X
%)

X
UNIVERSITY OF AMSTERDAM

Solutions for Assignment 4

Luca Simonetto - 11413522
Fabrizio Ambrogi - 11403640
Probabilistic Robotics

October 9, 2017

Localization

The first task in this assignment is to visualize the uncertainty in the robot’s localization after running the
Extended Kalman Filter (EKF) on the provided data: to achieve this, the predicted mean of the robot’s
position at each timestep has been plotted, along with the respective covariance ellipse of confidence. As
a 15% noise in measurements and 10° noise in bearings has to be assumed, the matrix @ of the EKF
algorithm has been updated at each timestep from the fact that the range measurement depends on the
actual readings.

20 -
15

10 -

10 I \ I \ ! \
-15 -10 -5 4] 5 10 15

Figure 1: Robot predicted (red) and prior (black) belief on the location for the first circuit dataset (EKF)

Figure 1 shows a comparison between the predicted path of the robot before (black) and after (red) running

the EKF algorithm, indicating how the readings are updated as new measurements are analyzed. It can be
seen how the underlying trajectory is corrected when the robot reaches the left side and fails to compute the
correct orientation.

It has anyway to be noted how, while the readings are quite smooth, the estimate is jittery and presents
spikes which are unlikely part of the actual movement of the robot.

-15 -10 -5 [4] 5 10 15

Figure 2: Robot’s uncertainty on the first circuit dataset (EKF)

Figure 2 incorporates the estimates of the robot position at every timestep with uncertainty ellipses. It is
possible to see how a smooth trajectory could easily be creating by taking points from the ellipses instead
of just the center of the estimate.

The path is indicated in red, the red dots are the robot positions and the blue ellipses indicate the prediction
covariance. The ellipses are drawn every 5 timesteps and cover 10% of the standard deviation of the predicted
values, in order to improve readability..

Each dataset has been tested and the plots of the results can be found in the Appendix at the end of the
report.

EKF-SLAM

Starting from the provided datasets, the Simultaneous Localization And Mapping (SLAM) algorithm has
been implemented and applied, in order to allow plotting and reasoning on the results.

Implementation

In order to follow the provided pseudocode for the algorithm’s implementation, the state of the world at
each time step includes the landmarks position and so does the covariance matrix. This results in a state
vector x with 3 4+ 2 - L elements (where L is the total number of landmarks): the first three values indicate
the robot’s current position and bearing, and the remaining 2 - L indicate the predicted x and y coordinates
position for each landmark (set to 0 if still not encountered).

Similarly, the covariance ¥ has been defined as a 3+ 2 L x 3 + 2 - L matrix, where each 2 x 2 block in the
diagonal indicates the covariance regarding specific landmark coordinates.

In order to be able to better compare the results of the EKF algorithm, the provided implementation
incorporates an odometry model for the pose update instead of a velocity model: this brought considerable
improvements in the results as shown later in this section.

Another improvement made to the algorithm has been the inclusion of the innovation/validation calculations
for the i and X updates, resulting in a much more stable trajectory prediction, allowing to easily find a
value for the M matrix, as discussed later.

Initialization

During initialization, the position of each landmark has been set to [0,0] (being the center of the coordinates
system), while the covariance values have been set to a big value to express the complete ignorance about
their position. When a landmark is first encountered, it’s position is set to the mean of the new estimate,
and when a landmark exits the view range of the robot its position is not updated.

Matlab code

In this section, code snippets worth discussing are presented and analyzed. The full code can be found in
the Appendix at the end of the report. The presented code contains both the odometry model and the
innovation/validation calculations.

Initialization: the covariance ¥ is initialized with all zeros apart from the diagonal starting from the fourth
position, where all values are set to 10? to indicate the robot’s ignorance regarding the landmarks positions.
The mean of the estimated state of the world at each timestep is then set as the measured robot state
followed by the estimated landmark x and y coordinates.

1% initialization

2 Sigma = zeros(3 + 2xNK, 3 + 2xNK, N);

3 Sigma(4:end, 4:end, 1) = eye(2xNK)«*10"9;

4

5 mu = [xXt; zeros(2 % NK,N)];

6

7 for i=1:NK

8 mu(3 + i*2—1, 1) = mu(l, 1) + z(1, 1, i)xcos(z(2, 1, 1) + mu(3, 1));
9 mu(3 + ix2, 1) = mu(2, 1) + z(1, 1, i)*sin(z (2, 1, i) + mu(3, 1));
10 end

State prediction: the algorithm starts, iterating through every timestep in order to estimate the robot’s
position given the perfect movement. At each timestep, the matrix Fx indicated in Table 10.1 of the course
book is calculated, along with the prediction of the current state fi.

