis 
containing a root bone, weighted to the chassis, and 
additional bones for wheels and suspension that are direct 
children of the chassis bone [5].  The process of 
packaging a vehicle using Unreal Editor is a multi step 
process: (1) import the skeletal mesh (3D Studio Max 
requires use of the ActorX plug-in), (2) create a wheel 
controller, called a “SkelControlWheel”, for each wheel 
or suspension bone and (3) assign a physics object to the 
vehicle chassis.  
 
Step two above is accomplished by configuring an 
animation tree within the Unreal Editor.  Animation trees 
contain “SkelControls” objects which are used to move 
individual bones around in the UT3 game.  The UE3 
vehicle system uses a special type of bone controller, a 
“SkelControlWheel” to move the wheel bones to match 

the vertical movement, roll and steering of the underlying 
simulation.  Step three involves creating a physics asset 
for the vehicle where a collision shape and physical 
properties are assigned to the chassis.  Only the vehicle 
chassis body is used for collision checking since wheels 
contact the simulation environment.  The mass and inertia 
of a vehicle is calculated based on the volume of the 
collision geometry and the density property assigned to 
the chassis body. 
 

 
 
Figure 2:   The 3D Studio Max software is being used to design 
a simple vehicle skeletal mesh for USARSim UT3 development 
work. 
 
A major effort within the USARSim UT3 vehicle port is 
to develop a control strategy to support the same vehicle 
functionality that was achievable with the UT2004 
implementation.  UT2004 allowed for direct control of 
wheel speed while the UE2 computed the desired torques 
to maintain it.  The UT3 SVehicle API does not support 
the direct control of wheel speed and only provides for 
torque commands to vehicle wheels. UE3 then determines 
the resulting speed, which will vary for a given torque 
depending on the friction and terrain.  To solve this 
problem NIST has implemented a feedback controller and 
has initiated a study to enhance this controller by applying 
machine learning to generate a speed vs. torque model. 
 
To calculate the torque needed to achieve a given wheel 
speed, a closed-loop control algorithm is needed that 
continually calculates the torque to be applied to the 
wheel based on the commanded speed and feedback from 
the wheel of its actual speed.  This closed-loop algorithm 
is located in a vehicle’s Tick function which executes 
every simulation cycle.  To manage time, UT divides each 
second of game-play into “Ticks”.  A tick is the smallest 
unit of time in which all actors in a level are updated.  A 
tick typically takes between 1/100th and 1/10th of a 
second, a time which is limited only by CPU power (i.e. 
the faster the machine, the lower the tick duration). 
 



 
 
 

 

The goal of the control algorithm is to calculate the 
applied torque τapplied, so that the correct vehicle speed is 
achieved and maintained. However, the applied torque is 
only one component of the net torque that determines the 
vehicle’s performance. The net torque τnet is the sum of 
the applied wheel torque and that of the external world 
through the axle 
 

τnet =  τapplied + τexternal 
 
where τapplied is the torque applied to the wheel to attain a 
desired speed and τexternal is the torque induced by the 
external world.  τexternal is unknown and will in general 
vary widely as the vehicle moves across varying terrain 
and encounters obstacles.  In order for a vehicle to 
maintain a commanded speed, τnet must be zero meaning 
that τapplied must balance τexternal  
 
We assume that the UT3 wheel is modeled as a simple 
rigid body following τ = Іα, where τ is the torque on the 
wheel axis, І is the wheels moment of inertia and α is the 
resulting angular acceleration.  The resulting angular 
speed at the end of a simulation cycle of duration Δt is 
ω(Δt) = ω(0) + αΔt, where ω(0) is the speed at the 
beginning of the simulation cycle.  Solving for torque τ 
for a given desired angular speed ω(Δt), we get 
 

τnet = І • (ω(Δt) - ω(0)) / Δt 
 
Since wheel inertial information is not readily available 
from the physics engine, we derive it by performing a 
simple experiment. In this experiment, the vehicle is 
flipped upside down to create the effect of a free-spinning 
wheel. A constant torque is then applied, and the resulting 
acceleration is observed. 
 
We explored PID control as a closed-loop control 
algorithm to provide compensation for the external torque 
disturbance.  PID is a control method where the error 
between the desired set-point value and the actual 
measured value drives the system toward the set-point.  
PID refers to the three tunable parameters, or gains.  The 
‘P’ term generates a contribution proportional to the error.  
This is often good enough but can leave some residual 
errors in systems that have some steady-state error source.  
One steady-state source of error in UT3 is torque from the 
downhill pull of gravity.  To compensate for this, an ‘I’ 
term generates a contribution due to the cumulative or 
integrated amount of error.  For a constant steady-state 
error, this term will build up over time, and pull the 
system back toward the set-point.  In systems that tend to 
oscillate and need damping, the ‘D’ term generates a 
contribution due to the rate of change or derivative of the 
error.   
 
