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Abstract. Knowing where you are is very difficult for robots relying on camera-information. 
This information is very high-dimensional (many pixels) and highly depends on lighting 
conditions and the surroundings. These difficulties have resulted in non-robust vision systems, 
while robustness is essential if we want robots to play soccer in a non-artificial environment.  
 This report will introduce behaviour-based vision with specific image processor- and 
self locator- algorithms used at different behaviors; this is a fundamental deviation from the 
current design architecture now widely used in the RoboCup community, where a general 
vision system is used: one image processor and self locator working at all times, independent 
of what the robot is doing.  
 In this report we will show an implementation of a goalie in the Dutch Aibo Team, 
that uses behaviour dependent vision. The goalie is able to localise significantly better and 
under more different lighting conditions than the goalie in the old system (using general 
image processing and self localization); this while the new goalie was easier to implement, is 
easier to understand and uses less processing power.  
 Performance increase is obtained because of the following reasons: first we use a 
modular image processor; object-specific algorithms with object-specific color lookup tables 
greatly improve the quality of image processing and robustness against changing lighting 
conditions. Second we used location information: taking into account where the robot is 
supposed to be and thus, what he is supposed to see largely increases the performance of 
image processing. Third: behavior-specific self localization does not have to make the 
traditional trade-off between robustness and speed.  Fourth: A behavior based system only 
needs a limited set of image-processing algorithms to be active at one time. This reduces the 
consumption of processing power, which is an important limiting factor in the current system. 
A limited set of algorithms active per behaviour also greatly reduces the local complexity; 
both implementation of new concepts and debugging of existing code becomes easier.  
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Definitions of terms and variables  
 
 
High level system  
High level means having a high (symbolic) abstraction level in the decision process. Words as 
ball, opponent, field, near, etc. are abstractions. For example, a high level thinking loop thinks 
in terms of: If opponent near ball, then move ball away from opponent.  
 
Low level system  
Low level means having a low (symbolic) abstraction level; close to the real world and real 
sensor and actuator values. An example of a low level decision loop is: if distance sensor s is 
smaller than x, then move wheel y. 
 
Process  
A process is an independently running piece of software that can basically run (quasi) in 
parallel with other processes.  If two different processes want to share information, they need 
some sort of communication path, e.g. shared memory, message passing systems; different 
processes compile to different object files (*.obj). 
 
Module 
A module is a piece of source code that is internally denser interwoven then it has 
connections with the rest of the software. Its connections with the other software (also in 
modules) is explicitly specified (the module interfaces). The source code of big software 
projects is divided in several modules because it makes the software understandable for 
software designers and programmers. The use of different modules does not only make a 
project understandable, it also allows for cooperation between several designers, because 
different designers can work on different modules independent from each other. Different 
modules do not necessarily compile to different files. Modules that are closely related (e.g. 
the vision modules) can be grouped together (and compiled) in one source file. 
 
Vision  
The interpretation of information from the image forming sensors. In our system the vision 
system consists of the perception (image processor, goal detector, ...) and the object modeling 
subsystems (self localization, obstacles modeling, ball modeling,…).  
 
Image processor 
This subsystem searches images acquired from the camera, for objects that are known to exist 
in the system’s world. The image processor outputs percepts.  
 
Percepts  
Recognized known objects in the system’s world, such as lines, goals, flags, opponents. 
 
Self localization 
The generation of the robot’s pose using the found percepts.  
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Robot pose  
The position of the robot in the playing field. The robot pose consists of his absolute position, 
the translation (x,y) and of his orientation (θ).  
 
True / false positive 
A detected object in the image is correctly labeled as one of the objects the system knows 
(true positive), or incorrectly labeled as an object the systems knows (false positive)  
 
Correct / false acceptation rate (CAR / FAR).    
The number of objects detected and labeled (accepted) in an image where they actually were 
(Correct) or were not (False) present. 
 
Update rate (UR) 
The update rate indicates the impact of single percepts in the self localization process.  
 
Quality of self localization (Q) 
The symbol Q indicates the quality of the self localization.  If Q is high, the robot is likely to 
know where he is. 
 
Number of objects searched for (N) 
N is the total number of objects searched for by the image processor.  
 
Number of objects visible (Nvisible) 
The number of objects actually visible in a camera image 
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1. Introduction 
1.1. Robot research 
 
Research in autonomous robots 
The research in autonomous robots can roughly be divided into two main streams: behavioral 
and functional robotics. 

• Behavioral robots are often simple autonomous robots that may display complex 
behaviors. Examples are the Breitenberg Vehicles. For all information about this 
interesting field of robots we refer to Pfeifer and Scheier [9].  

• Functional robots are robots designed to do a specific (complex) task. These robots 
are designed not to show intelligence, but to do useful things, bounded by its specific 
task. They often use complex algorithms. 

This report can be seen in the field of functional robotics. We can roughly give a design of 
how the architecture of a functional robot looks like. The robot receives information from the 
world (it senses), decides what to do (it thinks), and does something (it acts).  
 For each of these three parts, many different implementations are possible. The final 
solution for one part is mainly determined by the purpose the robot has to serve.  
Different research fields traditionally only cover one of the parts of the robots. In figure 1.1 a 
representation of an autonomous robot as a sense-think-act loop is given, with examples of 
solutions and related fields of research.  
 

 
 
Figure 1.1. An autonomous functional robot represented as a sense-think-act loop. Examples 
of solutions for the separate parts are written next to the parts. The green blocks show the 
research fields traditionally covering the separate parts. 
 
The RoboCup competition 
In order to promote AI- and robotics- research and to stimulate exchange of knowledge in the 
different research fields, the RoboCup [1] Initiative was founded.  
In the RoboCup competition, teams of robots compete in games of soccer in several leagues; 
there is the humanoid league (walking robots), the middle-size (autonomous wheel driven 
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robots), the 4-legged (Sony Aibo's), the small-size (small robots, driven by a central 
computer) and the soccer-simulation league.  
 The bottleneck in performance of the robots differs per league. For humanoids, 
controlling the motion (walking) currently is the most difficult part. Sensing is the most 
important part in both the middle-size and 4-legged league. Artificial Intelligence is most 
important in the small-size and simulation league.    
 Besides competing in playing soccer, there is also a robot-rescue league. The robot 
has to rescue persons in either a simulated or a (limited) real world scene. 
 
The Dutch Aibo Team 
The research described in this report is done as part of the Dutch Aibo Team [2], cooperation 
between (in alphabetic order) the universities of Amsterdam, Delft, Twente and Utrecht and 
the Decis-Lab. The Dutch Aibo team competes in the 4-legged league. It was founded in the 
beginning of 2004 and has performed with reasonable success at both the German Open 2004 
[3] and the Lissabon 2004 world championship. The Dutch Aibo team pre-qualified in 
Lissabon for the RoboCup world championship in Osaka 2005.  

 

1.2. Behavior-dependent vision 
 
Importance of the vision system 
At first glance one might underestimate the importance of vision research. The reason for this 
is that one doesn’t win a soccer game with a vision system; one wins it with motion and 
behavior control. The robots that walk the fastest, kick the hardest (motion) and play the 
smartest (behavior) will win. Being good in seeing things doesn’t make you score goals. 
Having a working vision system is only a requirement for being able to play any soccer, as 
having a working behavior control and working walking engine are requirements for playing 
soccer.  
 The reason why vision-research is such a crucial factor in the robot research is its 
complexity. Image processing is far more complex than motion and behavior control. Motion 
works with approx 20 parameters (the joints), Behavior control works with less then 50 
parameters (e.g. the position and may be orientation of the objects).  
 Vision for an AIBO works with approx. 30 000 inputs: the 208*160 camera-pixels. 
The human vision system even has an equivalent of 10 million pixels. Even though these 
inputs are highly correlated (big objects cover many pixels), the number of effective 
parameters is much bigger than those of motion and behavior.  
 Understanding operations on all these parameters is conceptually difficult. Even more 
important, operations on all these parameters require significant processing power, limiting 
the amount of possible operations.   
 The requirements of the vision system are also much higher than those of the 
behavior- and motion control systems. Behavior is designed in a virtual world, with only 
positions as input, making designing very easy. The design of motion already is slightly more 
difficult; it has to take into account the characteristics of both the actuators and the playing 
field, which can vary for different robots and different fields.  
 Vision however has to cope with the visible environment, which is far from constant 
in the real world. The way a camera image captures an object from the real world depends e.g. 
on camera characteristics, such as the amount of light and the lighting-temperature. In the real 
world, lighting conditions can be very different for different situations: both in one game 
(sunspots or shading) and between different games (outside vs. inside light). A desired vision 
system is able to cope with all these different situations.  
  
Pre-requisites of the vision system  
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During tournament games, lighting conditions are kept very artificial: a white wall 
surrounding the field prevents the robots from seeing objects other than belonging to the field. 
Many flood-lights, placed above field, provide a large quantity of illumination, largely 
uniform divided over the playing field, and not changing during the tournament. Under these 
circumstances, the current AIBO vision system is good enough for playing soccer, and the 
winning team is the team that has the best behaviors, the fastest walks and the best kicks.  
 If circumstances are only a little less than tournament-conditions, the current system 
fails on localization and the robots are not able to play soccer. The sense-part then becomes 
the bottleneck in the performance of the robots.   
 During a practice match of the Dutch Aibo Team at Nemo, where no white wall was 
surrounding the playing field and the amount of available light was not abundant, it even 
proved impossible to make a color table sufficient for playing any soccer. The robots detected 
far too many objects where they didn’t exist, or failed to detect enough objects where they did 
exist. The goalie was not able to localize well enough to stay in its goal; the players could not 
localize well enough to kick the ball in the correct direction.  
 If we want a robot team that can localize during practice matches and that will not be 
obsolete in two years when the tournament rules will be less artificial, significant 
improvement of the robots vision system is required.  
 
Robustness of the vision system  
The first logical attempt in improving the vision system, is improving the algorithms for its 
principal components: the image processor and the self locator. Much research has been and 
is being done on building shape-based image processors [4] on top of color-based image 
processors, building auto-adaptive vision systems robust against changes in lighting 
conditions [5], and building self locators that fuse the information from multiple robots [6].   
 These fields of research are very valuable and do result in important improvements in 
parts of the vision system. These results, however, only solve small parts of the problem with 
robustness, and do not result in the dramatic performance-increase we require. These new 
improvements require more processing power, while processing power is limited. For really 
solving the robustness problem, a fundamental different approach for vision is necessary. 
 In the middle-size league, such a fundamental improvement has come in the form of 
omni-vision. Robots use a camera that allows the whole of the playing field to be seen at all 
time, greatly reducing the complexity of the vision problem. This solution though is not 
available for the Aibo league, which doesn’t allow hardware changes. There is also another 
reason why we want to look beyond omni-vision: humans don’t have an omni-directional 
vision system, (as they don’t have laser detectors, nor a GPS-system, nor are all connected to 
one central computer); it is very unlikely that robots will be allowed to use an omni-
directional vision system in 2050; it is merely a temporal solution.   
 A fundamental improvement in the vision-system is an absolute condition for both 
the ability to play Aibo-soccer in a few years and to play overall Robosoccer in 2050.     
 
   
Behavior based vision 
This report a behavior based vision system, a new approach that hopefully enables the 
required improvement of the image processing and self localization. In this approach, we stop 
looking at the robot system as one big sense-think-act loop (fig 1.1.), with one algorithm for 
image processing and one for self localization. Instead, we break the system down in several 
sense-think-act loops, with different algorithms for image processing and self localization; in 
as far as they belong to different behaviors.  
 This new approach will allow for a better vision for four reasons. (See figure 1.2). 
 
1. Modular Image Processor.  
We can improve the performance of the image processor if we use separate methods for 
detecting separate objects. Using specific color lookup tables and scan-lines for the detection 
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of different objects (blue-goal, yellow-goal, lines, etc.) instead of using one general color-
table for the detection of all objects, significantly increases the performance. 
 
2. Location Information Image Processing.  
Behavior dependent vision implies location-dependent vision, which can improve the 
performance of the image processor. Only searching for objects in places where they are 
expected to be seen, can highly reduce the number of false detections. 
 
3. Behavior Specific Self Localization.  
The odometry error, the reliability of the robot-pose and the performance of the image 
processor, all depend on what the robot is doing. With behavior-based vision we can take 
these factors into account when designing different behavior specific self locators. Trade offs 
between speed and robustness are less necessary and a higher performance is possible. 
 
4. Hierarchical Behavior-Based Software Architecture.  
With a behavior-based software design, because of the location dependence, a specific 
behavior will only require a limited set of vision algorithms to be active at one time. 
Consequently, more processing power will be available for these individual algorithms.  
For one specific behavior, only a limited set of image processing- and self localization 
algorithms will be active, thus the complexity of the different sense-think-act loops will be 
significantly lower. A designer needs to understand less code in order to be able to understand 
what exactly happens in a certain behavior. In combination with a clear and logical 
hierarchical behavior-tree, this will result in a robot system in which it is easy to understand 
what really happens. Understandable software is crucial for development.  
 

 
 
Figure 1.2. The advantages of using behavior-based vision.  
 
In this report we will give the theoretical arguments why behavior-based vision leads to a 
better (more robust) vision system. We also will describe the results of an implementation of 
this system. We have built a demo of a goalie for the Dutch Aibo Team, using a behavior-
dependent vision system. We will describe its architecture and the algorithms used for the 
goalie, and will show through a number of tests that this goalie can localize more robust than 
the goalie of the old system (using a single general vision system). This in addition to the fact 
that the new goalie was easy to implement, is easy to understand and requires less 
computation time.  
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1.3. Guide through this thesis 
 
In chapters 2-4, the architecture of the Dutch Aibo Team 2004 will be briefly described.  
Chapter 2: Hardware: ERS-7 specifications covers the hardware specifications of the Aibo 
Robot. Chapter 3: software architecture covers the overall software architecture of the Dutch 
Aibo Team. Chapter 4: main algorithms gives a small description of the approaches used in 
the most essential parts of the soccer-playing robots: the image processing (4.1), the self 
localization (4.2), the behavior control (4.3) and the motion (4.4).  
 
In Chapter 5: Estimating the quality of self localization we will argue which parameters drive 
the performance of a self locator. We will show that the quality of self localization not only 
depends on the quality of the image processing algorithms, but also is highly location- and 
behavior dependent.  
  
In Chapter 6: A behavior based vision system we will describe how the different implications 
of behavior-based vision influence performance: using modular image processing (6.1), using 
location information in image processing (6.2), using behavior-specific self localization (6.3) 
and using a hierarchical behavior based software architecture (6.4).  
 
In Chapter 7: Behavior based vision software architecture we will describe how we have 
implemented behavior-based vision in the DT2004 architecture. We will describe how 
solutions for image processing and self localization are controlled from behavior control.  
 
In Chapter 8: Behavior-specific algorithms, some algorithms designed specifically for the 
goalie with behavior-based vision will be described.   
 
Chapter 9: Results shows the results of some tests comparing the performance of the old- and 
the new-goalie. 
 
Chapter 10: Conclusions presents the most important conclusions.  
 
Chapter 11: Discussion and recommendations discusses which parts of the behavior based 
vision system, designed for the goalie, is applicable for the other players (11.1). Also it will 
be suggested how one can further continue with developing the behavior based vision system 
(11.2). Also it gives a set op possible interesting topics for further AIBO research (11.3).  
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2. Hardware: ERS-7 specifications 
 
This section covers the hardware specifications of the AIBO ERS-7 that is used by the Dutch 
Aibo Team in their robot soccer games. 
 
CPU: 
64-bit RISC processor, 600 MHZ 
 
Memory 
64 MB Ram 
 
Image sensor: 
350.000-pixel CMOS image sensor. Functional 208*160 * 3 channels (y,u,v)  
 
Integrated sensors 
Infrared sensors x 2 (nose + chest) 
Acceleration sensor 
Vibration sensor  
 
Audio input 
Stereo microphones in the ears 
 
Other input sensors:  
1 Head sensor 
3 Back sensors  
1 Chin sensor 
4 Paw sensors  
 
Degrees of freedom:  
Head: 3 (tilt, pan, tilt2) 
Mouth: 1 
Legs: 4 x 3  
Ears: 1 x2 
Tail: 2 
 
Audio output 
Speaker in the mouth 
 
Communication 
Wireless LAN IEEE 802.11b (2.4 GHz) 
 
Dimensions and weight:  
180x278x319 mm (w x h x d)  
1.6 kg.  
 
