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Abstract. Recent successful SLAM methods employ hybrid map rep-
resentations combining the strengths of topological maps and occupancy
grids. Such representations often facilitate multi-agent mapping. In this
paper, a successful SLAM method is presented, which is inspired by the
manifold data structure by Howard et al. This method maintains a graph
with sensor observations stored in vertices and pose differences including
uncertainty information stored in edges. Through its graph structure,
updates are local and can be efficiently communicated to peers. The
graph links represent known traversable space, and facilitate tasks like
path planning. We demonstrate that our SLAM method produces very
detailed maps without sacrificing scalability. The presented method was
used by the UvA Rescue Virtual Robots team, which won the Best Map-
ping Award in the RoboCup Rescue Virtual Robots competition in 2006.

1 Introduction

Simultaneous Localization and Mapping (SLAM) is a vital technology for au-
tonomous mobile robots. Using a SLAM algorithm, the robot can keep track of
its location by maintaining a map of the physical environment and an estimate
of its position on that map. This provides a spatial context for the interpretation
of current and past observations and enables higher level reasoning, control, and
coordination. The map delivered may also provide an intuitive representation
with which the robot can convey its findings to humans. For this purpose the
visualization of the map may be augmented with any kind of extra information
that the robot is able to infer.

As described by Thrun [1], SLAM algorithms can be roughly classified accord-
ing to the map representation and the employed estimation technique. A very
popular map representation is the occupancy grid [2]. Grid-based approaches
typically require a large amount of memory, however they are able to represent
the environment at arbitrary resolution and thereby have the potential to be
highly detailed.

Graph-based representations on the other hand primarily map the topology
of the environment. This results in a much more compact description and makes
graph-based maps an attractive alternative when scalability to multiple robots is
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a concern. The low memory requirement of graph-based maps allows for low-cost
information sharing between multiple robots, e.g. via a wireless network. Also,
as topological graphs provide a direct description of the free-space regions and
their interconnectedness, they significantly facilitate path planning algorithms.
A disadvantage of such maps is that localization is limited to the nearest node
due to the lack of more detailed information. Additionally, this absence of low-
level geometric information precludes the rendering of detailed visualizations.

Given the individual strengths and shortcomings, researchers have tried to
combine multiple representations in hybrid approaches [3–7]. These are poten-
tially as scalable as topological approaches, and at the same time provide the
same geometric detail as grid maps.

In this paper we present a hybrid SLAM method that combines grid-based
and topological representations. The underlying data structure exhibits both de-
sired properties: Our method produces highly detailed maps without sacrificing
scalability. As part of our research presented in this paper, we participated in the
Rescue Virtual Robots competition in the RoboCup World Championships of
2006 [8] where we demonstrated the presented approach. Our system supported
teams of up to 8 robots that searched the computer-simulated emergency site [9,
10] and jointly constructed a map of the environment. Our maps ranked highest
after being evaluated on a number of aspects as described in [8] and earned the
Best Mapping Award.

2 The Data Structure

The data structure the presented method is built on is inspired by the manifold
concept conceived by Howard et al.[7]. It is a layered data structure with a
topological organization at the global level and small detailed metric maps at
the local level. Sensor observations are not integrated into small grid maps as
done in other current approaches [5], but kept as raw data in the nodes for later
processing. Edges represent known connections between poses where these sensor
observations were made and contain a transformation between these two poses.
Additionally, uncertainty information about these transformations are stored in
the edges.

Such a data structure is a very natural observation-centric formulation of
a map. It also explicitly includes the important factorization that was the key
insight used in FastSLAM [11]: Sensor observations are conditionally indepen-
dent given the robot path. The observations are kept explicitly connected to the
easily correctable path encoded in the graph.

Effectively, the sensor data stored in a node is a self-contained piece of in-
formation. This means that node poses can be updated without much computa-
tional overhead, which is in direct contrast to grid-based maps. Also, the usual
slight update of pose differences does not invalidate associated sensor readings
or the general map integrity. The map stays usable for many algorithms, like
path planners.



Formally, the map m consists of a set of local sensor observations {π}, and
a set of links {φ}, with

φ = {i, j, δ,Σ}

where i and j are the indices of the two observations which are linked, δ is the
estimated pose difference, and Σ is that estimation’s covariance matrix.

