
Universiteit

van

Amsterdam

IAS
intelligent autonomous systems

Technical Report: RoboCup Rescue Simulation League - Virtual Robot competition

IAS technical report IAS-UVA-12-02

UvA Rescue Technical Report:

A description of the methods and algorithms

implemented in the UvA Rescue code release

Arnoud Visser

Intelligent Systems Laboratory Amsterdam,

Universiteit van Amsterdam

The Netherlands

Abtract: This technical report gives the background documentation behind the
competition code of the UvA Rescue Team, who participates in the RoboCup
Simulation League. The described code is used in the Virtual Robot competition,
where a team of robots, guided by a single operator, has to �nd as many victims
as possible in a devastated area.

Keywords: Robotic Architecture, Multi-Robot Exploration, Behavior Based
Control, Perception algorithms, Simultaneous Localization and Mapping

Technical Report of the UvA Rescue Team Contents

Contents

1 Introduction 1

1.1 About the team . 1
1.2 About the document . 1
1.3 Changes in the code . 1

2 Getting Started 2

2.1 Getting the code . 3
2.2 Building the code . 3
2.3 Starting the code . 4

3 Architecture 5

4 Perception 8

4.1 Victim detection . 8
4.1.1 The color Model . 8
4.1.2 Skin Detection . 8

5 Simultaneous Localization and Mapping 10

5.1 Patches and Relations . 10
5.2 Mapping Operations . 11
5.3 Sharing Map Information between Multiple Robots 12
5.4 Integrating Maps from Other Robots . 13

6 Behaviors 13

6.1 Motions . 14

7 Conclusion 14

Intelligent Autonomous Systems

Informatics Institute, Faculty of Science
University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam
The Netherlands

Tel (fax): +31 20 525 7461 (7490)

http://www.science.uva.nl/research/isla/

Corresponding author:

A. Visser
tel: +31 20 525 7532
A.Visser@uva.nl

www.science.uva.nl/~arnoud

Copyright IAS, 2012

Section 1 Introduction 1

1 Introduction

1.1 About the team

The UvA Rescue Team has a long history. The �rst participation in the Rescue Simulation
League was by Stef Post and Maurits Fassaert, who competed in the 2003 competition in Paduva
[45, 44]. In 2006 the �rst Virtual Robot competition was held. Max P�ngsthorn and Bayu
Slamet participated in this competition and won the Best Mapping award [39, 51]. The team
from Amsterdam started a cooperation with Oxford University in 2008, which continued for 4
years [20]. In 2012 the team operated again under its original name; the UvA Rescue Team.

During those years the team won several prices1, published several journal articles [5, 3, 12],
book chapters [43, 40, 69, 50, 2, 37, 17], conference articles [42, 14, 63, 36, 65, 67, 66, 21, 47,
61, 30, 6, 4, 68, 22, 32, 16, 56, 25, 23, 24, 60, 71, 35, 74, 34] and theses [1, 44, 51, 13, 49, 46,
31, 70, 52, 15, 27, 7, 38, 20, 73, 55, 33, 10, 9, 29, 48]. It described their approach every year in
a Team Description Paper [39, 65, 64, 58, 62, 11, 59] and published their source code2 with a
public license.

1.2 About the document

The intention of this document is to give an overview of the code produced by the UvA Rescue
team. This overview could be of interest for teams that like to enter the RoboCup Rescue
Simulation League Virtual Robot competition, yet this document is mainly written to give new
team-members of UvA Rescue team a head start.

Chapter 2 starts with a short introduction how to install the software, including the depen-
dencies on other softer. Chapter 3 gives an introduction to the architecture behind the software.
Chapter 4 gives an overview of how sensor data is processed. The sensor data of the di�er-
ent robots is registered on a global map, which is described in Chapter 5. Chapter 6 gives an
overview of the implemented behaviors. Chapter 7 is the conclusion.

1.3 Changes in the code

The original code for the �rst Virtual Robot competition in 2006 was written in C++. The
agents were completely autonomous; the code did not have much of a user interface. A user
interface is quite easy to make with the .Net framework, so the same algorithms were reimple-
mented in Visual Basic. At a �rst glance C# would have been a more logical choice, but the
developer (Bayu Slamet) had more experience with Visual Basic. The power of Visual Basic was
demonstrated when Tijn Smits tried to implement the connection to the image server in C++.
Both the support for sockets and streams is rudimentary in C++. After two weeks struggling
Tijn in C++ Tijn implemented the same code in half a day in Visual Basic and wrote in his
log3:

"I discovered that coding in VB saves a lot of time as it is less complicated and

corrects syntax and cross-references code on the
y."

1http://www.jointrescueforces.eu/wiki/tiki-index.php?page=Achievements
2http://www.jointrescueforces.eu/wiki/tiki-index.php?page=Downloads
3http://student.science.uva.nl/~tschmits/log.html, May 17, 2007.

2 Technical Report of the UvA Rescue Team

The code is maintained on a svn-repository, which allows to maintain a record of the changes
made in the code. The messages with each commit are stored in the distributions in the �les
revisions2006.txt : : : revisions2012.txt. This �les can also be generated by the calling
script Tools/add revisions.sh in a Cygwin environment (with the right year commented out).
This is a small overview of what happened during the years:

2006 Revision 1:251
Both Bayu and Max made only sparsely use of the comment �eld of a commit. Actually,
the developments of the C++-branch is better documented after the competition [51].
The developments on the C++ branch actually continued until May 2007 (rev. 484), with
contributions from e.g. Matthijs Spaan, Xingrui-Ji, Luis Gonzalez and Laurentiu Stancu
[54].

2007 Revision 252:671
In 2007 Bayu was implementing di�erent ScanMatching algorithms to further improve the
SLAM algorithm [40], while Tijn Smits was working on the omnidirectional camera [49].
In the meantime the protocol for relaying the DRIVE commands and SEN messages was
made (and tested in the semi-�nals).

2008 Revision 672:1349
In 2008 Bayu reimplement the ScanMatching with QuadTrees [68]. In the meantime also
the frontier exploration [66, 67] was implemented as part of the Visual Basic code. Already
at the German Open 2008 the control to the AirRobot (GPS based) was introduced.

2009 Revision 1350:1913
In 2009 Julian de Hoog added support for the Kenaf robot and Helen Flynn implemented
automatic victim detection [16]. In the experimental branch Steven Roebert [47] and
Gideon Maillette de Buy Wenniger [30] were able to interpret the omnidirectional images
for navigation.

2010 Revision 1914:2163
In 2010 Okke Formsma implemented way-point following into the behaviors.

2011 Revision 2164:2228
In 2011 Nick Dijkshoorn made the code much more stable and mature.

2012 Revision 2229:2271
In 2012 the code was made much faster. At faster speeds a memory leak became visible,
which was partly solved.