<

state prediction

1
2

3 % odometry model
4 rotl = u(l,t);

5 trans = u(2,t);

6 rot2 = u(3,t);

7

8 x =mu(l:3, t—1);

9

10 Fx = [eye(3), zeros(3, 2%NK)];

12 % odometry model prediction
13 mu. = mu(:, t—1) + Fx' % [trans * cos(x(3)+rotl);...

14 trans * sin(x(3)+rotl);...
15 rotl + rot2];

Uncertainty prediction: the algorithm then progresses with the estimation of the covariance, given by
the operations applied to the previous estimate. The Scaling matrix M has been set to the identity matrix
multiplied by 10~2 for reasons later explained. This can be interpreted as having uncertainty in the location
at both timesteps, followed by a perfect movement between them. The last line of the snippet then calculates
the predicted ¥ matrix, by applying sandwich operation with the calculated Jacobians.

1% uncertainty prediction

2

3 % Jacobian with respect to robot location
4 G = eye(2+NK + 3) + Fx' = [...

5 0, 0, —trans * sin(x(3)+rotl);...

6 0, 0, trans % cos(x(3)+rotl); ...

7 0, 0, 0] » Fx;

8

9 Sigma- = G % Sigma(:,:,t—1) * G';

=
= o

% Jacobian with respect to control

12 M = eye(3) » 10°—-2;

13

14 V = [—trans*cos(mu_(3)+rotl), cos(mu_(3)+rotl), 0;...
15 trans*sin(mu.(3)+rotl), sin(mu-(3)+rotl), 0;...

16 1, 0, 11;

[
3

R = V'«Mx*V;

[
S © ®

Sigma. = Sigma- + Fx' * R x Fx;

Correction: for each measured landmark a correction to the prediction is applied: first, if the landmark has
never been seen, it’s position is determined from the current robot’s position and the current observation of
the landmark, then the Q matrix is calculated containing the noise values to be assumed in the calculations.
The remaining matrices are calculated, including the precision matrix S to be used for the Kalman gain
calculation, the innovation v and validation p. Having determined all the necessary matrices, the predicted
[and 3 are updated with the new values, if pis < 2.

o

105 correction

2 for landmark = l:size(z,3)

3 if z(1, t, landmark) # O

4 % if landmark has never been measured

5 if mu_(3 +2* (landmark—1) + 1) == 0 && mu_(3 +2* (landmark—1) + 1) ==

6 mu-(3 +2+ (landmark—1) + 1) = mu-(1) + z (1, t, landmark)=*cos(z (2, t, landmark) + mu-(3));
7 mu_(3 +2x (landmark—1) + 2) = mu_(2) + z (1, t, landmark)=*sin(z (2, t, landmark) + mu_(3));
8 end

9

10 % noise in readings/angle

11 Q = diag([.15%z (1, t, landmark), .10]+10°—9);

12

13 d [mu_(3 +2« (landmark—1) + 1) — mu_(1l); mu_(3 +2+ (landmark—1) + 2) — mu_(2)];
14 g =d'xd + 10"=9;

15

16 z_ = [sqgrt(qg); atan2(d(2), d(l)) — mu_(3)];

17

18 Fxj = createF (landmark, NK);

19

20 H=1/g * [—sqgrt(g)=*d(l), —sqgrt(qg) * d(2), 0, sgrt(qg)*d(l), sqgrt(q) * d(2);

21 a(2), —d(1), —g, —d(2), d(1)] = Fxj;

22

23 % precision matrix

24 S = H » Sigma- * H' + Q;

25

26 % Kalman gain

27 K = Sigma. = H' / S;

28

29 % innovation

30 nu = z(:,t,landmark) — z_;

31

32 % validation gate

33 ro = nu'/S*nu;

34

35 if ro< 2

36 $updated mean and covariance
37 mu- = mu. + Kxnu;

38 Sigma- = (eye(size(mu-, 1))—K«H)=*Sigma-;
39 end

40 end

41 end

Final mu and sigma: when every landmark has been analyzed, the corrected mean and covariance are
saved as the final values for that timestep.

