
UvA Rescue
Team Description Paper

Virtual Robot competition
Rescue Simulation League

RoboCup 2012

Arnoud Visser, Nick Dijkshoorn, Sander van Noort, Olaf Zwennes,
Maarten de Waard, Sammie Katt, and Richard Rozeboom

Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, NL
http://www.jointrescueforces.eu

Abstract. This year’s contribution of the UvA Rescue Team is twofold.
On the one hand a contribution is made to infrastructure of the Virtual
Robot competition [1]. On the other hand progress is made with visual
mapping with a flying platform. The progress was not only shown on the
RoboCup, but in addition also at the International Micro Air Vehicle
competition [2]. Further improvements will be related with the use of
radar for navigation, improved autonomous behaviour and the modeling
of mobile victims.

Introduction

The RoboCup Rescue competitions provide benchmarks for evaluating robot
platforms’ usability in disaster mitigation. Research groups should demonstrate
their ability to deploy a team of robots that explore a devastated area and locate
victims. The Virtual Robots competition, part of the Rescue Simulation League,
is a platform to experiment with multi-robot algorithms for robot systems with
advanced sensory and mobility capabilities.

The shared interest in the application of machine learning techniques to
multi-robot settings has led to a joint effort between the laboratories of the
Oxford and Amsterdam Universities. The result of this four year collaboration
has boiled down in many shared publications [3–7] and a thesis [8] from Ox-
ford’s Exeter College. This year only the Universiteit van Amsterdam will go
the competition, although they are still open for further collaborations. This
year’s challenge will be to make a more agile user interface and to make the
world modeling truly 3 dimensional [9].

To be able to efficiently coordinate a team of robots in a disaster situation
many state-of-the-art robotic techniques have to be integrated. Our approach
is extensively described in previous Team Description Papers (see [10] and the
references within). In this paper we will concentrate on this year’s innovations.



1 Team Members

UsarCommander was originally developed by Bayu Slamet and all other contri-
butions have been integrated into this framework. Many other team members
have contributed to perception and control algorithms inside this framework.

The following contributions have been made and will be made this year:

Arnoud Visser : autonomous exploration [4–6]
Nick Dijkshoorn : Visual SLAM [1, 2, 11, 12]
Sander van Noort : Nao model [13–15]
Olaf Zwennes : automatic map generation [16, 17]
Maarten de Waard : XABSL based behaviors
Sammie Katt : modeling mobile victim
Richard Rozeboom : radar based navigation

The latter three studies are in the initial phase, so the results will be discussed
in another overview paper.

2 Visual Localization And Mapping

One of the most fundamental problems in robotics is the Simultaneous Local-
ization And Mapping problem (SLAM). In SLAM, the robot acquires a map of
its environment while simultaneously localizing itself relative to the map. This
knowledge is critical for robots to operate autonomously. For small (flying) vehi-
cles, such as the affordable AR.Drone quadrotor, researchers focused on solution
based on vision sensors. Vision seems to offer a good balance in terms of weight,
accuracy and power consumption.

For a human operator a texture map is essential for navigation. This map
can be built once the local perspective transformation is estimated [11]. For a
robot a feature map is easier interpretable. If the AR.Drone is able to relate a
video frame to a position inside the feature map, the vehicle is able to correct
the drift in its internal inertia sensors long enough to build a map as large as
50m2.

From each camera frame we extract Speeded-Up Robust Features (SURF)
[18] that are invariant with respect to rotation and scale. Those features are
stored in a 2D grid with a fixed resolution of 100×100mm per cell. Each feature
is an abstract description of an ”interesting” part of an image (e.g., corners).
A feature is described by a center point in image sub-pixel coordinates and a
descriptor vector that consists of 64 floats.

Each feature that is detected in a camera frame is mapped to the corre-
sponding cell of the feature map. This is done by casting a ray from the features
pixel coordinates in the frame. For each cell, only the best feature (e.g. with the
highest response) is kept and the other features are dropped.

The feature map can be used for absolute position estimates, at the moment
of loop-closure (when the AR.Drone is above a location where it has been be-
fore). This allows to correct the drift that originates from the internal sensors of
the AR.Drone. When a camera frame is received, SURF features are extracted.