One of the main issues in the code was transmitting images over the wireless link. For a
long time images were not correctly requested, which meant that competition were driven purely
on the map. When the images were �nally correctly transmitted, problems with synchronizing
the stream with laser-scans and images became an issue (which seemed even more di�cult on
multi-core machines).

2 Getting Started

The UvA Rescue Team code controls a team of robots spawned into simulation. The simulation
environment is USARSim, which is an environment based on the Unreal Engine. Three di�erent
versions of USARSim are available, one based on UT2004, one on UT3 and one on UDK. Those
di�erent versions are available on respectively cvs-, svn- and git-rtepositories. The UT2004

Section 2 Getting Started 3

version contains most robot and sensor models and those models contain validated error models.
Yet, UT2004 can no longer be bought and this version is no longer maintained. UT3 was an
attempt to reproduce the same functionality on a di�erent game engine. Unfortunatelly, the
collision model never worked well, so only competitions on a
at
oor could be held. This
issue was solved for UDK, what is also a version which is freely available and much better
documented. Yet, this development is still quite recent and the models didn't reach the richness
and completeness of UT2004 (yet).

The simulation environment USARSim is a prerequisite. Without this environment only
experiments with log�les can be performed. Instructions how to download and install USARSim
can be found at sourceforge4.

2.1 Getting the code

The code is available from the Joint Rescue site5, including instructions how to build an exe-
cutable from this code. For UvA Rescue team it is easier to directly install the code from the
svn-repository6, because the download consists of the di�erent contributions of each year which
have to be installed over each other.

2.2 Building the code

To build the code of the UvA Rescue Team one need Visual Studio with the language packages
C# and Visual Basic. Central in Visual Studio is the solution-�le, which is a container for several
projects. Each project has to be of the same language, but the solution can combine projects
from di�erent languages. Note that the combination of a C++-project with C#- or Visual Basic
code is not trivial, because the latter two produce managed code, while C++ normally produces
unmanaged code. The bene�t of managed code is the compiled code is stored together with all
metadata that describes the classes, methods, and attributes of the code you've created. Note
that Visual Studio is able to produce managed code from C++, by linking the code to the
Common Language Runtime libraries, instead of the native Runtime libraries7.

The instructions to build the code are given in the readme.txt which accompanies the code
and are actually quite simple:

� Open UvArescue2012/UvARescue2005.sln or UvArescue2012/UvARescue2010.sln (depend-
ing on your version of Visual Studio)

� Build UsarClient

� Build UsarCommander

The result is two executables: UsarClient.exe and UsarCommander.exe. In the Con�gura-
tion Manager the dependencies of both executables are speci�ed. If con�gured correctly, those
two build commands also result in the build of all underlying libraries. If one of the libraries fails
to build, try to build it separately. Sometimes there are dependencies between libraries. When
the libraries needed for UsarClient.exe and UsarCommander.exe are built for the �rst time in
a wrong order, the initial build can fail. After building the libraries separately, the overall build
of UsarClient.exe and UsarCommander.exe should be no longer a problem.

4http://sourceforge.net/apps/mediawiki/usarsim/index.php?title=Installation
5http://www.jointrescueforces.eu/wiki/tiki-index.php?page=Downloads
6svn://u013154.science.uva.nl/Roboresc/2011/competition
7When you create a new C++-project, one can choose between several templates (AFC, CLR, General, MFC,

Test and Win32). The choice between managed code and unmanaged code (native) is between CLR template
and a Win32 template (AFC and MFC templates prepare the application for use of COM services). If you have
a existing C++-project, it is an option in the Con�guration Properties at the tab 'Project Defaults'

4 Technical Report of the UvA Rescue Team

2.3 Starting the code

The readme.txt also gives instructions how to start the application:

� Make UsarCommander the default executable by making it the StartUp-project (right
click on the project in the Solution Explorer-window).

� Con�gure a robot team consisting of a ComStation and a number of robots (i.e. P3AT).
This can be done by adding a number of robots (by using the +-button), con�gure each
robot (by clicking on the con�guration-button (gear icon) and loading a con�guration
�le with a name which corresponds to the USARSimRunMap you like to explore), and
con�gure the networks settings of the team (button with world-icon).

� Only for the ComStation the radio button 'Spawn for Commander' is active.

� Start a Run (green arrow).

� Start USARSim by executing one of the scripts in the directory ./USARSimRunMaps. Also
start the Wireless Simulation Server (which can be found in ./USARSimTools).

� Spawn the ComStation.

� Spawn for each robot the Proxy at the current machine and an UsarClient at another
machine.

� An UsarClient is started from the commandline with the command 'UsarClient.exe -n

<name> -ac <agentconfigfile> -tc <teamconfigfile>'.

� Use the controlbuttons of each Proxy to direct the robots through the environment. The
shared map is constantly updated when the robots are driving around.

� Have fun!

The result of all programs started should initiate the connections as displayed in Fig. 1:

Figure 1: The connections between the programs in a competition setting.

For the operator, the programs running on his computer will a Graphical User Interface
(GUI) and several consoles, as is the screenshot displayed in Fig. 2.

During development, one can skip the Wireless Simulation Server by activating also for the
robots the 'Spawn for Commander' radio-button. In that case no UsarClient.exe commands
have to be given. Instead of ProxyAgents a number of BehaviorAgents will run as a thread
inside UsarCommander, which will make direct connection to USARSim and spawn Robot1 and
Robot2. Directly connected to USARSim the code is faster and easier to debug. Yet, remember
to test your algorithm also in a competition setting (with the Wireless Simulation Server and
several UsarClients.

Section 3 Architecture 5

Figure 2: Screenshot of GUI and robot consoles of the UvA Rescue Team during a Virtual Robot
competition (Dutch Open semi �nal 2012).

3 Architecture

As described in previous section, the UvA Rescue Team code consists of two programs: UsarCommander
and UsarClient. Both programs consist of a project with a single �le, the remainder of the
functionality is available in libraries both programs share. The following libraries can be distin-
guished:

� UsarLib: this library consists of three folders. The Team-folder de�nes the di�erent types
of agents which can be started. Examples are UsarSlamAgent (which makes a map) and
UsarSkinDetAgent (which uses image processing to detect victims). The classes in the
Team-folder are used by both UsarCommander and UsarClient. The other two folders
consist of GUI-functionalities which is only used by UsarCommander. The Dialogs-folder
has the dialogs, which are mainly used before and after the competition run. The Views-
folder is used during a competition-run, and displays on the left the map (with the position
of multiple robots) and on the right the control windows for each robot which also displays
the sensor updates for each robot.