1% final mu and sigma
2 mu(:,t) = mu_;

3 Sigma(:,:,t) = Sigma-;
M matrix

The provided datasets assume implicit noise that cannot be modeled from the algorithm using pre-defined
values, as noisy recordings and measurements are the only provided data. Instead, to get an output that is
as close as possible with the correct real world values, a tuning phase of the M matrix has been done: this
allows to account for the dataset noise, and paired with the fact that the robot had to travel through specific
locations, resulted in a final trajectory that is close to ground truth.

The path followed by the robot required it to pass through three or five locations (depending on the dataset),
in which an external stimuli has been given.

Figure 3 shows the position of each marker, over which the robot should have traveled: this allows to take
the output of the EKF-SLAM algorithm and fine-tune the internal parameters. The leftmost two markers
have been reached only in the full dataset.

[Note: the fine-tuning phase used the full dataset, as the former trajectories are not long enough to pass
through all the markers and show the complete ”8” shape]

10—

10 1 I 1 I]
-15 -10 -5 0 5 10

Figure 3: Positions of the markers over which the robot trajectory should lie.

Figure 4: Output of the EKF-SLAM algorithm on the first circuit dataset with a value of 10~* for M.

Figure 5:

Figure 6:

Output of the EKF-SLAM algorithm on the first circuit dataset with a value of 10=2 for M.

Output of the EKF-SLAM algorithm on the first circuit dataset with a value of 10~! for M.

Figure 4, 5 and 6 show the different results that are obtained by using different values for the M matrix.
The first picture indicates the results when using a value of 10~%, which gives a nice and smooth trajectory,
that however deranges outside of the filed.

The second one shows the improvements made when fine-tuning the value to 1072, Even though the trajec-
tory becomes less clean we can clearly see how it follows the correct commands, to create an ”8” with the
corners of before.

The third shows how going with an even higher movement error matrix doesn’t give any improvements and
actually creates an ugly, jittering trajectory that even misses one of the corners.

It can be seen that setting a correct value for M results in a way better path.

Odometry vs Velocity Model

A big problem that was encountered in the implementation of the pseudocode from the book comes from
the movement model. Specifically, in the given algorithm the velocity model was used.

This model gave more than decent results in estimating the trajectory with the right M (Figure 7), arguably
even better than with the odometry model. However the covariance matrices calculated were incredibly
unstable and often resulted non positive definite.

Figure 7: Full trajectory with velocity model and a value of 102 for M.

Switching to the odometry model the results where way more consistent and less unstable, giving a more
correct looking output.

Final results

Having discussed the inclusions made to the implementation, outputs of each datasets can be presented:

Figure 8 shows the difference between the prior belief on the position and the predicted one after running
the EKF-SLAM algorithm. The resulting trajectory corrects the predicted one and the tuning of the M
matrix allows it to pass through the markers as required by the problem definition.

20—

Figure 8: Robot predicted (red) and prior (black) belief on the location for the first circuit dataset (EKF-
SLAM)

Figure 9: Robot’s position and uncertainty on the first circuit dataset (EKF-SLAM)

Figure 9 represents the position estimates, surrounded by their covariance matrix. The covariance grows
with movement and shrinks when landmarks enter the sight of view, confirming the coordinates.

In figure 10 shows the estimated map of the field, with the 6 landmarks computed position and confidence,
compared with their real position.

20—
15
10 L] & O] °
Q
sk
ok
sk
10 - % & e y
16
20 | | | | | | | | | |
25 20 15 10 5 0 5 10 15 20 25

Figure 10: Landmarks real positions and the ones estimated by the EKF-SLAM algorithm after a full circuit

The outcome is surprisingly close and this truly demonstrates the power of EKF-SLAM, capable of correcting
the movement measurements and create a map of the landmarks at the same time.

Possible Research and Improvement

Since the real position of the landmarks is known, an interesting test could be to center there their Prior
and set its variance to different finite values, to simulate different degrees of certainty. This instead of the
flat normal with mean 0 and (close to) infinite variance, which act as an uninformative Prior.

In this way it can be tested how previous explorations of a zone could be used as a base for future ones and
to which degree this will influence them.