For the multi-robot scenario, similar benefits apply. The displacement in-
formation present in the links is independent of any global coordinate frame,
so collaborating robots can easily exchange parts of the graph without further
processing.

3 Single-Robot SLAM

Given the above data structure, the main challenge is to gather the information
necessary to construct the links φ.

Like in most current SLAM methods, a laser range scanner is used as the
main source of mapping information. Odometry measurements are not used, the
method exclusively relies on scan matching to estimate a robot’s displacement.
Thus, no explicit motion model must be developed. The corresponding covari-
ance matrix can be computed either by sampling as described in [12] or directly
from the scan matching result [13, 14].

As long as the uncertainty is low enough, the information in the map is
used to get an estimate of the current location. When new sensor data arrives,
the scan matching algorithm is used to compare the current range scan to the
scan stored at the current node. This results in a new location estimate. At the
moment the uncertainty for the scan matching operation increases, a new node
is created to store the current scan and a new link is created containing the
latest displacement estimation.

We chose the Weighted Scan Matcher (WSM) by Pfister et al. [14], which
belongs to the Iterative Closest Point (ICP) family. The IDC scan matcher by
Lu and Milios [15] belongs to the same family and has been the most popular
ICP scan matcher. However, WSM is known to outperform IDC significantly in
both accuracy and speed, given that dense range scans are available [14]. In [16],
we produced similar results in an extensive set of experiments specific to the
simulated environment at the RoboCup Rescue Virtual Robots competition. In
addition, computing the covariance matrix of the displacement given by WSM
is easy.

Given the data structure and a means to acquire the needed displacement
estimate, a näıve implementation would result in incremental SLAM. Without
any further processing, a new laser range scan could be matched against the
previous one (or a set of previous ones) and added to the graph. However, this
often results in accumulated error, as shown in Figure 1a.

The main manifestations of this error are inconsistencies in overlapping map
regions where the robot travelled in a loop. Overlaps in our map representation
can be detected via feature extraction and comparison on a node by node basis,
by mutual observations of robots in a multi-agent setting, or by re-observing



artificial or natural landmarks. Due to error accumulation, the two position
estimates of the overlapping regions are not likely to project to the same global
coordinates.

In the USARSim [9, 10] simulator used in the RoboCup Rescue Virtual
Robots competition, victims and robot-placable RFIDs were uniquely identi-
fiable. This made them perfect unique landmarks, and thus a great and reliable
shortcut to loop detection.

Loop-Closing is the main way to reduce the accumulated error in the map.
A new link is inserted into the graph by computing the displacement between
the two overlapping nodes. The inconsistency introduced by the new link has to
be resolved by incorporating this new information into the graph as a whole.

Re-matching each node to its respective neighbors incrementally, starting
from the new link, produces good results and has been used in the literature
before [7]. Figure 1b shows the corrected map using this approach.

It is also possible to close loops by optimizing the estimated global positions
of graph nodes such that the estimated displacements stored in the links apply
best to all nodes. Here, the probability distribution formed by the initial pose
estimate δ and its covariance matrix Σ can be used to evaluate how good a
certain global positioning fits a given link, as shown by Olson et al. [17].

4 Multi-Robot SLAM

A graph-based map can be very easily shared with and communicated to collab-
orating robots. Only new nodes and corresponding links have to be transferred
over a network connection to communicate map updates completely. New data
only needs to be appended to the graph and connected to the right nodes. Scan
matching does not have to be performed again.

Keeping multiple disconnected maps in memory is problematic in other suc-
cessful SLAM methods. In the context of the graph however, this is trivial.
We allow the graph to contain multiple disconnected components, one for each
robot. Similarly, it is possible to start a new disconnected component when a
robot looses track of its location, for example after falling down stairs. This is
also an attractive solution to the “kidnapped robot problem”.

The main challenge is merging the disconnected partial maps in a meaningful
way. Incidentally, this process is very similar to loop closing. The same techniques
can be used to detect overlaps in two disconnected maps. Map merging is done by
computing a transformation between the two overlapping regions once by scan
matching. Subsequently, one of the two maps is transformed as a rigid body and
moved so that the two overlapping parts fit. Optionally, a loop closing operation
may be run to refit the two maps for improved accuracy. An example is shown
in the bottom of Figure 1.