� Agent: this library consists of seven folders. The Actors-folder contains the functionality
to issue control-commands to the robot: the actuation. The Agents-folder is the container
class for the robot: for instance it is possible to mount a number of sensors and actors to
the robot (dependent on the type of robot). Part of the agent is the Worldview, this is the

6 Technical Report of the UvA Rescue Team

local copy of the manifold containing the information that has reached this agent. The Be-
havior -folder contains behaviors and motions. Motions are a sort of state-machines which
rules how to react on certain sensor-events. Behaviors are sequential and/or concurrent
combinations of motions. The Con�g-folder contains the logic to synchronize the settings
as used in the program with a con�guration �le. The dialog to change the con�guration is
part of the UsarLib library. Con�guration �les can also be changed by hand: the human
readable format is used.

Figure 3: The Agent mounts a number of Actors and Sensors (gray errors) and publishes changes
to a number of observers (blue errors).

The Driver -folder contains two important types of drivers: the LiveDriver and the Log-
Driver. The LiveDriver contains the interface to the simulator. It runs a separate thread
which maintains the queues of commands to be send and sensor messages to be read. The
LogDriver reads a log�le and issues the information in the same way as the LiveDriver.
Notice that there exist logs which are a single �le with a mixture of messages from several
sources and there exists logs which are multiple �les (in the same directory) each contain-
ing the message from a single source (sensor). In the latter case the messages from the
di�erent sources have to be synchronized on the basis of the timestamps provided for each
message. The Map-folder contains �ve subfolders. The Frontiers-folder contains the func-
tionality to extract frontiers from the map; the locations where the robot has to continue
with exploration. The Momento-folder de�nes the summaries of the map-information as
send over the Wireless Simulation Interface. An agent stores more information that it has
perceived itself than it shares and receives with the other agents (to reduce the amount of
information which has to go over the communication link). This means that the ProxyA-
gent also has a summary of the information that its alter ego in the �eld has. Each agent
can have a number of observers. This is based on the publish-subscribe method. In the
Observations-folder this functionality is implemented. Examples of observers are the be-
haviors (which need sensor-events) and the Views of the GUI. Next is the Sensors-folder.
There are two types of sensors: SingleState- and MultiStateSensors. MultiStateSensors
contain a queue of the unprocessed data. The Camera- and LaserRangeSensor are both
MultiStateSensors.

� Communication: this library consists of two folders. The Device-folder contains three
related classes. The WssDevice starts a WssListener and a number of WssConversations.
Both the WssDevice, the WssListener and each WssConversation is a separate thread. The
Communication library makes use of the System.Net.Sockets library and the UvArescue
Tools.Networking library. TheMessages-folder contains the messages which are exchanged
between the Agents.

� ImageAnalysis: contains the algorithms to detect skin. Initially, the skin detection
was based on color histograms[65]. Aksel Ethembabaoglu [13] used the same histogram

Section 3 Architecture 7

approach to follow a red robot. Later, Helen Flynn extended this with an algorithm based
on shape[16]. Helen's code was based on OpenCV, a connection which worked but wasn't
tested enough for competition usage. Another great work image processing work was
performed by Steven Roebert and Gideon Emile Maillette de Buy Wenniger, which use an
interface to Matlab to perform the image processing. Notice that this work was performed
in another branch of the code (2008/sroebert) instead of the competition-branch. Part of
their work (and of Tijn Smits) is still visible in the competition code, because when the
camera is con�gured to look straight-up, it is assumed that this is omni-directional camera
(which could be converted to a bird-eye view image [47]).

� Math: contains the vector and matrix classes. For several years the class Pose2D (x; y; �)
used in the exchange of information between the robots, but since the Dutch Open 2012
(with an elevated terrain) the class Pose3D is used (x; y; z; pitch; yaw; roll). Many robotic
applications (for instance ROS and LCM [57]) use a quaternion to represent their ori-
entation without singularities (see also [33], section 3.4). In the UvA Rescue code the
orientation is (still) represented with the class Vector3; the class Vector4 is used for homo-
geneous transformations. Notice that a generic Vector and Matrix class is also available
inside the Third Party library Iridium.

� SLAM: this library consists of two folders. The ScanMatcher -folder contains several Scan-
Matching algorithms. Iterative Closest Point (ICP) is the classic algorithm, which is used
as basis for more advanced algorithms. The ScanMatching algorithm were made far more
e�cient once they were implemented with quadtrees [68]. For each algorithm two vari-
ants are available (for instance WeightedScanMatcher and QuadWeightedScanMatcher).
Actually, both are matched with quadtrees; the di�erence is that the quad-variants are
matched against the whole (global) map, while the normal variants are matched against
a local map (generated by combining a number of recent scans). The ScanMatcher -folder
actually contains a single algorithm, ManifoldSlam, extensively described in [51].

� Tools: this library consists of nine folders. The ArgParser -folder contains the code to
parse the arguments from the commandline. The Con�g-folder contains the code to store
settings in a �le. GPX -folder contains the code to store path in an xml-type of �le, which
can be read by geometric information systems. The GPX-format is one of the ogr formats.
It was been used in 2009 when the path to victims had to be generated. The Graph-class
is the base class of the Manifold-class, so this implementation plays an central place in
the UvA Rescue Team code. MapInfo-folder contains the code to store path in another
ogr format with extention mif. It is used to store the paths of the robots. Networking-
folder extends the System's TcpClient and TcpListener class with a TcpConnection class.
This code is used to build up the connection to USARSim and WSS. The QuadTree-
folder contains the code to save points dynamically on a grid. The code is not only
e�cient with memory, but also allows searching very fast for the nearby points. This
code is heavily used in the scanmatching. The Threading-folder implements the Regular-
and PausableThread. The RegularThread is for instance used in the WssConvesation,
WssDevice and WssListener. The PausableThread is used for the LiveDriver.

� Third Party: this library is a container for several external C#-libraries. Iridium and
Neodym are part of the Math.NET Project8. Iridium is now discontinued and replaced
by the Math.NET Numerics project. LightFX is an example of a wrapper class around a
library written in C++. In this case the GamingSDK.dll which allows to control the colored

8http://mathnet.opensourcedotnet.info

8 Technical Report of the UvA Rescue Team

leds in Dell XPS machines. For other systems this code is commented out. SharpZLib is
library to compress data (for instance the raw images).

4 Perception

The perception algorithms can be distinquished in two branches. Leading in one branch is the
LaserRangeData. When this data arrives, a new pose estimate is made. The data points are
matched against previous point-clouds, as described in the next section. This search can start
at the last known position, or can start at a location reported by another sensor (for instance
the encoders, GPS or INS). ScanMatching algorithms are more e�cient and more robust when
correctly initialized, so this seed position is very important. Not all sensors can provide a
complete 3D estimate, in that case sensor estimates can be combined (for instance in the case
of GPS and INS).

