
Solutions for Assignment 4

Luca Simonetto - 11413522
Fabrizio Ambrogi - 11403640

Probabilistic Robotics

October 9, 2017

Localization

The first task in this assignment is to visualize the uncertainty in the robot’s localization after running the
Extended Kalman Filter (EKF) on the provided data: to achieve this, the predicted mean of the robot’s
position at each timestep has been plotted, along with the respective covariance ellipse of confidence. As
a 15% noise in measurements and 10◦ noise in bearings has to be assumed, the matrix Q of the EKF
algorithm has been updated at each timestep from the fact that the range measurement depends on the
actual readings.

Figure 1: Robot predicted (red) and prior (black) belief on the location for the first circuit dataset (EKF)

Figure 1 shows a comparison between the predicted path of the robot before (black) and after (red) running

1

the EKF algorithm, indicating how the readings are updated as new measurements are analyzed. It can be
seen how the underlying trajectory is corrected when the robot reaches the left side and fails to compute the
correct orientation.
It has anyway to be noted how, while the readings are quite smooth, the estimate is jittery and presents
spikes which are unlikely part of the actual movement of the robot.

Figure 2: Robot’s uncertainty on the first circuit dataset (EKF)

Figure 2 incorporates the estimates of the robot position at every timestep with uncertainty ellipses. It is
possible to see how a smooth trajectory could easily be creating by taking points from the ellipses instead
of just the center of the estimate.
The path is indicated in red, the red dots are the robot positions and the blue ellipses indicate the prediction
covariance. The ellipses are drawn every 5 timesteps and cover 10% of the standard deviation of the predicted
values, in order to improve readability..

Each dataset has been tested and the plots of the results can be found in the Appendix at the end of the
report.

EKF-SLAM

Starting from the provided datasets, the Simultaneous Localization And Mapping (SLAM) algorithm has
been implemented and applied, in order to allow plotting and reasoning on the results.

Implementation

In order to follow the provided pseudocode for the algorithm’s implementation, the state of the world at
each time step includes the landmarks position and so does the covariance matrix. This results in a state
vector x with 3 + 2 · L elements (where L is the total number of landmarks): the first three values indicate
the robot’s current position and bearing, and the remaining 2 ·L indicate the predicted x and y coordinates
position for each landmark (set to 0 if still not encountered).

2

Similarly, the covariance Σ has been defined as a 3 + 2 · L× 3 + 2 · L matrix, where each 2 × 2 block in the
diagonal indicates the covariance regarding specific landmark coordinates.

In order to be able to better compare the results of the EKF algorithm, the provided implementation
incorporates an odometry model for the pose update instead of a velocity model: this brought considerable
improvements in the results as shown later in this section.

Another improvement made to the algorithm has been the inclusion of the innovation/validation calculations
for the µ̄ and Σ̄ updates, resulting in a much more stable trajectory prediction, allowing to easily find a
value for the M matrix, as discussed later.

Initialization

During initialization, the position of each landmark has been set to [0,0] (being the center of the coordinates
system), while the covariance values have been set to a big value to express the complete ignorance about
their position. When a landmark is first encountered, it’s position is set to the mean of the new estimate,
and when a landmark exits the view range of the robot its position is not updated.

Matlab code

In this section, code snippets worth discussing are presented and analyzed. The full code can be found in
the Appendix at the end of the report. The presented code contains both the odometry model and the
innovation/validation calculations.

Initialization: the covariance Σ is initialized with all zeros apart from the diagonal starting from the fourth
position, where all values are set to 109 to indicate the robot’s ignorance regarding the landmarks positions.
The mean of the estimated state of the world at each timestep is then set as the measured robot state
followed by the estimated landmark x and y coordinates.

