
Enabling codesharing in Rescue Simulation
with USARSim/ROS

Zeid Kootbally1, Stephen Balakirsky2, and Arnoud Visser3

1 Department of Mechanical Engineering, University of Maryland
2 Georgia Tech Research Institute, Atlanta, Georgia

3 Intelligent Systems Laboratory Amsterdam, Universiteit van Amsterdam

Abstract. The Robot Operating System (ROS) has been steadily gaining
popularity among robotics researchers as an open source framework for
robot control. The Uni�ed System for Automation and Robot Simulation
(USARSim) has been used for many years by robotics researchers and
developers as a validated framework for simulation. This paper presents a
new ROS node that is designed to seamlessly interface between ROS and
USARSim. It provides for automatic con�guration of ROS transforms
and topics to allow for full utilization of the simulated hardware. The
design of the new node as well as examples of its use for mobile robot
inside the RoboCup Rescue Simulation League are presented.

1 Introduction

With the development of advanced but also more complex algorithms one cannot
expect that a robotic control system will be developed from scratch. With the aid
of open source projects such as the Robot Operating System (ROS) [17] allow
anyone with a Linux computer to download and run some of the most advanced
robotic algorithms that exist. This is essential for the RoboCup mission; to
accelerate the developments of intelligent and dexterous robots. With working
modules that cover all basic capabilities needed for a functional robot, developers
can concentrate on improving the aspects needed for their application.

Most programmers have access to a single robot or small sensor suite, but are
missing access to some of the robotic hardware needed for the job. Simulators
exist to �ll this void and allow both experts and novices to experiment with
robotic algorithms in a safe, low-cost environment. However, to truly provide
valid simulation, the simulator must provide noise models for sensors and must
be validated [2, 13{15, 21]. One modern robotic simulator, known as the Uni�ed
System for Automation and Robot Simulation (USARSim) [2] provides such
a simulation platform. This simulator has been used by the expert robotics
community for several years and has played an important role in developing
robotics applications [3].

This paper examines how a new interface to the ROS control framework (in-
troduced by [5]) can be used inside the RoboCup Rescue Simulation League [1].
The ROS framework allows for easy sharing of modules [9], allowing fast progress.

avisser1
Typewritten Text
This is the author's final version. The original publication is available at www.springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-662-44468-9_54

BACKGROUND

The USARSim Framework

USARSim [7] is a high-�delity physics-based simulation system based on the
Unreal Developers Kit (UDK)4 from Epic Games. Through its usage of UDK,
USARSim utilizes the PhysX physics engine [6] and high-quality 3D rendering fa-
cilities to create a realistic simulation environment that provides the embodiment
of, and environment for a robotic system. The current release of USARSim con-
sists of various environmental models, models of commercial and experimental
robots, and sensor models. High �delity at low cost is made possible by building
the simulation on top of a game engine. By loading the most di�cult aspects of
simulation to a high volume commercial platform (available for free to academic
users) which provides superior visual rendering and physical modeling, full user
e�ort can be devoted to the robotics-speci�c tasks of modeling platforms, con-
trol systems, sensors, interface tools and environments. These tasks are in turn
accelerated by the advanced editing and development tools integrated with the
game engine. This leads to a virtuous spiral in which a wide range of platforms
can be modeled with greater �delity in a short period of time.

(a) Dutch Open �nal, (b) RoboCup 2012 preliminary,

(c) NIST main campus, (d) Factory.

Fig. 1. Sample of 3D environments in USARSim.

USARSim was originally based upon simulated environments in the USAR
domain [20]. Realistic disaster scenarios as well as robot test methods were cre-

4 http://www.unrealengine.com/udk

ated (Figure 1(a) and 1(b)). Since then, USARSim has been used worldwide and
more environments have been developed for di�erent purposes, including human
robot interaction and educational games [3]. Other environments such as the
NIST campus (Figure 1(c)) and factories (Figure 1(d)) have been used to test
the performance of robotic algorithms in di�erent circumstances [2, 21]. The sim-
ulation is also widely used for the RoboCup Virtual Robot Rescue Competition
[1], the IEEE Virtual Manufacturing and Automation Challenge [4].

The ROS Framework

ROS [17] is an open source framework designed to provide an abstraction layer
to complex robotic hardware and software con�gurations. It provides libraries
and tools to help software developers create robot applications and has found
wide use in both industry and academia [8]. Examples of ROS applications in-
clude Willow Garage's Personal Robots Program [22], the Stanford University
STAIR project [16] and the European Nifti project [11]. Developers of ROS code
are encouraged to contribute their code back to the community and to provide
documentation and maintenance of their algorithms.