Once a pose estimate is known, the data are registered on the Manifold. When this happens,
the observers are noti�ed. Examples of these observers are the behaviors, as described in Sec. 6.
Other observers are the layers with are part of the user interface.

The other branch is the image processing performed on the camera images. The images can
be processed on color. This is done to detect the victim [65], another robot[13] or the soccer
landmarks9. As an example, an extended version of description of the victim detection from [65]
is repeated here.

4.1 Victim detection

Until 2007 victims could be detected with a sort of RFID-tag. To make this sensor realistic, the
RFID-tag did not provide ground truth, but had a certain chance on false positives and false
negatives. To reduce the number of false negatives a victim detection based on skin detection is
developed. A general 3D color histogram model will be constructed in which discrete probability
distributions are learned [28]. Given skin and non-skin histograms based on training sets we can
compute the probability that a given color value belongs to the skin and non-skin classes.

From this a skin pixel classi�er is derived through the standard likelihood ratio approach
[19]. A threshold based on the costs of false positives and false negatives forms the basis for the
skin pixel classi�er.

4.1.1 The color Model

We �rst construct a general color model from the generic training set using a histogram with 32
bins of size 8 per channel in the RGB color space. The histogram counts are converted into a
discrete probability distribution P (�) in the usual manner: P (rgb) = c[rgb]

Tc
where c[rgb] gives the

count in the histogram bin associated with the RGB color triple rgb and Tc is the total count
obtained by summing the counts in all of the bins.

4.1.2 Skin Detection

We derive a skin pixel classi�er through the standard likelihood ratio approach [19]. Given skin
and non-skin histograms we can compute the probability that a given color value belongs to the
skin and non-skin classes: P (rgbjskin) = s[rgb]

Ts
; P (rgbj:skin) = n[rgb]

Tn
where s[rgb] is the pixel

count contained in bin rgb of the skin histogram, n[rgb] is the equivalent count from the non-skin
histogram, and Ts and Tn are the total counts contained in the skin and non-skin histograms,
respectively.

9the 2010\assistance branch

Section 4 Perception 9

Figure 4: A 3-D color Histogram

Given a certain threshold, �, based on the costs of false positives and false negatives, a skin
pixel classi�er is constructed:

P (rgbjskin)

P (rgbj:skin)
� � (1)

An example of this classi�er, preliminary trained in the small world `DM-VictimTest'10 with
only three victims, is given in �gure 5. Because all three victims wore the same clothing, blue
and white are still important components of this probability. Extending the training set with a
wider variety of victims will reduce the in
uence of those colors, in favor of proper skin values.

Figure 5: A plot of P (rgbjskin)
P (rgbj:skin) derived from an environment of which the image to the right is

a camera-image during positive VictSensor readings.

This classi�er can be used to verify the arti�cial VictSensor readings, and to detect victims
on larger distances and behind glass. This classi�er can also be used to initiate a tracking
algorithm based on color-histograms [72] to be able to cope with walking victims. The main
aspect of this statistical method which make it so powerful is the fact that it is fast, compared
with the notion that skin and non-skin histograms are quite distinct. In [28] it was shown
that when the marginal distributions which result from integrating the 3-D histograms along
green-magenta axis are compared, skin histograms show an obvious bias towards the red (�gure
6).

Figure 6: Two equiprobability contour plots for 2D-projections along the green-magenta axis of
skin and non-skin models respectively.

The detection of victims based on shape is extensively described in Helen Flynn's thesis[15].

10An UT2004 based map available on svn://u013154.science.uva.nl/Roboresc/Tijn/DM-VictTest_250.ut2.

10 Technical Report of the UvA Rescue Team

5 Simultaneous Localization and Mapping

Maps enable a robot to maintain an estimate of its physical surroundings and subsequently to
keep track of its current location in the mapped environment. Thereby the map provides a
spatial context for the interpretation of current and past observations and is the key enabler
for higher level reasoning like exploration and coordination with team-members. Due to their
central role in many aspects of a mobile robot's intelligent behavior, the capabilities exhibited by
the chosen map representation are crucial to the successful operation of a team of autonomous
robots.

In [40] we presented a sophisticated map representation that was speci�cally designed for
use by teams of multiple robots. The map representation was inspired by the manifold from [26]
and could be classi�ed as a hybrid representation [53] which features both the strengths of a

exible topological graph and of a detailed occupancy grid. This section is a description which
explains the approach for a more general arti�cial intelligence audience and is borrowed from
unpublished work.

We used the presented approach for our participation in the Virtual Robots League of the
RoboCup Rescue World Championships in 2006 [51]. There the data structure demonstrated
scalability up to 8 robots. The scalability was achieved without sacri�cing on other map aspects
as accuracy and detail. We had maps that were accurate up to 2-20 centimeters and that were
an order of magnitude more detailed than those of fellow competitors. This enabled us to win
the Best Mapping Award that year [5].

In 2007 we participated again [69]. We deployed up to 6 robots which was the largest team
deployed that year and our maps constantly received maximum or near maximum rewards on
the aspects of 'Metric Quality', 'Skeleton Quality' and 'Utility' 11.

In this section the data structure of the manifold will be discussed in detail. Special attention
will be paid to the features that facilitate multi-robot exploration.

5.1 Patches and Relations

The manifold is a hybrid map representation with a graph organization at the global level and
small detailed metric maps at the local level. The vertices of this graph are also called the patches
and the edges are referred to as the relations between these patches. Let � denote the manifold,
then we can de�ne this as the set of all patches � and relations � such that � = ff�g; f�gg.

Each patch is of �nite extent and de�nes a local planar coordinate system. A single patch
stores a single laser range scan observation s together with the estimated global robot pose �

from where this scan was taken. A single scan as returned by the laser range sensor will consist
of a set of n polar coordinates (�; d), which are easily translated into local (x; y) coordinates
relative to the patch origin. So:

� = (�; s) : � = (x; y; �) ; s = f(�; d)ng

.
In e�ect, the patches discretize the full map into small, possibly overlapping, local, metric

maps. The pose � denotes the origin of the local coordinate frame and it provides the transfor-
mation from the global coordinate frame to the local measurement frame and vice versa. Let r�a
be a robot pose estimate relative to patch �a, then � is de�ned as the coordinate transformation
operator that projects this pose estimate on the global frame and 	 as the inverse operator that
projects it back to a patch-relative pose estimate [26]:

rglobal = r�a � �a

11Unfortunatelly, the Mapping competition is no longer a separate part of the competition, because it is di�cult
to judge the quality in an objective way. See [3] and [70] for more details on evaluating map aspects.

Section 5 Simultaneous Localization and Mapping 11

r�b = r�a � �a 	 �b

(a) Patch as pose �(x;y;�) with scan (b) Patch as local coordinate sys-
tem

Figure 7: Patches.