1 % −−−− initialization
2 Sigma = zeros(3 + 2*NK, 3 + 2*NK, N);
3 Sigma(4:end, 4:end, 1) = eye(2*NK)*10ˆ9;
4

5 mu = [xt; zeros(2 * NK,N)];
6

7 for i=1:NK
8 mu(3 + i*2−1, 1) = mu(1, 1) + z(1, 1, i)*cos(z(2, 1, i) + mu(3, 1));
9 mu(3 + i*2, 1) = mu(2, 1) + z(1, 1, i)*sin(z(2, 1, i) + mu(3, 1));

10 end

State prediction: the algorithm starts, iterating through every timestep in order to estimate the robot’s
position given the perfect movement. At each timestep, the matrix Fx indicated in Table 10.1 of the course
book is calculated, along with the prediction of the current state µ̂.

1 % −−−− state prediction
2

3 % odometry model
4 rot1 = u(1,t);
5 trans = u(2,t);
6 rot2 = u(3,t);
7

8 x = mu(1:3, t−1);
9

10 Fx = [eye(3), zeros(3, 2*NK)];
11

12 % odometry model prediction
13 mu = mu(:, t−1) + Fx' * [trans * cos(x(3)+rot1);...

3

14 trans * sin(x(3)+rot1);...
15 rot1 + rot2];

Uncertainty prediction: the algorithm then progresses with the estimation of the covariance, given by
the operations applied to the previous estimate. The Scaling matrix M has been set to the identity matrix
multiplied by 10−2 for reasons later explained. This can be interpreted as having uncertainty in the location
at both timesteps, followed by a perfect movement between them. The last line of the snippet then calculates
the predicted Σ matrix, by applying sandwich operation with the calculated Jacobians.

1 % −−−− uncertainty prediction
2

3 % Jacobian with respect to robot location
4 G = eye(2*NK + 3) + Fx' * [...
5 0, 0, −trans * sin(x(3)+rot1);...
6 0, 0, trans * cos(x(3)+rot1);...
7 0, 0, 0] * Fx;
8

9 Sigma = G * Sigma(:,:,t−1) * G';
10

11 % Jacobian with respect to control
12 M = eye(3) * 10ˆ−2;
13

14 V = [−trans*cos(mu (3)+rot1), cos(mu (3)+rot1), 0;...
15 trans*sin(mu (3)+rot1), sin(mu (3)+rot1), 0;...
16 1, 0, 1];
17

18 R = V'*M*V;
19

20 Sigma = Sigma + Fx' * R * Fx;

Correction: for each measured landmark a correction to the prediction is applied: first, if the landmark has
never been seen, it’s position is determined from the current robot’s position and the current observation of
the landmark, then the Q matrix is calculated containing the noise values to be assumed in the calculations.
The remaining matrices are calculated, including the precision matrix S to be used for the Kalman gain
calculation, the innovation ν and validation ρ. Having determined all the necessary matrices, the predicted
µ̂ and Σ̂ are updated with the new values, if ρ is < 2.

1 % −−−− correction
2 for landmark = 1:size(z,3)
3 if z(1, t, landmark) 6= 0
4 % if landmark has never been measured
5 if mu (3 +2*(landmark−1) + 1) == 0 && mu (3 +2*(landmark−1) + 1) == 0
6 mu (3 +2*(landmark−1) + 1) = mu (1) + z(1, t, landmark)*cos(z(2, t, landmark) + mu (3));
7 mu (3 +2*(landmark−1) + 2) = mu (2) + z(1, t, landmark)*sin(z(2, t, landmark) + mu (3));
8 end
9

10 % noise in readings/angle
11 Q = diag([.15*z(1, t, landmark), .10]+10ˆ−9);
12

13 d = [mu (3 +2*(landmark−1) + 1) − mu (1); mu (3 +2*(landmark−1) + 2) − mu (2)];
14 q = d'*d + 10ˆ−9;
15