ROS consists of a large range of tools and services that both users and devel-
opers alike can bene�t from. The philosophical goals of ROS include an advanced
set of criteria and can be summarized as: peer-to-peer, tools-based, multi-lingual,
thin, and free and open-source [17]. Furthermore, debugging at all levels of the
software is made possible with the full source code of ROS being publicly avail-
able. Thus, the main developers of a project can bene�t from the community
and vice-versa.

THE ROS/USARSIM INTERFACE

USARSim is designed to communicate over a TCP/IP socket with a computer
hosting the controller of the robot. The robot is \spawned" into the simulated
world running on the game server. A robot's con�guration is controlled by an
initialization �le that resides on the simulation system's computer, compara-
ble with the launch �le from Gazebo. This �le controls aspects such as sensor
con�guration, battery life, and simulated noise models. One socket connection
is established per simulated robot, with both commands and sensor data be-
ing transmitted over the socket. An additional separate socket is established for
high-volume sensors such as camera systems.

ROS stacks are designed to \bottom out" at a hardware abstraction layer
that provides the interface to sensors and the motors of the robot; publishing
and subscribing to the basic topics of the robot. For example, the mobility stack
expects to be able to control a platform by writing commands to low-level topics
that control items such as the velocity. In addition, the mobility stack expects
feedback from sensors, such as the movement detected by the inertia sensor.
In order to close this low-level loop between ROS and USARSim, a USARSim

view_frames Result

/base_footprint

/base_link

Broadcaster: /RosSim
Average rate: 9.993 Hz

Most recent transform: 0.139 sec old
Buffer length: 5.004 sec

/lms200

Broadcaster: /RosSim
Average rate: 5.218 Hz

Most recent transform: 0.136 sec old
Buffer length: 4.791 sec

/odom

Broadcaster: /RosSim
Average rate: 5.218 Hz

Most recent transform: 0.139 sec old
Buffer length: 4.791 sec

/GndTruth

/base_GndTruth

Broadcaster: /RosSim
Average rate: 10.227 Hz

Most recent transform: 0.042 sec old
Buffer length: 4.889 sec

Recorded at time: 1323725912.572

Fig. 2. Auto-generated tf transform tree for P3AT robot.

package was created inside ROS5. This package contains a node called RosSim

that publishes a ROS transform tree tf and sensor messages, and also accepts
platform and actuator motion commands. When run, it provides a mechanism
for spawning a robot in USARSim, and then auto-discovering the robot's sensors,
actuators, and drive con�guration in order to provide the necessary ROS topics.

The RosSim node relies on several parameters for its con�guration. These
are necessary for the creation of a robot in USARSim and a transform tree tf

in ROS. A transform tree for the P3AT robot is shown in Figure 2. This trans-
form tree is built automatically from data obtained from the USARSim GEO
and CONF messages. Since USARSim supports multiple sensors on a robot, it
should be speci�ed which sensor should be preferred for an initial localization
estimation (later updated in a SLAM algorithm). That sensor's name is automat-
ically changed to odom. The base footprint, representing the robot platform and
the base link representing robot sensor mounting points are also automatically
generated.

Vehicle movement commands into USARSim vary depending on the robot
type. For example, skid-steered vehicles require left and right wheel velocities
while Ackerman steered vehicles require steering angle and linear velocity. ROS
provides a cmd vel topic that includes both linear and angular velocities. The
RosSim node automatically converts these velocities into the appropriate com-
mands and values for the USARSim simulator based on the robots steering type,

5 http://sourceforge.net/projects/usarsimros/

Fig. 3. Kenaf in RoboCup 2012 �nal environment.

wheelbase, and wheel separation. Vehicle speeds are also clamped to not exceed
maximum velocities that are set in the simulation.

Sensor Interface

ROS provides a rich vocabulary of sensor interface messages. The RosSim node
strives to automatically match simulated sensors to the appropriate ROS topic.
Currently, a wide variety of sensors are supported; ground truth, inertial nav-
igation, GPS, range-scanners, sonar, CO2 and acoustic sensors are supported.
It is our ambition to support all sensors which are used in the RoboCup Res-
cue competition [1]. This presence of sensors is queried via USARSim's CONF
and GEO messages and automatically included the robot transform tree used
by ROS. The corresponding sensor messages are published at the rate that the
RosSim node receives the sensor output.

