v0.02: Tested on a Ubuntu 22.04 system

x IRL technical report IRL-UVA-24-02

X

X VisualSfM - Ubuntu installation

UNIVERSITEIT
VAN

AMSTERDAM .
Arnoud Visser

[RL

Intelligent Robotics Lab

VisualSfM - Ubuntu installation Contents

Contents

1 Introduction 1

2 Installation steps 1
2.1 Getting Started 1
2.2 Setup NVIDIA CUDA (Optional) o e 1
2.3 Download the Necessary Software 1
2.4 Install Dependency Packages 1
2.5 Install Legacy Dependency Packages 2
2.6 Imstall VisualSEM 2
2.7 Build SiftGPU 3
2.8 Build Multicore Bundle Adjustment (a.k.a. “pba”) 3
2.9 Hack PMVS-2 e 3
2.10 Build Graclus 1.2o 4
2.11 Hack CMVS e 4

3 Running VisualSFM 5
3.1 Add someimages 5
3.2 Match the images L 6
3.3 Sparse reconstruction L 6
3.4 Dense reconstructiono Lo 6

4 Conclusion 7

Intelligent Robotics Lab
Informatics Institute, Faculty of Science
University of Amsterdam
Science Park 900, 1098XH Amsterdam
The Netherlands

www.intelligentroboticslab.nl

Copyright IRL, 2024

https://www.intelligentroboticslab.nl/

Section 1 Introduction 1

1 Introduction

In 2013 Changchang Wu, who worked on the Structure from Motion (SFM) part of the study ’'Building
Rome on a Cloudless Day’ [1], created the graphical tool VisualSfM!, which can be used for 3D
reconstruction. The VisualSfM graphical tool combines several algorithms, for feature detection [3],
feature matching [6], bundle adjustment [5], sparse & dense reconstruction [4].

For Windows those tools are bundled up, for Ubuntu more installation work has to be done. An
installation tutorial for Ubuntu is given?, yet this tutorial is based on the Long Term Support version
of 2012 (Precise 12.04). This document gives the instructions needed to build it for modern versions
(tested on Ubuntu 20.04 and 22.04).

2 Installation steps

To get the system working, six tools have to be built. This guide follows the steps from Scott Sawyer’s
tutorial, including the necessary modifications.

2.1 Getting Started

Scott was using working directly in his home-directory, ~/vsfm, with several of the other tools installed
in that directory. I preferred to work in ~/src/vsfm, with the other tools build next to ~/src/vsfm.
2.2 Setup NVIDIA CUDA (Optional)

I skipped this part, partly because not all laptops will have a NVIDIA GPU, partly because I am

afraid of the legacy issues encountered when using CUDA-code from 2012. Our experience is that the
program is fast enough to run on modern laptops without additional GPU.

2.3 Download the Necessary Software

These are 64bits versions of the six tools plus one support routine that are combined in the VisualSFM
graphical user interface:

e [VisualSFM:] version v0.5.26

[SiftGPU:] version v400

[Multicore Bundle Adjustment:] version 1.0.5

[PMVS-2:] fix0

[CLAPACK:] version 3.2.1

[Graclus:| v1.2

[CMVS:] fix2

In the next sections we assume that you saved these downloads in your ~/Downloads/ directory.

2.4 Install Dependency Packages

Not all dependencies mentioned by Scott are still available. Instead, I used the following set:

$ sudo apt-get install 1libgtk2.0-dev libglew-dev glew-utils libdevil-dev libboost-all
-dev libatlas-cpp-0.6-dev imagemagick libatlas-base-dev libcminpack-dev libmetis-
edf-dev libparmetis-dev freeglut3-dev libgsl-dev libcanberra-gtk-module dos2unix