Relations connect the patches in the manifold and indicate navigability as they are typically
constructed between consecutive robot poses. Every relation stores a Gaussian probability
distribution over the estimated pose-di�erence ��ab between two related patches �a and �b.
This probability distribution with mean ��ab and covariance matrix �ab is estimated from the
set of pair-wise point-correspondences between the two patches. Typically, the parameters of
this probability distribution are estimated by a scan matcher [41].

The probability distribution can be stored by de�ning the relation �ab two patches �a and
�b as:

�ab = (�a; �b;��ab;�ab)

. Figure 8 gives a schematic illustration of several consecutive robot poses and the manifold
that could have been constructed along this trajectory.

Figure 8: Schematic illustration of a manifold that could have been constructed along a short
sample trajectory.

5.2 Mapping Operations

As the robot explores the environment the manifold will grow accordingly and map the visited
areas. Patches are added to capture the local geometric properties of the environment and
relations are inserted to store the navigable paths from one patch to the next.

All displacement information is estimated using an iterative closest point (ICP) scan matcher
[41] that compares the current laser scan with laser scans recorded shortly before, stored in
nearby patches of the graph. As long as the new range scan could be matched with su�cient

12 Technical Report of the UvA Rescue Team

con�dence the displacement information is only used to localize the robot. However, when
this con�dence drops below certain thresholds the new scan is considered relevant enough to
memorize it. Hence a new patch is created that stores the scan and the uncertainty information
is stored on a newly created relation. A new part of the map was learned.

(a) Before loop closure. (b) After loop closure

Figure 9: Loop-closing. The robot starts at the bottom right and moves up. Then the robot
turns left several times until it returns to the bottom right, re-observes a particular landmark
and closes the loop.

When new parts of the map start to overlap with previously mapped parts the scan matcher
can also be used to determine correspondence between the overlapping regions. If the scan
matcher is con�dent that these overlapping regions in fact map the same area, a loop closure
algorithm can be triggered as in Figure 9. Similarly, when multiple robots hypothesize that
they explored the same area their maps could be merged into one using the same procedure, see
Figure 10 for an example.

(a) NorthEastern Map. (b) Eastern Map. (c) Merged Map.

Figure 10: Map merging. Two robots partly explore the same area (Northern and Eastern maps)
which they merge after which they acquire the Merged map on the right.

5.3 Sharing Map Information between Multiple Robots

A key aspect of the manifold's design that enhances its scalability to teams of multiple robots
is in how information is stored on the patches. All relevant information that a robot wishes to
memorize is always stored in the local coordinate frames of the relevant patches. The conse-
quence is that a patch thereby becomes a fully self-contained piece of information that can be
shared easily and independently with team members.

Section 6 Behaviors 13

Since also relations only store information about the relative displacement between patches,
robots can also easily communicate partial maps involving multiple patches and the relations
between them.

5.4 Integrating Maps from Other Robots

A single manifold can simultaneously serve multiple robots. In this case each robot starts on
its own patch which it develops into a disconnected sub-graph as it explores and maps the
environment. The fact that these sub-graphs are disconnected exactly represents the fact that
initially the relative displacement of multiple robots may be unknown. As soon as two robots
meet they can decide to align and merge their sub-graphs into one connected component as
illustrated in Fig. 10.

A di�erent con�guration, but with the same underlying idea, is when robots not actually
share the same instance of the manifold but communicate updates to each other. In this scenario
each robot uses its own manifold in which it maintains a separate disconnected sub-graph for
each team member.

It is interesting to note that robots can decide to keep track of all available information
without actually merging the individual maps. So, a robot can have an approximate idea
of where its team members currently are and where they are heading without having to risk
polluting his own map by merging potentially incompatible maps. Merging can be delayed until
enough certainty is acquired about the correspondence. Similarly, if a robot loses track of its
location, e.g. because it fell downstairs or bumped into something unexpected, it can simply
start a new disconnected sub-graph and merge this later when it re-establishes its location.

6 Behaviors

There are a wide variety of behaviors implemented. During the 2011 competition Julian de Hoog
limited the choices during the competition to the four most relevant for the competition:

� TeleOperation: this behavior gives direct control of the robot via the buttons in the
ActionController.

� ConservativeTeleOp: this behavior is equivalent with TeleOperation, with the exception
that the robot will stop when it senses a wall in front of the robot. The stop can be
overruled by pressing the forward button again.

� FollowWaypoint: this behavior works in concert with waypoints indicated on the map
for this particular robot. The robot performs path-planning (breath-�rst) to the waypoint.

� AutonomousExploration: this behavior is extensively described in [69]. It distributes
frontiers over robots based on the distance to this robot (costs) and the area beyond the
frontier (gain). To calculate the distance it �rst makes an initial estimate on Euclidian
distance, followed by a better estimate based path-planning (actually the same as used by
the FollowWaypoint).

Next to those four behaviors, several more experimental behaviors are implemented. Exam-
ples are DeploymentBehavior, which was one of the challenges during the earlier competitions.
The goal was to deploy a relay network as large as possible inside the devastated building. The
robots have to stay in communication-range, although it is di�cult to predict the distribution in
advance, because the signal is not only a function of the distance, but also from the attenuation
of the obstacles between the robots. Another behavior is ExploreTraversibility, which was the
behavior developed during this study [56].

14 Technical Report of the UvA Rescue Team

6.1 Motions

The behaviors are implemented by a number of motions, each representing a certain reaction
to sensor events. When it is detected that the current reaction is not appropriate a transition
to another motion is made. Motions could be reused in di�erent behaviors, yet their behavior
and transitions could be slightly di�erent for each behavior. A way to organize this neatly is
to combine them in a folder, as done for the Following behavior. In Fig. 11 the motions and
transitions are indicated.

Figure 11: Indication of motions and transitions inside the FollowingBehavior.

The motions RandomWalk and ObstacleAvoidance have nearly the same rules, although the
RandomWalk reacts on the Laser scan while ObstacleAvoidance reacts on the Sonar sensors.
The motions AvoidVictim and AvoidTeamMate also have nearly the same rules and in addition
have clear moment when they are activated and deactivated. The two motions Following and
CorridorWalk are both high level motions. Following relies on path planning. When this model-
based approach does not work, it falls back on a sensor-based approach; let the environment
guide the robot for a while by following the walls.

7 Conclusion

The intention of this report is to give an overview of the code developed during the last six
years. This report is not a reference manual, not every function is explained in detail. Yet, most
function names are self-explaining and comments can be found throughout the code. The code
is maintained in a repository, which allows �nding back the developer and date, which allows to
�nd more details in the corresponding logbook12. In addition, this document also is an entrance
to all reports, papers, articles and theses13, which describes the research that the leaded to the
algorithms. It is the intention to maintain this document and to update it yearly with the latest
developments inside the UvA Rescue Team.