10

Appendix

Plots of the execution of EKF on the remaining datasets

Figure 12: Robot predicted (red) and prior (black) prior belief on the location for the second dataset (EKF)

11

Figure 14: Robot predicted (red) and prior (black) prior belief on the location for the third dataset (EKF)

Plots of the execution of EKF-SLAM on the remaining datasets

12

Figure 15: Robot’s uncertainty on the second dataset (EKF-SLAM)

Figure 16: Robot predicted (red) and prior (black) prior belief on the location for the full dataset (EKF-
SLAM)

13

Figure 17: Robot’s uncertainty on the third dataset (EKF-SLAM)

Figure 18: Robot predicted (red) and prior (black) prior belief on the location for the third dataset (EKF-
SLAM)

14

20

10

-10
-14 -12 -10 8 -6 -4 -2 0 2 4 6

Figure 19: Robot’s uncertainty on the full dataset (EKF-SLAM)

20—

15—

10 I | I | J
-15 -10 -5 0 5 10

Figure 20: Robot predicted (red) and prior (black) prior belief on the location for the full dataset (EKF-
SLAM)

15

EKF SLAM implementation

1 clear;

2 close all;

3

4 % N is number of observations in dlog.dat

5

6 % logfilename = 'dlog_firstmark.dat'; N = 758;

7 % logfilename = 'dlog.secondmark.dat'; N = 1159;

8 % logfilename = 'dlog.-thirdmark.dat'; N = 1434;

9 logfilename = 'dlog.dat'; N = 3500;

10

11 % data creation

12 % expected user input noise

13 u-err = .15;

14 M = u_errxeye(2);

15

16 % true robot position at t =1

17 xt(:,1) = [0 0 0]"'; dim = 3; % x = [x y angle]'

18

19 % user input at t =1

20 %u(:,1) = [0 0]"; % u = [speed a_angle]'’

21 u(:,1) = [0 0 01"'; % = [rotl trans rot2]'

22

23 % Landmark locations

24 L2006 = [20 20 —20 —20;...

25 20 =20 20 —=20];

26

27 % You also need the following information about the landmark positions:

28 % cyan:magenta —1500 —1000 magenta:cyan —1500 1000 magenta:green 0 —1000 green:magenta 0
1000 yellow:magenta 1500 —1000 magenta:yellow 1500 1000

29 % 0 —> green 1 —> magenta 2 —> yellow 3 —> blue

30 L = [-15—-150 0 15 15;-10 10 —10 10 —10 10];

31 LID = [311021;130112];

32 U = M; % user input noise (set to be equal to expected input noise)

33

34 angle = 0;

35

36 logfile = true;

37

38 1f —logfile

39

40 for t=2:N

41

42 % fabricate user input

43 u(2,t) = randn;

44 if abs(u(2,t)) > 0.4 % P (steering) = 0.4

45 u(2,t) = 0;

46 end

47 u(l,t) = .5%x(1 — u(2,t)/0.4); % high a_.angle —> low speed

48

49 % create noisy user input

50 un = Usrandn(2,1) +u(:,t);

51

52 % calculate true robot position t+l

53 xt(:,t) = [xt(l,t—1)+ un(l)~*cos(xt(3,t—1)) ;

54 xt (2,t—1)+ un(1l)*sin(xt(3,t—1)) ;

55 Xt (3,t—=1)+ un(2)1;

56

57 end

58

59 % measurements

60 %

61 perc = .7; % percentage of Landmark measurement loss

62 t =1;

63 for i=1:N

16

64
65
66
67

76

107

109

110

111

112

113
114

116

118

for landmark=1l:size (L, 2)
if rand > perc
% z = [distance angle]'
z(:,t,landmark) = [sqgrt ((L(l,landmark)—xt(1l,t))" "2 +
(L(2,landmark)—xt (2,t)) "2)+randn+m_err; ...
atan2 (L (2, landmark)—xt (2,t),L(1,landmark)—xt (1,t))
else
z(:,t, landmark)
end
end
t =t + 1;
end

[0;01;

else % logfile
f = fopen(logfilename, 'r'");
t = 0;
i=1:N
tline = fgetl (fid);
[type, success] = sscanf(tline, '%s',
if strcmp (type, 'mark'")
fprintf (1, '+")
continue
end
t =t + 1;
[xt (:,t),success] = sscanf (tline,
xt (1,t)=xt(1,t)/100; %

1);

