Probabilistic Robotics - Assignment 4

Nedko Savov - 11404345
Athanasios Roidis - 11413441

October 10, 2017

1 Task 1

Before we start, a code problem with the code in EKF.m is addressed. In case of a "mark" tag
in the log file, the code adds a state entry (z,y,0) = (0,0,0) to the list of states. This effectively
resets the pose of the robot after the mark and prevents from continuous transition between two
mark datasets. This is why we altered the code not to include this entry.

During the prediction stage, the task is to model the current position of the robot, after
performing a movement. Since no planning for future movement is required, an odometry model
can be used. An odometry model is practically proven to be more accurate than a velocity model
in the general case. Therefore some modifications had to be made to the given code.

First and foremost, we had to change the way the data was loaded so that the control vector u
had the following form:

5trans \/m
U= | pot1 | = atan2(dy, dz) — pi—1,0 - [

,ut,r - Nt—l,z:|
rot2 Mo — Ht—1,0 — Orotl

Kty — Ht—1,y

when the robot is moving from 11 = (s 1,01 fe—1,: fi—1.0) £0 f1r = (fts Heg He0)-
The new motion function is:

6trans COS(5r0t1 + ,U/tfl,ﬁ)
,Jt = Mt—1 + 5trans Sin(arotl + Mtfl,t?)
6rot1 + 67‘0t2

The Jacobian of the motion function with respect to the robot pose is then given by:
1 0 _5t7'ans * Sin((srotl + Mt,@)
G=10 1 Otrans * C05(57"01E1 + ﬂt,@))
0 0 1

The Jacobian of the motion function with respect to the motion is given by:

cos(0rot1 + 2(3)) —0trans Sin(0rot1 +2(3)) 0
V= 6t’rans * Sin(5r0t1 + /J/tﬁ) 5t7‘ans * COS((Srotl + Ht.0 0 ;
0 1 1

Since the correction step is not related to the motion model, it was left untouched, as it was
given.

Finally, the Q (measurement noise covariance) and M (control vector noise covariance) matrices
should also be defined according to the assignment. As stated, there is a noise of 15% on range
measurements and 10° (to be converted to radians) on the bearing. This is incorporated in the @
matrix:

Q= 0.15 * range(t,) 0
N 0 10 * Pi/180

,where range(t,!) is the distance measured to landmark [at time ¢. Dependency on time step
requires the) matrix to be now recalculated at each iteration over the measurements.

Since noise on the odometry data is not known, some experimentation needs to be done with
the initialization of the M matrix.

The state at each time step is stored from the algorithm in history variables. We start with the
default value M = 0.151, given in the original implementation. The data of the first 8 marks in
the full dataset is used. Using this smaller subset can be used to visualize the corrected trajectory
between all the marks and also to make the task computationally feasible for the approaches
discussed next. Fig. 2 shows the estimated trajectory in this case. Visibly, the new trajectory goes
closer to the marks than the original trajectory constructed from the noisy odometry observations
(in red). However, there may be a better choice for M and the noise is visibly affecting the estimated
trajectory with the default value. This noise is also visible with the big uncertainties, note that the
plotted ellipses cover 34% confidence interval (half a standard deviation) for visualization purposes.
An attempt is made to find a better choice for M by using grid search. To do this, a metric of a
better choice of M has to be chosen. A trajectory is better than another if the sum of the distances
from the estimated positions at the marked time to the actual positions of the marks is smaller.
It should be noted that in this metric large uncertainty is not being penalized. Therefore, the
resulting model has to be analyzed for this. The choice of ranges for M to be done grid search one
partly make up for this problem. As defined in the textbook:

a1§trans + a25rot1 + a35r0t2 0 0
M = 0 a46trans + a55rot1 + CV(S(SrotZ 0
0 0 a76trans + aS(Srotl + CY967"0t2

The grid search is done over the ay to ag variables. For each of them a value is chosen from
an array of K values. Since the variables are too many, some of them already need to have
predetermined values. After some experimentation with small K and earlier termination, it was
determined that ag and «g are mostly zero. also ag tends to match ag. After making these
assignments, there are 6 variables to do the grid search on. The possible choices for values of
all the variables are selected to be [0,0.15,0.3]. Other combinations were tried as well, but these
gave the optimal result. The largest values is 0.3, as it is reasonable to assume that the odometry
metrics are not extremely noisy. The result was a = [aq, a2, a3, a4,] = [0.3,0,0,0.3,0,0,0.3,0,0]
The estimation for the best found M is plotted on Fig. 1b. It can be seen that while passing
closely to all the other landmarks, the fifth landmark is further away from the path. However, it
is still within the confidence range of the estimated position. It is visible that the estimated path
has the expected eight shape, which is in contrast with the measured odometry positions.

An attempt to do grid search on the wuepror, where M = Uerror I, was also made, which yielded
a value, giving estimation with similar distance metric.

As for how M influences the model - the more the noise applied to the control vector, trajectory
disturbances become more erratic. Biggest changes happen on sharper corners or larger velocities.