Power 
Energy station for charging battery: 2 hours charging time.  
 
Program media 
16 MB Aibo memory stick.  
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3. Software architecture: process view
 
The software architecture described in this chapter was used by the Dutch Aibo Team during 
the RoboCup 2004 tournament in Lisbon. It was developed by the German Team and partly 
adapted by the members of the Dutch Aibo Team. For a more detailed description we refer to 
the German Team Report GT2003 [7]. 
 
In this chapter we will describe the architecture from a process viewpoint. What tasks are 
performed by the robot, how are these tasks divided in different modules and processes, and 
how information is transferred between these modules and processes.  
This chapter is concerned about what happens in real-time: through what steps does a new 
input (e.g. an image) lead to a new output (e.g. an actuator command).  

3.1. Modules, solutions and processes 
 
A robot playing soccer performs many tasks. It looks at the world, determines where it is, 
locates opponents and obstacles, determines what action to do next, it walks and kicks. In this 
architecture, playing soccer is divided in about 20 tasks. The algorithms for performing a 
certain task are grouped in a module.   
 
3.1.1. Modules 
A module is a piece of software, with a well defined interface. It contains an algorithm that 
determines in what way an input, or set of inputs, given to the module, leads to an output.  
In figure 3.1 one can see an example of such a module: the image processing module.  
The image processor fulfills the task of generating percepts using acquired images and the 
camera matrix. Its inputs and outputs make up the interface.  
  
 

 
Figure 3.1. The module image-processor, with the camera matrix and an image as inputs. 
The algorithms in the image-processor determine the percepts at the output.  
  
3.1.2. Solutions 
A solution defines the algorithms in a module. It defines the way in which an input, or set of 
inputs, lead to a set of outputs.  If there is more than one solution available for one module, it 
means there are different algorithms available, each resulting in a different performance.  
 For example, for the image processor, different solutions can be used. One can use a 
color table and find percepts by only matching color values. Or one can use a method that 
uses shape to detect these same percepts.  
 
3.1.3 Switching Solutions  
The German Team has designed the software in such a way that it very easy to switch 
between different solutions for one module. The source code and the compilation of the 
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DT2004 project can contain several solutions for one module, with different algorithms, but 
with the same interface.  Solutions can be switched in two ways:  
 

1. In a file (modules.cfg), one can tell what solution has to be used for a module.  
2. Solutions can be changed at runtime through robot-control.  

 
Robot-control is unavailable during actual games, and one can only set the file modules.cfg 
once, prior to the match. This means that during the game there is only one solution available 
for a module. The algorithms in the module don’t change during the game. Since there is only 
one solution active, and we can know the algorithms in this solution, we can always know 
how a certain set of inputs leads to a set of outputs.  
 
3.1.4 Solutions for behavior control 
The working of the module behavior control is different from that of all other modules. For 
behavior control, there is not just one solution running during a soccer match, determining in 
which way outputs are generated from the inputs. Instead, behavior control incorporates many 
different behavior modules (fig. 3.2). Each of these behavior modules can be seen as a 
different solution for the module behavior control. The outputs generated by behavior control 
cannot straightforwardly be predicted from the inputs. They depend on the state of the 
behavior control, i.e. the behaviors that are currently active. The active behaviors change all 
the time during a soccer match. 
Chapter 4 explains in slightly more detail how behavior control works.  
 

 
Figure 3.2. The module behavior control. Behavior control consists of many behaviors, the 
current behavior being used changes during the game. The way the outputs (motion requests) 
are generated from the inputs (mainly robot-pose), is different for the different behaviors.  
 
3.1.5 Overview of all tasks 
 
In Figure 3.3 you can see all the tasks that can be used for playing soccer. In this figure the 
rectangles indicate Modules, arrows and circular objects represent the interfaces. They 
indicate the information used by (input) and produced by (output) a module. 
The four modules most crucial for the performance of the robot and containing the least 
straightforward algorithms are displayed in red.  
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Figure 3.3. The different tasks in the Dutch Aibo Team 2004 being performed by the robot. 
 
A more simplified representation of figure 3.3 can be found in figure 3.4. In this the robot 
system is represented as one sense-think-act loop. The arrows indicate the information that 
flows. Perception, object modeling and behavior control are integrated in one process 
(cognition). Motion control is executed as independent process (motion), as are the sensors 
and actuators (robot).    
 

 
 
Figure 3.4: the design architecture represented as one Sense-Think-Act loop. 

3.2. Process layout Dutch Aibo Team 
 
In Figure 3.3 one can see the different tasks performed by the different modules, and the 
information that flows from one module to the next. Although one can represent this whole 
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process as one sense-think-act process, the robot does not actually work as one loop in one 
process. The tasks are divided over several processes, running in parallel. The perception, 
object modeling and behavior are all integrated in one process. Motion control is in another. 
 
3.2.1. Why use different processes 
 
The main reason for using more than one process is that it allows for reserving a constant 
amount of processing power for tasks that need to be performed many times a second and at a 
constant rate. Calculation of motor commands for walking, requires relatively few CPU 
cycles, but needs to be performed at full frame rate to make sure the robot walks smoothly.  
The processing of images, however, requires so many CPU cycles that the image processing 
can only be done in about 30 times a second. Since we don’t want motion control to have to 
wait for the image processing, they are located in separate processes.  
 
3.2.2. The processes in DT2004 
 
In our architecture, 4 independent process loops are used, as can be seen in figure 3.5. All the 
algorithms for different tasks as previously identified are divided over 2 processes. One for 
processing images, self localization and behavior control (Cognition). One for calculating 
motor commands (Motion). The third process is running on the robot, grabbing images and 
controlling motors (Robot). The fourth process is one for debugging purposes (Debug). It 
collects and distributes messages sent through message queues from and to other processes 
and the PC. The process Debug is only active during development; it is inactive during actual 
RoboCup games, and therefore not displayed in the design architecture. 
 
A schematic representation of the different running processes and their interaction can be 
found in figure 3.5. The arrows indicate the packages that are sent between the different 
processes.  
Cognition receives images and other sensor data from robot; Robot receives motor commands 
from Motion; Motion receives motion requests from Cognition and sends the motions 
currently being executed back to Cognition; Debug messages such as images, color tables, 
percepts and joint values can be sent back and forth to a computer through the process Debug. 
 
 

 
Figure 3.5. The process layout used by the Dutch Aibo Team.  
 
Note that the process layout of the Dutch Aibo team is much simpler than the process layout 
of e.g. Clockwork Orange [14], a team of Delft University competing in the Middle Size 
League. In the Dutch Aibo team, all processes that depend on new image input (Image 
processing, self localization, behavior control etc.) are all integrated in one process 
(Cognition). In the Clockwork Orange (CO) architecture, the layered module hierarchy 
consists of the modules{Communication, Motion, Kicker, Vision, Sound} on the virtual 
devices layer, {Behaviors and World Knowledge} on the Robot Skills Layer, and {Team 
Skills and Mission Manager} on the Top Management Layer. Each module is at least a 
separate process; some large modules consist of more parallel running processes, like the 
vision module and behaviors module. 
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When one compares the CO with the DA architecture, the CO modules {Communication, 
Motion, Kicker, Sound} form the DA module Robot. The CO modules {Vision, World 
Knowledge} form the DA module Cognition and the Behaviors Module is equivalent to the 
DA Module Motion. As the DA team has no specific team behavior, there is no Team Skills 
software present in the DA team at this moment. In the CO team the robots actively 
coordinate the fulfilling of their attacker / defender roles. The Mission Manager module of 
CO is comparable with the Debug module of DA, albeit that the mission manager also takes 
care of the system integrity of the robot and reanimates the robot if the software somewhere 
goes astray (e.g. hangs). 
 
3.2.3. Communication between modules and processes 
 
Within one process 
The communication between different modules within one process is straightforward. All 
modules are executed sequentially, and work in memory is available to all modules.  
The data that can be used by and updated by a module is defined by the module's interface.  
 
For example:  

1. The image processor processes an image and calculates percepts. These percepts are 
stored in a common memory as defined in Cognition.h.  

2. When this is done, the self locator is executed, using these same percepts as input and 
updates the robot-pose.  

3. When this is done, behavior control uses the robot-pose as input to calculate the new 
motion request.   

 
Between processes 
The inter-object communication, that is the communication between tasks in different 
processes, is performed by senders and receivers exchanging packages. A sender contains a 
single instance of a package. After it was instructed to send the package, it will automatically 
transfer it to all receivers as soon as they have requested the package. Each receiver also 
contains an instance of a package.  The communication scheme is performed by continuously 
repeating three phases for each process: 
 

1. All receivers of a process receive all packages that are currently available.  
 

2. The process performs its normal calculation, e.g. image processing, self localization, 
etc. During this, packages can already be sent.  

 
3. All senders that were directed to transmit their package and have not done it yet will 

send it to the corresponding receivers if they are ready to accept it.  
 
Note that the communication does not involve any queuing. It resembles a shared memory 
approach. Whenever a process enters phase 2, it is equipped with the most current data 
available. For a more detailed description on senders and receivers, please read chapter 2.2.3 
and Appendix C of The German Team description [7].  
Note that two different processes are independent loops with different update rates. When 
Motion finished its loop and has sent motor commands to the robot, but has not yet received a 
new package from Cognition, it will not wait for a new motion request (e.g. walk, stand, 
special-action), but will calculate new motor values based on the old motion request. 
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4. Software architecture: algorithms Dutch Aibo Team  
 
This chapter covers the essential algorithms of the DT2004 software: the image processing 
(4.1), the self localization (4.2), the behavior control (4.3) and motion control (4.4). A 
summery of the algorithms used in the complete system is drafted in figure 4.1. 
 
 

 
Figure 4.1. The sense-think-act loop of the DT2004 software, with the solutions used for the 
individual parts.  
 

4.1. Image processing 
 
The image processor takes the camera image and the camera matrix as input; it searches for 
percepts, (flags, goals, lines and ball) in the images. The image processing is mainly based on 
color-segmentation followed by shape evaluation. Not all pixels in the image are used for 
image processing, only the pixels positioned on a limited number of scan-lines. The core of 
the image processing is only 1-dimensional!! 
 
4.1.1. Using a color lookup table  
A camera image consists of 208*160 pixels. Each of these pixels has a three-dimensional 
value p(Y,U,V). Y represents the intensity; U and V contain color-information; each having 
an integer value between 0 and 254. 
 In order to simplify the image processing problem, all these 254*254*254 possible 
pixel-values are mapped onto only 10 possible colors: white, black, yellow, blue, sky-blue, 
red, orange, green, grey and pink, the possible colors of objects in the playing field.   
 This mapping makes use of a color-table. The color-table is a big 3-dimensional 
matrix which stores which pixel-value corresponds to which color. A good tool for calibrating 
this color-table is available in the Robot Control. (Appendix B, German Team Description 
[7]) 
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Figure 4.2. A schematic representation of the image processing.  
 
4.1.2. Main image processing algorithm   
The main algorithm for image processing can be found in figure 4.2. The image processor 
works on a camera image. This camera image is send together with the camera matrix. The 
camera matrix represents the angles of the head-joints at the time the image was captured.  
Percepts in an image are found through the following steps: 
 
1. Calculate horizon 
At first, the coordinates of the horizon are calculated. The horizon represents the projection of 
what the robot would see at eye level if it would look straight ahead (Fig 4.3a). Details on the 
calculation of the scan line can be found in chapter 3.2.1 of The German Team Report [7]. 
 
2. Calculate scan lines 
Images are scanned on scan lines perpendicular to the horizon. In the function scanColumns(), 
the desired amount of scan lines is determined with the according start and end coordinates.  
An example of calculated scan lines for flag detection can be seen in figure 4.3b. 
 
3. Evaluate pixel 
Every scan line, with start and end coordinates, is scanned for points possibly belonging to an 
object. This scanning process is a state-machine; whether a pixel is a possible candidate 
depends both on its color and on the colors of the pixels previously scanned. A certain amount 
of yellow pixels, followed by a certain amount of pink pixels, followed by a white pixel, 
indicates a possible yellow/pink flag. The color-table is used to determine the color of each 
pixel (fig 4.3e). 
 
4. Cluster pixels 
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If the point is near an existing cluster, it will be added to the cluster; else a new cluster 
(possible object) will be created.  
 
5. Find object  
Each cluster indicates a possible object. All the points in such a cluster are used to determine 
whether or not the candidate truly is an object or not. This decision process uses object-
information such as the height and width of objects. For each detected object, information 
such as the size and position relative to the robot are determined. For some objects, such as 
flags, additional algorithms are used for determining the characteristics of possible objects. 
An example of this can be seen in figure 4.3c. If the object is accepted, it is added to the 
percept collection (fig 4.3d). 
 

 
 
Figure 4.3. Image processing on images. a) The horizon. b) The scan-lines calculated 
perpendicular to the horizon. C) Additional scan-lines for both classification and the 
determination of width, height and position of a possible flag. d) Flag  detected. E) Image as 
seen by the color-table.  
 

4.2. Self localization  
The self localization of the robot is the ability to determine their location from sensory input. 
The approach used in the Dutch Aibo Team is particle filtering or Monte Carlo Localization 
[11] , [12]. We have used the implementation of German Team [7], [13]. In this chapter we 
will briefly summarize the self locator in the Dutch Aibo Team.  
 
4.2.1. Robot-pose from 100 samples 
The self localization is the process of obtaining the robot‘s pose (x,y,θ ) from the found 
percepts. The Self localization in the Dutch Aibo Team is a probability-based method that 
keeps track of 100 candidate robot-poses (black arrows in figure 4.4), called samples. The 
actual robot-pose (yellow robot in figure 4.4.) is obtained by averaging over the largest cluster 
of samples.  
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Fig 4.4. The self localization at initialization; 100 samples are randomly divided over the 
field. Each sample has a position x, y, and heading θ  in absolute playing-field coordinates. 
The robot‘s pose is evaluated by averaging over the largest cluster of samples.  
 

 
Figure 4.5. Self localization loop. Every time-step, first the 100 old samples are updated, i.e. 
their coordinates can be slightly adjusted and their qualities changed with a limited amount, 
by comparing the samples with the received percepts (lines, flags, goals).  
In the next step (Resample), high quality samples are likely to be attenuated and low-quality 
samples are likely to be removed. Very low-quality samples can be replaced by samples 
directly drawn from observations (e.g. from the intersection of 3 flags).  
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4.2.2. Calculating the samples 
 
The algorithm for updating the samples is shown in figure 4.5. The algorithm has some places 
where it updates the coordinates of the samples, but it mainly updates their qualities. For each 
sample, 5 independent qualities are monitored; one quality for each edge-point type (field line, 
border, blue- and yellow goal), and one quality for the other percepts (goal, flag). The total 
quality is obtained by multiplying the 5 qualities.  
 
1. Odometry 
The first step in updating the existing samples is by adjusting to the odometry offset . If 
the robot is known to have walked a certain distance and heading, all the samples are 
displaced with the same distance and heading. In this step a little random error is added to 
each sample, to model the error in the odometry.  

odometry∆

 
2. Edge-points 
After the samples are updated by the odometry, the samples are updated by the measurements 
of distances to the edge-points. One edge-point is randomly chosen for each edge-type (field 
line, border, blue- and yellow-goal). For every sample, the modeled distance to an edge-point 
is found in a lookup table. The sample is updated by comparing the modeled distance with the 
measured distance in 2 ways: 

• Adjusting the translation. The difference between the measured and modeled distance 
between a sample and an edge-point gives a metric deviation of the robot's posture. 
This is used to slightly move the translation of the sample in a way that this 
difference is reduced 

• Adjusting the quality. If the difference between the measured and modeled distance is 
large, the quality of a sample is decreased. If this difference is small, the quality is 
increased. 