(a) Visual map created by the mapping method

(b) Localization based on visual map

Fig. 1. Localization and mapping based on the images of the bottom camera of the
simulated AR.Drone, flying at approximately 85cm altitude.

A feature’s center point is transformed to its corresponding position in 2D world
coordinates. The next step is matching the feature descriptors from the camera
frame against the feature descriptors from the feature map. Matching is done us-
ing a brute force matcher that uses the least-squares norm as similarity measure.
Each match corresponds with a transformation of the robot through 3 dimen-
sions. The combination of a number of reliable matches (see [11] for more details)
can be used to estimate an absolute location with respect to the visual map.

Figure 1(b) indicates the positions where the AR.Drone was able to local-
ize itself. Localization was performed at almost every position of the 8-shape
trajectory. At some positions localization was not possible, because the camera
observed insufficient image features. For example, localization failed when only
lines without intersections are observed. These results confirm that the localiza-
tion method is able to use an autonomously build map for navigation purposes
based on visual clues.

3 Infrastructure Contribution

The Universiteit van Amsterdam has contributed on several aspects of the com-
petition environment:

3.1 Image Server

The task of the Image Server is to send camera frames of a simulated robot to
the robot controller. Within USARSim this was previously implemented as a
separate tool, because it was not possible in Unreal Script to directly access the
image buffer of a simulated camera. Due this limitation it was not possible to



directly send the image data from unreal script to the robot controller. To come
around this issue the function call of DirectX that draws the frame to the screen
is hooked. Hooking is a term that refers to altering the behavior of software,
which includes intercepting function calls. In the hooked function the specific
parts of the backbuffer containing the camera frame are copied and then finally
send to the robot controller. The robot controller can then use the image for
processing.

Previously the image server UPIS was a standalone program. It used the Mi-
crosoft Detours library to intercept the Direct3D calls that Unreal uses to finalize
its screen drawing. It then copies the display to an external buffer and serves the
image upon request to any clients. UPIS can be either compiled directly from
source, or installed using precompiled 32-bit binaries available for Windows XP
and Vista. Due to restrictions on Microsoft Detours, the standalone version can
only run in 32-bit mode.

To circumvent this restriction, the UvA Rescue Team incorporated the image
server inside the main code of USARSim in UDK. The usage of the image server
is switchable by the option bEnableImageServer in the config files. The server
only hooks and captures frames when a client is connected (so there should be
no overhead for having it always running). This is possible because UDK itself
includes the EasyHook library, which intercepts Direct3D calls (which works for
both 32 bits and 64 bits machines). The ImageServer is automatically started
when an USARBotAPI.BotDeathMatch is started.

3.2 PhysX proxy

In the new design of USARSim (UDK) wheeled, legged and aerial robots are
modeled using parts and joints. The robot models are defined by adding the
specific part and joints as a number of objects in the default properties of their
class in Unreal Script. The robot models are not defined in the configuration
files because this would require a complete redefinition of the configuration file
format.

Parts are always modeled by a PhysicalItem. These are static meshes with
physics and represent a rigid body. These parts are connected by joints, which are
modeled by different types (i.e. RevoluteJoint, PrismaticJoint, WheelJoint). For
legged and wheeled robots the most important joint type is the RevoluteJoint.

A specific issue, that arises when simulating a complex legged robot such
as the Nao, is the presence of complex joints. Basically these type of joint con-
structions occur when multiple joints are located in almost the same location
in the robot. An example of such a joint is the Nao shoulder joint with two
degrees of freedom. In reality such joints consist of two revolute joints with a
small intermediate limb (rigid body).

To overcome this issue a few simplifications are made to the model by dis-
abling contact generation between parts that are located close to each other. This
allows the collisions between the parts to be ignored. Additionally the masses
and inertia tensors are manually determined to ensure improved behavior.



This solution introduced another problem because Unreal Script only allows
to disable contact generation between rigid bodies that are connected through
a joint. To overcome this problem a PhysX proxy DLL was introduced, which
directly uses the PhysX API to modify these physics properties of the rigid
bodies. Unreal Script then communicates with PhysX using DLLBind1, which
like the name implies allows binding C functions to Unreal Script code. DLLBind
only allows calling C functions from Unreal Script.