For comparison, on Fig. 1 are shown the estimated trajectories for the first three marks from
the velocity (originally implemented) and the odometry model. The best found M found for the
odometry model was used. For the velocity model, the last dimension of M is cut to fit the size of
the control vector. Of course, there may be better parameters for the velocity model. However, the
figure is to show the observed property of the odometry model to more easily preserve the shape
of the odometry measurements even after distortion, done to consider the noise.

On Fig. 3 it is shown the estimated trajectory of the robot together with the uncertainty
ellipses at equal distances. The green ellipses show the uncertainty of only using prediction (based
on the fully updated covariance from the previous step) and the black ones - the same covariance
after the correction step. For this choice of the best found M, the difference is very small, in some
cases - barely visible. This is to be expected, as the calculated M is usually small, causing the
algorithm to trust the odometry data more, leading to smaller corrections from the landmarks.
However, if it were too small, the path will match very closely the odometry data, which is not the
case.

It can be seen that on the leftmost part the uncertainties are the biggest, which may be caused
by the increased velocity and the dependency of this choice of M only on velocity.

When we tried the same choice of M for the velocity model, the results were also good. They
are shown on Fig. 4. It can be seen that the path depicted here goes more closely to the points on

7 L I I I I -7
5 <4 2 0 2 4 6 8 -4 2 [2 4 3

(a) Velocity model (b) Odometry model

Figure 1: Comparison of a velocity and odometry model (in blue) for the first 3 marks. For both
- M is the optimal found for the odometry model (reduced for velocity model). The red line
represents the odometry measurements.

20

Figure 2: Trajectory(blue lines) and location uncertainties(black ellipses) on the estimated trajec-
tory, using M = 1.5I. The trajectory from the odometry measurements is shown in red. Marks
are shown in green, landmarks - in yellow.

20

-10 I I I I

Figure 3: Location uncertainties on the estimated trajectory, using the best found M. The trajec-
tory from the odometry measurements is shown in red. Marks are shown in green, landmarks - in
yellow.

20

Figure 4: Location uncertainties of the velocity model before(green ellipses) and after(black ellipses)
correction on the estimated trajectory (orange-blue line), using best found M. The trajectory from
the odometry measurements is shown in red. Marks are shown in green, landmarks - in yellow.

the left. However, the movement in the beginning is not modeled correctly, as it is seen that the
first marked is missed by a lot. It can also be seen that this model’s covariances can grow much
bigger. This is to be expected, as the odometry model does not plan the position and can rely on
the immediate odometry measurements.

The plotting of the uncertainties was done with two implementation separately - one is our own
and one is the "error ellipse" function, taken from Matlab File Exchange. Both yielded the same
result.

All the code is shown at the end of this document.

2 Task 2

Now the landmarks’ positions are considered unknown, therefore changes have to be made to the
algorithm in order to estimate their location. The implementation discussed next works with
initially unknown number of landmarks. However, note that the assumption of known correspon-
dences between a landmark and a measurement is still present. For the solution, we use the EKF
SLAM algorithm, described in detail in Table 10.1

Extending the previous model, the estimated positions for the tracked landmarks so far will
also be included in the state vector, besides the robot’s pose:

T
)

mi,z

)

Ht = mi,y

mr .«
LML,y |

Here (m; 5, m;) is the estimated position of the i-th landmark and L is the number of land-
marks tracked so far. In this state vector we choose not to represent the landmark signatures, as
they are unnecessary when there are known correspondences.

At this point it should be noted that we use exactly the same odometry model explained in
Task 1. We need to take into account the fact that only the robot’s pose (z,y,) must be updated
at the prediction step, therefore we use the same matrix F'z as described in the book’s algorithm
for the calculations.

An important feature of our implementation is that the size of our state is not fixed from the
start, but it is updated as new landmarks are seen by the robot. More specifically, when we have
a measuremnt z = (7, ¢) for a new landmark, the initial estimation of its location (I,l,) is given
by:

lo] _ [mee +rcos(meo +)
ly myy +7sin(mee +)

also known as the inverse observation model. This location is then appended to the end of the
state vector m;. But the covariance ¥ of the state must also be extended by 2 rows/columns for
uncertainty of the new landmark. Therefore, if M,, ;1 is a new landmark, then the new covariance
is going to be

YR YR, M, e YR M, YR, My
MR Ymyo o MMM, NMy Mg Sar,., = GrERGR + GLQGT
Y= : : : : , XMy, M = GRER, M,
EM,I, EMli cee ZMn ERJ\/[nJrl 21\/[71+17R = GRrXR
EXMui1, B EMuy Myt EMyyq M, XM,y

where Gr and G, are the Jacobians of the inverse observation model with respect to the robot
pose (M g, My o, My,p) and the measurement (7, ¢) respectively:

Gr

1 0 —rsin(meg+ o) _ [cos(mup+ @) —rsin(myg + @)
101 reos(mig+ @) |’ © o [sin(mee +¢) reos(mee + @)