  
            
3. Flags  
In this step the perceived flags are used to update the qualities of the samples. If a flag is seen, 
the quality of a sample is updated by evaluating the difference between the angle at which the 
flag is seen, and the angle at which the flag is expected to be seen. 
The quality q of a sample is calculated as the similarity s of the measured angle and the 
expected angle by applying a sigmoid function to the difference of both angles. 
 
4. Goals 
In this step the perceived goals are used to update the qualities of the samples. The front posts 
of the goals are used as the points of reference. The qualities of the samples when a goal is 
seen are obtained in exactly the same way as when flags are seen.  
 
5. Resample by quality 
The quality of each sample is evaluated by multiplying the 5 individual qualities. These 
evaluated qualities are used for copying the samples from the updated distribution to a new 
distribution. More probable samples are copied more than less probable ones, improbable 
samples are removed. 
 
6. New samples drawn from observations  
In a second step, some very low-quality samples are replaced by so-called candidate postures, 
these are samples with coordinates analytically evaluated from a combination of percepts.  
Two methods are implemented for calculating possible robot postures. They are used to fill a 
buffer of position templates: 

1. Postures from 3 flags memorized and a goalpost currently seen.  A short term 
memory for the bearings on the last three flags seen is used. Estimated distances 

 24



to these landmarks and odometry are used to update theses memorized flags when 
the robot moves. Besides the memorized bearings on flags, also the angle to the 
goalposts when seen in the current frame is used. From all possible combinations 
of 3 flags, or 2 flags and one goal, a robot posture is determined by triangulation.  

2. Postures from current percepts. For this, only the current seen percepts with 
reliable distance information are used. From all possible combination of 2 flags 
or one flag and one goal, a robot posture is determined. If a sample s has low 
probability p, it is replaced by a robot posture stored in the buffer of position 
templates. If there are not enough candidate postures in the buffer, low-quality 
samples are replaced by samples with random coordinates.  

 

4.3. Behavior control 
 
This chapter covers the behavior control of the current architecture. Behavior control can be 
seen as the brain, the upper command of the robot. Behavior control uses information about 
the world as input, and then gives commands (such as walk with speed x, look to direction y 
etc) to motion control, dependent on its state. 
As we have already explained in section 3.2, the algorithm of the behavior control is not 
straightforward; it consists of many different behavior modules, and has many possible states.  
The current state of behavior control determines the way output is determined from input. In 
this chapter we will explain how behavior control works. We will explain about agent, 
options, and states and about how the robot changes between states.  
  
The behavior control of the Dutch Team 2004 is written in XABSL, an XML based behavior 
description language; for more detailed information on the XABSL architecture we refer to 
The German Team Description [7].  
 
 

 
Figure 4.1. The option graph of a simple goalie behavior (from the German Team Report [7]). 
Boxes denote options, ellipses denote basic behaviors. The edges show which other option or 
basic behavior can be activated from an option. 
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Figure 4.2. the internal state machine of the option "goalie-playing". Circles denote states; 
the circle with the two horizontal lines denotes the initial state. An edge between two states 
indicates that there is at least one transition from one state to the other. The dashed edges 
show which other option or basic behavior becomes activated when the corresponding state is 
active. 
 

 
Figure 4.3. The decision tree of the state "get-to-ball". The leaves of the three are transitions 
to other states. The dashed circle denotes a transition to the own state.  
 
4.3.1. Agents, options and states 
 
Agents 
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An agent is a solution of the behavior control. Similar to solutions of other modules, such as 
image processing, the current agent is found in the file modules.cfg, or can be changed from 
the PC that is used to control the team over WLAN, through Robot Control. During an actual 
soccer match only one agent is active. An agent consists of a number of behavior modules 
called options. 
 
Options 
The options are the behavior modules. Every option is stored as a different XML file (e.g. 
goalie.xml, striker.xml, …).  Options can activate other options or basic behaviors.  
In figure 4.1 one can see the options of a simple goalie behavior in an option graph. The 
connections indicate possibilities of options entering next options. The terminal nodes of the 
graph are called basic behaviors. Within options, the activation of behaviors on lower levels is 
done by state machines. Each option can have a number of states, from which always one is 
active (the current state of the option). An example of an option is shown in figure 4.2.  
 
States 
At state is a loop that can change to another loop (state), under certain conditions. Each state 
has a subsequent option (e.g. position inside goal), or a subsequent basis behavior (e.g. stand), 
determining the motions being executed. Each option has an initial state. This state becomes 
active when the option was not active during the execution of the option graph. Additionally, 
states can be declared as target states. In the options above, it can be queried if the subsequent 
option reached such a target state. This helps to check if a behavior was successful.  Each 
state has a decision tree (figure 4.3) with transitions to other states as their leaves.  
 
Setting output symbols 
Additionally, each state can set special requests (output symbols), that influence the 
information processing besides the actions that are generated from the basic behaviors. The 
output-symbols mainly just give a value to some parameter that is used as input for e.g. the 
motion control.  An example of an output symbol is the kind of head-motion carried out. If in 
a certain state, the robot is supposed to look at the ball, it is set in the following way:  
 
<set-output-symbol ref="head-control-mode" value="head-control-mode.search-for-ball"/> 
 
4.3.2. The DT2004 behavior agent 
 
In figure 4.4 you can see the first layers of the options of the DT2004-soccer agent, used for 
the RoboCup games in Lissabon.  When a robot is in a certain state low in the hierarchy, it 
also is in all the states above. When for instance the robot is in penalized mode (dark blue 
options in figure 4.1-4.3), a total of 4 options is executed every timeframe (table 1).  
 
All robots use the same agent 
In figure 4.4, one can see that all robots play with one agent; player roles are determined 
lower in the behavior architecture. This is done mainly because the RoboCup rules require a 
set of common tasks from every robot. (Init/ set/ ready/ play/ penalized/ final). Thus when a 
robot is playing, it always first executes the subsequent options: play soccer module switch, 
play soccer, playing standard. Then it will execute the other options.  
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Figure 4.4. General simplified layout of the first layers of the behavior Architecture of the 
DT2004-soccer agent. The rectangular shapes indicate options; the circular shape indicates 
a basic behavior. When the robot is in penalized state, all the dark-blue options are active.  
 
Table1. The states of all the options active when the robot is in penalized state.  
Option State 
Play soccer module switch Play soccer 
Play soccer Penalized 
Penalized Stand  
Basic behavior: stand  
 
How players get roles 
We have already seen that different robots with different task (goalie/striker) use an identical 
agent. The different roles are determined somewhat lower in the architecture. One can also 
see that there is no state for a defender and second attacker. A defender is actually a 
"defensive supporter" in the state "playing defensive supporter". Robots use the variable 
player-role in choosing their state.  A robot can get a new role in 2 ways:  
 

1. Initially, when a new game starts, the robot finds its role from the file player.cfg.  
2. During the game, the defender, striker1 and striker2, can dynamically switch roles. 

When the defensive supporter comes very near the ball, it changes its role to striker2, 
and sends a message to the other robots. If the current striker2 gets this message, it 
will change its own role to defender.1  

 

                                                      
1 Note that this is very sensitive to mistakes. In the RoboCup in Lissabon, where the WLAN was 
inactive during many games, it happened a lot that a player changed role, but its message didn’t reach 
the other players. Thus we ended games with 1 goalie, 3 strikers, and no defensive and offensive 
supporters. 
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4.4. Motion control 
 
Motion control is the part that calculates the joint-values of the robots joints. Three types of 
motion can be identified in the Dutch Aibo Team: special actions, walking motion and head 
motion.   
 
Special actions  
A special action is a set of joint-values that is executed sequentially. The designer can set 
such a set of parameters in a motion file (.mof).  All kicking motions, get-up actions and the 
special movements executed when goals are scored are special actions. The special actions 
control both the leg joints and the head joints.  
 
Walking engine 
The walking engine is used for all walking motions. The engine takes a large set of 
parameters (approx. 20) that result in walking motions. The designer can change these 
parameters in order to get a different walking motion. A set of parameters can be stored and 
can be available to behavior-control. E.g. one set of parameters is used for fast walking; 
another set is used for turning with a ball. The walking engine mainly controls the leg joints.   
 
Head motion 
The head joints are controlled by head control, independently from the leg joints. The head 
motions are mainly just (combinations of) predefined loops of head joint values. The active 
head motion can be controlled by behavior control. E.g. there are solutions for the robot 
looking from left to right at the height of the landmarks (searchLandmarks), at the height of 
the lines (searchLines) or the robot can look at the ball (searchForBall).  
There are also combinations available, such as searchAuto. In this mode the robot looks at the 
ball every few seconds, and scans the field otherwise.  
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5. Estimating the quality of self localization 
 
Before we can discuss why using localization-and behavior-information in a behavior 
dependent architecture can lead to a better vision system, we need to understand what makes 
up a good vision system. In this chapter we will discuss the most important factors that 
determine the quality of the self localization. We will discuss what are the factors, how their 
performance depends on which parts of the system, and we will derive one formula for 
making a rough estimate of the quality of the system from the systems characteristics.   
 

5.1. Main factor: quality of image processing  
In a vision-based localization system, the most important part is, of course, the quality of the 
image processing. We will define the quality of image processing first by the number of true 
and false positives, and then with a correct acceptation rate (CAR) and a false acceptation rate 
(FAR). Finally, we will show the causes of the errors made by the image processing system.  
 
5.1.1. Measures for the quality of image processing  
 
True and false positives  
When starting a game or after being picked up by a referee, robots don’t know where they are. 
Also do robots loose their position and orientation when performing a motion (∆Odometry); 
therefore they need sensor information to update the knowledge of their position. The vision 
based autonomous soccer playing robots can relocate themselves by detecting known objects, 
such as goals, flags and field lines in the camera images. If an object is detected correctly by 
the image processing, this is called a true positive (Fig 5.1a). If an object is detected that is 
not really there, this is called a false positive (Fig 5.1b). True positives increase the quality of 
self localization, false positives decrease it.  
 
 
a)       b) 

 
Figure 5.1. Images taken with an Aibo camera. a) Two true positives. Both the yellow goal 
and a yellow/pink flag are detected. b) One false positive: The Image Processor mistakes the 
wall with a yellow goal. The pink/blue flag is detected correctly.  
 
Acceptation rates: CAR and FAR 
For the quality of the self localization, the number of true and false detections within a certain 
time frame is relevant. Not only is it important that more true than false positives are detected, 
it is also important that true positives are detected at a rate that is high enough to correct for 
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the error made in the odometry while walking.  Consequently, we will work with a Correct 
Acceptation rate (CAR) and False Acceptation Rate (FAR), defined as:  
 

image
PositivesTrueNCAR =  ;    image

PositivesFalseNCAR =    (5.1) 

 
N and Nvisible 
The quality of self localization depends on the total number of true and false positives, which 
is the sum of the contributions of many sub-algorithms (for goal, flags, etc). The total 
acceptation rates can be defined in the following way:  
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The contributions of these individual algorithms, not only depend on the quality of the 
algorithms; they also depend on whether or not an object is visible in the image. The CAR of 
goal detection can only be non-zero if a goal is visible in the camera image. We will make the 
rough approximation that all individual algorithms for object-detection have equal impact and 
equal characteristics (5.4). 
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Filling (5.4) in (5.2) and (5.3) leads to (5.5) in which Nvisible is the total number of objects 
visible in a camera image and N the total number of objects searched for by the image 
processing algorithms.   
 
 

'* CARNCAR visibletot =    '* FARNFARtot =  (5.5) 
 
Note that we make a very rough simplification; individual algorithms with identical 
characteristics are very rare. However, our result (5.5) is qualitatively valid: If many objects 
are searched for relative to the number of objects visible in a camera image, the performance 
of the image processor will likely be low.  
 
5.1.2. Reasons for low quality image processing  
We have seen that good image processing means that many good and few false objects are 
detected. How often this happens is a result of the quality of the algorithms (CAR and FAR), 
on how many objects are visible in images (Nvisible), and for how many different objects is 
searched (N).  Below we will describe the main reasons why the image processing so often 
fails when the robots play soccer, i.e. what causes CAR to be low, FAR to be high and N to 
be relatively high compared to Nvisible.  
 
1. Influence of lighting conditions 
When the temperature or intensity of the lighting chances, so do the corresponding values of 
Y, U, V of the image-pixels. If a color-table is calibrated for one lighting condition and 
subsequently the lighting changes, the colors in the image will be wrongly segmented. The 
algorithms that highly depend on color will start making mistakes; the CAR becomes low, the 
FAR high.   
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2. Overlapping color values  
Pixels belonging to two different objects, who are supposed to have a different color, often 
have identical pixel hue values. It is not always possible to distinguish green from blue or 
sky-blue, yellow from white, pink from orange or red. If one calibrates a color-table in such a 
way that the whole of the blue goal would be detected as blue, many parts of the green carpet 
will be also be segmented as blue (Figure 5.3) and the FAR will become high.  
3. Objects not visible  
There are many situations in which the robot cannot see any object, for instance when he is 
handling the ball, is surrounded by players, or is near the border facing the audience. No 
matter how good the algorithms are, the CARtotal will still be zero, since Nvisible is zero. The 
image processing can only produce errors.  
4. Using only few classifiers of objects  
The main part of e.g. the goal image processing algorithms, is finding blue objects (or yellow 
for the yellow goal). Only some shape information is also used for the detection. This makes 
it very likely that other blue objects, such as the blue spots in the carpet in fig 5.4, are 
wrongly detected as goals.  
 

 
Figure 5.2. Lighting changes from left to right: 1-TL-lamp, 2-TL-lamps, 2 - TL- and 1, 4 
floodlights.  
 

 
Figure 5.3. Overlapping colors. The 
color of many pixels of the green 
carpet is identical to the color of the 
blue goal. Picture from an Aibo 
camera, shutter set to fast 
 
 
 
Figure 5.4. Few classifiers. A blue 
goal is falsely detected.  
 
 
 
 
 

 
Note that 2 of the 3 factors that were mentioned (changing lighting and overlapping colors), 
are factors resulting from the fact that we are using color segmentation for classifications. 
These problems could disappear if one would move towards color independent algorithms 
(shape-based). Shape-based algorithms will of course bring there own problems due to 
changes in the perceived world.   

5.2 Other factors driving performance 
Not only does the quality of self localization of the robots depend on what the robot sees and 
how images are processed. We will describe a few factors that influence the quality of self 
localization and have no direct link with the processing of camera images.  
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5.2.1. Old quality 
The quality of a known position at a certain time is highly dependent on the history of self 
localization. We will represent this dependence with the factor Qold, the quality of self 
localization in the previous frame. 
If a robot has just started in a certain position it knows that the chances are high that it will 
still know its position accurately a few seconds later, Qold is high. If the robot is picked up and 
placed somewhere else on the field, its localization will be totally wrong and this will stay 
wrong until the robot uses the positions of objects that it detected in the world, for its 
localization; in this situation Qold is low.  
 
5.2.2. Error in odometry  
When robots walk, there is a difference between where they think they walk and where they 
walk. This error we call ∆Odometry(x,y, θ) and this will contribute in a decrease of the quality of 
self localization. The size of the error depends both on the accuracy of the odometry 
information and on the kind of motion the robot executes: If the robot stands still, the error 
will be zero. If the robot walks straight, the error in the x and y direction will increase. If the 
robot turns or does a kicking motion, mainly the error in the θ-direction will increase.  
  
 

 
Figure 5.5. The robot is supposed to have walked from the yellow goal to the center of field, 
but in reality has done a slightly different motion; this results in that the robot knows less 
good where it is.   
 
 
5.2.3. Update rate  
For the quality of self localization it is not only important how many true and false positives 
are detected (CARtotal and FARtotal), it is also important how soon these detected percepts result 
in an updated robot pose (Fig 5.6).  To be able to discuss this phenomenon, we will introduce 
a parameter, the update rate (UR), a qualitative parameter that indicates the impact of a single 
percept on the self localization. A low UR means that many percepts are needed before the 
samples are significantly changed. A high UR means that already a few new percepts can lead 
to a new robot pose. The highest possible UR is obtained when the robot pose is analytically 
calculated form sets of perceps. Note that the update rate is not a quantitative parameter: how 
percepts influence the self localization depends on the nature of the detected percept, the 
settings and algorithms of the self locator and the state of the samples, not on only a single 
parameter.  
 
