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Abstract. To be able to play soccer, a robot needs a good estimate of
its current position on the field. Ideally, multiple features are visible that
have known locations. By applying trigonometry we can estimate the
viewpoint from where this observation was actually made. Given that
the Nao robots of the Standard Platform League have quite a limited
field of view, a given camera frame typically only allows for one or two
points to be recognized.
In this paper we propose a method for determining the (x, y) coordinates
on the field and the height h of the camera from the geometry of a simpli-
fied tetrahedron. This configuration is formed by two observed points on
the ground plane plus the gravitational direction. When the distance be-
tween the two points is known, and the directions to the points plus the
gravitational direction are measured, all dimensions of the tetrahedron
can be determined.
By performing these calculations with rational trigonometry instead of
classical trigonometry, the computations turn out to be 28.7% faster,
with equal numerical accuracy.
The position of the head of the Nao can also be externally measured with
the OptiTrack system. The difference between externally measured and
internally predicted position from sensor data gives us mean absolute
errors in the 3-6 centimeters range, when we estimated the gravitational
direction from the vanishing point of the outer edges of the goal posts.

1 Introduction

RoboCup is an event where robot capabilities are tested by playing a game of
soccer between one team against another [12]. Already from the beginning of
the competitions, the importance of visual localization was recognized [11,3].
Since that start methods like Visual Odometry have been developed, but those
methods rely on enough dense and distinctive textures [1]. In the RoboCup often
not much more than the green turf is visible, with an occasional white line (if
not obstructed by other robots nearby). When a L-, T- or X-intersection on a
white line-crossing can be observed [16], a distinctive point on the field has been
recognized (although due to the symmetry of the field unfortunately not unique).
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Two of those distinctive points are enough to estimate the location where this
observation is made, as demonstrated in this paper.

2 Rational Trigonometry

To understand the relations between observable variables (measurements with
one or more cameras) and not directly observable variables (3D properties of
objects and their configurations) transformations have to be defined. Rational
Trigonometry [23] uses quadrances and spreads instead of distances and angles.
The quadrance is defined as the quadratic sum of differences in the coordinate
values of two points. The spread is defined as a proportion of quadrances; for a
right triangle it is the opposite quadrance divided by the hypotenuse quadrance.
Both quantities can be easily converted back and forth to the well-known con-
cepts of distance and angle, although they are defined independently. A quad-
rance Q is the square of the distance d. This makes it in essence a measure of
area in Euclidean space. Quadrances have dimension m2.

Q = d2 (1)

A spread measures the divergence between two lines. A spread s is the square
of the sine of an angle α.

s = sin2 α (2)

Spreads have a range between [0 − 1] and are dimensionless, but is actually
the ratio of quadrances (so dimension m2/m2). This characteristic has important
consequences, because this range is better balanced than the ranges of degrees
([0−360°]) and radians ([0−2π]) once translations and rotations have to be com-
bined. It also means that the spread has no sign, and is actually the same value
for adjacent angles. This prevents many ambiguity checks in the calculations.

Fig. 1: The quadrances Qi and spreads si of a triangle.
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The relation between quadrances and spreads of triangle, as illustrated in
Fig. 1 is given by the Spread law of rational trigonometry:

s1
Q1

=
s2
Q2

=
s2
Q2

(3)

Yet, for the method applied in this paper mostly the Cross law of rational
trigonometry is used:

(Q1 +Q2 −Q3)
2 = 4Q1Q2(1− s3) (4)

The Cross law (Equation 4) can be used to calculate an unknown quadrance
Q3 from two known quadrances Q1 and Q2 and the spread s3 between those two
quadrances (and opposite the unknown quadrance Q3). Once s3 and all three
quadrances Q1···3 of a triangle are known, the other two spreads s1 and s2 can
be calculated from the Spread law (Equation 3)

3 Method

The first phase is the detection of the relevant objects in the world, that is, on the
soccer field. Those are the white lines on the green field, especially the X-, T-and
L-intersections. Of course there are also objects like the goals, the ball and the
other robots; team-members and opponents are distinguishable by their different
colored jerseys [18]. The distance between two of those points detected on the
field can be used to estimate the position where those points are observed from
the camera position. The position of the X-, T-and L-intersections are specified
in the Standard Platform League rule book [21], so their distances are known.