"http://ccwu.me/vsfm/
Zhttp://www.10flow.com/2012/08/15/building- visualsfm-on-ubuntu-12-04-precise-pangolin-desktop-64-bit/

http://ccwu.me/vsfm/download/VisualSFM_linux_64bit.zip
http://ccwu.me/siftgpu/SiftGPU.zip
https://grail.cs.washington.edu/projects/mcba/pba_v1.0.5.zip
https://www.di.ens.fr/pmvs/pmvs-2-fix0.tar.gz
https://www.netlib.org/clapack/clapack.tgz
https://www.cs.utexas.edu/~dml/Software/graclus1.2.tar.gz
https://www.di.ens.fr/cmvs/cmvs-fix2.tar.gz
http://ccwu.me/vsfm/
http://www.10flow.com/2012/08/15/building-visualsfm-on-ubuntu-12-04-precise-pangolin-desktop-64-bit/

2 VisualSfM - Ubuntu installation

2.5 Install Legacy Dependency Packages

The PVMS-2 tool is Fortran based, which is an old programming language, which needs some libraries
from 2008. These libraries are no longer in the default Ubuntu archive, but can still be accessed via
old-releases.ubuntu.com.

To get this to work, add to /etc/apt/sources.list the following lines.

deb [allow-insecure=yes] http://old-releases.ubuntu.com/ubuntu/ hardy main universe
deb [allow-insecure=yes] http://archive.ubuntu.com/ubuntu/ bionic main universe

To load this repository do sudo apt-get update

Next, you should install the old version of the compiler with sudo apt-get install g++-4.1 and
sudo apt-get install g++-5. To activate these compiler you have to check which g++ versions you
have with the command 1s /usr/bin/g++-*.

In my case I had four versions of the compiler, which you can register as alternative. The last
integer in each of these commands indicates the priority for this alternative, I used the year — 2000 as
value for this priority.

$ sudo update-alternatives --install /usr/bin/gt++ g++ /usr/bin/g++-4.1 8
$ sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 15
$ sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-9 19
$ sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-11 21

Now you can select the current gcc-compiler interactively for sudo update-alternatives --
config g++. The same can be done for gcc:

$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.1 8
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 15
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 19
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 21

Select gee-4.1 and g++-4.1 with sudo update-alternatives --config:

sudo update-alternatives --config gcc
$ sudo update-alternatives --config g++

Now you can do sudo apt-get install libgfortranl

When libgfortranl is correctly installed, you can comment out the two new ubuntu.com old-
archive lines from your /etc/apt/sources.list, to prevent problems later.

Switch back again to the default gce-11 and g++-11 with sudo update-alternatives --config.

2.6 Install VisualSFM

Building VisualSFM from source, so we will use a prebuild version. Luckily Alberto Mardegan has a
prebuild version:

$ cd “/src
$ unzip ~/Downloads/VisualSFM_linux_64bit.zip

This installs the framework with all its subdirectories in /src/vsfm, only the executable is missing.

$ snap install visualsfm-mardy
$ cp -p /snap/visualsfm-mardy/current/bin/VisualSFM ~/src/vsfm/bin

We cannot use the snap-version directly, because it depends on an older 1ibgsl.so library.

Section 2 Installation steps 3

2.7 Build SiftGPU

In this guide we have chosen to circumvent CUDA installation issues, we build SiftGPU without CUDA
support. CUDA support is per default on, so the makefile has to be adjusted.

$ cd "/src
$ unzip ~/Downloads/SiftGPU.zip

Open the makefile and set siftgpu_enable_cuda=0. Although you did already sudo apt-get
install libdevil-dev in Section 2.4, you can also set siftgpu_disable_devil = 1.
Now everything should be ready for a build.

$ cd ~/src/SiftGPU
$ make
$ cp bin/libsiftgpu.so ../vsfm/bin

2.8 Build Multicore Bundle Adjustment (a.k.a. “pba”)

Again we build the version without CUDA support. To build this tool we need to make some minor
adjustments in the header files.

$ cd “/src
$ unzip ~/Downloads/pba_v1.0.5.zip

Scott suggested to add a line #include <stdlib.h> to two files: SparseBundleCU.h and pba.h,
which both can be found in the directory pba/src/pba. During our testing it also worked without this
addition. You can make both files better readable with the command dos2unix.