Robustness versus speed 
A system with a low update rate will be highly robust against false percepts; a system with a 
high update rate will be able to relocate very fast when the robot is picked up by the referee or 
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when the robot moves around very fast and makes large errors in its odometry. Note that the 
optimal update rate highly depends on the situation. A robot standing still doesn’t need to 
update very often, thus it can have a very low update rate to allow for robustness against false 
percepts. A robot walking around very fast, doing kicking motions and colliding with other 
players will make significant errors in its odometry. For this robot a system with a high 
update rate is better.   
 

 
 
Figure 5.6 The robot locates itself by updating many samples with information from the 
detected percepts, in this case a yellow goal and pink/yellow flag. A high update rate means 
that only a few percepts will lead to a new position. A low update rate means that percepts 
only slightly influence the samples (black arrows).  

 

5.3. Relation between quality and factors  
 
Main formula for quality 
We will summarize all factors driving the performance of self localization in one formula for 
evaluating the expected quality Qnew of the self localization after evaluation of a new image:  
  

   
(5.6) ( )tottotodometryoldnew FARCARyxURQyxQ −+∆−= *),,(),,( θθ
  

Filling (5.5) in (5.6.) results in:  
 

)'*'*(*),,( FARNCARNURQyxQ visibleOdometryoldnew −+∆−=θ     (5.7) 
 
Qold  is the quality of self localization after the previous frame. The quality increases with true 
positives (CARtot) and decreases with false positives (FARtot). The update rate (UR) 
determines their influence. ∆Odometry represents the error made in odometry in one time-step. 
Note that the quality is evaluated in x, y- and θ-direction. When e.g. a robot has just been 
turning, the quality of its x- and y-position could be high, while the quality of θ would be low.    
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Figure 5.7. The robot architecture with the factors that determine the quality of its self 
localization.  
 
Below is described how the factors are influenced by the different parts of the system.  
 

',' FARCAR   The correct and false acceptation rates of the individual algorithms depend 
only on the quality of the image processing algorithms running in the image 
processor that was used.   

N N is the total number of objects searched for in images by the image 
processing algorithm that was used.  

UR The update rate is a characteristic of the self localization algorithm. 
Qold The old quality is correlated with the state of the behavior control. After 

catching and kicking a ball, the quality will be lower than when the robot has 
just been walking around searching for landmarks.   

Nvisible The total number of objects visible in the camera image depends on the state 
of the robot (its body and head) which on its turn is highly dependent on what 
the robot wants to do (behavior). For a robot looking at a goal, Nvisible will be 
higher than for a robot looking in the audience.  Note that when a robot holds 
the ball with its head, the camera is faced directly to the ground and Nvisible 
equals zero. In this case, every possible image processing can only lead to a 
decrease of the quality Q.  

∆Odometry The error in the odometry is directly coupled with the motion carried out. 
Indirectly, ∆Odometry is coupled with the current behavior, since that determines 
what motion should be executed.  
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5.4. Summary 
 
We have derived a qualitative formula for estimating the quality of self localization of a robot 
system:  
 

)'*'*(*),,( FARNCARNURQyxQ visibleOdometryoldnew −+∆−=θ   (5.8) 
 
The quality of the self localization depends on: 
 
- The quality of the image processing algorithms (CAR' and FAR') 
- Nvisible in relation to N 
- The Update Rate versus ∆Odometry
 
The quality of the self localization not only depends on the quality of the image processing 
algorithms, it also is highly behavior- and position dependent! 
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6. A behavior based vision system 
 
In order to make a big step in improving the performance of the soccer-playing AIBOs, we 
have designed and implemented a behavior based vision system. We stepped away from the 
concept of using one general vision system for the entire robot system.  
In behavior based vision, specific methods for image processing and self localization are used 
for each different behavior. This will improve several characteristics of the AIBO software: 
 
- Improved robustness of the self localization 
The robustness of the self localization is currently a major limitation of the performance of 
the robots. Under many circumstances, our robots do not know where they are and 
consequently they are not able to play proper soccer.  We will show how using a modular 
Image Processor that uses location and behavior information can lead to a robot that localizes 
better and in a wider variety of circumstances (more robustness).  
 
- Increased available processing power.  
Another issue in the current robot systems is the limit on the available processing power. This 
in combination with the requirements of real-time processing limits the possibility of using 
advanced image processing algorithms in current robots. Using image processing algorithms 
only in certain specific situations, instead of at all times, can increase the effective available 
processing power and can allow for more advanced algorithms. 
 
- Reduced system complexity  
A major problem of the current system is that it has become far too complex. The behavior-
tree and image processing algorithms have become so large and complex that it has become 
nearly impossible to oversee how changes in certain algorithms influence the entire system. 
By breaking apart (and hence simplifying) the behavior tree and connecting the image 
processing algorithms directly to the behaviors, we can achieve a system in which it is far 
more understandable what really happens. 
   

 
 
Figure 6.1. The different ways in which behavior based vision leads to a better robot-system 
with better self localization.  
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6.1. Modular image processing 
We will use a modular image processor and use algorithms that are entirely object dependent. 
This means that not only will we use separate algorithms for e.g. flags and goals, but we will 
also distinguish between the detection of the blue and yellow goals and the blue and yellow 
flags.   
 

 
Figure 6.2: General versus modular image processing. Left one can see the general image 
processing. A single grid and color-table is used for detecting all candidates for all objects. 
In the modular image processing, the entire process of image processing is object dependent.  
 
6.1.1. Object dependent color-tables 
A blue/green pixel observed well below the horizon, will likely belong to the green field 
while a blue/green pixel seen at horizon level will likely belong to the blue goal. We can, for 
instance, use this fact by implementing algorithm dependent color tables. Instead of using one 
general color-table calibrated for all 10 colors, we use a larger number of different color-
tables only calibrated for the colors relevant for a certain algorithm. For the detection of the 
yellow goal we only use a color table calibrated for yellow and green; for the detection of the 
blue flag we use a color-table only calibrated for pink, blue and white, etc. In figure 6.3 one 
can see how the same image is segmented using various algorithm specific color-tables.  
 

 
Fig 6.3: a) camera image; b) segmented with the general color-table; c) segmented with the 
blue/green color-table for the detection  of the blue goal; d) segmented with the 
blue/white/pink color-table for the detection  of the blue flag; e) segmented with the 
green/white color-table for the detection  of the field  lines; f) segmented with the 
yellow/green color-table for the detection  of the yellow goal.  
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Advantages 
Calibrating several independent algorithm-dependent color-tables each containing only 2 or 3 
colors, greatly reduces the problem of overlap. Labeling many pixel values as one color for 
one algorithm will not affect the quality of another algorithm. Therefore the color spaces can 
be larger filled (in fig 6.3e, large parts of the color-space are defined as green).  This has the 
following great advantages:  

- Calibrating color-tables is easier. Calibrating a general color-table as in fig 6.3b is a 
tedious work and can take a very long time (over half an hour). One has to make sure 
that the overlap of 10 different colors is sufficiently small and one must test the color-
tables on many algorithms in many situations. Calibrating a specific color-table as in 
fig 6.3e can be done in a few seconds; calibrating the total of 5 specific color-tables 
can be done in a few minutes.  

- Stricter algorithms are possible. With the now largely filled color-spaces, greater 
parts of objects can expected to be segmented. (Note the difference of the goal in 6.3b 
and 6.3c). Thus the algorithms for shape evaluation can be made much stricter and 
hence the FAR can be reduced.   

- Variable lighting conditions. When the color-tables are allowed to be calibrated more 
widely, they can also be calibrated to detect colors in a wider range of lighting 
conditions.   

 
Using image dependent color-tables is a smart step from color dependence to shape 
dependence, without having to implement new algorithms or requiring more processing 
power.  From algorithms dependent on a 10-color color-table we go to algorithms depending 
on a 3-color color-table. From here it is only a small step to algorithms with 0-color color-
tables, that is, to completely shape-based algorithms. More about can be read in 11.2 
(recommendations)  
 
6.1.2. Local scanning dependent on the camera view 
A flag is always visible at eye-level (around the horizon); the goals are somewhat lower in the 
image; field-lines and the ball are only visible well under the horizon. Therefore we can 
sustain with only scanning small parts of images for individual objects as can be seen in 
figure 6.4. Local scanning both saves processing power and reduces the chance on false 
positives.  
 
a)    b)             c) 

 
 
Figure 6.4: a) An image in which 2 lines and a flag are detected. b) Scanning for line-points 
is only done below the horizon. c) Scanning for flags is done in an area around the horizon. 
 

6.2. Using location information in image processing 
 
6.2.1. Disregard unexpected objects (reduce N) 
The objects that are or are not visible in the robot’s camera, depends totally on the robots state 
(the robot’s pose and head pose). By only searching for visible objects (e.g. not searching for 
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the yellow goal when facing the blue goal), the performance can be increased: N can be 
decreased, while Nvisible is left untouched. The total false acceptation rate can be significantly 
reduced, without changing any algorithm (the CARi and FARi  remain intact). 
 
6.2.2. Using distance information 
If the robot is far away from an object, it will appear small (fig 6.5a). When the robot is near 
it will appear big (fig 6.5b). An image processor that is using position information can reject 
candidates that are bigger or smaller than it would expect to see. Hence the false acceptation 
rates (FARi) of the algorithms are reduced.   
 
 

 
Figure 6.5.Two images of a blue/pink flag; a) at 5 meter distance; b) at 30 cm distance.  
 
6.2.3 Danger of using location information 
Using location information for optimizing the quality of self localization can lead to serious 
problems if the location is not evaluated correctly! If the robot faces the blue goal while 
thinking he faces the yellow goal and only tries to detect the yellow goal, he will detect no 
objects, and will never retrieve its correct position. Using prior knowledge can lead to wrong 
loops: the robot not knowing where it is can lead to a robot that is disregarding good 
information and will cause him to stay wrongly localized.  Hence, when using location 
information, one needs a checking mechanism that can detect these wrong loops. E.g. one can 
check if enough expected percepts are detected. (Evaluate the false negative rate).     
 

6.3 Behavior specific self localization  
Performance increase can also be achieved by directly using position- and behavior 
information in the self localization algorithms.   
 
6.3.1. Use location-dependent particle filtering 
 
We can use location information in the particle filtering [11], [12], of the self locator. If we 
know where the robot was previously located and we know he hasn’t moved significantly 
(Qold is high), we can reject changes to samples indicating a totally different position (e.g. 
somewhere in the opponent half). In this way we can directly filter out some contributions of 
false positives, without analytically analyzing their nature. A visualization of this location-
dependent particle filtering can be seen in figure 6.6. The self locator in 6.6b assumes that the 
robot is located somewhere in the vicinity of the yellow goal. Samples indicating otherwise 
are rejected.  
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Fig 6.6. Using location-dependent particle filtering. a) The position is unknown, thus samples 
divided over the whole of the playing field are accepted; b) The player is known to be located 
somewhere in the yellow goal-area, samples indicating a different position are rejected.  
  
Note 1: this location-dependent particle filtering mainly will work much better for translation 
than for rotation information. Because of collisions, while turning or doing kicks, a large error 
in the rotation position can occur very easily. Unnoticeably walking from one half to the other 
takes much more time.   
 
Note 2: using location-dependent particle filtering will introduce the same dangers as only 
using percepts that are expected to be seen: the algorithm can possibly enter a local loop. If 
the robot actually stands in the middle of the field but thinks he stands in its own goal, he will 
just disregard all percept information and will continue to be located wrongly2. Mechanisms 
for detecting local loops are required. Another possibility is to use location-dependence in the 
particle filtering only for short periods of time, e.g. only in the behaviors where the robot is 
handling the ball. 
 
6.3.2. Using behavior information for setting the update rate  
If a robot doesn’t know where he was and walks around searching for landmarks, the image 
processing will likely give high quality output. Using a high update rate is logical. If a robot 
has just correctly located himself and will be active in e.g. walking to while looking at a ball, 
the quality of the output of the image processing will be low. Using too much of this 
information for self localization will do more harm than good.  Using a low update rate is best.  
 
6.3.3. Adapting to the requirements of behaviors  
Until now we have only shown techniques that will lead to an optimization of the quality of 
estimation of the robot‘s pose in absolute coordinates (x, y θ). For some behaviors however, 
the knowledge of these absolute coordinates is not so relevant, but the accuracy of some 
relative parameter is. Often it can be a much easier problem to robustly determine this relative 
parameter, than indirectly deriving it from the known absolute robot‘s pose. By way of 
example: for a striker who has the ball and wants to turn to the goal and kick, the only really 
important parameter is the angle between himself and the (free angle of) the goal. Solely the 
accuracy of this parameter will determine whether the kick will be successful (figure 6.7). In 
the current software, kick-angles such as the ones in figure 6.6 are derived from the absolute 
coordinates (x, y, θ) of the robot. In order to obtain an accurate angle, both x, y, and θ need to 
be evaluated accurately, requiring many different objects (goals, flags, lines) to be seen many 
times. An erratic detection of one of these objects results in a worthless kicking motion.   
However, one can also directly derive such an angle directly from a detected goal. For an 
accurate turn-and-kick motion, only the position of the goal will have to be determined 
correctly once. This is a much easier problem and hence the system can be designed far more 
robustly.    
 
                                                      
2 Often a human vice too. 
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Figure 6.7. Angles between the robot and the yellow goal-posts. For the striker who wants to 
kick a ball to the goal, thinking his own position to be 1) results in an equal performance as 
thinking he is in position 2). The accuracy of the absolute x, y and θ is irrelevant.   
 
6.3.4. Multiple self locators versus a single self locator with parameters 
 
Behavior specific algorithms for self localization can be implemented by actually building 
multiple self locators, or by using a single self-locator that can use different methods for 
updating samples (table 6.1).  
 
Table 6.1. The differences between multiple self locators and one self locator with parameters 
Multiple self locators One self locator with parameters 
Different sample-sets One sample-set 
Information in samples lost when 
switching solutions 

Information preserved when switching solutions 

Different files One file 
Entire method can be different Only the update process of samples is different 
Individual self locators are less complex The overall system is less complex 
Easier to develop self locators More reusability 
 
What is most logical for implementation depends not only on how similar or different two 
desired self localization algorithms really are. It depends also on how often the robot is 
expected to switch between solutions. Monte Carlo based self localization methods have 
important history information stored in their particles and require many image frames to be 
evaluated before the pose evaluation stabilizes. If a highly frequent switching between 
solutions is expected, it is not advisable to use multiple self locators. 
 
In chapters 7 and 8 both types of implementations are used for the goalie with behavior based 
vision. An entire new self locator for localizing on lines is used for the goalie. The sample-set 
in this self locator, however, is used both in the situation where the goalie stands in its goal 
(update rate high, no particle filtering) and for the situation where the goalie clears the ball 
(update rate low, particle filtering). The general self locator is used, with specific parameters, 
for the situation that the goalie needs to return to his goal. 
 

6.4 Hierarchical behavior based software architecture 
 
In the previous chapters we have shown in which way the quality of self localization can be 
improved by using position- and behavior information.  In this chapter we will show how to 
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implement position and behavior information in the software. We present a behavior based 
architecture. The current algorithms used for image processing and self localization are 
directly coupled with the behavior that is executed. 
 