'obs: %xd %f
to decimeters

£ Sf£', 3);

milimeters

xt (2,t)=xt(2,t)/100;
t(3,t)=xt(3,t)*pi/180; % degrees to radians
if t > 1
dx = xt(1l,t)—xt(1,t—1);
dy = xt(2,t)—xt(2,t-1);
% u(2,t) = xt(3, t)— xt(3, t—1); % diff_angle
% u(l,t) = sqgrt(dx+xdx + dyxdy); % speed
u(l,t) = atan2(dy, dx) — xt(3,t—1);
u(2,t) = sqgrt(dxxdx + dyxdy);
u(3,t) = xt(3,t) — xt(3,t—1) — u(l,t);
end
for landmark=1:6
z(:,t,landmark) = [0;0];

end

[obs_landmarks,
sd', 1);
for observation=1l:obs_landmarks
tline=tline (1, nextindex:size(tline,2));
[signature, success] = sscanf(tline, ' (%d:%d',
for landmark = 1:6
if signature(l) == LID(1l, landmark) && signature(2)
[z(:,t,landmark), success, errmsg, nextindex] =
st $£)', 2);
z(1l,t,landmark) =
z(2,t,landmark) =
end
end % for landmarks
% for observations

success, errmsg, nextindex] = sscanf (tline,

z(1,t,landmark)
z(2,t,landmark)

/ 100; %
* pi / 180; %

end %
end $ for t=1:N
fclose (fid);

end % if logfile

’
NK = 6; %

number of landmarks

EKF SLAM

do o o

17

'obs:

sscanf (tline, ' (

— xt (3,t)+randn*m_err];

Sxd Sxf Sxf Sxf

== LID (2, landmark)

Sxd:sxd

milimeters to decimeters
degrees to radians

3
S

initialization

Sigma = zeros (3 + 2%NK, 3 + 2xNK, N);
Sigma(4:end, 4:end, 1) = eye(2xNK)*1079;

mu

for

end

for

o o oo

o

[xt; zeros(2 x NK,N)];

i=1:NK

mu(3 + i%*2—1, 1) = mu(l, 1) + z(1, 1, i)*cos(z(2, 1, i) + mu(3, 1));
mu(3 + ix2, 1) = mu(2, 1) + z(1, 1, i)*xsin(z(2, 1, i) + mu(3, 1));

t = 2:N

oe

state prediction

old velocity model
get user input

o° o° o° o

v =u(l,t); % velocity
omega = u(2,t) + 10°—10; % A angle

% odometry model

rotl = u(l,t);

trans = u(2,t);

rot2 = u(3,t);

x =mu(l:3, t—1);

Fx = [eye(3), zeros (3, 2xNK)];

% old velocity model prediction

Joe e

mu_. = mu(:, t—1) + Fx' * [—v/omega * sin(x(3)) + v/omega * sin (x(3)+omega)
v/omega % cos(x(3)) — v/omega * cos(x(3)+omega); ...
omegal;

% odometry model prediction

mu. = mu(:, t—1) + Fx' *x [trans x cos(x(3)+rotl);...
trans * sin(x(3)+rotl);...
rotl + rot2];

o\

uncertainty prediction

% Jacobian with respect to robot location
G = eye(2%NK + 3) + Fx' x [...

0, 0, —trans * sin(x(3)+rotl); ...

0, 0, trans * cos(x(3)+rotl);...

0, 0, 0] = Fx;

Sigma- = G % Sigma(:,:,t—=1) * G';

o

Jacobian with respect to control
eye(3) = 10°—=2;
M = eye(3) » 10°—9;

=
I

V = [—transxcos (mu_(3)+rotl), cos(mu_(3)+rotl), 0;...
trans*sin (mu-(3)+rotl), sin(mu_(3)+rotl), 0;...
1, 0, 11;

R = V'xMxV;

Sigma- = Sigma- + Fx' * R x Fx;
% correction
for landmark = l:size(z,3)

if z(1, t, landmark) % O
% if landmark has never been measured

if mu_(3 +2* (landmark—1) + 1) == 0 && mu_(3 +2+* (landmark—1) + 1) ==
mu- (3 +2% (landmark—1) + 1) = mu-(1) + z (1, t, landmark)=xcos(z (2,

landmark) + mu_(3));

18

0

t’