For efficiency reasons in RoboCup typical scan-line techniques are used to
detect lines, searching for regions of white pixels surrounded with green pixels
[16]. Yet, many other white objects are present on the field (such as goal-posts,
the ball and other robots), so additional filters are needed to reduce the number
of false positives [4]. Instead of hand-crafting such filters for the lines and their
crossings, we used a state-of-the-art detector.

The X-, T-and L-intersections in this paper are detected with the detector
based on YOLO v8, a detector which is slightly easier to fine-tune on new types
of objects than YOLO v9 [22]. The detector is based on the YOLO v8 XL model
pretrained on the COCO dataset, further finetuned on 1309 L-intersections, 1229
T-intersections and 806 X-intersections. This intersections were already anno-
tated in the TORSO-21 dataset [2], but further extended with annotated mages
recorded by the Dutch Nao Team [10]. This dataset, including the YOLO v8
XL model trained on this data, is publicly available3. This model achieved a
precision of 86.1% and a recall of 84.2%. An example of such detection of two
X-intersections can be seen in Fig. 2. The intersections further away are also de-
tected, but with a too low confidence to be displayed (a confidence below 50%).
From the rule book it is known that the distance between the two X-intersections
is 1.5m.
3 https://universe.roboflow.com/fieldmarks/splfieldmark, courtesy Gijs de Jong

https://universe.roboflow.com/fieldmarks/splfieldmark
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Fig. 2: The X-intersection detected on the Standard Platform League field.

3.1 Position from 3 known points

When three points are known in the world, one can formulate a third degree
polynomial which once solved gives 4 solutions. This is known as the P3P prob-
lem, which was first solved by Grunert [8] and further refined by Finsterwalder
& Scheufele [5]. Grunert solution is nicely described by [9], which starts with the
following three equations generated by the law of cosines:

x2 + y2 − 2xy cos(α) = a2

x2 + z2 − 2xz cos(β) = b2

y2 + z2 − 2yz cos(γ) = c2
(5)

Finsterwalder has shown that this is equivalent with solving λ in this third degree
polynomial for the P3P problem:

λ3 c2(c2 sin2 α− a2 sin2 γ) +

λ2 [a2(b2 − a2) sin2 γ − c2(2b2 + c2) sin2 α+ 2a2c2(1− cosα cosβ cos γ)] +

λ [a2(a2 − c2) sin2 β + b2(b2 + 2c2) sin2 α− 2a2b2(1− cosα cosβ cos γ)] +

b2[a2 sin2 β − b2 sin2 α] = 0

(6)

After the overview of Haralick [9] several other researchers came with solu-
tions for the P3P problems, such as [7] and [15].

When a fourth point is known one can disambiguate between the four solu-
tions, which makes P3P a special case of the PnP problem with n the number
of known points. Yet, in our case only two points are known: n = 2.

3.2 Position from 2 points on the field and gravity

The two point problem can be solved if we have a robot and a measure of the di-
rection of gravity. Actually, there are two ways to get a measure on the direction
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of gravity. Initially we used the measurement of the an Inertial Measurement
Unit (IMU) on-board of the robot. By also using the measurement values of the
pitch and yaw angles of the head relative to the torso, this direction is trans-
formed to the coordinate frame of the camera. Yet, together with timing errors
small directional deviations resulted in positional errors in the range of 8-25 cen-
timeters range. As a check, we also derived the gravitational direction from the
perspective in the image, from the vanishing point of the outer edges of the goal
posts. Here we found that the mean absolute errors are much better in the 3-6
centimeters range. So, for the rest of this paper we use the gravitational direc-
tion from the perspective, although this means that this direction can only be
estimated when parallel verticals structures are visible. With better calibration
of the gravitational direction from the IMU and the kinetic chain, we could skip
this intermediate step.