Closing loops and merging partial maps can be delayed without impacting
the continuity of the map. Only some collaboration has to be sacrificed for this
significant reduction in immediate computational requirement. Some robots may



(a) Before Loop Closure (b) After Loop Closure

(c) Overlaid maps (d) Aligned and refitted

Fig. 1: Loop Closing and Map Merging

explore the same area twice or may take less efficient routes through the envi-
ronment if maps are not merged immediately. However, map integrity is never at
risk. This is interesting for Urban Search and Rescue as deferring these expensive
operations saves time that can be used to further explore the emergency site. It
is an open research question to decide when, and if, such operations should take
place.

During the RoboCup Rescue Virtual Robots 2006 competition, and prelimi-
nary trials in the lab, our method was able to map a simulated area with up to
8 concurrently running robots. This high scalability in the multi-robot setting
is mainly due to the above mentioned trivial map updates and deferrability of
costly mapping operations.

5 Results

In this section, we show sample maps generated by our presented method for
both simulated and real data. Simulated data was taken from the USARSim
simulator used in the RoboCup Rescue Virtual Robots competition in 2006 [8–
10]. The real robot data comes from a publicly available data set from the IROS
2006 Workshop “From sensors to human spacial concepts” [18].



5.1 RoboCup Rescue Virtual Robots Competition 2006

(a) Indoor map (b) Outdoor map

Fig. 2: Some maps produced during the competition.

During the competition the maps provided by the participating teams were
judged on their quality. The quality score had two components, a metric quality
which was scored automatically and a topological quality which was assessed
manually. The basis for the topological quality was how well the map corre-
sponded to the actual environment, supplemented with bonuses for the utility of
the map for a first responder. Utility increased with the ability for a person to
determine which areas had been searched, where hazards may be located, and
where victims were found. The more additional information was depicted on the
map, the better the utility.

During the three qualification rounds (denoted by Q1-Q3) we managed to
qualify for the semi-finals (denoted with Semi1 and Semi2). In these last two
rounds our team of robots produced the maps displayed in Figure 2. A jury
assessed the topological quality of our maps. In the competition, we achieved the
maximum quality score by displaying very accurate and highly detailed maps.

The metric map quality was based on how well some artificial landmarks were
localized. Our method achieved a root mean square (RMS) localization error of
0.2m and 0.02m.

Subsequently, our team received the Best Mapping Award from the Virtual
Robots competition as a special recognition of the high quality of our maps.

5.2 Results on Real World Data

The Cogniron data set [18] has been published on the Radish website [19]. The
data-set has been acquired using a Nomad Scout robot in a home environment.
The maps produced by our algorithm for this data-set are based exclusively on
the laser range data, which were recorded using a SICK LMS-200 laser scanner.

Two maps generated from this data-set are shown in Figure 3. The odom-
etry information was not used when constructing the maps. It should also be
noted that our loop closure algorithm only works with landmark observations
that could be acquired in the USARSim simulator. We have not implemented
any detection algorithm for other landmarks or loops in general, so the maps
presented were generated without explicitly closing any loops.



The Cogniron data set also includes the sensor logs for a run in which the
robot traversed three loops. Despite these loops, and still without using odometry
data or explicit closing loops, a highly consistent map is produced which is of
comparable quality to the one of the former run.

(a) Single Loop (b) Three Loops

Fig. 3: Corrected maps of the Cogniron data-set. The maps show very high detail by
preserving small obstacles such as chairs and vases.

6 Conclusion and Future Work

We presented a hybrid SLAM approach that combines grid-based and topological
maps. Our approach thereby exhibits the best of both: Highly detailed maps are
learned without limiting scalability to many robots.

Our system was used in the computer-simulated emergency sites of the Res-
cue Virtual Robot competition at the RoboCup World Championships of 2006,
where it supported teams of up to 8 robots. The maps produced by our system
earned the Best Mapping Award at this competition. Our experiments with real
data show that these results carry over to real-world situations.

The presented work can be intuitively extended into 3D in the future. The
graph structure, as well as all other algorithmic details presented, would remain
unchanged, only a 3D scan matcher is needed.

Further research should investigate how current exploration algorithms can
be adapted to work well with graph-based maps. This includes efficient ways
to compute important information like frontiers [20]. Explicitly including meet-
ing points in the plans to facilitate the active detection of overlapping regions
and loops would significantly improve the resulting combined maps. Existing
algorithms for grid maps might still apply with slight modifications.
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