On Figure 5 two simulation of the algorithm are shown until the robot reaches the 8th landmark,
hence it travels on at least one 8-like path. The first one has the default given noise for the motion,
M = 0.15 % I and the other one uses same optimal noise from task 1. As we can see the locations
of the landmarks are correctly predicted and the trajectory is roughly correctly estimated. As
expected when the motion noise is smaller, which is our case when we use the optimal M, then the
uncertainty also decreases. For better visualization, the second trajectory with the before and after
measurement uncertainties is plotted on Fig. 6. As before, the updates seem to be small, except
for some cases on the first half of the eight, where the already seen landmarks with established

20~

(a) M = 0.15 * I

20 -

108 ° < ° %

(b) Optimal M

Figure 5: Estimated trajectories and position uncertainties for EKF SLAM. The six blue points are
the true landmarks, with their estimated uncertainties. Orange trajectory represents the odometry
metrics, the red-blue trajectory - the estimated one, together with its uncertainties after correction.

Figure 6: A close up of the trajectory (red-blue points, start is from red), estimated from EKF
SLAM on the best found M, with uncertainties before (green ellipses) and after (black ellipses)
correction. Red trajectory represents odometry measurements. The green points are the marks.

positions help reduce big uncertainties caused by higher velocity in one step. It can also be seen
how on the second part of the eight shape the uncertainties are decreasing as a result of more
certain positions of landmarks which are visible.

On Figure 7 a plot with the estimated landmark positions through time is shown. As we can
see, the uncertainty of the landmarks is big when they are first seen, due to the uncertainty of
the measurements, but by the end of the simulation it gets significantly smaller after multiple
observations.

40 20

30 15F
of e
20 4
Bl A
15 f
-10 0 10

o

@

o

&

=)

-20 -20

-25 ‘
-30 -20

-30
-30 -20 -10 0 10 20 30 20 80

(a) M = 0.15 * I (b) Optimal M

Figure 7: Landmark estimation through time. The uncertainties when a landmark is first seen (big
ellipse) and at the end of the simulation (small ellipse) are displayed. The blue dots are the true
positions

All the used Matlab code is shown at the end of this document.

2.1 Improvements

Many improvements can be applied to the default EKF SLAM algorithm in order to make it more
efficient in more a practical setting.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

V)
=3

One of those techniques is named the provisional landmark list and deals with outliers in the
measurements. Outliers are essentially landmarks that are measured at unexpected locations. So
instead of immediately adding them to the current state, they are added to a second list, the
provisional landmark list. This list is like a parallel map to the original one, but its landmarks do
not affect the robot pose. Once the uncertainty of a landmark in this list decreases enough, it is
moved to the original map.

Another improvement to the algorithm is to keep landmark existence probabilities. When a
landmark is seen, an internal value for that landmark is increased, signifying its existence. But if
it is not seen in the position that it is expected to be, this value is decreased and if it goes beneath
a threshold, then the landmark is removed.

Our implementation already contains one improvement over the default EKF SLAM algorithm.
In the original EKF SLAM algorithm, when a new landmark is added its uncertainty is set to a
very high value. What can be done instead, is to initialize it directly with the actual landmark
uncertainty, as explained above. This reduces the numerical instabilities caused by the huge co-
variance.

The source code with the updated model and the plotting functions is shown below.

3 Code

3.1 Task 1

The modified function from Task 1, working with M, defined with alphas (as parameters) is given.
The same function, but with modified definition of M and input parameters is used for using
M = UeprorI for some given ucrror.

%

% Extended Kalman Filter
% by Jrgen Sturm, Tijn Schmits, Arnoud Visser
% April 2008

% Based on:

% Wolfram Burgard’s

% http://ais.informatik .uni—freiburg.de/teaching/ss07/robotics/slides,
% —> 09.pdf

OC

% Thrun’s

% http://robots.stanford.edu/probabilistic—robotics/ppt/slam.ppt

% Dataset dlog.dat provided by Steffen Gutmann, 6.5.2004
% http://cres.usc.edu/radishrepository/view—one.php?name
comparison of self—localization methods continued

%
%
%
init
%

% clear ;

function [x, P, xt, P pred hist, mark] = EKF rot model(logfilename , N,
alpha)
mark = [];

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

%o

%o

% expected user input noise

M = u_errxeye(3);
% expected robot location noise
m_err = .1;

Q = m_errxeye(2);

%

creation
%
% true robot position at t = 1

xt(:,1) = [0 0 0]’; dim = 3; % x — [x y angle]|’

% user input at t = 1

u(:,1) = [0 0]’; % u = [speed delta angle]

% Landmark locations
L2006 = [20 20 —20 —20;...
20 =20 20 -—20];

% You also need the following information about the landmark

positions:

b

data

% cyan:magenta —1500 —1000 magenta:cyan —1500 1000 magenta:green 0
—1000 green:magenta 0 1000 yellow:magenta 1500 —1000 magenta:

yellow 1500 1000

% 0 —> green 1 —> magenta 2 —> yellow 3 —> blue
L=]-15 -15 0 0 15 15;—10 10 —10 10 —10 10];

LID=[3 1102 1;1 3011 2];