16 z = [sqrt(q); atan2(d(2), d(1)) − mu (3)];
17

18 Fxj = createF(landmark, NK);
19

20 H = 1/q * [−sqrt(q)*d(1), −sqrt(q) * d(2), 0, sqrt(q)*d(1), sqrt(q) * d(2);
21 d(2), −d(1), −q, −d(2), d(1)] * Fxj;
22

23 % precision matrix
24 S = H * Sigma * H' + Q;
25

4

26 % Kalman gain
27 K = Sigma * H' / S;
28

29 % innovation
30 nu = z(:,t,landmark) − z ;
31

32 % validation gate
33 ro = nu'/S*nu;
34

35 if ro < 2
36 %updated mean and covariance
37 mu = mu + K*nu;
38 Sigma = (eye(size(mu , 1))−K*H)*Sigma ;
39 end
40 end
41 end

Final mu and sigma: when every landmark has been analyzed, the corrected mean and covariance are
saved as the final values for that timestep.

1 % −−−− final mu and sigma
2 mu(:,t) = mu ;
3 Sigma(:,:,t) = Sigma ;

M matrix

The provided datasets assume implicit noise that cannot be modeled from the algorithm using pre-defined
values, as noisy recordings and measurements are the only provided data. Instead, to get an output that is
as close as possible with the correct real world values, a tuning phase of the M matrix has been done: this
allows to account for the dataset noise, and paired with the fact that the robot had to travel through specific
locations, resulted in a final trajectory that is close to ground truth.

The path followed by the robot required it to pass through three or five locations (depending on the dataset),
in which an external stimuli has been given.

Figure 3 shows the position of each marker, over which the robot should have traveled: this allows to take
the output of the EKF-SLAM algorithm and fine-tune the internal parameters. The leftmost two markers
have been reached only in the full dataset.

[Note: the fine-tuning phase used the full dataset, as the former trajectories are not long enough to pass
through all the markers and show the complete ”8” shape]

5

Figure 3: Positions of the markers over which the robot trajectory should lie.

Figure 4: Output of the EKF-SLAM algorithm on the first circuit dataset with a value of 10−4 for M .

6

Figure 5: Output of the EKF-SLAM algorithm on the first circuit dataset with a value of 10−2 for M .

Figure 6: Output of the EKF-SLAM algorithm on the first circuit dataset with a value of 10−1 for M .

7

Figure 4, 5 and 6 show the different results that are obtained by using different values for the M matrix.
The first picture indicates the results when using a value of 10−4, which gives a nice and smooth trajectory,
that however deranges outside of the filed.
The second one shows the improvements made when fine-tuning the value to 10−2. Even though the trajec-
tory becomes less clean we can clearly see how it follows the correct commands, to create an ”8” with the
corners of before.
The third shows how going with an even higher movement error matrix doesn’t give any improvements and
actually creates an ugly, jittering trajectory that even misses one of the corners.
It can be seen that setting a correct value for M results in a way better path.

Odometry vs Velocity Model

A big problem that was encountered in the implementation of the pseudocode from the book comes from
the movement model. Specifically, in the given algorithm the velocity model was used.
This model gave more than decent results in estimating the trajectory with the right M (Figure 7), arguably
even better than with the odometry model. However the covariance matrices calculated were incredibly
unstable and often resulted non positive definite.

Figure 7: Full trajectory with velocity model and a value of 10−3 for M .

Switching to the odometry model the results where way more consistent and less unstable, giving a more
correct looking output.

Final results

Having discussed the inclusions made to the implementation, outputs of each datasets can be presented:

Figure 8 shows the difference between the prior belief on the position and the predicted one after running
the EKF-SLAM algorithm. The resulting trajectory corrects the predicted one and the tuning of the M
matrix allows it to pass through the markers as required by the problem definition.

8

Figure 8: Robot predicted (red) and prior (black) belief on the location for the first circuit dataset (EKF-
SLAM)

Figure 9: Robot’s position and uncertainty on the first circuit dataset (EKF-SLAM)

Figure 9 represents the position estimates, surrounded by their covariance matrix. The covariance grows
with movement and shrinks when landmarks enter the sight of view, confirming the coordinates.