The existence of an accurate system model means that the 
PID gains can be determined analytically given some 
figures of merit, such as allowable overshoot and steady-
state error.  More often, as in our case, the model is 

unknown and tuning the parameters is something of an 
art.   
 
A C-language simulation and experimentation in the UT3 
environment were used to optimize PID control.  In our 
case, a PI (no D) controller implemented in UT3 vehicle 
control yielded reasonable tracking of speed commands.  
Experiments with the derivative D gain did not show any 
improvements since in there is no natural tendency of the 
rigid body wheel model to oscillate.   
 
Figure 3 shows a log of vehicle speed in UT3 for PI 
values of 1 and 1, respectively.  The commanded speed 
profile was zero until 22 seconds, 1 unit per second until 
110 seconds, and finally zero.  Note the oscillatory 
behavior around speeds of zero and the steadily climbing 
approaches to constant speeds.  Figure 4 repeats the same 
test with the PI gains increased to 20 and 2, respectively.  
The speed tracking is significantly better. 
 

 
 
Figure 3:  Speed tracking in UT3 using the PI controller, given 
nominal speed profiles of 1 unit/second in each direction.  The 
PI gains were 1 and 1, respectively.  Note the relatively sluggish 
behavior. 
 

 
 
Figure 4:  Speed tracking in UT3 for increased PI gains of 20 
and 2, respectively.  Note the improved tracking. 



 
 
 

 

A problem often encountered with PI control is that the 
speed error must be present or have built up over time for 
any torque to be generated.  This PI control strategy could 
be improved if a prediction of the necessary output can be 
made and added to PI terms.  This control strategy is 
known as feed-forward control.  NIST has initiated a 
study to implement this “feed-forward” strategy by 
applying machine learning to generate a speed vs. torque 
model.  This model is being built based on the speed vs. 
torque relationship with respect to various UT3 terrain, 
obstacle and friction attributes. 

VI. MISSION PACKAGES 
Work is in progress to port mission packages to UT3.  As 
with wheels, UT3 provides torque or force control of the 
joints connecting the individual bones that make up a 
mission package, such as a robot arm. If direct position 
control of these joints is possible, the mission package 
control problem is greatly simplified. In that case, the 
kinematic configuration of the mission package can be 
used to determine the joint position values needed to 
bring the mission package to a desired position and 
orientation in space. If position control is not possible, 
then torques (or forces) need to be generated to bring the 
mission package to its desired position and orientation. 
The torques necessary include those needed to balance the 
unloaded arm against gravity, plus any load at the end. As 
with wheels, the torque computation includes the nominal 
values to balance the mission package, plus contributions 
from a PI controller to compensate for the unknown 
loading on the mission package.  
 
For either position- or torque control, the kinematic 
configuration of the links that make up the mission 
package are needed. In UT2004, the configuration was 
defined by a coordinate system convention in which 
rotational joints rotated about their Z axis, and sliding 
joints slid along their Z axis. The origin (position and 
orientation) of each link was expressed with Cartesian 
XYZ values for position, and roll, pitch and yaw values 
for orientation, with respect to the coordinate system of 
the previous link. This scheme will be adopted for UT3.  
 
In this scheme, a position controller can build a kinematic 
model of the mission package that relates the joint 
positions with the resulting position and orientation at the 
end, and vice-versa. For torque control, the mass and 
center of gravity of each link are needed. In UT3 the 
mission package information will be supplemented with 
this information, extending the interface with four 
numbers, one for mass (in kilograms) and three for the 
XYZ position of the link with respect to its coordinate 
system.  
 
Once the mass and center of gravity are known, a torque 
controller can combine this with the existing kinematic 
configuration and determine the torques necessary to 
balance gravity acting on the mission package itself. For 

each goal position and orientation, the torques are 
computed and commanded to the mission package. 
Ideally, this should balance the mission package exactly 
at the goal position and orientation. In practice, 
uncertainties in the environment and the presence of 
external loads on the mission package will prevent the 
arm from reaching its desired goal exactly. As with wheel 
control, a PI controller will be applied to generate 
additional compensating torques that bring the mission 
package close to its desired goal. 
 

 
Figure 5: Actual step-test standard test method (left) and 
simulated version of test (right). 
 