Inside a proxy class you can make all functions from the PhysX API accessi-
ble. The functions which are made available in USARUtility:PhysXProxy.uc

are for instance SetIterationSolverCount, SetActorPairIgnore and SetMassS-
paceInertiaTensor. These functions are used in USARBot:USARVehicle.uc and
USARBot:Nao.uc.

3.3 Automatic map generator

One of the contributions this year is the extension of the automatic map gener-
ator currently available in USARSim. The map generator is extended in such a
way that the difficulty of the environment can be gradually increased. Difficulty
can be expressed along several aspects, such as indicated in the a priori infor-
mation of previous competitions (mobility, communication, victims). This time
the focus will be on another aspect, the difficulty to map the environment.

Based on a literature study, several aspects which influence the mapping
difficulty are identified and translated in a number of map-generation rules. With
those rules multiple maps with various difficulties are generated (see Fig. 2). The
difficulty of those maps was evaluated by several experienced robot operators.
The conclusion could be made that there was a strong correlation between the
intended and perceived difficulty [16, 17].

(a) map generated with a low difficulty
(d = 1).

(b) map generated with a high difficulty
(d = 9).

Fig. 2. An eagle-eye view of generated maps with different difficulty settings.

1 http://udn.epicgames.com/Three/DLLBind.html



This research introduced the concept of adaptive map generation, to generate
functional indoor environments within a robot simulation environment. Future
work could build upon this concept and expand it to encompass different func-
tional needs or refine the concept to to higher resolutions.

3.4 Nao humanoid robot

The model of the humanoid robot Nao is completed [14]. The model consists
of 21 links between joints, including collision frames and mass distribution (see
Fig. 3). The dynamics of the robot is extensively tested. First a number of basic
experiments are done, The initial test was to determine the right gravity and
force constants. Those experiments were continued with testing the settings of
the constraints between joints. This was done with a chain of four rigid bodies
and four joints. The motor spring variable of all joints is set to a very high value,
to ensure the joints should be able to satisfy their constraints. Based on these
results of this test a physics’ TimeStep of 1/200s was chosen, combined with a
solver iteration count of 32.

(a) Collision frame (b) Denavit Hartenberg chains

Fig. 3. Details of the Aldebaran Nao robot model.

The basic experiments were followed by a number of more advanced exper-
iments. Those experiments were performed with both the simulated and real
Nao. Those experiments were a single step, a kick and the Tai Chi balance
act which is used by the manufacturer Aldebaran as diagnostic behavior. The
later experiment was repeated with the commercial simulator NaoSim, provided
by Cogmation Robotics2. The differences between real and simulated robot are
quite minimal (indicated in blue in Fig. 4). The only exception is for the larger
angles; both simulation models did not include the restrictions of the collision
hull of this particular joint in our model (which is a function of the ankle pitch3).

2 http://www.cogmation.com/naosim.html
3 http://users.aldebaran-robotics.com/docs/site en/reddoc/hardware/joints-names

3.3.html



0 10 20 30 40 50

0

10

20

30

40

Seconds

D
eg

re
es

 

 

Real
Simulated
Difference

(a) USARSim versus real robot (b) NaoSim versus real robot

Fig. 4. The validation of the Aldebaran Nao robot model; the ankle roll during Tai
Chi balance act

The final test was a full scale application: the simulation of a Soccer team
consisting of 4 Nao robots, which were running the code of the Dutch Nao Team
[19]. The behavior of the simulated Nao robots running the Dutch Nao Team
code is quite convincing. When a Nao falls the robot is able to stand up correctly.
Using their cameras they are able to track the ball (as long as the right ball color
is chosen). The main problem encountered is when the Nao moves close to the
ball to perform a kick motion; it does so by taking tiny steps. The tiny steps of
the simulated robot are too small, what results that it takes too long to correctly
position in front of the ball, longer than it would take the real Nao to position
correctly.

The development of this model for a humanoid robot will allow the develop-
ment of many other walking and humanoid robots (based on the same principles)
[14].

4 Conclusion

This paper summarizes improvements in the algorithms of the UvA Rescue Team
since RoboCup 2011 in Istanbul. Many developments are not only valuable in-
side the Rescue Simulation League, but also valuable for the Soccer Simulation,
the RoboCup@Home and the Standard Platform League [15]. For the Virtual
Robot competition, developments in the user interface and full 3D mapping are
important. The UvA Rescue team has participated this year successfully in both
the Iran and Dutch Open competition, where respectively the award for the best
scientific presentation and the 1st prize were won4.