U = M; % user input noise (set to be equal to expected

input noise)
angle = 0;
logfile = true;
if Tlogfile

for t=2:N

% fabricate user input
u(2,t) = randn;

if abs(u(2,t)) > 0.4 % P(steering)

u(2,t) = 0;
end

u(l,t) = .5%x(1 — u(2,t)/0.4); % high delta angle —> low

speed

% create mnoisy user input
un = Usrandn(2,1) 4u(:,t);

% calculate true robot position t-+1
xt(:,t) = [xt(1,t—=1)+ un(l)=*cos(xt(3,t—1))
xt(2,t—1)4+ un(l)=*sin(xt(3,t—1))

xt(3,t—1)+ un(2) |;

end

10

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

131

132

133

[0y

0

measurements

%
perc = .7; % percentage of Landmark measurement loss
for t=1:N
for landmark=1:size (L,2)
if rand > perc
% = [distance angle]’
z(:,t,landmark) = [sqrt ((L(1,landmark)—xt(1,t)) 2
+ (L(2,landmark)—xt(2,t)) "2)+randn*m_err;
atan2 (L(2,landmark)—xt (2,t) ,L(1,landmark)—xt (1,
t)) — xt(3,t)+randn*m_err|;
else
z(:,t,landmark) = [0;0];
end
end
end
else % logfile
fid = fopen(logfilename , 'r’);
t=0;
for i=1:N
tline = fgetl(fid);
[type,success]| = sscanf(tline, %s’, 1);

if stremp (type, 'mark’)
fprintf (1, «")
mark (end+1) = t;

continue
end
t =1t + 1
[xt(:,t),success| = sscanf(tline, ‘obs: %xd %f %f %f’, 3);
xt(1,t)=xt(1,t)/100; % milimeters to decimeters
xt(2,t)=xt(2,t)/100; % degrees to radians
xt (3,t)=xt(3,t)*pi/180;
if t>1

dx=xt(1,t)—xt(1,t—-1);
dy=xt(2,t)—xt(2,t-1);

) = sqrt (dxxdx+dyxdy); % speed
u(2,t) = atan2(dy, dx) — xt(3 t—1); % diff angle
):Xt(?’vt)*Xt(1) ()a

%Add the defined noise to the clean control vectors
u(:, t) u(:, t) + mvarnd ([0 0 0], M) 7;
end
for landmark=1:6
z(:,t,landmark) = [0;0];
end

[obs landmarks, success ,errmsg,nextindex]| = sscanf(tline ,
obs: %xd %xf %xf %xf %d’, 1);

for observation=1:0bs_ landmarks
tline=tline (1,nextindex:size (tline ,2));
[signature, success]| = sscanf(tline, * (%d:%d’, 2);
for landmark = 1:6

11

134

135

136

138

139

140

142

143

144

145

147

148

149

151

152

154

155

157

158

159

160

162

163

164

165

167

168

169

170

171

172

173

174

176

177

178

179

181

182

183

%

if signature(l) = LID(1,landmark) && signature(2)
= LID(2,landmark)
[z(:,t,landmark) ,success ,errmsg ,nextindex |
sscanf (tline , 7 (%xd:%xd %t %t)7, 2);
z(1,t,landmark) = z(1,t,landmark) / 100; %
milimeters to decimeters
z(2,t,landmark) = z(2,t,landmark) * pi / 180; %
degrees to radians
end
end % for landmarks

end % for observations

end % for t=1:N
fclose (fid);
end % if logfile

N=t;

Oru a
prioris

%

x = xt(1:3,1); % a priori x = true robot position

P = O*eye(); % a priori P = very certain (no error)

P pred = Oxeye(3);

%
EKF

x = zeros(dim, N);

P = zeros(dim, dim, N);

P pred hist = zeros(dim, dim, N);
I = eye(dim);

match = ones (1, N);
for t = 1:N

prediction

%get user input
v=u(l,t); % translation
rotl = u(2,t); % rotl
rot2 = u(3,t); % rot2

% predicted robot position mean
X =x_+ [v x cos(rotl +x (3)); v % sin(rotl + x (3)); rotl +

rot2];
% Jacobian with respect to robot location
g =10 0 —v *x sin(rotl +x (3));
0 0 v x cos(rotl +x_(3));
000 |;

G = eye(dim) + g_;

% Jacobian with respect to control

V = cos(rotl + x (3)), —v % sin(rotl + x_(
sin(rotl + x_(3)), v % cos(rotl + x_(3
0, 1, 1];

3)) 0 0;
)) O

12

184

186

187

188

189

191

192

193

194

196

197

198

200

201

202

203

204

205

206

227

M = diag ([alpha(1)xv~2 + alpha(2)x(rotl)~2 + alpha(3)*rot2"2,
alpha (4)*v~2 + alpha(5)*rotl~2 + alpha(6)*rot2 "2,
alpha (7)*v~2 + alpha(8)*rotl~2 + alpha(9)*rot2"2]);

Rt =V «M=x V7,

% predicted covariance

P = G«P_xG’ + Rt;
P _pred =P_;