6.4.1. Why not to use a more general purpose vision system 
 
In the current software, the robot operates as a single sense-think act loop and the system uses 
a more or less general purpose vision system. The algorithms for detecting objects in images 
and updating the robot‘s pose from perceived percepts are always the same. The main 
advantage of using a general vision system is that the reusability of the code is 100%. All the 
code is executed every frame. Thus only one set of algorithms has to be programmed for the 
whole system. 
 The main disadvantages of the general vision system are its complexity and the 
processing power it requires. All algorithms are executed and thus they require the same 
processing power every frame. To totally understand the system in one situation, one has to 
understand all the vision algorithms. 
 It is theoretically possible to implement the use of prior knowledge (and thus obtain 
the advantages described in chapters 6.1-6.3 on top of the existing system, and thus maintain 
this general vision system (as can be seen in figure 6.8) We can use distance information by 
not just looking at e.g. flags, but by looking both at flags near and flags far. One can use the 
color information by looking not just at goals, but by searching both for the yellow and blue 
goal. We could also build a filter for rejecting detected objects that are not likely to be seen 
(rejecting the blue goal while facing the yellow one). Theoretically the self localization could 
be built in a way that it uses odometry information. It could use a high update rate if the robot 
is walking and a low one if the robot is standing still. Although theoretically it might be 
possible to build a system as in figure 6.8, this is not what we want to do. Besides the fact that 
the required processing power will increase (it might be doubled), the system will become far 
too complex. The system in 6.8 will require years for building and understanding. In a 
situation in which master's students contribute to the vision parts of the robot software a 
behavior based system is probably preferable over the design of a general vision system. 
 

 
Figure 6.8. Using location- and behavior information in a general vision system. Lots of 
complexity and new algorithms are added on top of the exiting system that is one single 
sense-think-act loop.  
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6.4.2. A behavior dependent architecture  
 
In figure 6.8 we have seen that using position and behavior information in the old system with 
one sense-think-act loop is practically not feasible mainly because of the complexity.  
Instead we will implement a software architecture with a behavior dependent vision system.  
 

 
6.9. Behavior based software architecture. Many different sense-think-act loops are possible. 
The current behavior determines which algorithms are used for image processing and self 
localization.  
 
In the behavior-based software-architecture the sense-think-act loop will be split into many 
smaller loops. Each of these loops could operate as a totally autonomous system. Only one of 
these sense-think-act loops is active at one time. The current behavior determines which this 
is. 
 The main difference between the behavior dependent architecture and the old 
architecture is that algorithms are not always executed. If for a go-to-goal behavior the robot 
needs only to detect its own goal, the algorithms for detecting the opponent goal, the flags, the 
ball, the players, etc. are not executed and not used for self localization.  
 
The increase in performance is due to the following two aspects: 
 

- Processing power. Algorithms are not always executed. If in one behavior only the 
algorithms for the detection of 2 or 3 objects are executed of a total of 15 different 
algorithms, this greatly reduces the required processing power for image processing.  

 
- Complexity. If for one behavior only a few algorithms are executed and the self 

locator only works on a few possible objects, this greatly reduces the local 
complexity. For instance in a goalie return behavior, making use only of the detection 
of the own goal for localization, debugging would be very easy. If the behavior 
doesn’t work properly (the goalie doesn't return to goal), the problem can only be in 
the algorithms for own-goal detection. The designer doesn’t have to evaluate the 
algorithms for ball-detection, player-detection, flag-detection, etc. 
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7. Behavior based vision software architecture  
 
This chapter describes the implementation of the behavior-based vision system. It describes 
how the choice of algorithms in the image processing and self localization is controlled in the 
behavior control. This chapter will also describe in what ways the necessary algorithms are 
structured in files.  

7.1 Interface between behavior control and vision  
 
The way behavior control communicates with the self locator and image processor is made 
analogue to the way behavior control communicates with motion control about what type of 
motion should be executed. The states of behavior control can set the parameter task-vision-
request indicating what solution for the vision system should be used. An example is shown 
below:   
 
<state name="return-goal"> 
 <subsequent-option ref="goalie-return"/> 
 <set-output-symbol ref="task-vision-request" value="task-vision.return"/> 
 <decision-tree> 
  <if> 
   <condition description="finished"> 
    <subsequent-option-reached-target-state/> 
   </condition> 
   <transition-to-state ref="stand"/> 
  </if> 
  <else> 
   <transition-to-state ref="return-goal"/> 
  </else> 
 </decision-tree> 
</state> 
 
Figure 7.1. Code from the file playing-goalie-taks.xml; In the state goalie-return, the goalie is 
returning to goal, and the vision system uses solution "task-vision.return".  
 
The output string task-vision-request is of the type Enum; the value task-vision.return is of the 
type number. (0,1,2….). Currently there are 6 different values for task-vision-request 
implemented:  
 
DT2004=0, POSITION, CLEAR, RETURN, ODOMETRY, STRIKER=5; 
 
Note that the behavior states only control one parameter for the entire vision system: the 
solutions for image processing and self localization are not controlled separately.  

7.2. The task image processor  
 
The main control of the image processing can be found in the file TaskImageProcessor.cpp.  
In this task dependent image processor, the main algorithm consists only of a switch 
statement. Dependent on the value of task-vision-request, a set of algorithms is executed 
(figure 7.2).  
For the task-vision-request  = DT2004, the old general image processor 
(DT2004ImageProcessor.cpp) is executed with the general color-table coltable.c64. 
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Figure 7.2 Main algorithm of the task-image-processor. For every frame, first the data-arrays 
of the percepts are reset. The next step is a switch statement. Dependent on the value of task-
vision-request, a set of image processing algorithms is executed. All algorithms take the input 
image and a reference to a color-table as input.  
 
Algorithms and sub-algorithms 
In order to have a system that works for both team-colors (both for the blue- and red team), 
we have identified algorithms and sub-algorithms. Sub-algorithms take a reference to a color-
table as input, normal algorithms don’t. When e.g. the algorithm OwnGoal() is executed, first 
the own team color is evaluated. If the robot plays as blue, the sub-algorithm Goal() is 
executed with a reference to the color-table bluegoal.c64.  
 
Color-tables 
When the task image processor is initialized, 5 specific color-tables are loaded (lines.c64, 
blueblag.c64, bluegoal.c64, yellgoal.c64, yellflag.c64) in 5 color-table buffers (In addition to 
the already defined buffer for the general color-table coltable.c64). 
The specific color-table-buffers are defined in TaskImageProcessor.h; the general color-table-
buffer is defined in Cognition.h. The specific color-tables only contain a limited set of colors. 
E.g. the color-table lines.c64 is only calibrated for orange, green and white, and is only 
calibrated for the detection of lines and the ball.  Each sub-algorithm takes a reference to one 
of these 6 color-tables as input.  
 
Files 
Whereas in the old general image processor, the detection of all objects had its source in one 
file, (DT2004ImageProcessor.cpp), we have divided the algorithms for the sub algorithms in 
separate files. The files relevant for task dependent image processing can be found in figure 
7.3. 
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Figure 7.3. Files of the Task Image Processor. TaskImageProcessor.cpp resets the percepts 
and contains the switch statement from figure 7.2. The real algorithms for detecting balls, 
lines, flags etc are stored in the folder /Algorithms.  

7.3. The task self locator 
The task self locator works analogue to the task image processor. The core of the self locator 
(TaskSelfLocator.cpp) consists of a switch statement. Dependent on the value of task-vision-
request, one of the self locator algorithms is executed (Fig 7.4).  
 

 
Figure 7.4. The algorithm in TaskSelfLocator.cpp. Dependent on the task-vision-request, 
either a sample-set or parameters can be set and a self-locator is executed.  
 
General and specific self localization.  
Dependent on the value of task-vision-request, one of the algorithms for the self localization 
is executed. We identify two types of algorithms: general and specific.  
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 The general self locator is the Monte-Carlo based method as described in 4.2; it 
creates a robot-pose from all available percepts (flags, goals, line-points). The idea is that the 
general self locator is used for most of the behaviors.  
 Then there are specific self locators, designed only for very specific tasks. E.g., the 
goalie standing in its goal doesn’t use the general self locator for self-localization, but 
localizes by directly obtaining the samples from perceived combinations of goal-lines.  
When the robot locates on odometry, it uses the odometrySelfLocator for localization.  
 
Reset samples 
Since we make use of more than one self locator, we also are working with several sets of 
samples. If because of a behavior change, the task-vision-request and a different self locator 
will become active, also a different set of samples will be used and the information in the 
previous set of samples will be lost. With reset samples we can reset the values of the samples 
of the newly active self locator, or we can transfer information about the robot’s pose from 
one self locator to another.   
 
Set parameters for general self localization 
We have defined some parameters for the general self locator. These parameters define the 
characteristics of the general self locator. E.g., the influence of found percepts (goals, flags, 
…) in the update process of the samples is variable. Also it can be set whether or not the 
distance evaluation of a detected goal must be used when updating samples. With the value 
FALSE, the general self locator has exactly the same characteristics as the DT2004 self 
locator.  
 
Files 
The files relevant for self localization can be found in figure 7.5.  
 

 
Figure 7.5. Files for the task self localization. The switch statement of figure 7.4. can be 
found in TaskSelfLocator.cpp. The general self locator is in the folder General. All other 
algorithms will come in the folder Specific. At this point only 2 specific algorithms are used. 
One for the goalie guarding the goal, and one for locating on odometry.  
 
7.4. Settings in Modules.cfg for using task vision. 
The file Modules.cfg requires the following values for using the task vision:  
 
ImageProcessor TaskImage 
SelfLocator TaskSelfLocator 
 
Per default, task-vision-request is DT2004 and thus per default, the DT2004ImageProcessor 
and DT2004SelfLocator algorithms will be used. The specific algorithms for image 
processing and self localization will become active when task-vision-request gets a value (in 
behavior control) other than DT2004.  
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8. Goalie-specific behavior based algorithms 
 
This chapter describes the algorithms we have developed (or re-fabricated from existing code) 
especially for the goalie. These algorithms are implemented in the behavior based vision 
system as described in chapter 7.  
In chapter 9 we will compare the performance of the goalie described in this chapter with a 
goalie using the DT2004 (general) vision system. We will use this comparison for evaluating 
the impact of using location information in a behavior based vision system.  

8.1. General overview of the goalie 
We have roughly identified three situations for the goalie: 

1. The goalie positions itself in its goal, knows where he is and the ball is not near. 
2. The ball is near the goal area and the goalie tries to clear the ball. 
3. The goalie has to return to its own goal.  

In situations 1 and 2, the goalie mainly localizes on the field-lines surrounding the goal and 
on the two flags nearest to its own goal. In situation 3, when the robot walks back to its own 
goal, the goalie mainly localizes on its own goal.  
 
a) 

 
b) 

 
Figure 8.1. Schematic representation of a goalie. Three situations are identified: 1. the goalie 
stands correctly in its goal. 2. The goalie handles the ball in its own goal-area. 3. The goalie 
is far away from its goal and/or doesn’t know where he is.  
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8.2. Behavior control   
In figure 8.2 one can see the parts of behavior control relevant for the soccer-players with 
behaviour-based vision.   

 
 
8.2. The most important parts of the soccer behaviour tree with implemented behaviour-based 
vision for the goalie. The squares indicate the different options. The circles in the squares 
indicate states. The value of task-vision-request belonging to a state is indicated in red. If the 
player is not the goalie, he plays with the DT2004 vision system. The goalie standing in its 
goal uses either the position or clear vision algorithms. In the return-goal behaviour, either 
the return or the odometry vision algorithms are used.  
 
The red names in (8.2) indicate the task-vision-requests of certain behaviours. Task-vision-
requests can be set anywhere in the behaviour trees. One can see that in the playing-standard 
option, the task-vision-request = DT2004 for both the striker and the playing-supporter 
(defender, attacker1). Thus the general vision system is used for all players other than the 
keeper.  
 
Playing-goalie 
The playing-goalie behaviour (playing-goalie-task.xml) is the core of the goalie behaviour.  
When there is no ball, the goalie is in the state position with task-vision-request = position: 
the robot positions itself in the centre of the goal.  
  When the ball comes nearer the robot goes into the state guard with task-vision-
request = clear. The robot will position itself between the goal and the ball. 
 If the ball is inside the penalty area, the robot goes into the state clear, still with task-
vision-request = clear. The robot walks to the ball, catches it, turns away from the goal and 
kicks the ball (catch-and-kick-goalie). Afterwards the robot will go back to state position.  
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When in state position, the robot checks if its position is still correct, when it is not (he is not 
in its goal), it will switch to state return-goal with task-vision-request = return; the robot will 
walk back to its own penalty area.   
 
Goalie-return 
In the option goalie-return, the goalie first locates the own goal, then walks straight towards 
it; the robot turns when the angle to the own goal becomes too large. During the whole 
process of finding the goal, walking straight or turning, the robot uses task-vision-request = 
return, and the robot's vision system mainly works on the own goal. The last half meter of 
returning to the own goal, the goalie uses task-vision-request = odometry. This is because 
very near the own goal the error in the distance evaluation from the detection of the goal is 
too large.  

 

8.3. Image processing 
 
Below we will describe which image- processing algorithms are run at the different task-
vision-requests. Also we will describe a few algorithms that we have changed especially for 
the goalie: flag detection for near flags, line-detection (vs. line-point detection), and goal-
detection.    
 
8.3.1. Algorithms for various task-vision-requests  
 
Position and clear 
When the goalie is near the own penalty area, he localizes mainly on the field-lines and the 
own flags. Also the ball has to be detected. The following algorithms are active both with the 
task-vision-requests guard and clear:  
 
Lines(Hough=true) 
OwnFlag(LargeFlag=true) 
Ball() 
 
Return 
When the goalie returns to its own goal he localizes mainly on its own goal. Since the own 
goal is not visible from all positions on the field and absolute coordinates are not retrievable 
from one goal only, also a few flags and line-points are used for self localization.  
The following algorithms are active with task-vision-request = return:  
 
Lines(Hough=false) 
OwnFlag(LargeFlag=false) 
OpponentGoal() 
OwnGoal() 
 
Note that the robot does not try to detect the ball when returning to its goal. Also the robot 
doesn’t perform the Hough transform for detecting lines from line-points.  
 
8.3.2. Own flag Detection 
For the own flag detection, we use mainly the algorithms written by the German Team [7], 
based on the scan-lines and the additional shape evaluation. Only in the shape evaluation we 
do some things different.  

- Calculate the size of the flag from both the yellow and the pink parts. In the DT2004 
algorithm (8.3b), the size of the flag was determined only from the yellow part of the 
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flag only; for increasing robustness, we have determined the size from both the pink 
and the yellow part (8.3c). 

- Only allow for a minimum size of the flag. When searching for large flags 
(ownflag(TRUE)) we reject all candidate flags which are too small in width and/or 
height. Also too large flags, (probably erratic measurements) are rejected.  

 
a)    b)    c) 

 
Figure 8.3. Flag detection a) Additional scanning on a few scan-lines, after a candidate flag 
was found; b) in the DT2004 algorithms, the width of the flag is determined only from the 
yellow part. Mistaking white wall-pixels for yellow flag-pixels can lead to a detected flag that 
is too large; c) in the OwnFlag() algorithms, the width of the flag is determined from the 
smallest width (pink or yellow part), leading to a more robust (and smaller) flag-detection.  
 
8.3.3. Line detection   
 
The main difference between the lines(TRUE) and the lines(FALSE) algorithm is that the 
lines(TRUE) algorithm detects 2-dimensional lines, with an angle θ and at a distance R 
relative to the robot. The lines(FALSE) algorithm only detects 1-dimensional points belonging 
to the lines, with coordinates (x,y,0). 
The lines(TRUE) algorithm uses a Hough-transform to retrieve a line L from a set of line-
points. The algorithm for detecting the line-points is identical to the one used in the 
LinePoints() algorithm (used in the DT2004 software).    
 
Detecting line-points 
For detecting the field-line points, we use the same scan-line algorithms that were already 
available from the German Team [7]. Green-white-green transitions indicated field-line-
points; white-white-green transitions indicated border-points. In Figure 9.4 one can see some 
field-line and border points in camera images.  
 

 
Fig 8.4. Images from the robot’s camera when standing in the goal and performing a search-
lines head motion. The white dots indicate the field-line points, the green dot, indicate border-
line points.  
 
Using the Hough transform for detecting lines.  
We use a Hough transformation to determine at what line (R, θ) the points (x, y) are located.  
The line-points and the line are related in the following way:  
 

θθ sincos yxR +=        (8.1) 
    

 52



 
Figure 8.5. Representation of a line (R, θ) in (x,y)-space.  
 