References

1. Dijkshoorn, N., Visser, A.: Urban Search and with micro aerial vehicles. In: Proc.
CD of the 16th RoboCup International Symposium. (2012)

2. Visser, A., Dijkshoorn, N., van der Veen, M., Jurriaans, R.: Closing the gap be-
tween simulation and reality in the sensor and motion models of an autonomous

4 See for an overview http://www.jointrescueforces.eu/wiki/tiki-index.php?page=
Achievements



ar.drone. In: Proceedings of the International Micro Air Vehicle Conference and
Flight Competition (IMAV11). (2011)

3. de Hoog, J., Cameron, S., Visser, A.: Role-based autonomous multi-robot explo-
ration. In: Proceedings of the International Conference on Advanced Cognitive
Technologies and Applications (Cognitive 2009). (2009)

4. de Hoog, J., Cameron, S., Visser, A.: Autonomous multi-robot exploration in
communication-limited environments. In: Proceedings of the 11th Conference To-
wards Autonomous Robotic Systems (Taros 2010). (2010)

5. de Hoog, J., Cameron, S., Visser, A.: Dynamic team hierarchies in communication-
limited multi-robot exploration. In: Proceedings of the IEEE International Work-
shop on Safety, Security and Rescue Robotics (SSRR 2010). (2010)

6. de Hoog, J., Cameron, S., Visser, A.: Selection of rendezvous points for multi-robot
exploration in dynamic environments. In: International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS). (2010)

7. Wellman, B.L., de Hoog, J., Dawson, S., Anderson, M.: Using rendezvous to over-
come communication limitations in multirobot exploration. In: Proceedings of
SMC (IEEE International Conference on Systems, Man and Cybernetics). (2011)

8. de Hoog, J.: Role-Based Multi-Robot Exploration. PhD thesis, University of
Oxford (2011)

9. Nelson, P.: 3d mapping for robotic search and rescue. 4th year project report
(2011)

10. Dijkshoorn, N., Flynn, H., Formsma, O., van Noort, S., van Weelden, C., Bastiaan,
C., Out, N., Zwennes, O., Otárola, S.S., de Hoog, J., Cameron, S., Visser, A.:
Amsterdam Oxford Joint Rescue Forces - Team Description Paper - RoboCup
2011. In: Proc. CD of the 15th RoboCup International Symposium. (2011)

11. Dijkshoorn, N., Visser, A.: Integrating sensor and motion models to localize an
autonomous ar.drone. International Journal of Micro Air Vehicles 3 (2011) 183–200

12. Dijkshoorn, N.: Simultaneous localization and mapping with the ar.drone. Master’s
thesis, Universiteit van Amsterdam (2012)

13. van Noort, S., Visser, A.: Validation of the dynamics of an humanoid robot in
usarsim. In: Proceedings of Performance Metrics for Intelligent Systems Workshop
(PerMIS12). (2012)

14. van Noort, S.: Validation of the dynamics of an humanoid robot in usarsim. Mas-
ter’s thesis, Universiteit van Amsterdam (2012)

15. van Noort, S., Visser, A.: Extending virtual robots towards robocup soccer simu-
lation and @home. In: Proceedings of the 16th RoboCup Symposium. (2012) To
be published in the Springer Lecture Notes on Artificial Intelligence series.

16. Zwennes, O.: Adaptive indoor map generator for usarsim. Bachelor’s thesis, Uni-
versiteit van Amsterdam (2011)

17. Zwennes, O., Weiss, A., Visser, A.: Adapting the mapping difficulty for the au-
tomatic generation of rescue challenges. In: RoboCup IranOpen 2012 Symposium
(RIOS12). (2012)

18. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (surf).
Computer Vision and Image Understanding 110 (2008) 346 – 359

19. Verschoor, C., Wiggers, A., ten Velthuis, D., Keune, A., Cabot, M., Nugteren, S.,
van Egmond, E., van der Molen, H., Iepsma, R., van Bellen, M., de Groot, M.,
Fodor, E., Rozeboom, R., Visser, A.: Dutch nao team - code release 2011 and
technical report 2011. Published online, Universiteit van Amsterdam (2011)