Y%
correction
%
for landmark = 1:size(z,3)

if z(1,t,landmark) "= 0 % if Landmark is measured
% predicted measurement
z_ = [sqrt ((L(1,landmark)—=x_(1))~2 4+ (L(2,landmark)—x
(2))°2);
atan2 (L (2 landmark)—x_(2) ,L(1,landmark)—=x_ (1)) — x
(3) 15

% Jacobian of H with respect to location

H(:,:,landmark) = [—(L(1,landmark)—x_(1))/(L(1,
landmark) ~2—2«L(1,landmark)*x_(1)+x_(1)"2+L(2,
landmark) ~2—2xL(2,landmark) *x_ (2)-+ _(2) 2)°(1/2),
—(L(2,landmark)—=x_(2))/(L(1,landmark)~2—2«L(1,
landmark)*x_(1)+x_(1)"24+L(2,landmark)~2—2«L(2,

landmark)*x_(2)+x_(2)"°2)~(1/2), 0;

(L(2, landmark)—x (2))/(L(1,landmark)~2—2xL(1
landmark)*x_(1)4x_(1)"24L(2,landmark)~2—2«L(2,
landmark)*x_ (2)+x_(2) ~2), —(L(1,landmark)
—Xi(l))/(L(1,landmark)~2—2xL(1,landmark)*x_(1)-+

~(1)"24L(2,landmark) ~2—2«L(2,landmark) *x_ (2)+
x_(2

))7 _1]v

% predicted measurement covariance

Q
S

diag ([0.15%z(1,t,landmark), 10xpi/180]);

H(:,:,landmark)«P_«H(: ,:,landmark)’ + Q;

%Kalman gain

K(:,:,landmark) = P_x H(:,:,landmark)’ / S;

%innovation
nu = z(:,t,landmark) — z_;

%validation gate
ro = nu’/S*nu; % From Kristensen TROS’03, section IIT.A

if ro < 2
%updated mean and covariance
foundx (:,landmark) = x_ + K(:,:,landmark)*nu;

foundP_ (:,:,landmark) = (I-K(:,:,landmark)=H(:,
landmark)) «P_;
else

13

228

230

231

232

233

235

236

237

238

240

241

242

243

245

246

247

248

250

251

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

%propagate known mean and covariance
foundx (:,landmark) = x_;

foundP_ (:,:,landmark) = P_;
z(:,t,landmark)=[0; 0];

end

else
Y%propagate known mean and covariance
foundx (:,landmark) = x_;

foundP_ (:,:,landmark) = P_;
end
end

% determine mean
x_ = mean (foundx ,2) ;
P = mean(foundP ,3);

% create history

x(:,t) = x_;

P(:,:,t) =P_;

P pred hist(:,:,t) = P_pred;

end
end

3.1.1 Grid Search

logfilenamel = {’dlog firstmark.dat’; dlog secondmark.dat’;’
dlog thirdmark.dat’; ’dlog.dat’};
N = [758, 1159, 1435, 2951];%r51523|;

%Collect data from all datasets
a= [0 0.1 0.3]";

best m dist = 100000;

best _a = [];

tic
for al = 1l:size(a)
for a2 = 1l:size(a)
for a3 = 1l:size(a)
for a4 = 1l:size(a)
for ab = 1l:size(a)
for a6 = 1l:size(a)

[x, P, xt, P_pred, mark| = EKF rot model(
logfilenamel {4}, N(4), alpha);

%filter only the points with positive definite
covariance

marks = | 5, 5, 0, —10, —10; =5, 0, 0, 0, 5];

mark dist E
for mark i=1:size (mark, 2)

14

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

mark dist(end+1) = sqrt ((x(1,mark(mark i))—
marks (1, mod(mark i—-1, 5)+1))"2 + (x(2,
mark (mark i))—marks (2, mod(mark i—1, 5)
+1))"2);
end

if best m dist > sum(mark dist)
best m_dist = sum(mark dist);
best a = alpha;

end
end
end
end
end
end
end
toc
best a
3.1.2 Plotting
logfilenamel = {’dlog firstmark.dat’; dlog secondmark.dat’;’

dlog thirdmark.dat’; ’dlog.dat’};
N = [758, 1159, 1434, 51523];

%Collect data from all datasets
alpha = [0.3 0. 0., 0.3 0. 0, 0.3 0 0];

[x, P, xt, P_pred] = EKF rot model(logfilenamel {3}, N(3), alpha);

%filter only the points with positive definite covariance
pos definite = [0];
for t=1:size(x,2)
[T,p] = chol(P(1:2,1:2,t));
pos _definite (t) = Tp;
end
pos definite = find (pos_ definite = 1);

x = x(:,pos_definite);
P =P(:, :,pos_ definite);
P pred = P_pred(:, :,pos_definite);

%Plot the estimated trajectory

figure;

plot (x(1, :), x(2,:))

hold on

%Plot the odometry measurement trajectory

plot (xt (1, :), xt(2,:))