12http://www.jointrescueforces.eu/wiki/tiki-index.php?page=Research_Logs
13Available for download on http://www.jointrescueforces.eu/wiki/tiki-index.php?page=Publications

REFERENCES 15

References

[1] A. Abbo and S. Peelen, \Progressive Deepening for GameTrees: An application for Ro-
boRescue", Bachelor's thesis, Universiteit van Amsterdam, June 2004.

[2] F. Alnajar, H. Nijhuis and A. Visser, \Coordinated action in a Heterogeneous Rescue
Team", in \RoboCup 2009: Robot Soccer World Cup XIII", Lecture Notes in Arti�cial

Intelligence, volume 5949, pp. 1{10, Springer, Heidelberg, February 2010, ISBN 978-3-642-
11875-3.

[3] B. Balaguer, S. Balakirsky, S. Carpin and A. Visser, \Evaluating maps produced by ur-
ban search and rescue robots: lessons learned from RoboCup", Autonomous Robots, vol-
ume 27(4):pp. 449{464, November 2009.

[4] B. Balaguer, S. Carpin, S. Balakirsky and A. Visser, \Evaluation of RoboCup Maps", in
\Proceedings of the 9th Performance Metrics for Intelligent Systems (PERMIS'09) work-
shop", September 2009.

[5] S. Balakirsky, S. Carpin, A. Kleiner, M. Lewis, A. Visser, J. Wang and V. A. Ziparo,
\Towards heterogeneous robot teams for disaster mitigation: Results and Performance
Metrics from RoboCup Rescue", Journal of Field Robotics, volume 24(11-12):pp. 943{967,
November 2007, doi:10.1002/rob.20212.

[6] S. Balakirsky, S. Carpin and A. Visser, \Evaluation of The RoboCup 2009 Virtual Robot
Rescue Competition", in \Proceedings of the 9th Performance Metrics for Intelligent Sys-
tems (PERMIS'09) workshop", September 2009.

[7] C. Bastiaan, \Virtual victims in USARSim", Bachelor's thesis, Universiteit van Amsterdam,
June 2010.

[8] T. M. Cover and J. A. Thomas, Elements of information theory, Wiley-Interscience, New
York, NY, USA, 1991.

[9] M. P. DeWaard, \Combining RoboCup Rescue and XABSL", Bachelor's thesis, Universiteit
van Amsterdam, June 2012.

[10] N. Dijkshoorn, \Simultaneous localization and mapping with the AR.Drone", Masters the-
sis, Universiteit van Amsterdam, July 2012.

[11] N. Dijkshoorn, H. Flynn, O. Formsma, S. van Noort, C. van Weelden, C. Bastiaan, N. Out,
O. Zwennes, S. S. Ot�arola, J. de Hoog, S. Cameron and A. Visser, \Amsterdam Oxford
Joint Rescue Forces - Team Description Paper - RoboCup 2011", in \Proc. CD of the 15th
RoboCup International Symposium", June 2011.

[12] N. Dijkshoorn and A. Visser, \Integrating Sensor and Motion Models to Localize an Au-
tonomous AR.Drone", International Journal of Micro Air Vehicles, volume 3(4):pp. 183{
200, December 2011.

[13] A. Ethembabaoglu, \Active target tracking using a mobile robot in the USARSim", Bach-
elor's thesis, Universiteit van Amsterdam, June 2007.

[14] M. L. Fassaert, S. B. Post and A. Visser, \The common knowledge model of a team of
rescue agents", in \1th International Workshop on Synthetic Simulation and Robotics to
Mitigate Earthquake Disaster", July 2003.

16 REFERENCES

[15] H. Flynn, Machine Learning Applied to Object Recognition in Robot Search and Rescue

Systems, Master's thesis, University of Oxford, September 2009.

[16] H. Flynn, J. de Hoog and S. Cameron, \Integrating Automated Object Detection into
Mapping in USARSim", in \Proceedings of the International Conference on Intelligent
Robots and Systems (IROS 2009), Workshop on Robots, Games, and Research: Success
stories in USARSim", pp. 29{34, October 2009.

[17] O. Formsma, N. Dijkshoorn, S. van Noort and A. Visser, \Realistic Simulation of Laser
Range Finder Behavior in a Smoky Environment", in \RoboCup 2010: Robot Soccer World
Cup XIV", Lecture Notes on Arti�cial Intelligence, volume 6556, pp. 336{349, Springer,
June 2011.

[18] U. Frese, \A Discussion of Simultaneous Localization and Mapping", Autonomous Robots,
volume 20(1):pp. 25{42, 2006.

[19] K. Fukunaga, Introduction to statistical pattern recognition (2nd ed.), Academic Press Pro-
fessional, Inc., San Diego, CA, USA, 1990, ISBN 0-12-269851-7.

[20] J. de Hoog, Role-Based Multi-Robot Exploration, Ph.D. thesis, University of Oxford, May
2011.

[21] J. de Hoog, S. Cameron and A. Visser, \Robotic Search-and-Rescue: An integrated ap-
proach", in \Proc. of the Oxford University Computing Laboratory student conference
2008", Number RR-08-10 in OUCL, pp. 28{29, October 2008.

[22] J. de Hoog, S. Cameron and A. Visser, \Role-Based Autonomous Multi-Robot Exploration",
in \Proceedings of the International Conference on Advanced Cognitive Technologies and
Applications (Cognitive 2009)", November 2009.

[23] J. de Hoog, S. Cameron and A. Visser, \Autonomous Multi-Robot Exploration in
Communication-Limited Environments", in \Proceedings of the 11th Conference Towards
Autonomous Robotic Systems (Taros 2010)", Augustus/September 2010.

[24] J. de Hoog, S. Cameron and A. Visser, \Dynamic Team Hierarchies in Communication-
Limited Multi-Robot Exploration", in \Proceedings of the IEEE International Workshop
on Safety, Security and Rescue Robotics (SSRR 2010)", July 2010.

[25] J. de Hoog, S. Cameron and A. Visser, \Selection of Rendezvous Points for Multi-Robot Ex-
ploration in Dynamic Environments", in \International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS)", May 2010.

[26] A. Howard, G. S. Sukhatme and M. J. Matari�c, \Multi-Robot Mapping using Manifold
Representations", Proceedings of the IEEE - Special Issue on Multi-robot Systems, 2006.

[27] M. Jankowska, A Hough Transform Based Approach to Map Stitching, Master's thesis,
University of Oxford, September 2009.

[28] M. J. Jones and J. M. Rehg, \Statistical Color Models with Application to Skin Detection.",
International Journal of Computer Vision, volume 46(1):pp. 81{96, 2002.