In figure 10 shows the estimated map of the field, with the 6 landmarks computed position and confidence,
compared with their real position.

9

Figure 10: Landmarks real positions and the ones estimated by the EKF-SLAM algorithm after a full circuit

The outcome is surprisingly close and this truly demonstrates the power of EKF-SLAM, capable of correcting
the movement measurements and create a map of the landmarks at the same time.

Possible Research and Improvement

Since the real position of the landmarks is known, an interesting test could be to center there their Prior
and set its variance to different finite values, to simulate different degrees of certainty. This instead of the
flat normal with mean 0 and (close to) infinite variance, which act as an uninformative Prior.

In this way it can be tested how previous explorations of a zone could be used as a base for future ones and
to which degree this will influence them.

10

Appendix

Plots of the execution of EKF on the remaining datasets

Figure 11: Robot’s uncertainty on the second dataset

Figure 12: Robot predicted (red) and prior (black) prior belief on the location for the second dataset (EKF)

11

Figure 13: Robot’s uncertainty on the third dataset (EKF)

Figure 14: Robot predicted (red) and prior (black) prior belief on the location for the third dataset (EKF)

Plots of the execution of EKF-SLAM on the remaining datasets

12

Figure 15: Robot’s uncertainty on the second dataset (EKF-SLAM)

Figure 16: Robot predicted (red) and prior (black) prior belief on the location for the full dataset (EKF-
SLAM)

13

Figure 17: Robot’s uncertainty on the third dataset (EKF-SLAM)

Figure 18: Robot predicted (red) and prior (black) prior belief on the location for the third dataset (EKF-
SLAM)

14

Figure 19: Robot’s uncertainty on the full dataset (EKF-SLAM)

Figure 20: Robot predicted (red) and prior (black) prior belief on the location for the full dataset (EKF-
SLAM)

15

EKF SLAM implementation

1 clear;
2 close all;
3

4 % N is number of observations in dlog.dat
5

6 % logfilename = 'dlog firstmark.dat'; N = 758;
7 % logfilename = 'dlog secondmark.dat'; N = 1159;
8 % logfilename = 'dlog thirdmark.dat'; N = 1434;
9 logfilename = 'dlog.dat'; N = 3500;

10

11 % −−−−− data creation
12 % expected user input noise
13 u err = .15;
14 M = u err*eye(2);
15

16 % true robot position at t = 1
17 xt(:,1) = [0 0 0]'; dim = 3; % x = [x y angle]'
18

19 % user input at t = 1
20 %u(:,1) = [0 0]'; % u = [speed ∆ angle]'
21 u(:,1) = [0 0 0]'; % = [rot1 trans rot2]'
22

23 % Landmark locations
24 L2006 = [20 20 −20 −20;...
25 20 −20 20 −20];
26

27 % You also need the following information about the landmark positions:
28 % cyan:magenta −1500 −1000 magenta:cyan −1500 1000 magenta:green 0 −1000 green:magenta 0 ...

1000 yellow:magenta 1500 −1000 magenta:yellow 1500 1000
29 % 0 −> green 1 −> magenta 2 −> yellow 3 −> blue
30 L = [−15 −15 0 0 15 15;−10 10 −10 10 −10 10];
31 LID = [3 1 1 0 2 1;1 3 0 1 1 2];
32 U = M; % user input noise (set to be equal to expected input noise)
33

34 angle = 0;
35

36 logfile = true;
37

38 if ¬logfile
39

40 for t=2:N
41

42 % fabricate user input
43 u(2,t) = randn;
44 if abs(u(2,t)) > 0.4 % P(steering) = 0.4
45 u(2,t) = 0;
46 end
47 u(1,t) = .5*(1 − u(2,t)/0.4); % high ∆ angle −−> low speed
48