Mobile Robot Control with the ROS Navigation Stack

Control of mobile robots through the ROS/USARSim interface is performed with
the ROS navigation stack6. The navigation stack provides for 2D navigation and
takes in information from odometry, sensor streams, and a goal pose to plan the
velocity commands that does not lead to collisions. The planning for collision free
paths is performed on two levels: one on a local costmap and a global costmap.

Although di�erent models of mobile robot are developed in USARSim, the
Kenaf has proven its worth in the Rescue League [14]. The Kenaf robot (see
Figure 3) is a challenge to be used the navigation stack with its elongated rect-
angular form (so not square or circular) and its
ippers. As con�gured in our
experiments, it includes a laser scanner mounted on his base.

Low-level Navigation The ROS/USARSim interface allows for the start-up
and control of the default robot base controllers by directly sending velocity
commands to the base. This task was performed using the following commands:

6 fhttp://www.ros.org/wiki/navigationg

1. Bring up an environment in USARSim.
2. $roscore
3. $roslaunch usarsim usarsim.launch
4. $rosrun teleop twist keyboard teleop twist keyboard.py
5. $rosrun gmapping slam gmapping scan:=lms200 odom frame:=odom

In step 1. an environment is started on the server side (USARSim). If an
environment is not up and running, passing messages between ROS and US-
ARSim will fail. Step 2. starts roscore, a collection of nodes and programs that
are pre-requisites of a ROS-based system for ROS nodes to communicate. Step
3. launches the usarsim.launch �le. This launch �le contains the parameters to
connect the game server and starts the RosSim node that provides a connection
between ROS and USARSim. Step 4. starts the teleop twist keyboard node which
sends velocity commands to the RosSim node through the computer keyboard.
At this point, the Kenaf can be controlled by keyboard teleop in the USARSim
environment. Step 5. starts the node slam gmapping which transforms each in-
coming scan from the laser into the odometry tf frame to build a map. Here, the
topic scan is used to create the map with the parameter odom frame, the frame
attached to the odometry system.

Fig. 4. Mobile robot control using teleop

Figure 4 is a graph generated by rxgraph with the option \quiet". The graph
illustrates the communication between the nodes RosSim, teleop twist keyboard,
and slam gmapping. The keyboard inputs are converted in velocity commands
and then communicated to the RosSim node on the topic cmd vel. slam gmapping

uses the topics (lms200) and (tf) as inputs to build the map. To save the gener-
ated map, the following command is used:

$rosrun map server map saver

Figure 5(a) is a bird's eye view of the environment used to run the teleop

command to steer a robot through the environment and Figure 5(b) is the map
generated by the map saver utility-command.

High-level Navigation Several teams [18, 19] are currently building high-level
navigation software by combining existing ROS algorithms with algorithms from

(a) USARSim environment. (b) Map of the environment.

Fig. 5. Environment in USARSim and the corresponding map.

their institutes. Those teams perform simultaneous localization and mapping to
generate online maps, and use those maps to plan path (for instance with the
RRT algorithm [19]) to replace teleop with autonomous navigation.

CONCLUSION AND FUTURE WORK

This paper has presented a new ROS package that allows for the seamless inter-
face of USARSim with ROS. The package provides for auto-discovery of robots
and sensors, and produces the standard ROS topics that one would expect from a
physical platform. Several researchers from outside the RoboCup community [10,
12] have already tried this interface. Still, further work is needed to provide the
control interface for legged robots (as the Nao robot) and
ying robots (such
as the AirRobot and the AR.Drone). In addition, the whole sensor suite must
have their USARSim interfaces wrapped to be supported in the ROS environ-
ment. On the positive site, as the Darpa Robotics Challenge is based on the ROS
framework, progress in this competition could be an advance for the RoboCup,
and vice versa.