VII. SUPPORT FOR NON-VEHICLE SYSTEMS 
USARSim began as a project to study human-computer 
interfaces in urban search and rescue robotics [6]. In fact, 
the original acronym stood for Urban Search and Rescue 
Simulation. The main emphasis in the development of 
USARSim was placed on the creation of validated mobile 
robot platforms and sensors. Platforms were validated 
through comparisons of the simulated platform’s 
performance on NIST’s standard test methods vs. the real 
platform’s performance on the same tests [7]. An example 
of a real test method and its simulated version are 
depicted in Figure 5. Sensors were validated with a 
variety of techniques that included comparisons of raw 
data output and comparisons of the output of seminal 
algorithms operating on both simulated and real data [8].   
 
Since that time USARSim has matured to be used in 
many different research disciplines. This variety of 
research goals has driven a desire to expand the base of 
supported robot and sensor models. Currently, as shown 
in Figure 1, all robots are based on the UT3 SVehicle 
class. Robotic arms and sensors are then mounted to the 
vehicle as mission packages. While this technique works 
well for mobile platforms, it breaks down when one tries 
to emplace a fixed sensor network or stationary robot 
such as a robotic arm installed in a factory setting. 
 
A current work in progress is the search for a new base 
class to use for a fixed robotic base. This base will allow 
for mission packages to be attached to a fixed location 
and will not have the overhead associated with a full 
vehicle implementation. Validation techniques also need 
to be developed for the new factory arms and effectors 
that will be included with this new class of robots. 
 



 
 
 

 

VIII. DISTRIBUTED ROBOT PROCESSING 
The processing required to simulate robots in USARSim 
can be divided into two major components.  The first is 
the physics simulation of robots as they move around the 
simulated world.  This entails detecting collisions, 
applying motor forces and joint constraints, and 
computing the resulting dynamics of the bodies 
comprising the robots.  The second component is the 
generation of sensor data.  This consists of processes such 
as casting rays to determine simulated range 
measurements, and rendering images for simulated 
cameras.  In USARSim for UT2004, both of these 
processes are centralized to a single server machine.  This 
approach simplifies implementation significantly, but 
limits the number of robots and sensors that can be 
accurately simulated.  For each sensor that is added, the 
server must run an additional processing function per time 
step.  This, in turn, increases the length of each time step, 
which decreases the accuracy of the physics simulation, 
ultimately leading to unstable rigid-body dynamics. 
 
To address this concern, the design of the UT3 port is 
such that physics and sensor loads can be distributed 
across multiple machines.  UT3 provides a mechanism for 
doing so through its built-in multiplayer system.  The 
engine provides a client-server model with a “replication” 
system, which automatically creates and updates proxy 
objects on clients to represent “actors” on the server.  By 
running the port of USARSim as a multiplayer game, 
several UT3 clients can connect to a single UT3 server 
and share the computational load of simulation. 
 
In this multiplayer mode, users connect to a UT client 
rather than the UT server and send commands to initialize 
a robot model.  This client requests that the physical 
model of the robot be created on the server.  A 
lightweight proxy object is then passed back to the client 
by the UT3 engine.  The position, rotation, and other 
relevant properties of the physical model are dynamically 
and automatically updated within this proxy object 
through the replication mechanism of the UT3 engine.  
With this information, clients can asynchronously 
simulate the output of the sensors within the model, 
leaving the server to solely focus on fast and accurate 
simulation of physics.  This division of processing 
improves the fidelity and stability of both the physics 
simulation and the generated sensor data, allowing greater 
numbers of robots and sensors to be simulated 
concurrently. 
 

IX. CONCLUSION 
As may be observed from this paper, the original 
development of USARSim was performed by numerous 
contributors from a variety of organizations over a several 
year period. As a result, USARSim consists of a large 
number of sometimes disjoint software modules. 
However, the developers of these modules all share the 

common goal of creating a validated robotic simulation 
system with consistent programmer interfaces. 
 
The move to UT3 has provided us with the opportunity to 
learn from previous efforts and enhance the 
maintainability and usefulness of USARSim. This IROS 
workshop is seeing the Beta launch of the new USARSim 
for UT3. It contains a limited set of as yet unvalidated 
robot and sensor models and does not yet support the full 
richness of the original API. As the previous USARSim 
development was a community effort, it is hoped that this 
new release will also involve a wide community. Help is 
needed in everything from rewriting the manual to adding 
and validating sensor and robot models. In addition, new 
areas are being explored such as end effectors and 
acoustic sensing. We encourage anyone interested in 
participating in this effort to contact one of the authors or 
to see the USARSim wiki located at 
http://usarsim.sourceforge.net/wiki/index.php/Main_Page 
for more information on how to become involved. 
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