49 % create noisy user input
50 un = U*randn(2,1) +u(:,t);
51

52 % calculate true robot position t+1
53 xt(:,t) = [xt(1,t−1)+ un(1)*cos(xt(3,t−1)) ; ...
54 xt(2,t−1)+ un(1)*sin(xt(3,t−1)) ; ...
55 xt(3,t−1)+ un(2)];
56

57 end
58

59 %−−− measurements
60 %
61 perc = .7; % percentage of Landmark measurement loss
62 t = 1;
63 for i=1:N

16

64 for landmark=1:size(L,2)
65 if rand > perc
66 % z = [distance angle]'
67 z(:,t,landmark) = [sqrt((L(1,landmark)−xt(1,t))ˆ2 + ...

(L(2,landmark)−xt(2,t))ˆ2)+randn*m err;...
68 atan2(L(2,landmark)−xt(2,t),L(1,landmark)−xt(1,t)) − xt(3,t)+randn*m err];
69 else
70 z(:,t,landmark) = [0;0];
71 end
72 end
73 t = t + 1;
74 end
75

76 else % logfile
77

78 fid = fopen(logfilename,'r');
79 t = 0;
80 for i=1:N
81 tline = fgetl(fid);
82 [type,success] = sscanf(tline, '%s', 1);
83 if strcmp(type,'mark')
84 fprintf(1,'*')
85 continue
86 end
87 t = t + 1;
88 [xt(:,t),success] = sscanf(tline, 'obs: %*d %f %f %f', 3);
89 xt(1,t)=xt(1,t)/100; % milimeters to decimeters
90 xt(2,t)=xt(2,t)/100;
91 xt(3,t)=xt(3,t)*pi/180; % degrees to radians
92 if t > 1
93 dx = xt(1,t)−xt(1,t−1);
94 dy = xt(2,t)−xt(2,t−1);
95

96 % u(2,t) = xt(3, t)− xt(3, t−1); % diff angle
97 % u(1,t) = sqrt(dx*dx + dy*dy); % speed
98 u(1,t) = atan2(dy, dx) − xt(3,t−1);
99 u(2,t) = sqrt(dx*dx + dy*dy);

100 u(3,t) = xt(3,t) − xt(3,t−1) − u(1,t);
101 end
102 for landmark=1:6
103 z(:,t,landmark) = [0;0];
104 end
105

106 [obs landmarks, success,errmsg,nextindex] = sscanf(tline, 'obs: %*d %*f %*f %*f ...
%d', 1);

107 for observation=1:obs landmarks
108 tline=tline(1,nextindex:size(tline,2));
109 [signature, success] = sscanf(tline, ' (%d:%d', 2);
110 for landmark = 1:6
111 if signature(1) == LID(1,landmark) && signature(2) == LID(2,landmark)
112 [z(:,t,landmark),success,errmsg,nextindex] = sscanf(tline, ' (%*d:%*d ...

%f %f)', 2);
113 z(1,t,landmark) = z(1,t,landmark) / 100; % milimeters to decimeters
114 z(2,t,landmark) = z(2,t,landmark) * pi / 180; % degrees to radians
115 end
116 end % for landmarks
117 end % for observations
118 end % for t=1:N
119 fclose(fid);
120 end % if logfile
121

122 N = t;
123 NK = 6; % number of landmarks
124

125 % −−−−−−−−
126 % EKF SLAM
127 % −−−−−−−−
128

17

129 % −−−− initialization
130 Sigma = zeros(3 + 2*NK, 3 + 2*NK, N);
131 Sigma(4:end, 4:end, 1) = eye(2*NK)*10ˆ9;
132

133 mu = [xt; zeros(2 * NK,N)];
134

135 for i=1:NK
136 mu(3 + i*2−1, 1) = mu(1, 1) + z(1, 1, i)*cos(z(2, 1, i) + mu(3, 1));
137 mu(3 + i*2, 1) = mu(2, 1) + z(1, 1, i)*sin(z(2, 1, i) + mu(3, 1));
138 end
139