We find lines from points by letting all line-points contribute to one HoughArray[R, θ] in the 
following way:  
 
For every point with coordinates (x,y) 
      For all θ between -pi and pi    
 R=x*cos(θ)+y*sin(θ)); 
     if(R>2 && R<159){ 
          HoughArray[θ,R]++ 
 
We can then find the lines simply by looking for the maxima in the HoughArray[], the θ and 
R at which the HoughArray has its maximum are the coordinates of the detected lines.  
Two lines are found by first detecting the first maximum in the HoughArray, and then 
searching for the next local maximum at an angle of approximately pi/2 (perpendicular).  
  A representation of the detection of lines can be seen in figure 8.6. The contributions 
of the line-points in Hough-Space can be seen in figure 8.7.  
 

 
Figure 8.6. Detection of lines. Two lines (represented in blue and yellow) are evaluated from 
a set of detected line-points (grey points in the right image).   
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Figure 8.7. Contributions of the line-points of figure 8.6 in Hough-Space. The two lines are 
found at the whitest spots.  
 
8.3.4. Goal detection  
 
For goal detection we have used the algorithm that is almost identical to the algorithm that 
was used in the GT2003 software [7]. Goals are detected by scanning around the horizon in 
both horizontal and vertical direction for color (e.g. yellow) parts.  
We have only changed a few things in the evaluation part of the scan-lines. We only accept 
candidate-goals if the yellow goal-points are followed (in vertical direction) by green field-
points. This eliminates the chance of goals being detected in white walls.  
Also we reject candidates if too many non-yellow pixels are detected within a yellow goal-
part. The increased strictness of the selection is possible since the wide-filled yellow/green 
color-table (8.8b) results in far more candidate goals.   
 
Some results of the goal-detection algorithm on a camera image can be found in figure 8.8.  
 
a)   b)   c)   d) 

 
 
8.8. Goal detection: a) raw image with drawn percept of goal; b) yellgoal.c64 color-table;  
c) scan-lines used for scanning goal; d) results after scanning.  
 

8.4. Self localization  
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The keeper standing in its goal uses the keeper self locator (KeeperSelfLocator.cpp), a self 
locator depending on the field-lines and flags.  
The keeper standing outside its goal uses the general self locator (GeneralSelfLocator.cpp), 
although with specific parameters.  
 
8.4.1. Main algorithm of the keeper self locator  
 
In figure 8.9 one can see the main algorithm of the keeper self locator. The algorithm uses 
many samples. They are updated by the odometry, by the lines, then by the flags; finally the 
samples are re-sampled. Every time-step the reliability is checked: it is evaluated if the keeper 
still stands in its goal. The algorithms for updating by odometry and re-sampling are identical 
to the ones written by the German Team [7].  
 
 
 

 
 
Figure 8.9: main algorithm of the keeper self locator. The (*) indicates that the steps are not 
identical for task-vision-request = position and task-vision-request  = clear. 
  
8.4.2. Lines 
 
We want to retrieve our robot-pose (x, y, θ) from a 
detected line L (R, θ'). If we have detected a line and know 
which line we have detected, retrieving information from i
is straightforward:  

t 

 
Line L1:  
θ = 1.57- θ' 
y = 500-R 
 
Line L2:  
θ = - θ' 
x = -1600-R 
 
For Line L3:  
θ = -1.57- θ'        
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y=-500+R       Figure 8.10. Penalty area 
           
    
 
For Line L4: 
θ =-3.14- θ'    
x=-2100+R 
 
However, we don’t know if a detected line is L1, L2, L3 or L4 and thus we use tracking. For 
every sample it is determined what line is most likely to be seen:  
  
For all samples S 
     Decide what Line L is seen  
     Update Sample S from L 
 
The decision process evaluated the newly calculated pose (x,y, θ) for all 4 detected lines. The 
line resulting in a new position nearest to the old pose is chosen as the correct line. The 
update step moves the samples towards the calculated position. Also the quality is adjusted.  
 
The difference in position and clear in line detection   
The line update process with task-vision-request = position is slightly different from the one 
used for clear. For position we accept all detected lines, for clear we reject the contributions 
of lines that result in a robot pose that is very different from the old pose. This is a form of 
particle filtering.   
 The reason is that in the state clear the robot is busy clearing the ball and is walking 
outside its goal area. The chance of making wrong detections of lines (e.g. mistaking the 
middle-line for a field-line) is larger relative to the chance of seeing correct lines.  
   
8.4.3. Flags 
Precise orientation and x and y values of the robot‘s pose are retrieved from the goal-lines. 
The only thing the flags need to do is making sure the overall orientation of the samples 
(resulting in choosing L1, L2, L3 or L4), is correct. The way this is evaluated is very similar to 
the method used for updating using the flags in the GT2003 software [7].  The angle to a 
detected flag is compared with the angle at which th e flag is expected to be seen. The way 
this angle-difference results in updating the robot‘s pose is different for task-vision-request  = 
guard and = clear:  
 

- Position. For every sample, if the difference in angles is larger than a certain 
threshold, the orientation of the pose is assumed to be wrong.  A new orientation will 
be chosen randomly. Also the quality is adjusted.  

- Clear. New orientations are not chosen randomly when the angle-difference is too 
large. Only the quality of the sample is adjusted.   

 
The difference in position and clear in flag detection 
In position a total new pose can be found very soon (a high update rate), while in clear, it is 
not possible to get a very different robot pose in a short time frame (a low update rate). The 
reason is (same as with lines), that in the state clear, the robot walks out of its own penalty 
area and the quality of the image processing is relatively bad.    
 
8.4.4. Check reliability 
The keeper self locator assumes that the robot is positioned inside its own penalty area. This 
assumption leads to serious problems if the robot actually is positioned somewhere else in the 
playing field. This is the reason we have to check whether this assumption still holds.  
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We use the following information about the goalie for checking the correctness of the robot-
pose: when standing in its goal and doing a search-lines head-motion, the robot is expected to 
see three different lines and at least one flag during a certain time-interval (approximately 20 
frames).  
 
We use this information for checking the reliability in the following algorithm that keeps 
track of an array consisting of 5 parameters [L1, L2, L3, L4, F]. The values Li and F represent 
respectively the 4 possible lines and the flags being detected.  Their values can be between 50 
and 200 and are changed in the following way:  
 
For every frame  
 Decrease all 5 parameters by 1.  
 If a line or flag is detected at correct angle, the corresponding value is set to 200. 
  
The reliability R is calculated at a product R = L1*L2 *L3 *L4 *F. 
Note that for the goalie, 4 of these 5 parameters tend to somewhere between 180 and 200 at 
all times, and R is high. For all other players, only 2 or 3 parameters are likely to be high 
simultaneously, and the reliability R will be significantly lower.  
 
8.4.5. The parameters for the general self localization  
When the goalie is away from its goal and has to go back to the own goal (task-vision-request 
= return) the general self locator is used. The algorithms of the general self locator is 
basically the same as the DT2004 self locator as described in chapter 4.2. Only a few things 
are slightly different from the DT2004 self locator if some parameters are set in 
TaskSelfLocator.cpp:  
 
setparameters (useParameters = true, useGoalDistance = true, nrGoals = 4, 
goalPoints=false) 
 
useParameters 
useParameters only indicates whether or not all further parameters should be used. If 
useParameters = FALSE, the general self locator is identical to the DT2004 self locator.  
 
useGoalDistance 
If this parameter is true (as is the case in task-vision-request = return). The distance 
evaluation from a detected goal-percept is used to directly update the x- and y- position of the 
samples. In the DT2004 algorithm the measured goal-distance was not used, since at small 
distances from the goal, the error in the goal-distance evaluation is relatively large.  
 
nrGoals 
In the DT2004 algorithm, all update steps (odometry, line-points, goals, flags) where 
executed once. We have started to give a parameter that indicates how much influence the 
detection of one of these objects must have on the evaluation of the robot pose.   
 In the case of nrGoals = 4, the update process relying on goal-information is executed 
4 times. Thus the quality of the samples is adjusted 4 times, every time a goal is detected.   
 
goalPoints 
The DT2004 self locator uses detected goalPoints (blue/green and yellow/green transitions) in 
the update process. In the modular image processing, detection of these points is not 
implemented. With goalPoints=false, the missing of these detected goal-points doesn’t give 
problems.  
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9. Results  
 
In this chapter we will test the performance of the goalie with the behavior based vision as 
described in chapters 7 and 8. We will compare its performance with the performance of the 
old goalie, which used a general vision system. 
 

9.1. What do we test?  
 
There are several techniques we have used in our system that contribute to a better 
performance. A schematic overview of all techniques and their contributions is depicted in 
figure 9.1. We have tested not only the performance of the entire new system compared with 
the performance of the old system. We have also tested for each independent technique how 
much it contributes to the overall performance.  
 

 
 
Figure 9.1. Schematic representation of the reasons why the performance of the new goalie 
should be higher then performance of the old one 
 
The following items were tested:  
 
Contributions individual parts 

- An increase in performance due to modular image processing  (Ch. 9.3). 
- An increase in performance due to the use of location information  (Ch. 9.4). 
- An increase of available processing power (Ch. 9.5).  
 
- Practical issues and limitations due to behavior dependence  (Ch. 9.6)  
- An increase in performance due to behavior specific self localization  (Ch. 9.7).  

 
Overall performance  

- The performance of the new versus the old goalie (Ch. 9.7) 
 
The performance increase of the image processing will be measured by evaluating a set of 
image-sequences (offline testing). The decrease in CPU-time will be measured by varying the 
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number of active algorithms and measuring the frame-rate. For the practical issues due to 
behavior dependence, we will describe some situations in which the new goalie has shown to 
have difficulties with self localization. The overall performance will be measured by 
comparing the performance of a goalie with a behavior based vision system with a goalie 
without behavior based vision system.  
 

9.2. The testing environment  
 
9.2.1. Lighting conditions:  
 
We will do all tests under 5 different lighting conditions  

- 1 Floodlight 1 floodlight was placed above the playing field  
- 4 Floodlights 4 floodlights were placed above the playing field  
- TL + floodlights 4 floodlights and 2 TL-tube lights above the playing field  
- Natural day light all lights off and curtains open at daytime, no direct sunlight 
- TL, floodl. + natural all lights on and curtains open at daytime, no direct sunlight  

   
a)           b)     c) 

d)           e)      
  
 
 
 
 
 
 
 
 
 

Figure 9.2. Lighting conditions; a) 1 Floodlight; b) 4 Floodlights; c) TL + floodlights;  
d) Natural day light; e) TL + floodlights+ natural day light 
 
9.2.2. Image sequences for testing image processing algorithms  
We will test the performance of individual parts of the system on the following sets of images.  
 

- Calibration set yellow-goal: For 6 lighting conditions, we have set the robot at a 
distance of 2 meter from the yellow goal, facing the goal. We have taken an image set 
of 100 frames, with the head-control set to search-for-landmarks. In this setting the 
yellow goal and flags are supposed to be detected. The Calibration set yellow-goal is 
used for calibrating the color-tables.  

 
- Calibration set blue-goal: The same as for the yellow goal, only now for the blue 

goal. In this setting the blue goal and flags are supposed to be detected. The 
Calibration set blue-goal is also used for calibrating the color-tables. 

 59



 
- Test set goal-lines: The robot stands in the center of the yellow goal executing the 

search-lines head-motion. In this setting the goal-lines and pink/yellow flags should 
be detected. Images were taken under 5 lighting conditions.  

 
- Test set various conditions: Various lighting conditions, various behaviors. Not used 

for calibrating the color-tables 
 

9.2.3. Robot setup and calibration of the color-tables 
 
Behavior-based vision  
For testing task-dependent vision, we use the robot with a behavior tree as described in 
chapter 9. The color-tables (lines.c64, bluegoal.c64, blueflag.c64, yellgoal.c64, yellflag.c64) 
are calibrated offline, on all calibration image sequences. Only one iteration step is used for 
calibration. The whole process of calibrating takes about 1 hour.   
 
General vision  
For testing general vision, we use the DT2004 behavior player = goalie. The DT2004 image 
processor and self locator are used.  
We have calibrated the color-table, Coltalbe.c64, in the following way: 

1. We have calibrated the color-table on all calibration image sequences in such a way 
that at least one true positive was detected in all images. All the green is first 
calibrated as green. All the green/blue overlap is later relabeled blue.    

2. Then, colors were removed from all sequences that were resulting in false percepts 
3. In a third step, the color orange was calibrated on an image sequence of pictures of 

the ball, at various distances and varying lighting conditions.  
4. In a fourth step, again the color-tables were tested and optimized on the whole 

calibration set; colors were removed and/or added.  
The whole process was repeated 2 times, adding or removing only a little color here and there 
in the color lookup table. The whole process takes about 2/3 hours.   
 

9.3. Impact of modular image processing  
We have compared the performance of the old image processor (DT2004) with the 
performance of a "general" version of the new image processing (Task Image Processor): 
Now all available algorithms are executed in every frame (ownGoal, opponentGoal, ownFlag, 
opponentFlag, Lines). The two image processors are different due the use of object-specific 
3-color color-tables in stead of a single general 10-color color-table, and due to the use of 
object-specific definition of scan-lines instead of a single general grid used for all algorithms. 
 
9.3.1. Measuring the performance 
The performance is measured in the following way:  
The performance of flag- and goal detection is measured on both the calibration sets and the 
"various positions" set from the log-files. For all sequences we have counted the number of 
correct flag -and goal detections (true positives) and the number of incorrect flag- and goal 
detections (false positives).  
 For every sequence we have evaluated the correct acceptation rate CAR (N true 
positives / total percepts visible) and the false acceptation rate FAR (N false positives / total 
percepts visible). The Total Percepts Visible is estimated for each log-file. The TPV depends 
on the number of frames in a log-file for a certain position of the robot as well as the head-
motion carried out.  
 
9.3.2. Measurements 
In tables 9.1 to 9.3, a summary of the results of tables A.1-A.4 (Appendix A) is presented.  
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Table 9.1.Performance on detecting flags. The FAR is given as percentage as well as the total 
number of false detections (in brackets) 
 
 CAR  FAR  
Name Set DT2004 Task DT2004 Task 
Calibration Set "Yellow Goal" 45 % 77 % 2.5% (9) 0.3% (1) 
Calibration Set "Blue Goal" 35 % 73% 0.28% (1) 0 
Test set "Various Positions" 43 % 73% 9.3% (28) 5.3% (16) 
  
Table 9.2. Results on detecting goals. The performance of the goal detection does not 
increase significantly with the modular image processor 
 
 CAR  FAR  
Name Set DT2004 Task DT2004 Task 
Calibration Set "Yellow Goal" 41 % 44 % 2.78 (10) 0.3 (1) 
Calibration Set "Blue Goal" 38 % 42% 0.56 (2) 0 
Test set "Various Positions" 30 % 60% 1 % (3) 3.7 %(11)* 
* 10 of the 11 errors are due to a blue bag in the playing field identified as a goal.  
 
Table 9.3. Results on detecting Lines 
 
Name Set DT2004 Task 
Calibration Set "Lines" 40 % 95 % 
 
9.3.2. Summary  
We see that the performance of the task image processor is dramatically higher than the 
performance of the DT2004 (general) image processor.  
 

- The CAR of the flag detection dramatically increases from 40% to approx. 75 %  
- The CAR of the line detection even increases from 40 to 95 %  
- The FAR of the  flag detection decreases, only errors in objects outside the field 

remain  
- There is still room for improvement for the goal detection algorithms  

 
With these results, the factor CAR in formula (5.8) is not far from the theoretical maximum of 
100 %. Without using any white-balancing or auto-calibration, we obtain a very reliable and 
robust image processor.   

9.4. Using location information 
 
9.4.1 Using distance information to disregard far/near objects   
The OwnFlag (yellow flag) algorithm was tested on two acceptations sets: 

- One set of the goalie guarding its goal  
- One set of players standing in the field facing the yellow goal  

 
The algorithms were tried twice: once while accepting flags of all sizes and the second time 
while accepting flags with a minimum size only. The results can be found in tables A.5 and 
A.6. (Appendix A).  A summary is given in table 9.4.  
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Table 9.4. Using distance information 
 
 Accept all flags  Reject small flags  
Image-set True positives False positives True positives False positives 
Goalie in goal 67 6 57 0 
Player in field 85 1 35 0 
 
From table 9.4. we can determine that when the goalie is using distance information (this 
holds for any other player which’ own position is defined very well), this can lead to a 
significant decrease in the number of false positives without dramatically affecting the 
number of true positives.  
We also can see the danger of using distance information: it can dramatically decrease the 
quality of image processing if it is used too reject small flags when small flags are expected to 
be seen.  
Consequently, distance information should not be used unless the need for a small FAR is 
very high and the own pose is known very accurately.  
 