$ cd ~/src/pba
$ make -f makefile_no_gpu
$ cp bin/libpba_no_gpu.so ../vsfm/bin/libpba.so

2.9 Hack PMVS-2

Scott recommends a hack to temporary save mylapack.o before building from source, but this fails
because this file was compiled with an outdated option. Instead we will also build clapack from source.
To do that, we need the definitions of clapack.

cd 7/src

tar -xvf ~/Downloads/pmvs-2-fix0.tar.gz
cd ~/src/pmvs-2/program/base/numeric/
tar -xvf ~/Downloads/clapack.tgz

& hH L &P

$ cd "/src/pmvs-2/program/main/

$ mkdir include

$ cd “/src/pmvs-2/program/main/include

$ In -s ~/src/pmvs-2/program/base/numeric/CLAPACK-3.2.1/INCLUDE clapack
$ cd “/src/pmvs-2/program/main/

Now edit in the main-directory the Makefile, and add the new include-directory to the compiler
with the line YOURINCLUDEPATH = -I include. Now you should be able to build the executable pmvs2.

$ make clean

$ make depend

$ make

$ cp pmvs2 ../vsfm/bin

4 VisualSfM - Ubuntu installation

2.10 Build Graclus 1.2

The Graclus is per default configured for 32-bits computers, so only a small modification is needed to
build this tool.

$ cd “/src
$ tar -xvf “/Downloads/graclusl.2.tar.gz

Edit Makefile.in and set -DNUMBITS=64. That is enough to build this tool.

$ cd “/src/graclusl.2
$ make
$ cp graclus ../vsfm/bin

2.11 Hack CMVS
To build CMVS, we need some of the previous build libraries.

$ cd /src
$ tar -xvf ~/Downloads/cmvs-fix2.tar.gz

You need to modify two source files. Add two lines (#include <vector> and #include <numeric>)
to ~/src/cmvs/program/base/cmvs/bundle.cc. Add one line (#include <stdlib.h>)to ~/src/cmvs
/program/main/genOption.cc.

Then modify ~/src/cmvs/program/main/Makefile with the following lines 10-17 (don’t forget to
comment out line 10, 13, 16):

#Your INCLUDE path (e.g., -I/usr/include)
YOUR_INCLUDE_PATH = -I/home/yourname/src/pmvs-2/program/main/include

#Your metis directory (contains header files under graclusl.2/metisLib/)
YOUR_INCLUDE_METIS_PATH = -I/home/yourname/src/graclusl.2/metisLib

#Your LDLIBRARY path (e.g., -L/usr/lib)
YOUR_LDLIB_PATH = -L/home/yourname/src/graclusi.?2

This tool will not compile with the default compiler, so you should change your compiler to gee-5.5
and g++-5.5 with:

sudo update-alternatives --config gcc
sudo update-alternatives --config g++

Now you can start the build

$ cd ~/src/cmvs/program/main
$ make

$ cp cmvs "/src/vsfm/bin

$ cp pmvs2 “/src/vsfm/bin

$ cp genOption ~/src/vsfm/bin

Don’ t forget to switch back to the default gcc-11 and g++-11 again with sudo update-alternatives
--config.

Section 3 Running VisualSFM 5

3 Running VisualSFM

Finally, add the executable VisualSFM to your path by adding the following lines to your ~/.bashrc
file.

export PATH=$PATH:/home/yourname/src/vsfm/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/yourname/src/vsfm/bin

Activate these extensions with the command source ~/.bashrc. Now you should be able to
start the graphical tool with the command VisualSFM, or run without graphics with a command like
VisualSFM sfm+pmvs ./images ./result.nvm, as indicated in the documentation?.

As an example, you can download a small dataset of 119 images recorded with the front camera of
a RAE robot driving less than a meter in a small maze.

$ cd /home/yourname/src/vsfm/

$ mkdir results

$ mkdir -p data/small_maze

$ cd data/small_maze

$ wget https://staff.fnwi.uva.nl/a.visser/education/VAR/2024/small_maze.tgz
$ tar -zxvf small_maze.tgz

Now you can perform the four steps indicated in the VisualSFM documentation:

3 Sparse Reconstruction

|/, VisualSFM - [Sparse Reconstruction] - [0] - [] | = | (= 23 |
File 5fM View Tools Help h 4

W O R (3 HEET X W o BA 2N W
1 Add some images 2 Match the images 4 Dense Reconstruction

Figure 1: The VisualSFM toolbar

3.1 Add some images

Here you can add the 119 images you unpacked in the /home/yourname/src/vsfm/data/small_maze
directory. The nine-colored-block button in the toolbar allows you to see the thumbnails.