140 for t = 2:N
141 % −−−− state prediction
142

143 % old velocity model
144 %get user input
145 %v = u(1,t); % velocity
146 %omega = u(2,t) + 10ˆ−10; % ∆ angle
147

148 % odometry model
149 rot1 = u(1,t);
150 trans = u(2,t);
151 rot2 = u(3,t);
152

153 x = mu(1:3, t−1);
154

155 Fx = [eye(3), zeros(3, 2*NK)];
156

157 % old velocity model prediction
158 % mu = mu(:, t−1) + Fx' * [−v/omega * sin(x(3)) + v/omega * sin(x(3)+omega);...
159 % v/omega * cos(x(3)) − v/omega * cos(x(3)+omega);...
160 % omega];
161

162 % odometry model prediction
163 mu = mu(:, t−1) + Fx' * [trans * cos(x(3)+rot1);...
164 trans * sin(x(3)+rot1);...
165 rot1 + rot2];
166

167 % −−−− uncertainty prediction
168

169 % Jacobian with respect to robot location
170 G = eye(2*NK + 3) + Fx' * [...
171 0, 0, −trans * sin(x(3)+rot1);...
172 0, 0, trans * cos(x(3)+rot1);...
173 0, 0, 0] * Fx;
174

175 Sigma = G * Sigma(:,:,t−1) * G';
176

177 % Jacobian with respect to control
178 M = eye(3) * 10ˆ−2;
179 % M = eye(3) * 10ˆ−9;
180

181 V = [−trans*cos(mu (3)+rot1), cos(mu (3)+rot1), 0;...
182 trans*sin(mu (3)+rot1), sin(mu (3)+rot1), 0;...
183 1, 0, 1];
184

185 R = V'*M*V;
186

187 Sigma = Sigma + Fx' * R * Fx;
188

189 % −−−− correction
190 for landmark = 1:size(z,3)
191 if z(1, t, landmark) 6= 0
192 % if landmark has never been measured
193 if mu (3 +2*(landmark−1) + 1) == 0 && mu (3 +2*(landmark−1) + 1) == 0
194 mu (3 +2*(landmark−1) + 1) = mu (1) + z(1, t, landmark)*cos(z(2, t, ...

landmark) + mu (3));

18

195 mu (3 +2*(landmark−1) + 2) = mu (2) + z(1, t, landmark)*sin(z(2, t, ...
landmark) + mu (3));

196 end
197

198 % noise in readings/angle
199 Q = diag([.15*z(1, t, landmark), .10]+10ˆ−9);
200

201 d = [mu (3 +2*(landmark−1) + 1) − mu (1); mu (3 +2*(landmark−1) + 2) − mu (2)];
202 q = d'*d + 10ˆ−9;
203

204 z = [sqrt(q); atan2(d(2), d(1)) − mu (3)];
205

206 Fxj = createF(landmark, NK);
207

208 H = 1/q * [−sqrt(q)*d(1), −sqrt(q) * d(2), 0, sqrt(q)*d(1), sqrt(q) * d(2);
209 d(2), −d(1), −q, −d(2), d(1)] * Fxj;
210

211 % precision matrix
212 S = H * Sigma * H' + Q;
213

214 % Kalman gain
215 K = Sigma * H' / S;
216

217 % innovation
218 nu = z(:,t,landmark) − z ;
219

220 % validation gate
221 ro = nu'/S*nu;
222

223 if ro < 2
224 %updated mean and covariance
225 mu = mu + K*nu;
226 Sigma = (eye(size(mu , 1))−K*H)*Sigma ;
227 end
228

229 % old update
230 % mu = mu + K * (z(:,t,landmark) − z);
231 % Sigma = (eye(2*NK+3) − K*H)*Sigma ;
232 end
233 end
234