[29] S. Katt, \Introducing movements and animations to virtual victims in USARSim", Bache-
lor's thesis, Universiteit van Amsterdam, June 2012.

REFERENCES 17

[30] G. E. Maillette de Buy Wenniger, T. Schmits and A. Visser, \Identifying Free Space in a
Robot Bird-Eye View", in \Proceedings of the 4th European Conference on Mobile Robots
(ECMR 2009)", September 2009.

[31] Q. Nguyen, \A Color Based Range Finder for an Omnidirectional Camera", Bachelor's
thesis, Universiteit van Amsterdam, June 2009.

[32] Q. Nguyen and A. Visser, \A Color Based Range�nder for an Omnidirectional Camera", in
\Proc. IROS Workshop on Robots, Games, and Research: Success stories in USARSim",
(edited by S. Balakirsky, S. Carpin and M. Lewis), pp. 41{48, 2009, ISBN 978-1-4244-3804-
4.

[33] S. van Noort, \Validation of the dynamics of an humanoid robot in USARSim", Master's
thesis, Universiteit van Amsterdam, May 2012.

[34] S. van Noort and A. Visser, \Extending Virtual Robots towards RoboCup Soccer Simula-
tion and @Home", in \Proceedings of the 16th RoboCup Symposium", June 2012, to be
published in the Springer Lecture Notes on Arti�cial Intelligence series.

[35] S. van Noort and A. Visser, \Validation of the dynamics of an humanoid robot in US-
ARSim", in \Proceedings of Performance Metrics for Intelligent Systems Workshop (Per-
MIS12)", March 2012.

[36] F. A. Oliehoek and A. Visser, \A hierarchical model for decentralized �ghting of large scale
urban �res", in \International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS)", May 2006.

[37] F. A. Oliehoek and A. Visser, Interactive Collaborative Informations Systems, Studies in

Computational Intelligence, volume 281, chapter A Decision-Theoretic Approach to Col-
laboration: Principal Description Methods and E�cient Heuristic Approximations, pp.
87{124, Springer-Verlag, Berlin Heidelberg, March 2010, ISBN 978-3-642-11687-2, doi:
10.1007/978-3-642-11688-9 4.

[38] N. Out, \Virtual radar sensor for USARSim", Bachelor's thesis, Universiteit van Amster-
dam, June 2010.

[39] M. P�ngsthorn, B. Slamet, A. Visser and N. Vlassis, \UvA Rescue Team 2006; RoboCup
Rescue - Simulation League", in \Proc. CD of the 10th RoboCup International Sympo-
sium", 2006.

[40] M. P�ngsthorn, B. A. Slamet and A. Visser, \A Scalable Hybrid Multi-Robot SLAM
Method for Highly Detailed Maps", in \RoboCup 2007: Robot Soccer World Cup XI",
Lecture Notes on Arti�cial Intelligence, volume 5001, pp. 457{464, Springer-Verlag, July
2008.

[41] S. T. P�ster, Algorithms for Mobile Robot Localization and Mapping, Incorporating Detailed

Noise Modelling and Multi-scale Feature Extraction, Ph.D. thesis, California Institute of
Technology, April 2006.

[42] S. B. Post, M. L. Fassaert and A. Visser, \Reducing the communication for multiagent co-
ordination in the RoboCupRescue Simulator", in \7th RoboCup International Symposium,
Padua, Italy", July 2003.

18 REFERENCES

[43] S. B. Post, M. L. Fassaert and A. Visser, \The high-level communication model for mul-
tiagent coordination in the RoboCupRescue Simulator", in \RoboCup 2003: Robot Soc-
cer World Cup VII", Lecture Notes on Arti�cial Intelligence, volume 3020, pp. 503{509,
Springer, June 2004.

[44] S. B. M. Post and M. L. Fassaert, A communication and coordination model for

`RoboCupRescue' agents, Master's thesis, Universiteit van Amsterdam, June 2004.

[45] S. B. M. Post, M. L. Fassaert and A. Visser, \The high-level communication model for
multiagent coordination in the RoboCupRescue Simulator", in \7th RoboCup International
Symposium", (edited by D. Polani, B. Browning, A. Bonarini and K. Yoshida), Lecture
Notes on Arti�cial Intelligence, volume 3020, pp. 503{509, Springer-Verlag, 2004.

[46] S. Roebert, \Creating a bird-eye view map using an omnidirectional camera", Bachelor's
thesis, Universiteit van Amsterdam, June 2008.

[47] S. Roebert, T. Schmits and A. Visser, \Creating a Bird-Eye View Map using an Omnidirec-
tional Camera", in \Proceedings of the 20th Belgian-Netherlands Conference on Arti�cial
Intelligence (BNAIC 2008)", October 2008.

[48] R. Rozeboom, \Navigating using a radar sensor in USARSim", Bachelor's thesis, Univer-
siteit van Amsterdam, June 2012.

[49] T. Schmits, Development of a Catadioptric Omnidirectional Camera for the USARSim

Environment, Master's thesis, Universiteit van Amsterdam, June 2008.

[50] T. Schmits and A. Visser, \An Omnidirectional Camera Simulation for the USARSim
World", in \RoboCup 2008: Robot Soccer World Cup XII", (edited by L. Iocchi, H. Mat-
subara, A. Weitzenfeld and C. Zhou), Lecture Notes in Arti�cial Intelligence, volume 5339,
pp. 296{307, Springer, June 2009.

[51] B. A. Slamet and M. P�ngsthorn,ManifoldSLAM: a Multi-Agent Simultaneous Localization

and Mapping System for the RoboCup Rescue Virtual Robots Competition, Master's thesis,
Universiteit van Amsterdam, December 2006.

[52] R. Sobolewski, Machine Learning for Automated Robot Navigation in Rough Terrain, Mas-
ter's thesis, University of Oxford, September 2009.

[53] S. Thrun, \Robotic Mapping: A Survey", in \Exploring Arti�cial Intelligence in the New
Millenium", (edited by G. Lakemeyer and B. Nebel), Morgan Kaufmann, 2002.

[54] M. van Ittersum, Xingrui-Ji, L. Gonzalez and L. Stancu, \Natural Boundaries", Project
Report, Universiteit van Amsterdam, February 2007.

[55] M. van der Veen, \Optimizing Arti�cial Force Fields for Autonomous Drones in the Pylon
Challenge using Reinforcement Learning", Bachelor's thesis, Universiteit van Amsterdam,
July 2011.

[56] M. van der Velden, W. Josemans, B. Huijten and A. Visser, \Application of Traversabil-
ity Maps in the Virtual Rescue competition", in \RoboCup IranOpen 2010 Symposium
(RIOS10)", April 2010.

