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Abstract. With the progress made in active exploration, the robots
of the Joint Rescue Forces are capable of making deliberative decisions
about the distributing exploration locations over the team. To navigate
autonomously towards those locations, the robots gradually aggregate
their experience in a traversability map. This traversability map can
be used as basis to calculate an optimal path towards a goal. Robots
equipped with both camera and laser-range scanners can learn a visual
classifier of free space, which could be used by robots without laser-range
scanners to navigate through the environment. Part of our algorithms
have been validated on the Nomad Super Scout II robot available in our
laboratory.

Introduction

The RoboCup Rescue competitions provide benchmarks for evaluating robot
platforms’ usability in disaster mitigation. Research groups should demonstrate
their ability to deploy a team of robots that explore a devastated area and lo-
cate victims. The Virtual Robots competition, part of the Rescue Simulation
League, is a platform to experiment with multi-robot algorithms for robot sys-
tems with advanced sensory and mobility capabilities. The developed algorithms
should be directly portable to fieldable systems, as demonstrated by several of
the participating teams [1].

The shared interest in the application of machine learning techniques to
multi-robot settings [2] has led to a joint effort between the laboratories of Oxford
and Amsterdam.



1 Team Members

UsarCommander was originally developed by Bayu Slamet and all other con-
tributions have been built into his framework. Many other team members [3–6]
have contributed on perception and control algorithms inside this framework.

The following contributions have been made this year:

Arnoud Visser : research portfolio [2], exploration algorithms
[7], communication protocol [8], geometry,
mapping test

Gideon Maillette de Buy Wen-
niger

: image interpretation, learning to visually rec-
ognize free space [9]

Hanne Nijhuis, Fares Alnajar : teleoperation test, waypoint navigation with
AirRobot [10]

Bram Huijten, Maarten van
der Velden, Wouter Josemans

: generation and usage of traversability maps,
A* path-planning

Bas Terwijn : interface to the Nomad Super Scout II robot,
software performance analysis

Quang Nguyen : visual range scanner.
Christiaan Walraven : map evaluation.
Radoslaw Sobolewski : mobility challenges with Kenaf robot.
Helen Flynn : automated map attribution
Magda Jankowska : map stitching
Julian de Hoog : user interface, hybrid autonomy, multi-robot

exploration, communication roles [11], de-
ployment test

2 Scan Matching

The possibilities for active exploration are heavily dependent on a correct estima-
tion of a map of the environment. Many advanced techniques that aim to detect
and correct error accumulation have been put forward by SLAM researchers.
Although these SLAM techniques have proven very effective in achieving their
objective, they are usually only effective once errors have already accumulated.
With a robust scan matching algorithm the localization error is minimal, and
the effort to detect and correct errors can be reduced to a minimum. Several scan
matching algorithms are available in our code, but during the 2009 competition
the WSM algorithm [12] will be used, based on the robustness reported in [13].

3 Localization and Mapping

The mapping algorithm of the Joint Rescue Forces is based on the manifold
approach [14]. Globally, the manifold relies on a graph structure that grows
with the amount of explored area. Nodes are added to the graph to represent
local properties of newly explored areas. Links represent navigable paths from
one node to the next.



(a) Map generated by one
robot

(b) Map generated by an-
other robot

(c) combined Map

Fig. 1. Map resulting from an autonomous exploration of the 2006 Competition world

The graph structure means that it is possible to maintain multiple discon-
nected maps. In the context of SLAM for multiple robots, this makes it possible
to communicate the graphs and to have one disconnected map for each robot.
The result is illustrated in Fig. 1, where the maps of two robots are merged into
a single map for the operator. Also note the nice distribution of the exploration
effort (fully autonomous) between the two robots. The graph structure of the
manifold can be easily converted into occupancy grids with standard rendering
techniques, as demonstrated in [13].