195

261

mu_ (3 +2* (landmark—1) + 2) = mu_-(2) + z(1, t, landmark)=*sin(z (2, t,
landmark) + mu_(3));
end
% noise in readings/angle
Q = diag([.15xz (1, t, landmark), .10]+10°-=9);
d [mu-(3 +2x (landmark—1) + 1) — mu-(1); mu-(3 +2x(landmark—1) + 2) — mu-(2)];
g = d'xd + 107—9;
z_ = [sqrt(q); atan2(d(2), d(l)) — mu-(3)];
Fxj = createF (landmark, NK);
H = 1/q * [—sgrt(qg)+d(l), —sgrt(g) * d(2), 0, sqgrt(q)*d(l), sgrt(q) = d(2);
d(2), —d(1), —q, —d(2), d(1)] » Fx3J;
% precision matrix
S = H % Sigma. = H' + Q;
% Kalman gain
K = Sigma- * H' / S;
% innovation
nu = z(:,t,landmark) — z_;
% validation gate
ro = nu'/Sxnu;
if ro < 2
$updated mean and covariance
mu. = mu- + K¥nu;
Sigma- = (eye(size(mu-, 1))—K«H)*Sigma-;
end
% old update
% mu. = mu_- + K (z(:,t,landmark) — z_);
% Sigma- = (eye (2*NK+3) — KxH)*Sigma-;
end
end
% final mu and sigma
mu(:,t) = mu-;
Sigma(:,:,t) = Sigma-;
end
markers = [—-10, —10, O, 5, 5; 0, 5, 0, 0, —5];
%% plot trajectory and markers
hold on;
% scatter(L(1,:),L(2,:), 10, 'b');
plot (mu(l, :), mu(2, :), 'r")
hold on
scatter (mu(l, :), mu(2, :), 5, 'r', 'filled'");
% xlim([—15, 151);
% ylim([—10, 101);
scatter (markers(l, 3:end), markers (2, 3:end), 'blue', 'filled'");
% % plot mu vs xt
hold on;
% scatter(L(1,:),L(2,:), 10, 'b');
plot (mu(l, :), mu(2, :), 'r")
plot (xt (1, :), xt(2, :), 'k")
hold on
scatter (mu(l, , mau(2, :), 5, 'r', '"filled'");
scatter (xt (1, xt (2, :), 5, 'k', '"filled");

% xlim([—15,
% ylim([—10,

)

)
15]
0]

)i
)

19

262
263
264
265
266

268
269
270
271
272
273

275
276
277
278
279
280

282
283
284
285
286
287

289
290

291
292
293
294
295
296
297
298
299

301
302
303
304

305

307
308
309
310
311
312

314
315
316
317
318

scatter (markers (1, 3:end), markers (2, 3:end), 'filled');

% plot of the markers positions
scatter (markers(l, :), markers(2, :), 'filled');
x1lim([—15, 101);
ylim([—10, 101);
% ——plot robot path with covariances
figure();
hold on;
% scatter(L(1,:),L(2,:), 10, 'b');
plot (mu(l, :), mu(2, :), 'r")
scatter (mu(l, :), mu(2, :), 5, 'r', 'filled");
for i=1:5:size (mu, 2)
h = plot_gaussian-ellipsoid(mu(l:2, i), Sigma(l:2, 1:2, i), 1);
set (h, 'color', 'b");
end

dynamical plot of the predicted landmarks positions
figure();
for i = 1:10:N
clf
hold on;
scatter (mu(l, 1:i), mu(2, 1:1i), 10, 'filled', 'black');
for j=1:NK
scatter (mu(3+j*x2—1, i), mu(3+j*2, i), 25, j, 'filled');
scatter(L(1,3),L(2,3), 25, j, 'filled', 'MarkerEdgeColor', 'black');
h = plot_gaussian_ellipsoid (mu(3+j*x2—1:3+jx2, i), Sigma (3+j*2—1:3+3%2,
3+Gx2—1:3+9x2, 1));
set (h, 'color', 'b'");
end
x1im([—25, 25]);
ylim([—20, 201);
drawnow
pause (0.01)
end

o0 oo oo oo oe

ol

o

o° o° o o o° o o

o0 oo oo

o

plot of the final predicted landmarks positions
figure();
for j=1:NK
scatter (mu(3+j*2—1, end), mu(3+jx2, end), 25, j, 'filled');
scatter (L(1,3),L(2,3), 25, j, 'filled', 'MarkerEdgeColor', 'black');
h = plot_gaussian_ellipsoid (mu(3+j*2—1:3+j%x2, end), Sigma (3+Jx2—1:3+3*2,
3+3%2—1:3+3%2, end));
set (h, 'color', 'b');

oo oo

o0 oo oo

o

o

end
x1lim([—25, 25]);
ylim([—=20, 207]);

o

o

function F = createF (Jj, N)
F = zeros (5, 2xN + 3);
F(1,1) = 1;

F(2,2) = 1;
F(3,3) = 1;

F (4, (2%3)+2) = 1;
F (5, (2%3)+3) = 1;

end

20