For two points on the soccer field we know the distance, so also the quadrance
L. We can determine their directions in camera coordinates from the projection
in the image. With the direction of gravity g, we can convert those two directions
to the spreads p1 and p2 between the visual directions and the gravitational
direction g. The three vectors form a tetrahedron with the camera on top, as
illustrated in Fig. 3. The spread between the two visual directions is q12. The
quadrance H is along the gravitational direction g and that is the parameter to
be determined.

Fig. 3: A line L between two known points seen from a camera. The red points
on the ground plane are the intersections of middle line and circle of which
the quadrance L is known. The red point on the top right is the camera point.
Together with the foot of the altitude these points form a tetrahedron with two
right angles. The altitude quadrance H can be determined from quadrance L
and the spreads p1, p2, and q12.
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The tetrahedron has 4 vertices, 6 edges, and 4 faces. So, in the tetrahedron
6 distances / quadrances can be distinguished (see the three colored pairs in
Fig. 3) and 12 angles / spreads. One quadrance L and five spreads are known:
(p1, p2, q12) and the two right angles formed by H and the ground plane. The
other spreads and quadrances can be derived from those measurements.

From the three measured spreads p1, p2, and q12 and the known quadrance
L we can determine the vertical height, denoted as the quadrance H:

H =
(1− p1)(1− p2)

(1− p1) + (1− p2)− 2
√
(1− p1)(1− p2)(1− q12)

L (7)

If we define P1 in Fig. 3 as the origin, and the Y-axis is the vector along line
L in the direction of P2, the (X,Y ) coordinate where quadrance H touches the
ground plane can be calculated:

X =
(1− p1)(1− p2)[q12 − (1− p1)− (1− p2) + 2

√
(1− p1)(1− p2)(1− q12)]

[(1− p1) + (1− p2)− 2
√
(1− p1)(1− p2)(1− q12)]2

L

(8)

Y =
[(1− p2)−

√
(1− p1)(1− p2)(1− q12)]

2

[(1− p1) + (1− p2)− 2
√
(1− p1)(1− p2)(1− q12)]2

L (9)

Note that in both equations no transcendental trigonometric functions like
sin(ϕ), arccos(ϕ) and tan(ϕ) are used.

3.3 Classical trigonometry

The same method can also be formulated with distances and angles, which gives
the following equations:

x =
cos(α1) cos(α2)

√
sin2(β12)− cos2(α1)− cos2(α2) + 2 cos(α1) cos(α2) cos(β12)

cos2(α1) + cos2(α2)− 2 cos(α1) cos(α2) cos(β12)
l

(10)

y =
cos2(α2)− cos(α1) cos(α2) cos(β12)]

cos2(α1) + cos2(α2)− 2 cos(α1) cos(α2) cos(β12)
l (11)

h =
cos(α1) cos(α2)√

cos2(α1) + cos2(α1)− 2 cos(α1) cos(α2) cos(β12)
l (12)

When optimized (removing redundant calculations), this algorithm requires
17x a transcendental function-call to calculate cos(ϕ) and sin(ϕ).
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4 Computational experiments

Wildberger claims that rational trigonometry increases both the computational
accuracy and the computational speed when compared to classical trigonometry
[23]. Let us check whether we have found any evidence for this claim.

If we look at the accuracy of both computations we do not find any sig-
nificant differences. The deviations start showing up around the 12th decimal.
That is way beyond the measurement accuracy and precision for our position
measurements.

The code to calculate the camera positions from two points on the field with
quadrances and spreads was executed multiple times on a Nao v6 robot, which
indicates that one calculation takes on average 2.47 · 10−05 sec. The implemen-
tation was in Python 2.7, the language supported by the standard Aldebaran
NaoQi image, so could be further optimized in C++ or RUST. Yet, the Python
implementation can already be used for a comparison with the same calcula-
tion with traditional method based on angle and distance, which needed for
one calculation on average was 3.18 · 10−05 sec. This indicates that the rational
algorithm on the Nao v6 robot is ≈ 28.7% faster, because it performs the calcu-
lations with only divisions and square-roots as computational heavy operations,
in contrast with the trigonometric functions like cos(ϕ) and sin(ϕ) used in the
classical method.