4 Traversability Map

An important aspect for a mobile robot is to have a good estimate of the quality
of the terrain, before navigation decisions are made. An occupancy grid (the
probability that an obstacle is present) is a good initial estimate, but this esti-
mate is based on a 2D-range scan on a fixed height. The quality of the terrain
can be misjudged, for instance by obstacles present on a different height. More
fundamentally, there can be obstacles present which are extremely difficult to
perceive (e.g. quicksand, tripwires), even when the output of many advanced
sensors is combined. At the end, the ultimate way to learn the terrain quality
is to try it out. In essence, the mobility experience of the robot is collected as a
function of its position. The mobility success T can be measured with different
metrics. During an exploration run several mobility features are stored in the
nodes of the map. Currently, these features are the requested vr and measured
speed vm. Additional features could be added, such as the tilting angle experi-
enced by the Inertial Navigation System (INS). Those features are mapped onto



a range between 0 to 255 by a utility function. The currently applied utility
function is a linear relationship, as defined in Eq. 1:

T = 255
|vm|
|vr|

, with T = 0 when |vr| = 0 and T = 255 when
|vm|
|vr|

≥ 1 (1)

The result is a traversability map which in the beginning mainly reflects the
traveled paths (see Fig. 2), but when the experience of multiple robots from
multiple runs is aggregated, the traversability map should gradually cover the
map of free space.

Fig. 2. Traversability map generated from a first exploration of the Mobility world

An advantage of this experience based approach is that it does not require
very complex terrain models. In fact, the robot does not need to know anything
about the terrain at all other than how fast it is moving over it. This means that
this approach should work for any kind of terrain, be it in water, air, the desert
or the red sands of Mars.

5 Path Planning

A robot can use a map, such as an a priori map, an occupancy grid map or a
traversability map, to plan a safe path from a start position to a goal. Currently,
two path-planning algorithms are available in our environment; a breadth-first
algorithm [15] and an A* algorithm [16]. In both algorithms different types of
maps can be included in the calculation of the distance measure g(), which calcu-
lates the ‘real’ costs to travel to an intermediate point on the path. The heuristic
function h() will estimate the distance to the goal, which can be a simple Euclid-
ian distance (without notion of obstacles or traversability). Both algorithms are
based on graph-search, but the difference between both algorithms is the way in
which the graph is expanded. For the breadth-first algorithm all neighbouring
grid cells (not considered before) are expanded, which is equivalent with using a
first-in-first-out (FIFO) queue. For the A* algorithm all neighbouring grid cells
are added to a priority queue, and the search continues with the most promising



node (which doesn’t have to be neighbour). The sorting of the priority queue3

is based on the distance measure f() = g() + h(). This algorithm is illustrated
in Alg. 1.

Data: the traversability map m, the start point s, the target point t
Result: the optimal path p from location s to the location t
closed = EmptyList();
open = EmptyPriorityQueue(s);
while Not IsEmpty(open) do

c = HighestPriority(open);
if h(c, t) < ε then

Return p(c);
end
if Not IsMember(closed,c) then

closed.Add(c);
for each neighbor(c,n) do

dn = g(s, c, m) + h(n, t);
p(n) = p(c) + n;
QueueSortAdd(open,n,dn);

end

end

end
Return EmptyList();

Algorithm 1: The A* algorithm for the path-planning with the real travel
cost g() calculated on the traversability map, and the heuristic travel cost
h() calculated with the Euclidian distance.

6 Multi-Robot Exploration and Communication

In our previous work, an exploration approach was demonstrated which made
a selection between a small number of frontiers, based on the information gain
available beyond those frontiers [17]. Each robot may calculate the balance be-
tween movement costs and information gain for itself and for each of its team-
mates. Consequently an optimal robot-frontier assignment can be determined in
which robots assign themselves to frontiers, and no frontier is explored by more
than one robot. The result is efficient, fully autonomous multi-robot exploration.

Including communication success into this exploration approach [8] means
that robots will prefer frontiers from which they can likely communicate to
frontiers that are likely to be out of range. However, frontiers that are out of

3 The implementation provided by Rasto Novotny is used. This implementation is
published for download in December 2005 on http://www.developerfusion.com/

code/5052/priority-queue-net/.