3http://ccwu.me/vsfm/doc. html

http://ccwu.me/vsfm/doc.html

6 VisualSfM - Ubuntu installation

3.2 Match the images

When you select this button, the library 1ibsiftgpu.so you built in Section 2.7 will be used:

VisualSFM - [Thumbnails] - [0] _ o x Log Window x
i
RS Tt
B
[166/204], H[65], 0.00sec
AT

99: 286 matches, 0.01sec, #1
[440/494], H[357], 0.00sec

83 matches, 0.01sec, #1
0033 and 0095: {306/3853] F{286], 0 obsec

AL romsddiidd
4950 Image Match finished, 19
PR e e

Compute Missing Faise Mu[tmm; finished
Totally 20.000 seconds I

#21: framed1 [640x400] [3432]

Figure 2: Matching the SIFT image features

3.3 Sparse reconstruction

When you select this button, the library 1ibpba.so you built in Section 2.8 will be used:

VisualSFM - [sparse Reconstruction] - [0] - [] 5 0 6 Log Window x

R 5017 3U DS, 20 Calls aiil 143400 DI
E= & WD TES GEp PBA: 0,809 > 0.749 (5 LMs in 0.115ec)

; points w/ large emors: 13
I R ISR I T - B e) it

Focal Length : (3031751 >[3m 3201
Radial Distortion : [0.031

B @B W oE o 3t

007100: 4828 pros and 165 pts added.
PBA: 10463 3D pts, 100 cams and 177985 projs.
PO 0932 -2 0542 (28 L8 n 0. 694c0)

PBA: 10454 3D pts, 100 cams and 177922 projs.
PBA: 0,535 > 0.838 (10 Lls In 0.54sec)
END: No more images to add [0 projs]

FERRE AR RRIRRIRRIIRIIRIEES
Failed to find two images forinitialization
Resuming SfM finished, 36 sec used

100 cams, L0464 pts (3-+: 9364)
177922 projections (3+: 175742)

1 models) reconstnucted trom 100 (mages
100 me
SMB!S] e tosore Teature Iocation

#EEREEEStiming——#REFELEEE
Structure-From-Motion finished, 36 sec used
343(27.7) seconds on Bundle Adjustment ()
340(27.6) seconds on Bundle Adjustment (*)
PP A

Run full 3D reconstruction, finished
Totally 36.000 seconds used I

Work thread terminated!

Figure 3: Sparse Reconstruction

3.4 Dense reconstruction

When you select this button, the tool cmvs you built in Section 2.11 will be used:

VisualSFM - [Sparse Reconstruction] - [0] - [] o x Log Window x

Fle SM View Tools Help #04: frame109 -> 00000083 jpg, 0.026 sec
e E® BB G (3t W@ K W W B W N & W D |00 00000070 oo, 0 036 cec
300 Frame 118 = 00000091 Jpg 0034 sex
518 ramas0 > 53000058 3.0 035 s

Running Yasutaka Furukawa's CMVS t
emvs dhame!umaud!srcstrv\!resu\ts!smn\\ maze.
genopton mnmerumnumsrcwsrwresmzsrsmuu

T rare quneratad fat e recanstacion
pmus2 fhome/amoud/s rc/vsfmiresuilts/small_maze

mys.num.cmvs/00/ option-0000
This may take a lttle more time, waiting,

3 seconds were used by PMVS

Loading option-0000 ply, 14059 vertices
Loading patches and estimating point sizes.