Table 1: Execution time of algorithm in seconds
# runs 50x 500x 5000x 50.000x 500.000x
classical algorithm 1.58 · 10−3 1.59 · 10−2 1.61 · 10−1 1.59 · 100 1.59 · 10+1

rational algorithm 1.24 · 10−3 1.24 · 10−2 1.23 · 10−1 1.23 · 100 1.23 · 10+1

5 Metrical experiments

To see the relative location (x, y, h) of the camera in the head of the Nao v6
robot relative to two points on the soccer field, we recreated two Simultaneous
Localization and Mapping experiments, which were used as Technical Challenge
in 2004 and 2005 [19,20].

The 2004 SLAM challenge specified five points: [(160, 100), (180,−30), (50,
−100), (−210, 0), (−100, 50)] - all cm from the origin at the center of the field.
Those points were marked with red tape on the field. The 2005 SLAM challenge
specified another five points: [(130, 120), (220,−150), (−160,−120), (−210, 90),
(270, 0)], they were marked with black tape on the field.

The soccer fields of 2004 and 2005 were smaller than the current field, so all
points are sampled near the center (see Fig. 5a) The collected data is publicly
available4. As can be seen from Fig. 4.(f-j), the black points from the 2005 SLAM
challenge are slightly further from the center, so here the center circle is always
fully visible. Also the weather conditions changed; the sun was casting shadows
when the 2005 SLAM locations were recorded.
4 https://github.com/physar/landmark_based_slam_dataset

https://github.com/physar/landmark_based_slam_dataset
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4: Viewpoints from the 2004 and 2005 SLAM challenge locations

To provide ground truth, the Nao robot was equipped with a rigid body
marker of the OptiTrack system (see Fig. 5b), consisting of eight Flex 13 cameras,
which can record movements with a 3D accuracy of ±0.20 mm in a tracking area
of ± 8m× 4m [6].

The estimates of location of the observations made on the 10 marked positions
from the 2004 and 2005 SLAM challenge are summarized in Table 2 and 4. As
can be seen from Table 2, no predictions were made for red point 3 and point
5, because the center circle was not in full view. Also can be seen from the
two tables combined that in half of the cases (4 of the 8 marked positions) a
reasonable good estimate is given, while for the other half the estimate is clearly
off (indicated with a red font). Yet, this clearly wrong location-estimates can be
filtered out by setting a threshold on the predicted height, for instance by the
constraint that the height as to be in the range (+0.440,+0.550).

(a) (b)

Fig. 5: Top view of the 2004 and 2005 SLAM challenge locations and a Nao robot
with an OptiTrack rigid body marker
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Table 2: Predictions of the observations at the 2004 SLAM challenge locations
x y h

2004 SLAM challenge
red point 1 +1.600 +1.000 m
OptiTrack reference +1.626 +1.004 +0.449 m
prediction with g-vector from IMU +1.637 +0.939 +0.483 m
prediction with visual g-vector +1.545 +1.023 +0.369 m

red point 2 +1.800 −0.300 m
OptiTrack reference +1.849 −0.330 +0.452 m
prediction with g-vector from IMU +1.576 −0.721 +0.364 m
prediction with visual g-vector +1.784 −0.306 +0.468 m

red point 3 +0.500 −1.000 m

red point 4 −2.100 0.000 m
OptiTrack reference −2.115 +0.014 +0.452 m
prediction with g-vector from IMU −2.083 −0.125 +0.448 m
prediction with visual g-vector −2.100 +0.056 +0.390 m

red point 5 −1.000 +0.500 m

Yet, a reliable observation prediction in only half of the cases is not good
enough to be useful as input for a localization algorithm. To test whether the
origin of this failure comes from the IMU measurement of the g-vector, we also
estimated the g-vector from the goal-posts, when they were visible in the field
of view. This improved the prediction of the observation locations considerably.
With a visual g-vector we found the following errors between the prediction and
the reference measurement from the OptiTrack system as indicated in Table 3.