[57] A. Visser, \A survey of the architecture of the communication library LCM for the moni-
toring and control of autonomous mobile robots", Technical Report IAS-UVA-12-01, Infor-
matics Institute, University of Amsterdam, The Netherlands, October 2012.

REFERENCES 19

[58] A. Visser, G. E. M. de Buy Wenniger, H. Nijhuis, F. Alnajar, B. Huijten, M. van der Velden,
W. Josemans, B. Terwijn, C. Walraven, Q. Nguyen, R. Sobolewski, H. Flynn, M. Jankowska
and J. de Hoog, \Amsterdam Oxford Joint Rescue Forces - Team Description Paper -
RoboCup 2009", in \Proc. CD of the 13th RoboCup International Symposium", July 2009.

[59] A. Visser, N. Dijkshoorn, S. van Noort, O. Zwennes, M. de Waard, S. Katt and R. Roze-
boom, \UvA Rescue - Team Description Paper - RoboCup 2012", June 2012.

[60] A. Visser, N. Dijkshoorn, M. van der Veen and R. Jurriaans, \Closing the gap between
simulation and reality in the sensor and motion models of an autonomous AR.Drone", in
\Proceedings of the International Micro Air Vehicle Conference and Flight Competition
(IMAV11)", September 2011.

[61] A. Visser and J. de Hoog, \Amsterdam Oxford Joint Rescue Forces - Realistic Simulations
to aid research and education in advanced Robot Control algorithms", in \Proc. of the
Scienti�c ICT Research Event Netherlands (SIREN 2008)", p. 22, September 2008.

[62] A. Visser, Q. Nguyen, B. Terwijn, M. Hueting, R. Jurriaans, M. van de Veen, O. Formsma,
N. Dijkshoorn, S. van Noort, R. Sobolewski, H. Flynn, M. Jankowska, S. Rath and
J. de Hoog, \Amsterdam Oxford Joint Rescue Forces - Team Description Paper - RoboCup
2010 and Iran Open", in \Proc. CD of the 14th RoboCup International Symposium", July
2010.

[63] A. Visser, G. Pavlin, S. P. van Gosliga and M. Maris, \Self-organization of multi-agent sys-
tems", in \Proc. of the International workshop Military Applications of Agent Technology
in ICT and Robotics", November 2004.

[64] A. Visser, T. Schmits, S. Roebert and J. de Hoog, \Amsterdam Oxford Joint Rescue Forces -
Team Description Paper - RoboCup 2008", in \Proc. CD of the 12th RoboCup International
Symposium", July 2008.

[65] A. Visser, B. Slamet, T. Schmits, L. A. Gonz�alez Jaime and A. Ethembabaoglu, \Design
decisions of the UvA Rescue 2007 Team on the Challenges of the Virtual Robot compe-
tition", in \Proc. 4th International Workshop on Synthetic Simulation and Robotics to
Mitigate Earthquake Disaster", pp. 20{26, July 2007.

[66] A. Visser and B. A. Slamet, \Balancing the Information Gain Against the Movement Cost
for Multi-robot Frontier Exploration", in \European Robotics Symposium 2008", Springer
Tracts in Advanced Robotics, pp. 43{52, Springer-Verlag, February 2008.

[67] A. Visser and B. A. Slamet, \Including communication success in the estimation of informa-
tion gain for multi-robot exploration", in \6th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops (WiOPT 2008)",
pp. 680{687, IEEE Publishing, April 2008, doi:10.1109/WIOPT.2008.4586160.

[68] A. Visser, B. A. Slamet and M. P�ngsthorn, \Robust Weighted Scan Matching with
Quadtrees", in \Proc. of the 5th International Workshop on Synthetic Simulation and
Robotics to Mitigate Earthquake Disaster (SRMED 2009)", July 2009.

[69] A. Visser, Xingrui-Ji, M. van Ittersum, L. A. Gonz�alez Jaime and L. A. Stancu, \Beyond
frontier exploration", in \RoboCup 2007: Robot Soccer World Cup XI", Lecture Notes in

Arti�cial Intelligence, volume 5001, pp. 113{123, Springer-Verlag, July 2008.

[70] C. Walraven, \Using path planning to grade the quality of a mapper", Bachelor's thesis,
Universiteit van Amsterdam, June 2009.

20 REFERENCES

[71] B. L. Wellman, J. de Hoog, S. Dawson and M. Anderson, \Using Rendezvous to Overcome
Communication Limitations in Multirobot Exploration", in \Proceedings of SMC (IEEE
International Conference on Systems, Man and Cybernetics)", October 2011.

[72] Z. Zivkovic and B. Kr�ose, \An EM-like algorithm for color-histogram-based object track-
ing", in \IEEE Conference on Computer Vision and Pattern Recognition", volume 1, pp.
798{803, June 2004.

[73] O. Zwennes, \Adaptive Indoor Map Generator for USARSim", Bachelor's thesis, Univer-
siteit van Amsterdam, June 2011.

[74] O. Zwennes, A. Weiss and A. Visser, \Adapting the mapping di�culty for the automatic
generation of rescue challenges", in \RoboCup IranOpen 2012 Symposium (RIOS12)", April
2012.

Acknowledgements

The structure of this document is inspired by the document published by the
B-Human team and its predecessor the German Team. The code described
in this report is build as a joint e�ort by many students and reseachers from
the University of Amsterdam and Oxford, who all should receive a part of the
credit.

IAS reports

This report is in the series of IAS technical reports. The series editor is
Bas Terwijn (B.Terwijn@uva.nl). Within this series the following titles ap-
peared:

A. Visser A survey of the architecture of the communication library LCM for

the monitoring and control of autonomous mobile robots Technical Report IAS-
UVA-12-01, Informatics Institute, University of Amsterdam, The Netherlands,
October 2012.

C. Dimitrakakis Bayesian variable order Markov models: Towards Bayesian

predictive state representations Technical Report IAS-UVA-09-04, Informatics
Institute, University of Amsterdam, The Netherlands, September 2009.

C. Dimitrakakis and C. Mitrokotsa Statistical decision making for authentication

and intrusion detection Technical Report IAS-UVA-09-03, Informatics Institute,
University of Amsterdam, The Netherlands, August 2009.

P. de Oude and G. Pavlin Dependence discovery in modular Bayesian networks

Technical Report IAS-UVA-09-02, Informatics Institute, University of Amster-
dam, The Netherlands, June 2009.

C. Dimitrakakis Complexity of stochastic branch and bound for belief tree search

in Bayesian reinforcement learning Technical Report IAS-UVA-09-01, Informat-
ics Institute, University of Amsterdam, The Netherlands, April 2009.

All IAS technical reports are available for download at the ISLA website, http:

//isla.science.uva.nl/node/52.