235 % −−−− final mu and sigma
236 mu(:,t) = mu ;
237 Sigma(:,:,t) = Sigma ;
238 end
239

240 markers = [−10, −10, 0, 5, 5; 0, 5, 0, 0, −5];
241

242 % % −−−−−−plot trajectory and markers
243 hold on;
244 % scatter(L(1,:),L(2,:), 10, 'b');
245 plot(mu(1, :), mu(2, :), 'r')
246 hold on
247 scatter(mu(1, :), mu(2, :), 5, 'r', 'filled');
248 % xlim([−15, 15]);
249 % ylim([−10, 10]);
250 scatter(markers(1, 3:end), markers(2, 3:end), 'blue', 'filled');
251

252 % % −−−−−−plot mu vs xt
253 hold on;
254 % scatter(L(1,:),L(2,:), 10, 'b');
255 plot(mu(1, :), mu(2, :), 'r')
256 plot(xt(1, :), xt(2, :), 'k')
257 hold on
258 scatter(mu(1, :), mu(2, :), 5, 'r', 'filled');
259 scatter(xt(1, :), xt(2, :), 5, 'k', 'filled');
260 % xlim([−15, 15]);
261 % ylim([−10, 10]);

19

262 scatter(markers(1, 3:end), markers(2, 3:end), 'filled');
263

264 % −−−− plot of the markers positions
265 scatter(markers(1, :), markers(2, :), 'filled');
266 xlim([−15, 10]);
267 ylim([−10, 10]);
268

269 % −−−−−−plot robot path with covariances
270 figure();
271 hold on;
272 % scatter(L(1,:),L(2,:), 10, 'b');
273 plot(mu(1, :), mu(2, :), 'r')
274 scatter(mu(1, :), mu(2, :), 5, 'r', 'filled');
275 for i=1:5:size(mu, 2)
276 h = plot gaussian ellipsoid(mu(1:2, i), Sigma(1:2, 1:2, i), 1);
277 set(h,'color','b');
278 end
279

280

281 % −−−−−−dynamical plot of the predicted landmarks positions
282 % figure();
283 % for i = 1:10:N
284 % clf
285 % hold on;
286 % scatter(mu(1, 1:i), mu(2, 1:i), 10, 'filled', 'black');
287 % for j=1:NK
288 % scatter(mu(3+j*2−1, i), mu(3+j*2, i), 25, j, 'filled');
289 % scatter(L(1,j),L(2,j), 25, j, 'filled', 'MarkerEdgeColor', 'black');
290 % h = plot gaussian ellipsoid(mu(3+j*2−1:3+j*2, i), Sigma(3+j*2−1:3+j*2, ...

3+j*2−1:3+j*2, i));
291 % set(h,'color','b');
292 % end
293 % xlim([−25, 25]);
294 % ylim([−20, 20]);
295 % drawnow
296 % pause(0.01)
297 % end
298

299 % −−−−−− plot of the final predicted landmarks positions
300 % figure();
301 % for j=1:NK
302 % scatter(mu(3+j*2−1, end), mu(3+j*2, end), 25, j, 'filled');
303 % scatter(L(1,j),L(2,j), 25, j, 'filled', 'MarkerEdgeColor', 'black');
304 % h = plot gaussian ellipsoid(mu(3+j*2−1:3+j*2, end), Sigma(3+j*2−1:3+j*2, ...

3+j*2−1:3+j*2, end));
305 % set(h,'color','b');
306 % end
307 % xlim([−25, 25]);
308 % ylim([−20, 20]);
309

310 function F = createF(j, N)
311 F = zeros(5, 2*N + 3);
312 F(1,1) = 1;
313 F(2,2) = 1;
314 F(3,3) = 1;
315

316 F(4,(2*j)+2) = 1;
317 F(5,(2*j)+3) = 1;
318 end

20