Table 3: Difference between predictions with visual g-vector and
the OptiTrack reference system

x y h
mean absolute error 0.044 0.030 0.076 m
standard deviation 0.037 0.017 0.069 m

Note that for black point 1 and point 3 of the 2005 SLAM challenge (Table 4)
no goal-posts were in the field-of-view, so visual g-vector could be estimated. Also
note for red point 1 and point 4 of the 2004 SLAM challenge (Table 2 the (x, y)
prediction with the visual g-vector is quite good, but that the constraint on the
height-estimate would indicate that this observation could better be skipped.

In general, a small error in the viewing direction can give large errors in
position estimates. The underlying origin of this small error in estimating the
g-vector by the IMU can be drift of the accelerometer itself, or a buildup of
an error the kinematic chain of several joints between orientation of the head
relative to the torso (where the IMU is located).
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Table 4: Predictions of the observations at the 2005 SLAM challenge locations
x y h

2005 SLAM challenge
black point 1 +1.300 +1.200 m
OptiTrack reference +1.296 +1.217 +0.460 m
prediction with g-vector from IMU +1.296 +1.157 +0.538 m

black point 2 +2.700 0.000 m
OptiTrack reference +2.791 +0.003 +0.472 m
prediction with g-vector from IMU +2.596 +0.549 +0.606 m
prediction with visual g-vector +2.706 +0.027 +0.597 m

black point 3 +2.200 −1.500 m
OptiTrack reference +2.207 −1.505 +0.474 m
prediction with g-vector from IMU +2.560 −1.199 +0.577 m
prediction with visual g-vector +2.230 −1.449 +0.502 m

black point 4 −1.600 −1.200 m
OptiTrack reference −1.513 −1.298 +0.454 m
prediction with g-vector from IMU −1.654 −1.298 +0.499 m

black point 5 −2.100 +0.900 m
OptiTrack reference −2.070 +0.907 +0.425 m
prediction with g-vector from IMU −1.439 +1.302 +0.301 m
prediction with visual g-vector −2.058 +0.919 +0.449 m

6 Discussion

Finding the viewpoint from a limited number of ’known’ points depends strongly
on the accuracy of the ’known’ part. The Inertial Measurement Unit (IMU)
should in principal give an accurate estimate of the g-vector. Yet, this g-vector
is measured inside the torso of the robot, which requires a coordinate transfor-
mation from the torso to the camera in the head. Kneip [13] assumes that this
transformation is fixed and accurately established with a calibration procedure
[17], which is unfortunately not possible on a moving robot. When the g-vector
was estimated from the perspective lines in the image, instead of the IMU mea-
surement, the results actually improved. This indicates that our measurement
strongly depends on a good estimate of the g-vector.

A better estimate could also be accomplished by combining the constraints
from multiple known points, as demonstrated by several solutions available in
the OpenGV library [14]. In this paper only the X-intersections of middle line
and circle were used. Yet, the Standard Platform field has many other useful
points, such as the L-corners of the penalty area or the T-intersections at the
edge of the field. All these type of intersections can be recognized with the
YOLO v8 detector. Yet, the field of the view of the Nao robot is limited, so
even in most cases not more than two known points are visible. Including the
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goal-posts as ’known’ points would increase the number of candidates, but it
remains a challenge to have at least three or four of those points visible. When
playing a soccer match with the occlusion of the opponents nearby, the situation
will be even worse. Having an algorithm that can give a reasonable estimate on
just two ’known’ points remains valuable.

7 Conclusion

In this paper the claim that the use of rational trigonometry can reduce the
time to calculate a triangulation is reproduced in a robotics application. This is
beneficial for a robotics platform like the Nao robot, where computation time is
scarce.

In addition, this paper demonstrates that for a known orientation relative to
the g-vector, observing two ’known’ points in the environment is enough to get
an estimate on the pose of the camera. The accuracy depends on an accurate
measurement of the g-vector by either an Inertial Measurement Unit or the
vanishing point from two vertical lines. Estimates that that are completely off
can be filtered out by setting a boundary of the height estimate; the height of
the robot is known, measurements above that height are only possible when the
robot is lifted from the ground.

The estimates of the relative position to two ’known’ points can be the input
of a full-scale localization or a landmark based simultaneous localization and
mapping algorithm, which keeps track of those observations over time, combined
a model of the movement of the robot.
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