%Equalize plot axis steps
tmpAspect=daspect () ;
daspect (tmpAspect ([2 2 2]))

% Plot the uncertainties over a certain distance
dist = 0;
limit = 0;
old x = x(1:2, 1);
for i=2:size(x, 2)
dist = dist + sqrt ((x(1, i)-old x(1))"24+(x(2, i)—old x(2))"2);

15

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

© ® N o o A W N e

o~
w W = O

[
IS

o oA W N =

© ®w N o o A W N

if dist > limit
draw _ellipse (P_pred(1:2, 1:2, i), x(1:2, i), 0.68, ’green’)
draw _ellipse (P(1:2, 1:2, i), x(1:2, i), 0.34, ’'blue’)
dist = 0;
limit = dist + 8;
end
old x = x(1:2, i);
end
%Plot the marks
marks = [0, 5, 5; 0, 0, —5];
scatter (marks (1, :), marks(2, :));
%L =[-15 =15 0 0 15 15;—10 10 —10 10 —10 10];
% scatter (L(1,:), L(2,:), *fill ");
function [radius, a | = ellipse parameters(C, conf)
YELLIPSE PARAMETERS Summary of this function goes here
% Detailed explanation goes here
IV, D] = eig(C);
D = diag(D);
[7,1] = max(D);
D = sort (D, ’'descend’);
a = atan2(V(2,i),V(1,i)); % angle of the ellipsoid
a = rad2deg(a);
k = chi2inv (conf,2);
radius = 2 *x sqrt(k * D); % radius of the ellipsoid
end
function | output args | = draw _ellipse(C, x, conf, color)

YDRAW_ ELIPSE Summary of this function goes here

%0

end

3.2

%

%
%

Detailed explanation goes here

[radius, a] = ellipse parameters(C, conf);

g = hgtransform;

r = rectangle(’Position’, [-radius(1)/2 —radius(2)/2 radius(1)
radius(2)]|, ’'Curvature’, [1 1] ,’Parent’,g, ’'EdgeColor’, color)

g.Matrix = makehgtform (' translate’, [x(1) x(2) 0], ’'zrotate’,
deg2rad(a));

Task 2
L L L L TITTTTTTTTTTTTTT S

Extended Kalman Filter
by J?77rgen Sturm, Tijn Schmits, Arnoud Visser
April 2008

% Based on:

%

% Wolfram Burgard’s

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

% http://ais.informatik.uni—freiburg.de/teaching/ss07/robotics/slides/
% —> 09.pdf
%
% Thrun’s
% http://robots.stanford.edu/probabilistic—robotics/ppt/slam.ppt
%
% Dataset dlog.dat provided by Steffen Gutmann, 6.5.2004
% http://cres.usc.edu/radishrepository /view—one.php?name=
comparison of self—localization methods continued

%
%
TITISSTTTTTIISSSTSTTTT TSI TTTTIISSSTTITTIISSTSTTTTISSSSTTTTIISSSTTITTSSSSTITT o
%
init
%
clear;

logfilenamel = {’dlog firstmark.dat’; dlog secondmark.dat’;’
dlog thirdmark.dat’; ’dlog.dat’};
N = [758, 1159, 1434, 51523];

N = N(3);
logfilename = logfilenamel {3};

% expected user input noise

% u_err = .15;

% M = u_errxeye(3);

alpha = [0.3, 0, 0, 0,3, 0, 0, 0.3, 0, 0];

% expected robot location mnoise
m_ err = .1;
Q = m_errxeye(2);

% data
creation

%

% true robot position at t = 1

xt(:,1) = [0 0 0]’; dim = 3; % x — [x y angle]|’

% user input at t 1
u(:,1) = [0 0 0]’; % u = [speed delta angle]’

LID= 31102 1;1 3011 2];
% U =M; % user input noise (set to be equal to expected input
noise)
angle = 0;
logfile = true;
if “logfile
for t=2:N
% fabricate user input

u(2,t) = randn;
if abs(u(2,t)) > 0.4 % P(steering) — 0.4

17

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

91

92

93

94

95

96

97

98

99

100

101

103

104

105

106

108

109

110

111

113

114

115

u(2,t) = 0;
end

u(l,t) = .5%(1 — u(2,t)/0.4); % high delta angle —>

% create noisy user input
un = Usrandn(2,1) +u(:,t);

% calculate true robot position t+1

xt(:,t) = [xt(l,t—1)+ un(l)*cos(xt(3,t—1)) ;
xt(2,t—1)+ un(1)*sin (xt(3,t—1)) ;
xt(3,t—1)4 un(2) |;

low speed

1f t > 1
dx=xt(1,t)—xt(1,t—-1);
dy=xt(2,t)—xt(2,t-1);

u(l,t) = sqrt (dxxdx+dyxdy); % speed

18

end
0/:,'
measurements
07
0
perc = .7; % percentage of Landmark measurement loss
for t=1:N
for landmark=1:size (L,2)
if rand > perc
% z = |[distance angle]’
z(:,t,landmark) = [sqrt ((L(1,landmark)—xt(1,t))"2 + (L
(2,landmark)—xt(2,t)) ~2)+randn*m_err;
atan2 (L(2,landmark)—xt(2,t) ,L(1,landmark)—xt(1,t))
— xt(3,t)+randn*m_err]|;
else
z(:,t,landmark) = [0;0];
end
end
end
else % logfile
marked = 0;
fid = fopen(logfilename , 'r’);
t = 0;
for i=1:N

tline = fgetl(fid);