9.4.2. Disregarding unexpected objects 
We will run some algorithms in the acceptation set stand in goal (under all lighting 
conditions).  We will run the OwnFlag(true), OwnGoal(), OpponentGoal() and 
OpponentFlags(false) algorithms and count the number of true and false positives.  
The results can be found in table A.7 (Appendix A); a summary is presented in table 9.5.  
 
Table 9.5. Influence of disregarding unexpected objects 
 
 Accept all objects  OwnFlag only.  
Test Set True Positives False Positives True Positives False Positives 
Goalie in Goal 84 10 57 0 
 
We can see that searching only for the objects that are expected to be seen (correctly) can 
greatly reduce the number of false positives (and thus the FAR), while still a reasonable 
number of true positives is detected.  
Consequently, disregarding information (using information only of objects that are likely to 
be seen correctly) can increase the performance. Prerequisite is that the own pose is known 
accurately.  
 

9.5. Processing power  
We have executed several image processing algorithms for a varying number of times per 
time-step and have evaluated how this influenced the total frame-rate of the system. Results 
can be found in tables A.8 and A.9. (Appendix A). 
 
From these results we can conclude the following:  
 

- The normal frame rate of the system is 30 frames/s 
- Modular image processing (when executing all algorithms) requires approximately  

the same processing power as the old general image processing. There is not much 
overhead. 

- If we would use twice the current complexity in image processing, the frame-rate 
would go down to approximately 25 frames/s. With this, playing soccer is still 
possible. 
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- However, if we use specific vision (only detecting e.g. line-points and flags), we 
could use algorithms with a complexity of approximately  5-10 times the current 
complexity.  

- Using the Hough transform is a relative costly operation; using it for detecting lines 
using 30-40 line-points (in one image) is now possible. Applying the Hough 
transform on 200- or more points, still slows down the system.  

 

9.6. Practical issues and limitations due to using behavior specific 
algorithms 
 
There are some practical issues that arise when using a behavior based vision system in which 
information is disregarded and local loops are made possible. These issues do not arise in a 
system with a general vision system. We will discuss two of those issues.  
 
9.6.1. Checking the viability of local loops is not a real-time process 
A local position loop may use the information that the robots position is roughly correct. For 
this we need a checking mechanism that robustly detects when the own position is wrong. To 
detect when and only when the own position is wrong, the evaluation of many subsequent 
frames (and hence many seconds) is required. If too few frames are evaluated, the chances are 
high that the robot will wrongly assume he has lost its position. This delay of seconds 
negatively influences the performance of the robot when local loops are used more than rarely. 
We can see examples of this when the goalie does not manage to return to its goal in one try. 
If the robot thinks it has returned but in fact it has not, the robot starts guarding the wrong 
position and isn't making another attempt to return to its goal for at least another 5 seconds. If 
the return-to-goal behavior with the return-to-goal local loop vision system makes many 
mistakes, the process of returning to the own goal can take a significant time.  
 
9.6.2. Disregarding information when information is scarce 
We have implemented a self localization method for the goalie using only the 4 field-lines of 
the goal and the 2 own flags, making the assumption that the goalie can always see the field-
lines and sees one of the flags once in a while. With this vision system, the goalie can very 
robustly localize itself when standing in the centre of the goal (see the test localize in penalty 
area in chapter 9.7). 
 The goalie, however, is not always located in the centre of the goal; it also does 
actions in which it is located elsewhere, where the field-lines might not always be visible. To 
overcome those situations, we have built specific methods for self localization that use 
particle filtering at a low update rate, in order to reduce the chance that the robot gets 
disorientated while doing an action. We have experienced that these methods are well capable 
of bridging short times in which the robot can't see much. When the vision input is neglectible 
over too long a time, however, the quality of self localization can be seriously reduced. For 
example: 
 
- Good localization: clearing a ball.  
When the ball comes inside the penalty area, the robot goes to the ball, kicks it away and 
returns to the center of the goal (fig 9.3a). Only for a short time (5-10 seconds) the robot 
relies more on odometry than on the field lines. The robot bridges this period very well. 
 
- Bad localization: ball near the field border.  
There is, however, a situation in which problems arise. This situation can be seen in figure 
9.3b. If the ball is near the field border, the robot positions itself between the ball and the goal, 
resulting in the robot standing outside the centre of goal, facing the side line. In this pose the 
robot can't see many proper lines, necessary for his local localization loop. We have 
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experienced that the goalie was not accurately blocking the opening to the goal when the ball 
was near the field border for a longer period of time.  
 
 

 
Figure 9.3. Two situations with limited input for the goalie’s vision system; a) the goalie 
clears a ball and then returns. The goalie is only away from the center of the goal for a short 
while, there is no problem with localization; b) the ball is located near the border, the goalie 
positions itself between the goal and the ball. For a long time, the robot can not see enough 
proper lines and problems with self localization arise.  
 
For a goalie to robustly guard its goal also when the ball is near the field border, more 
information should be taken into account for self localization. E.g. the detected field border-
lines could be used on top of the detected field-lines and flags. In this way, the goalie would 
have enough information, wherever he is located.  

9.7. Tests in the real world  
 
We have tested the performance of the new behavior-based system. For being able to 
distinguish between the performance increase due the modular image processor (which is 
behavior-independent) and the performance increase due to behavior-specific algorithms, we 
have performed tests with three vision system variants.  
 
9.7.1. Vision systems used 
The following vision systems were used: 
 
DT2004.   The (old) general image processor with a general self locator  
Striker  All algorithms of the modular image processing with a general self locator. This 

solution is used by the defender, striker1 and striker2  
Goalie  Modular image processing with behavior-dependence in image processing as well 

as self localization for the goalie. When guarding the goal, only the own flag and 
the lines are used. When returning to the goal all objects are used for localization; 
the weight of a detected own-goal is higher than the weight of other objects 

 
9.7.2. Scenarios  
 
Localize in penalty area 
The robot is manually put into the penalty area and has to return to the return spot as quickly 
as possible. The purpose of this test is mainly to evaluate the difference between behavior-
specific (goalie) and general self localization (striker).   
 
Return to goal 
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The robot is manually put onto a predefined spot in the field (P1 or P2) and has to return to 
the return spot as quickly as possible. This test has two purposes: first, it is used to evaluate 
the effect of behavior switching on the overall performance. Second, it can show the 
advantages of using modular image processing over general image processing.  
 
Clear ball  
The robot starts in the return spot, has to clear the ball from the penalty area and return to the 
return spot as quickly as possible. The ball is placed back when the return spot has been 
reached.  The purpose of this test is to evaluate the robustness of the vision systems in real 
action. 
 
Clear ball with obstacles on the field  
We have performed the clear ball test also when many objects and some robots are placed on 
the field. The purpose of this test is to show the impact of using location information when 
the environment becomes more natural (complex).   
 
 

 
  

Figure 9.4. The setup for all tests in the real world.   
 
 
9.7.3. Results 
 
Localize in penalty area  
The results of the test localize in penalty area can be found in table A.10 (Appendix A). The 
results are also represented in figure 9.5. One can see there that the DT2004 image processor 
manages to localize the robot correctly only in a limited range of lighting conditions (not with 
TL light only). Both the vision systems that use the modular image processing (striker and 
goalie), manage to localize the robot correctly under a wide variety of lighting conditions. 
The behavior specific self localization of the goalie (which localizes on the field-lines mainly), 
allows for an additional 50 % increase in performance over the vision system of the striker. Its 
localization on field-lines is more robust and allows for quicker relocation.  We have also 
tested the general vision system when only yellow flags and lines were used as its input. This 
resulted in a lower performance. 
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Figure 9.5. Results for localization in the penalty area. The number of times the robot can re-
localize in the penalty area within 2 minutes. The DT2004 vision system cannot localize when 
there is little light (TL). Using behavior specific self localization increases the performance of 
the modular image processor with an additional 50 %.  
 
Return to goal 
The results of the return to goal test can be found in table A.11 (Appendix A). The results are 
also shown in figure 9.6. Both the striker and the goalie (using modular image processing 
with multiple color-tables) can find their way back to the goal much better than the DT2004 
robot with its general vision system. Furthermore, it is interesting to see that there is no 
significant difference in performance between the striker and the goalie. The negative impact 
of switching vision-systems appears to be limited. 
 

 
Figure 9.6. Results of the return to goal test. The robot has to return to its own goal as many 
times as possible within 3 minutes. The modular vision systems work significantly better than 
the general vision system. There is no significant difference in overall performance between 
the striker (no behavior-dependence) and the goalie (behavior dependence).  
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Returning from position p2 is more difficult, both for the striker and the goalie, however, for 
quite different reasons. 
For the striker it is difficult because it takes quite some time before it realizes it is located 
wrongly. 
For the goalie it is difficult because the robot doesn’t always manage to return to goal exactly 
in one try. The robot might think he is inside the penalty area, while he can be still outside it. 
He then has to do the process of detecting that its position is wrong and relocate him self once 
more. This process costs time as we have already explained in chapter 9.6.1.  
 
Clear ball 
The results of the clear ball tests can be found in table A.12 (Appendix A) and are presented 
in figure 9.7. The vision system with behavior-dependence (goalie) works approximately 50% 
better than the system without behavior-dependence (striker), as we have also seen in the 
localize in penalty area test. A very interesting thing is, that for the 1 floodlight lighting 
condition, the goalie was able to clear the ball 5 times before loosing its position. In this 
condition there was not enough light to detect a flag. The goalie could clear the ball 5 times 
localizing purely on the field-lines (after 5 times, his orientation had shifted 90 degrees). 
 
The performance of the goalie vision system is not yet totally independent of the lighting 
condition. The reason is that the yellow flag detection makes use of a color table containing 
yellow/white and pink and there is an overlap between yellow and white; this overlap 
becomes most apparent when there is not much light (TL).  
 
 

 
Figure 9.7. Results of the clear ball test. Both the striker and the goalie vision systems (using 
modular image processing) are more robust in a larger variety of lighting conditions than the 
DT2004 vision system (using a general image processor with only 1 color table).  
The goalie’s self locator, using detected lines and the yellow flags, works approximately 50 % 
better than the striker self locator which locates on line-points and all flags and goals.  
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Clear ball with obstacles on the field  
The results of the clear ball with obstacles test can be found in table A.13 (Appendix A) and 
in figure 9.10. Here a very big advantage of behavior-dependence within the vision system 
appears. The striker vision system localizes on 4 flags, 2 goals and lines. When many 
obstacles in the field are placed, (figure 9.8) the chance of making errors in the image 
processor increases. Goals and flags might be detected in players and other objects. At the 
same time, the chance of detecting the blue goal and flags decreases, due to objects blocking 
the sight. For the striker vision system, it becomes nearly impossible to localize when many 
obstacles are located in the field.  
The performance of the goalie vision system, which uses only field-lines and the yellow flags 
for localization, is far less influenced by the fact that strange objects are placed in the field.  
One can also note that in this test the DT2004 vision system actually performs better than the 
striker vision system. The reason is that the DT2004 system (without modular image 
processing) detects fewer objects, and thus also detects less false objects than the striker 
vision system.   
 

 
 
 
 
 
       
   
 
 
 

Figure 9.8. Camera image of the robot when  
many obstacles are placed in the field.  
 
 

 
Figure 9.9. Results of the clear ball with obstacles on the field test. The goalie vision, which 
uses location information to disregard blue flags/goals and only detects large yellow flags, is 
very robust when many unexpected obstacles are visible in or around the playing field.  
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10. Conclusions 
 
We have implemented a behavior-based vision system for a goalie. 
To enable behaviour dependence, we have implemented a modular image processor which 
uses 5 object-specific 3-color color lookup tables in stead of a single general 10-color color 
lookup table and we have built in some other features than can be used to realise behavior 
dependence. They are: 

- behavior-coupled location information for rejecting unexpected objects 
- behavior-coupled location information to reject small objects 
- behavior specific self localization  

 
We have tested this system and came to the following conclusions: 
 

- Using the modular image processor, the correct acceptation rate of the image 
processing can rise from approximately 40 % to approximately 75 %, under a wide 
variety of lighting conditions, and the false acceptation rate is reduced. Moreover, it 
takes significantly less time to calibrate the five 3-color color lookup tables than the 
single 10-color lookup table  

 
- For a goalie guarding its goal under normal lighting conditions, using in addition 

behavior-specific self localization, leads to an extra 50 % performance increase  
 

- Under special conditions, such as when many obstacles are visible in the field, the use 
of the behavior-dependent location information for rejecting unlikely objects often is 
the essential factor between being able to localize and not being able to localize.  

 
- The greatest disadvantage of using behavior-dependence in a system is that one has to 

design when the vision-system changes its state. For this one has to use a mechanism 
for detecting local loops. The detection that one is in a wrong local loop and 
consequently switching back and forth between behaviors, consumes time and results 
in a decrease of performance. We have proven that the negative impact of the use of 
behavior-specific self localization can be kept relatively small for a goalie: the 
positive impact of using location information and behavior-specific self localization 
well outweighs the negative impact of every now and then being in the wrong local 
loop.  

 
- Due to the reduced complexity of the software, the impact of a hierarchical behavior-

based design is very large. It has proven that it is possible to make huge steps in 
improving the overall system within a few months. In fact, the system is changed 
from one single big sense think act loop to a hierarchy of small sense, think, act loops. 
This, however, makes it necessary that the software engineers must have knowledge 
of the entire content of these “sense, think, act” loops and hence should have (some) 
skills in image processing, AI, and motion control. 

 
- Using modular image processing does not result in a significant overhead. Using it to 

implement a general vision system, then algorithms consuming about 2 times the 
currently used processing power are possible. However, when using only 2 or 3 
specific algorithms as is done in behavior based vision, then it is possible to use 
algorithms that consume 5-10 times the CPU-time of current algorithms.  

 

 69



11. Discussion and recommendations  

 
11.1. Behavior based vision for the defender/striker 
 
We have shown and proven that a goalie with a behavior-based vision system can work 
significantly better than a goalie with a general purpose vision system. A goalie, however, is 
quite different from other players. We will summarize the differences and similarities 
between the goalie and the other players in tables 11.1 and 11.2.  
 
Table 11.1. Differences between goalie and other robots 
Goalie Other robots 
Well defined own location (penalty area)  Less defined location (own or opponent half) 
Well defined heading (facing the field) No well defined heading 
An accurate robot-pose (x,y,θ) evaluation is 
essential for performance. Otherwise the 
robot does not block its goal 

Absolute robot-pose is not essential. A good 
heading (θ) evaluation is enough for kicking 
in the right direction 

 
Table 11.2. Similarities between goalie and other robots 
Goalie Other robots 
Well defined actions: guarding goal, clearing 
ball, or returning to goal 

Well defined actions: search ball, handle ball, 
or position 

When clearing the ball, the performance of 
the image processing tends to be low 

When handling the ball, the performance of 
the image processing tends to be low 

The goalie can accurately detect its own flags 
and lines. When returning the goalie likely 
detects its own goal 

The striker can accurately detect the opponent 
goal and flags. The defender can accurately 
detect the flags standing in the centre of field 

CPU-time is limited Idem 
Simplicity of behavior is crucial Idem 
 
Specific self location not applicable 
A specific analytic self locator can make a fast and accurate robot-pose evaluation from only 
a few percepts. For the field robots however, it is not known exactly what objects are likely to 
be seen, since the robots have no well defined default location. Moreover, a real accurate 
robot-pose evaluation is not required for field players. For them it makes much more sense to 
use a probabilistic (Monte-Carlo) method for self localization, providing robustness against 
false positives. All behaviors other than the goalie standing in goal should make use of the 
general self locator with parameters.  
 