Fig. 3. A possible communication relay strategy for large environments. Green circles
indicate communication ranges, white indicates free space as sensed by the agents.
Initially agents A and B set out to explore. When they reach the full extent of the
communication chain, A breaks its link with the ComStation and follows B. After
enough new information is attained, A assumes the role of relay and returns to the
ComStation, while B continues to explore. After enough new information is acquired,
B returns to rendezvous with A, which in turn relays the information back while B
turns around to continue with exploration.

range are just as important to explore, and require additional consideration. Two
possible solutions are:

1. to visit the area of interest, and then physically return to the ComStation
to transmit the new knowledge

2. to visit the area of interest, and then transmit the new knowledge to the
ComStation via multi-hop communication using team members

The second solution described above may be implemented by using a role-
based approach: robots may dynamically become explorers or relays as part of
the ongoing exploration effort. A relay need not be stationary – it may follow an
exploring robot for some time, and periodically return to transmit new knowledge
to the ComStation (see Fig. 3). It is hoped that the ensuing team behavior allows
for exploration deep into the environment, even in areas that are far beyond the
team’s initial range.

7 Free Space detection

Camera images can be used for teleoperation and to detect victims. Camera
images can also be used as independent information to detect free space. Range
scanners, which are typically used as primary means to detect free space, are



active sensors which have a limited range and a limited field of view. Additionally,
active sensors are relatively heavy and consume considerable amounts of energy,
which makes them less attractive for small mobile robots. In contrast, the limit
of a visual sensor range can lie as far as the horizon and omnidirectional vision
methods can provide a 360◦ view of the environment. A method to identify free
space based on visual sensor data could well expand the environment observation
quality of a rescue robot.

As part of this year’s effort, two visual free space classifiers were trained
using a laser-range scanner as reference [9]. The same laser-range data, acquired
elsewhere on the map, is used as ground truth to test the precision and recall
of these free space classifiers. This training and testing was performed both in
simulation (see Fig. 7) and on a collected dataset.

Fig. 4. The maze in the DM-compWorldDay1 250 map.

The result is a precision of 0.93 and a recall of 0.86 in the detection of the
free space for the Gaussian Mixture Model classifier with optimal settings. Which
such a high precision and recall, the free space can be clearly distinguished from
obstacles, as illustrated in Fig. 5.

(a) Bird-eye view image from the
maze.

(b) Free space detected by Gaussian
Mixture Model classifier.

Fig. 5. Bird-eye view image from the maze and the free space detection result.



This free space classifier can be learned by robots equipped with both a
camera and a laser range scanner and distributed wirelessly to other robots
equipped with only a camera, such as the AirRobot [10]. The validity of this
approach is demonstrated by using a dataset collected with our Nomad Super
Scout II robot.

8 Conclusion

This paper summarizes improvements in the robot control environment of the
Amsterdam Oxford Joint Rescue Team since RoboCup 2008 in Suzhou. This
progress was demonstrated at the Latin American Robotics Competition, where
the first prize was won with fully autonomous exploration. At the German Open
2009 competition the teleoperation test was won thanks to the application of
AirRobots, the mapping test was won based on the robust WSM algorithm and
the deployment test was won thanks to the autonomous exploration algorithm.
More important, the progress is well documented in a number of publications in
international robotics conferences.

References

1. Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., Ziparo,
V.A.: Towards heterogeneous robot teams for disaster mitigation: Results and
Performance Metrics from RoboCup Rescue. Journal of Field Robotics 24 (2007)
943–967

2. Visser, A., de Hoog, J.: Amsterdam Oxford Joint Rescue Forces - Realistic Simu-
lations to aid research and education in advanced Robot Control algorithms. In:
Proc. of the Scientific ICT Research Event Netherlands (SIREN 2008). (2008) 22

3. Pfingsthorn, M., Slamet, B., Visser, A., Vlassis, N.: UvA Rescue Team 2006;
RoboCup Rescue - Simulation League. In: Proc. CD of the 10th RoboCup Inter-
national Symposium. (2006)

4. Visser, A., Slamet, B., Schmits, T., González Jaime, L.A., Ethembabaoglu, A.:
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