[type,success| = sscanf(tline, %s’, 1);

if strecmp (type, 'mark’)

fprintf (1, =)
marked = 1;
continue

end

t =1t 4+ 1;

[xt(. ,t),success| = sscanf(tline, ’obs: %xd %f %f %t , 3);
xt(1,t)=xt(1,t)/100; % milimeters to decimeters
xt(2,t)=xt(2,t)/100;
xt(3,t)=xt(3,t)*pi/180; % degrees to radians

129

130

131

136

atan2 (dy, dx) — xt(3,t—1); % diff angle
= xt(3,t) — xt(3,t=1) — u(2,t);

ot

—

w

\;'P

~— —
\

end
for landmark=1:6
z(:,t,landmark) = [0;0];

end
[obs landmarks, success ,errmsg,nextindex| = sscanf(tline, ’obs:
Yoxd Yoxt Yoxt Yoxf %d’, 1);
for observation=1:obs_landmarks
tline=tline (1,nextindex:size (tline ,2));
[signature , success| = sscanf(tline, * (%d:%d’, 2);
for landmark = 1:6
if signature(l) = LID(1,landmark) && signature (2) —
LID(2,landmark)
[z(:,t,landmark) ,success ,errmsg ,nextindex| = sscanf
(tline , 7 (%oxd:%xd %f %f)7, 2);
z(1,t,landmark) = z(1,t,landmark) / 100; %
milimeters to decimeters
z(2,t,landmark) = z(2,t,landmark) * pi / 180; %
degrees to radians
end
end % for landmarks
end % for observations
marked = 0;
end % for t—1:N
fclose (fid);
end % if logfile
N=1t;
% a
prioris
%
x_ = xt(1:3,1); % a priori x true robot position
P = O0Oxeye(3); % a priori P = very certain (no error)
EKF

x = {};%zeros(dim, N);

P = {};%zeros(dim, dim, N);
P _pred hist = {};

match = ones (1, N);

landmark positions = [];
% N = 10;
for t = 1:N

o

U

prediction

%

%get user input

v=u(l,t); % velocity
rotl = u(2,t); % delta angle

rot2 = u(3,t);

19

191

192

193

194

195

196

Fx = zeros (3, dim);
Fx(1:3, 1:3) = eye(3);

% predicted robot position mean

x =x_+Fx> x [v x cos(rotl +x (3)); v % sin(rotl + x_(3));

rotl + rot2];

% Jacobian with respect to robot location

g =10 0 —v % sin(rotl + x (3));
0 0 v x cos(rotl +x (3));
000 |

G = eye(dim) + Fx’ % g * Fx;

% Jacobian with respect to control

V = cos(rotl +x (3)), —v % sin(rotl + x_(
sin(rotl +x (3)), v * cos(rotl + x_ (3
0, 1, 1[;

3)) 0 0;
)) O

M = diag (
alpha (4)%v~2 + alpha(5)*rotl~2 + alpha(6)*rot2 "2,
alpha (7)+v~2 + alpha(8)*rotl~2 + alpha(9)*rot2"2]);

Rt = Vx«Msx V;
% predicted covariance

P = G«P_xG’ + Fx'xRtxFx;
P _pred =P

[alpha (1)*v"2 + alpha(2)*(rotl)~2 + alpha(3)*rot2"2,

%
correction

for landmark = 1:size(z,3)
Q = diag ([0.15 % z(1,t,landmark), deg2rad(10)]);

if z(1,t,landmark) = 0 % if Landmark is measured

%if it is a new landmark

if Tismember(landmark, landmark positions)
r = z(1,t,landmark);
phi = z(2,t,landmark) ;
mx=x (1) + r % cos(x_(3) + phi);
my=x (2) +r % sin(x_(3) + phi);

Texpand
x_(end + 1) = m_x;
x_(end + 1) = m_y;

landmark positions(end + 1) = landmark;
dim = dim + 2;

Y%Expand covariance matrix

P (end+1:end+2, end+1:end+2) = 0;

Gr=1[1, 0, —r x sin(x_(3) + phi);
0, 1 ,r = cos(x_(3) + phi)];

Sr =P (1:3,1:3);

Gz = | cos(x_(3) + phi) , —r* sin(x_(3) + phi);

20

%

end

P{end + 1} =P
P _pred hist{en

sin(x_(3) + phi)

P _(end—1:end,

1:3) = Gr % Sr;

for i=4:2:size(P_,1)-2
P (end—1l:end, i:i+1) = Gr « P_(1:3,i:1+41);

end

, T * cos(x_(3) + phi)];

P (:, end—1liend) = P_(end—1l:end,:) ’;