AR RRRIRRRRRIIRILRIEE
You can manually remove badt MVS points:

PR

4. Hit DELETE to delete the selected points.

sresesesssssesssenssesesnens
Save to small_maze.cmvs.nvm .. done

Save flome/amoud/src/vaim/results/small maze.
cmvs.0.ply

n dense reconsinucton finished
Totally 4,000 seconds used I

T e oo

#30: frames0

Figure 4: Dense Reconstruction

You can combine those steps in a single command with VisualSFM sfm+pmvs /home/yourname/
src/vsfm/data/small_maze /home/yourname/src/vsfm/results/small_maze.cmvs.nvm.

4

Conclusion

When you are able to make a dense reconstruction for a small example on your local Ubuntu machine,
you could try larger datasets. This will require more computation time. Scott Sawyer wrote his tutorial
while working on a cluster of 64 compute cores [2]. So, future work could be an update of this Ubuntu
installation guide for a cluster including GPU-support.

References

1]

2]

13l

4]

[5]

(6]

J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H. Jen, E. Dunn,
B. Clipp, S. Lazebnik and M. Pollefeys, “Building Rome on a Cloudless Day”, in “Computer Vision
— ECCV 20107, pp. 368-381, Springer, 2010, doi:10.1007/978-3-642-15561-1 _27.

S. M. Sawyer, K. Ni and N. T. Bliss, “Cluster-based 3D reconstruction of aerial video”, in “2012
IEEE Conference on High Performance Extreme Computing”, pp. 1-6, 2012, doi:10.1109/HPEC.
2012.6408681.

C. Wu, Geometry-driven Feature Detection, Ph.D. thesis, University of North Carolina at Chapel
Hill, May 2011, doi:10.17615/a8q4-8h80.

C. Wu, “Towards Linear-Time Incremental Structure from Motion”, in “International Conference
on 3D Vision — 3DV 2013”, pp. 127-134, 2013, doi:10.1109/3DV.2013.25.

C. Wu, S. Agarwal, B. Curless and S. M. Seitz, “Multicore bundle adjustment”, in “IEEE Conference
on Computer Vision and Pattern Recognition — CVPR 2011”7, pp. 3057-3064, 2011, doi:10.1109/
CVPR.2011.5995552.

C. Wu, B. Clipp, X. Li, J.-M. Frahm and M. Pollefeys, “3D model matching with Viewpoint-
Invariant Patches (VIP)”, in “IEEE Conference on Computer Vision and Pattern Recognition —
CVPR 2008”, 2008, doi:10.1109/CVPR.2008.4587501.

IRL/IAS reports

This report is in the series of IRL technical reports, which is a continuation of the
original TAS technical reports. The IRL series editor is Arnoud Visser (A.Visser@
uva.nl) The IAS series editor was Bas Terwijn (B.Terwijn@uva.nl). Within this
series the following titles appeared:

Qi Zhang and A. Visser Automatic Control, Calibration and Recording for the FrodoBots
Technical Report IRL-UVA-24-01, Informatics Institute, University of Amsterdam, The
Netherlands, September 2024.

A. Visser A Guide to the RoboCup Virtual Rescue Worlds Technical Report IRL-UVA-
16-01, Informatics Institute, University of Amsterdam, The Netherlands, May 2016.

A. Visser UvA Rescue Technical Report: A description of the methods and algorithms
implemented in the UvA Rescue code release Technical Report IAS-UVA-12-02, Infor-
matics Institute, University of Amsterdam, The Netherlands, December 2012.

All technical reports are available for download at the IRL website: https://wuw.
intelligentroboticslab.nl/reports-and-theses/.

A.Visser@uva.nl
A.Visser@uva.nl
B.Terwijn@uva.nl
https://www.intelligentroboticslab.nl/reports-and-theses/
https://www.intelligentroboticslab.nl/reports-and-theses/

	Introduction
	Installation steps
	Getting Started
	Setup NVIDIA CUDA (Optional)
	Download the Necessary Software
	Install Dependency Packages
	Install Legacy Dependency Packages
	Install VisualSFM
	Build SiftGPU
	Build Multicore Bundle Adjustment (a.k.a. “pba”)
	Hack PMVS-2
	Build Graclus 1.2
	Hack CMVS

	Running VisualSFM
	Add some images
	Match the images
	Sparse reconstruction
	Dense reconstruction

	Conclusion