Note, however, that the possibility of specific self localization for the field players should not 
be excluded in the process of development. If someone is researching localization methods 
(see chapter 11.2) fundamentally different from the one now currently used, it makes sense to 
implement these in an entire new self locator in stead of making the general self locator more 
and more complex.  
 
Other implications are applicable.  
All other implications of the behavior-based vision system are very good applicable to the 
entire robot system: 
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- Modular image processing with multiple color-tables is applicable to the whole 
system. We have implemented this and the robustness of the localization of the striker 
and defender has dramatically improved.  

- Using variable weights for objects in the general self locator is applicable to the 
entire system. As we have given more weight to a detected own goal for the returning 
goalie, we can give more weight to a detected opponent goal and flags for a striker.  

- Variable update rate particle filtering. For the goalie we have used particle filtering 
with a low update rate for the goalie when clearing the ball. This could also be done 
for the field-players. When the player walks around or searches the ball, it is likely to 
see many objects and the quality of image processing is high. When the robot is only 
looking at a ball or is handling the ball with its head, the robot is unlikely to detect 
many objects and abundant use of image processing can only lead to a decreased 
quality; the general self locator should be augmented with a parameter that can set the 
update rate and can trigger the use of particle filtering, dependent on the activity..  

- A behavior based hierarchical architecture leads to an understandable system. The 
possibility to easily switch on/of algorithms for image processing makes debugging 
and developing image processing algorithms much more easier.  

- The possibility of using only the most critical image processing algorithms when 
processing power is limited can be essential for the entire system.  

 
Our main recommendation for developing a behavior-based vision system for the other 
players is to further develop the general self locator adding some parameters. With a further 
developed localization on lines, it might even be possible to use the general self locator also 
for the goalie. Developing the general self locator could be a bachelor assignment.  
 

11.2 Modular image processing and color-independent algorithms 
 
Shape-based algorithms are the next step.  
The modular image processor as described in this thesis makes use of specific gridlines to 
reduce the number of pixels to be processed and five 3-color color-tables in stead of a single 
10-color color-table. With this, the weight of the classification process has already largely 
moved from color-segmentation to shape-evaluation (with all advantages, such as robustness 
in various lighting conditions). The next logical step is to entirely go to shape-based 
algorithms. Instead of retrieving candidates by doing segmentation on absolute colors, 
candidate objects can be found by segmenting on relative colors (edges). An image processor 
algorithm based on shapes does not need color-tables. And calibration of color-tables will not 
be necessary.  
 
Implementing shape-based algorithms in a modular image processor  
In the DT2004 software, developing an entirely new (better) method for image processing 
was difficult. A new image processor had to replace the entire old system, and thus had to 
compete in performance in all tasks of the image processor (detecting flags, lines, goals, ball, 
etc).  
 
A modular image processor serves as an excellent platform for researching and implementing 
shape-based (or other) algorithms. The reason is that one can easily replace a grid-based 
algorithm (e.g. ball detection) by a shape-based algorithm, leaving all other algorithms intact 
(see figure 11.1). One does not need to build an entire new vision system before a new 
technique can be implemented and tested.   
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Figure 11.1. Modular image processing allows the total system to remain working when old 
algorithms are replaced by new ones.  
 
Building shape-based image processing algorithms and implementing them into the system 
are typically bachelor assignments.  
 

11.3. Other fields of research and implementation in a behavior-
based architecture  
 
11.3.1 Using SIFT features for localization.  
 
The vision-based self localization in the current system is based on a lot of expert knowledge. 
The programmer has decided that it is good to localize on flags, goals and lines. Also the 
programmer has decided how to best detect these objects. The algorithms use color-tables that 
have to be calibrated by an expert (human).  Using this expert-based vision system leads to 
problems if the surroundings of the soccer game are different than the designer (expert) has 
designed for. If objects in the audience look similar to flags or goals they can be mistaken for 
the expected objects. Playing in a surrounding without the expected objects (e.g. without 
flags) is not possible without writing entire new algorithms for image processing.  
 
A very interesting field of research is using self localization relying less on expert knowledge 
and relying more on characteristics of the playing field the robot determines himself. A 
system in which the robot doesn’t necessarily localize on goals/ flags, but in which it localizes 
on whatever features specific to the environment (can be any object in the room). An example 
is the method of using SIFT features [8]. The robot calculates a set of distinctive invariant 
features from images for determining its position and orientation.  When a new type of field is 
used, the robot just has to calibrate what features belong to which robot-pose, and the robot 
can localize.  
 
A huge issue in a method as SIFT is, that it requires much more processing time to calculate 
the SIFT features in an image than it takes for detecting known flags or goals with the current 
algorithms. A system using SIFT features for localization could not operate in real-time (30 
frames/ s) with the processing power available in current robots. Replacing the old general 
vision system with a SIFT-based vision system therefore is no option yet.  
 
However, there is no reason why the robot should have to evaluate these SIFT features 30 
frames per second. SIFT features could possibly be implemented in the current system if we 
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would identify two different problems in the localization process: one for finding the general 
robot pose, not in real time, and one for only updating it in real time.  
The SIFT-based vision system would only be used to generate the overall pose once in a 
while and is allowed to consume much processing time. A classical method for tracking the 
robot-pose, using e.g. only odometry and line information could be used for actualising the 
robot pose in real-time. A schematic representation of the two separate systems and their 
characteristics can be found in table 11.3.  
 
Table 11.3. Dividing the localization process in 2 steps. One step for finding the general pose 
(x,y,θ) if the pose was not known. This process only has to be executed once in a while. It 
doesn’t matter this process costs much CPU-time. The second step is only for updating the 
pose between two evaluations of the general pose 
  
Self Localization A Self Localization B 
Find general pose Track pose 
Old pose assumed incorrect Old pose assumed correct 
New pose anywhere in the field New pose near the previous pose 
Executed once in 5 or 10 seconds Executed 30 times /s 
Using e.g. SIFT features, using much 
CPU-time 

Odometry and lines for updating 
pose, requiring little CPU-time  

 
The behaviour-based vision system as described in this thesis could be an excellent platform 
for implementing two different methods of self localization in a real-time robot system. 
Implementing SIFT features for AIBO localization could be a very interesting masters' thesis.   
 
11.3.2. Cooperation between robots  
 
One of the things the robots don’t do at this time is cooperating. The AIBO’s currently don’t 
pass, they only run to the ball and kick it in the direction of the opponent goal. The soccer 
game would be much more interesting if robots would pass to each other and really start 
working as a team.  There are two major things that need to be developed before real passing 
is possible for robots operating in the real world (in the soccer simulation league, robots 
started passing years ago). The vision system needs to be improved for accurately detecting 
fellow players. When this is done, the robot will need to have decision mechanisms for 
deciding when to shoot and when to pass.  
 

 
 
Figure 11.2. Parameters relevant for passing. The robot needs awareness of the position of its 
fellow player (dr,θr) if it wants to pass to him rather than to shoot at goal 
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1. Vision: location of players.  
The current system only evaluates the own robot’s pose and detects obstacles (no green field 
indicates an obstacle). Therefore the only thing the robot can do is walking to a position or a 
ball with or without obstacle avoidance and kicking the ball to the opponent goal. The robots 
in the DT2004 software are very poorly capable of detecting opponents and fellow players, 
which is prerequisite for passing.  The first step toward cooperation would be developing 
image processing algorithms for accurately detecting players. Developing these algorithms 
should not form any problems, since the robots wear color-marked shirts (dark blue or red).  
In the future it might be good to know the distances and angles to both the players and 
opponents (d and θ in figure 11.2). In the first step it might be good enough to just evaluate 
free angles to the goal (yellow lines in figure 11.2) and the free angle to a fellow player (red 
lines in figure 11.2).  
In the Dutch Aibo Team software, basic algorithms for detecting players are already available 
and thus all the interfaces are already defined (figure 3.3). 
 
2. Behavior: deciding when and where to pass.  
When the robot is capable of detecting opponents/ fellow players, the robots must decide 
when to shoot to goal and when to pass to a fellow player. First, one can use very simple 
decision trees such as: if the free angle to an opponent goal is small and the free angle to a 
fellow player is large, pass to the player, shoot at goal otherwise. In the next step one can use 
more advanced decision trees, taking into account the position of the player, the distance and 
angles to the opponents and fellow players, and the free angle to the goal. In this case the 
possible decision space will become very large and one might consider using learning 
algorithms (such as reinforcement learning) for deciding when and where to pass dependent 
on the input parameters. In the case of using reinforcement learning, a good simulator of the 
robots would be a prerequisite. Learning when to pass might be a very similar problem to 
learning how to dribble [10]. 
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Appendix A. Tables and measurements 
 

A.1. Measuring performance modular image processor.  
The quality of the old image processor (DT200) with one color table is compared with the 
performance of the task image processor (Task) using 5 independent color tables.  
We have calibrated all color tables off-line using both the Yellow Goal and Blue Goal 
calibration set.  
 

 

Table A.1: Calibration set yellow goal          
Each logfile contains +- 50 goals, 60 goals in a total of ~100 frames    
 DT2004    Task     
 Flag  Goal   Flag  Goal   
Log File Correct False Correct False Reason Correct False Correct False Reason 
1Flood 20   13     33   18     
4Floods 45   12     60   32     
Natural 21   33 10 blue Goal 28   15     

TL 25 8 25   Yellow Flag 41 1 37 1 
Yellow 
Flag+Goal 

TL+floods 29 1 26   Yellow Flag 66   17     
TL+floods+nat 23   14     51   12     
Total 163 9 123 10  279 1 131 1  
AR 45.28 2.5 41 2.78  77.5 0.278 43.67 0.278  

 
Table A.2: Calibration set blue goal         
Frames containing +- 50 blue goals, 60 blue flags, 100 frames per sequence.    
 DT2004    Task      
 Flag  Goal   Flag  Goal   
Log File Correct False Correct False Reason Correct False Correct False Reason 
1Flood 3   1 1 yellow Goal 32   5     
4 Floods 41   22     59   31     
Natural 26   8 1 Blue Goal 40   7     
TL 29 1 8     58   32     
TL+Floods 12   46     44   18     
TL+flood+natural 16   29     31   34     
Total 127 1 114 2  264 0 127 0  
AR (in %) 35.28 0.278 38 0.56  73.33 0 42.33 0  

 
 

Table A.3. Test set various positions        
log files of various sizes, various head-motions and at various lighting conditions   
In total approx 300 frames with goal/flag       
 DT2004    Task     
 Flag  Goal   Flag  Goal   
Log File Correct False Correct False Reason Correct False Correct False Reason 

1Light 40 1 26 0   71 4 42   

Pink chair outside 
field seen as blue 
flag 

4LightsKeeper 8 0 0 0   11   3 11 

Blue Bag in Playing 
Field seen as blue 
goal 
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010Fast 54 8 2 0   54 1 39     
Face yellow 
goal no head-
motion 10 9 20 0 

Yell 
Flag 24 5 44 0 Blue Flag 

210Fast 17 8 42 0   29 6 26     
212Fast 2 2 0 3   29 0 24 0   
Total 131 28 90 3  218 16 178 11  
AR (in %) 43.7 9.33 30 1  72.7 5.3 59.3 3.7  

 
 
Table A.4. Test set Lines  
Goalie stands in yellow goal doing search-lines 
head-motion 
On average, 30-33 line-points visible per image  
 LogFile DT2004 Task 
1 Flood 6 31 
4 Floods 14 32 
TL 19 34 
TL+Floods 8 30 
Tl+Floods+natural 14 30 
Avrg (in %) 37 95.2 

 

A.2. Using location information 
 
A.2.1. Use distance information 
We have used the OwnFlag() algorithm on two sets of log-files. The first set consists of 
images taken by the goalie guarding its goal. The second set consists of images taken by a 
player standing in the field facing the yellow goal.  
 
Table A.5. Using distance information for goalie 
Goalie stands in goal. The number detected flags is 
represented for when small flags are accepted (noSize) 
and when they are rejected (Size). 
 NoSize Size  
  Correct False Correct False 
searchLandMarks 7 2 7 0 
searchlines 8 1 7 0 
searchauto 13 1 10 0 
lookstraight 0 2 0 0 
playing 24 0 24 0 
defend lighting 15 0 9 0 
Total 67 6 57 0 

 
 
Table A.6. Using distance information for player 
Robot stands in field facing the yellow goal.  
 NoSize  Size 
  Correct False Correct False 
centerfield 32 0 5 0 
Goal1m50 8 1 7 0 
goal3m 28 0 21 0 
goal5m 17 0 2 0 
Total 85 1 35 0 
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A.2.2. Disregard unexpected objects 
 
Table A.7. Using location information for disregarding objects  
The goalie stands in the centre of goal. The number of true and false positives is measured when a) 
only the own flags are searched for, and  b): all flags and goals are searched for.  
 
 OwnFlag All Percepts 
 Correct False Correct False 
searchLandMarks 7 0 12 1 
searchlines 7 0 11 3 
searchauto 10 0 11 2 
lookstraight 0 0 9 0 
playing 24 0 26 1 
defendlighting 9 0 15 3 
Total 57 0 84 10 

 

A.3.Processing power 
The influence of the image processing algorithms on the frame-rate.  
 
For several image processing solutions, we have executed the image processor algorithms N 
times. (1 < N< 100) and we have measured the frame-rate of the system. We have used a 
simple behavior where the robot used a search-auto head-motion and was standing still.  
 
Table A.8. influence total vision system on frame-rate   
For several image processor solutions, the number of executions is varied and the frame-rate  
was measured. 
Impact of different vision solutions on overall frame-rate     
 n Times Executed         
  n=1 2 3 4 5 6 8 10 15 20 25 
DT2004 30 22 17 15 13 11 9 8 6 4   
Striker 30 23   15   12 10 8 6     
Position   22   14     8   4 3 2 
lines+flag   30   29     21   15 13 10 

 
 
Table A.9 influence of individual algorithms on the frame-rate.  
 n Times Executed      
  n=5 10 20 25 40 50 70 100 
Flag 30 28 22   17   11   
Goal 30 26   18   14   10 
Lines 30 27   17   11   6 
Lines(Hough) 9 4   1.5         

 
 

A.4. Real world tests 
 
Table A.10: Localize in penalty area   
Test time: 2 minutes.      
Behavior: continuous-goalie-position head-motions: search-auto 
 By hand we place the robot in another place of the penalty area, facing the goal. Once 
the robot has returned to the centre of goal, the goalie is displaced again. 
The number of successful returns is counted.   
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  Goalie Striker DT2004 Lines + Flag 
1 Flood * 0 1 0 0 
TL 11 5 0 0 
3 Floods 14 8 6 5 
TL + Floods 12 8 8 5 
TL+Floods+Natural 12 8  10 9 

*some real-time tests were performed at night, the pictures used for calibration were taken with some 
daylight coming through the curtains. Because of the darkness, the flags are not detected.   
 
 
Table A.11: Return to goal      
Test time: 3 minutes      
Behavior for task goalie: playing-goalie-task. head-motion: unchanged 
Behavior for striker and DT2004: cont-goalie-position head-motion: search-auto 
The goalie is placed in centre of the field every time it has returned to the centre of own goal.   
The number of determines the score.   
  Goalie   Striker   DT2004   
  P1 P2 P1 P2 P1 P2 
1 Flood 0 0 0 0 0  0 
TL 6 4 6 4 0  0 
3 Floods 8 4 6 4 2  1 
TL+Floods 6 6 7 6 5  5 
TL+Floods+Natural 5 7 6 5 6 3  

 
 
 
 
Table A.12: Clear ball    
Test time: 2 minutes    
Behavior: playing-goalie-task  head-motion: unchanged 
The goalie is placed in centre of goal. The ball is placed at p1 or p2 when 
the goalie has returned to centre of the goal. 
The number of ball clearances determines the score.  
  Goalie Striker DT2004 
1 Flood 5 0 0 
TL 8 6 1 
3 Floods 9 5 6 
TL + floods 11 7 5 

 
 
 
Table A.13: Clear ball, obstacles   
Identical test as clear ball. Robots and other objects are placed in the field.  
  Goalie Striker DT2004 
TL 7 2 2 
3 Floods 8 2 5 
TL + floods 10 0 3 
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