P (end—1l:end, end—1l:end) = Gr x Sr % Gr’ + Gz * Q * Gz

end

j = find (landmark positions = landmark) — 1;
mx=x_ (3 4+ 2«xj + 1);

my=x (3 + 2xj + 2);

d=[mx-x (1); my—x (2)];

q = d'xd;

% predicted measurement

z_ = [sqrt(q)

Fxj = zeros(H
Fxj(1:3, 1:3)

; atan2(d(2), d(1))

, dim) ;
= eye(3);

Fxj(4:5, 3 + 2%j +1: 3 + 2xj + 2)

% Jacobian of

Hit = (1/q) =

h wrt X and M _j
[—sart(q) * d(1),

q) = d(1), sart(q) = d(2);
d(2)’ _d(l)a —-q, _d(2)a d(l)] * FXj;

end

K=P_ =« Hit’
Xf fr—
P_
end
% create history

x{end + 1} = x_;

stop

3.2.1 Plotting

EKF SLAM rot model;
plot trajectory(x,P, P pred hist)

/ (Hit « P_ x Hit’

E+1} = P_pred;

21

—x_(3)]; % z = h(x,m)

= eye(2);

—sqrt(q) * d(2), 0, sqrt(

+Q);

x_ + K *(z(:,t,landmark) — z_);
= (eye(dim) — K x Hit) * P_;

N o o os oW

S w N =

© o N o wu

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

© ® N o g oA W N e

figure;

0.68,

goes

3 + 2x1,3 + 2x1 — 1:

[0.9 0.9 0]);

"blue ’);
)], 0.68,

here

for 1=1:6
plot landmark(x,P, 1)
hold on
end
function [] = plot landmark(X h,P h, 1)
% Plots a landmark
X = [l
Y = [];
P = [];
for i=1:size (X h,2)-1
x_t =X hi{i};
P =P h{i};
if size(x_t, 1) >=3 + 1 x 2
x I =x t(3 + 2%x1 — 1);
y 1 =x t(3 + 2x1);
X(end + 1) = x_1;
Y(end + 1) =y 1;
P(:,:,end + 1) =P (3 + 2x1 — 1
2x1);
end
end
pos _definite = [0];
for t=1:size(X,2)
[7.p] = chol(P(:,:,t));
pos _definite(t) = “p;
end
pos _definite = find (pos_definite = 1);
%
X = X(pos_definite);
Y = Y(pos _definite);
P =P(:,:,pos_definite);
scatter (X,Y, ’filled’, "MarkerFaceColor’,
%
%Plot the uncertainties
dist = 0;
limit = 0;
tmpAspect=daspect () ;
daspect (tmpAspect ([2 2 2]))
draw _ellipse(P(:,:,1), [X(1); Y(1)],
draw _ellipse (P(:,:,end), [X(end); Y(en
end
function [| = plot_trajectory(x, P, P pred hist)
YPLOT _TRAJECTORY Summary of this function
% Detailed explanation goes here
X = [l;
Y = [];
for i=1:size(x,2)
X(end + 1) = x{i}(1);
Y(end + 1) = x{i}(2);
end

22

3 +

10

11

12

13

14

15

16

17

18

19

20

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

%

tmpAspect=daspect () ;
daspect (tmpAspect ([2 2 2]))

hold on
length = size(X,2);
start color = [1, 0, 0];
end color = [0, 0, 1];
colors_p = [linspace(start color(1),end color(1),length); linspace(
start color (2),end color(2),length); linspace(start_ color(3),
end color(3),length)]’;
size (colors p)
size (X)
plot (X, Y, ’LineWidth’, 3);

scatter (X’,Y’, 10, colors _p, ’'filled ’);

%Plot the uncertainties
if nargin > 1
size (x)
size (P)
pos definite = zeros(1,size(x,2));
for t=1:(size(x,2))
[7,p] = chol (P{t}(1:2,1:2));
pos_definite(t) = Tp;
end
pos definite = find (pos_ definite =— 1);

X = X(pos_definite);
Y = Y(pos_definite);
P = P(pos_definite);
P _pred hist = P_pred hist(pos definite);

dist = 0;
limit = 0;
prev_x = [X(1) ; Y(1)];
for i=2:size (X, 2)
cur_x = [X(i); Y(i)];
dist = dist 4+ sqrt(sum((cur_x — prev_x) .~ 2));

if dist > limit
P =P{i}(1:2, 1:2);
P pred = P_pred hist{i}(1:2, 1:2);

draw _ellipse (P_pred, cur_x, 0.68, ’green’)
draw _ellipse(P_, cur_x, 0.68, ’blue’)
limit = limit + 0.6;
dist = 0;

end

prev_x = cur_Xx;

end
end

marks = [0, 5, 5; 0, 0, —5];

scatter (marks(1, :), marks(2, :), 'filled’, MarkerFaceColor’, [0.9
0.9 0]);

23

65

end

24

	Task 1
	Task 2
	Improvements

	Code
	Task 1
	Grid Search
	Plotting

	Task 2
	Plotting