References

1. Akin, H., Ito, N., Kleiner, A., Pellenz, J., Visser, A.: Robocup rescue robot and
simulation leagues. AI Magazine 34(1), 78{86 (2013)

2. Balaguer, B., Balakirsky, S., Carpin, S., Lewis, M., Scrapper, C.: USARSim: a Val-
idated Simulator for Research in Robotics and Automation. In: IEEE/RSJ IROS
2008 Workshop on Robot Simulators: Available Software, Scienti�c Applications
and Future Trends (2008)

3. Balakirky, S., Carpin, S., Lewis, M.: Workshop on robots, games, and research:
Success stories in usarsim. In: Proceedings of the International Conference on In-
telligent Robots and Systems (IROS 2009) (October 2009)

4. Balakirsky, S., Chitta, S., Dimitoglou, G., Gorman, J., Kim, K., Yim, M.: Robot
challenge. IEEE Robotics Automation Magazine 19(4), 9{11 (2012)

5. Balakirsky, S., Kootbally, Z.: USARSim/ROS: a combined framework for robot
control and simulation. In: Proceedings of the ASME 2012 International Sympo-
sium On Flexible Automation (ISFA 2012) (June 2012)

6. Boeing, A., Br�aunl, T.: Evaluation of real-time physics simulation systems. In: Pro-
ceedings of the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia. pp. 281{288. ACM (2007)

7. Carpin, S., Wang, J., Lewis, M., Birk, A., Jaco�, A.: Robocup 2005: Robot Soccer
World Cup IX, LNAI, vol. 4020, chap. High Fidelity Tools for Rescue Robotics:
Results and Perspectives, pp. 301{311. Springer (2006)

8. Cousins, S.: Is ros good for robotics? IEEE Robotics Automation Magazine 19(2),
13{14 (2012)

9. Cousins, S., Gerkey, B., Conley, K., Garage, W.: Sharing software with ros. IEEE
Robotics Automation Magazine 17(2), 12{14 (2010)

10. Haber, A., McGill, M., Sammut, C.: jmesim: An open source, multi platform
robotics simulator. In: Proceedings of Australasian Conference on Robotics and
Automation (December 2012)

11. Larochelle, B., Kruij�, G.J., Smets, N., Mioch, T., Groenewegen, P.: Establishing
human situation awareness using a multi-modal operator control unit in an urban
search & rescue human-robot team. In: 2011 IEEE RO-MAN. pp. 229{234 (2011)

12. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehen-
sive simulation of quadrotor uavs using ros and gazebo. In: Simulation, Modeling,
and Programming for Autonomous Robots, Lecture Notes in Arti�cial Intelligence,
vol. 7628, pp. 400{411. Springer, Heidelberg (2012)

13. van Noort, S., Visser, A.: Validation of the dynamics of an humanoid robot in
usarsim. In: Proceedings of Performance Metrics for Intelligent Systems Workshop
(PerMIS12) (March 2012)

14. Okamoto, S., Kurose, K., Saga, S., Ohno, K., Tadokoro, S.: Validation of simulated
robots with realistically modeled dimensions and mass in usarsim. In: Safety, Se-
curity and Rescue Robotics, 2008. SSRR 2008. IEEE International Workshop on.
pp. 77{82. IEEE (2008)

15. Pepper, C., Balakirsky, S., Scrapper, C.: Robot simulation physics validation. In:
Proceedings of the 2007 Workshop on Performance Metrics for Intelligent Systems.
pp. 97{104. PerMIS '07, New York, NY, USA (2007)

16. Quigley, M., Berger, E., Ng, A.Y., et al.: Stair: Hardware and software architecture.
In: AAAI 2007 Robotics Workshop, Vancouver, BC. pp. 31{37 (2007)

17. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

18. Takahashi, T., Nishimura, H., Shimizu, M.: Hinomiyagura team description paper
for robocup 2013 virtual robot league (February 2013)

19. Taleghani, S., Shayesteh, M.H., Samizade, S., Sistani, F., Hashemi, S., Hashemi,
A., Naja�, J.: Mrl team description paper for virtual robots competition 2013
(February 2013)

20. Wang, J., Lewis, M., Gennari, J.: A Game Engine Based Simulation of the NIST
Urban Search and Rescue Arenas. In: Proceedings of the 2003 Winter Simulation
Conference. vol. 1, pp. 1039{1045 (2003)

21. Wang, J., Lewis, M., Hughes, S., Koes, M., Carpin, S.: Validating USARSim for use
in HRI Research. In: Proceedings of the Human Factors and Ergonomics Society
49th Annual Meeting. pp. 457{461 (2005)

22. Wyobek, K., Berger, E., der Loos, H.V., Salisbury, K.: Towards a Personal Robotics
Development Platform: Rationale and Design of an Intrinsically Safe Personal
Robot. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). pp. 2165{2170. Pasadena, CA (2008)

