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Abstract

In this thesis, the problem of people detection on the Pepper robot is explored.
People detection is a critical part of human-robot interaction and advancements
in people detection will improve the level of interaction that can be achieved.
It has been approached using different sensors and techniques, however the ca-
pabilities of detection with the Pepper have not yet been examined properly.
Detection techniques using the different sensors available to the Pepper are ex-
plored and a state of the art convolutional neural network and 3D blob detector
are developed. The detectors are then combined using a detection history based
approach. Results show that performance of the CNN, although high for cases
with 1-3 test subjects, decreases significantly in crowded settings. The addition
of 3D data to reuse previous detections was shown to increase recall, however due
to the limited range of the 3D sensor, recall remained lower than that achieved
on the lower person count test cases. Additionally, future work includes the
use of 3D data to separate detections made on 2D images, the use of different
network architectures and the use of more complex machine learning techniques
for 3D people classification.
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1 Introduction

In the past Artificial Intelligence has often been associated with robotics in
popular culture and literature. Nowadays the applications of AI are much more
varied and it is used in many fields of research. The idea of robots assisting
people in their daily lives, however, is still as strong as before. With this idea
of robots assisting and servicing humans, the RoboCup @Home league1 was
founded. Since the 2017 competition, the @Home league has been split into
three different leagues, each focusing on different aspects of assistance robotics:
The Domestic Standard Platform League (DSPL), Social Standard Platform
League (SSPL) and Open Platform League (OPL). Both the DSPL and SSPL
league make use of a standard robot, the Toyota HSR and the Softbank Pepper
respectively. Due to the recent introduction of these robots, the capabilities of
their hardware for the various tasks in the @home competition have not yet
been determined. In order to better understand what can be achieved with
these robots, it is necessary to test the sensors in the context of the @Home
challenge is needed. The Softbank Pepper, used for the SSPL, has a large array
of sensors which can be used for a variety of tasks, see section 2, one of these
tasks is people detection. People detection is the problem of finding humans
in the robots surroundings, this is essential for @Home League[1] as it focuses
on interaction between robots and humans, which would not be possible if the
robot is unaware of any humans in its surroundings. People detection is es-
pecially important to all SSPL challenges [1], as the robot must actively seek
contact with people, which requires the detection to be even more stable and
accurate. The different sensors of the Pepper allow it to take a multisensor
approach to human detection. This research will explore how people detection
can be solved on the Softbank Pepper using state of the art image recognition
techniques on 2D and 3D images. More formally, the aim of this project is thus
to:

Develop a People detection method using the different sensors available
to the Softbank Pepper and find the best way of combining the different
detection methods.

In order to achieve the research goal, the following questions should be answered:
Q1 How can the different sensors of the Softbank Pepper be used to detect
people?
Which can be split into the subquestions:

1. What sensors are relevant for people detection?
2. Which detection method is suitable for each sensor?
3. How can the different sensors be combined?

And secondly:
Q2 Does the inclusion of additional detection methods improve the overall per-
formance in people detection?
With the subquestions:

1. What is the performance of the 2D image convolutional neural network?

1http://www.robocupathome.org
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2. How much does the addition of a 3D people detector improve the baseline
people detection performance?

The Pepper comes equipped with two 2D camera’s, a 3D camera, 6 Laser range
finders and infra-red and sonar obstacle detectors 2. A baseline 2D people detec-
tion method using convolutional neural networks is implemented, this network
is trained on a dataset consisting of various people detection datasets from TU-
Dresden[2][3] because the images in these datasets are similar to images taken by
the Pepper. A 3D blob detection method using the depth camera is also be de-
veloped. A new dataset containing corresponding 3D and 2D images is created
and a 3D people detection algorithm based on the flood fill algorithm is de-
veloped. Both methods are combined using a geometrical translation approach
and finally, the performance of the baseline 2D detection method is compared
to the combined 2D and 3D approach.

2 Platform

This section covers the technical aspects of the Softbank Pepper robot that are
relevant to this research. The Pepper robot is around 1.2 meters in height, see
Figure 1 and weighs 29kg. It is equipped with a microphone, two 2D cameras, a
3D Sensor, Laser Range Finders, Infrared Sensors and two ultrasonic sensors2.
Is this section we will look at the 2D cameras and the 3D sensor in more detail.

Figure 1: Dimensions of the Pepper in mm2

2.1 2D cameras

The Peppers two cameras are located on the forehead and in the mouth of the
robot, Figure 2. Both cameras have a horizontal field of view of 55.2°and a
vertical field of view of 44.3 °, the fields of view of the two cameras intersect
from 1̃00 cm. When Pepper is looking straight ahead, the lower camera will
often only see the floor. However because humans are generally much taller, it
will generally be facing up when interacting directly with humans.

2http://doc.aldebaran.com/2-4/family/pepper_technical/index_pep.html
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Figure 2: 2D cameras located on the head of the Pepper2

2.2 3D sensor

The 3D Sensor used in the Pepper is a version of the Asus Xtion 3D sensor
and is located behind the eyes of the Pepper. Its horizontal and vertical field of
view is slightly larger than that of the 2D cameras and it is pointed in the same
direction as the upper 2D camera, Figure 3. It reports distances to points in
the range of 40 to 400cm in a number of different formats. The Sensor is often
unable to find the range to a certain point when the surface reflects the laser,
this results in data that, while generally stable, contains small gaps. While the
sensor should report information up to 4 meters, the limited resolution of the
camera results in noisy data. On visual inspection of the data, humans are
clearly defined up to 3 meters and a blob remains visible up to the maximum
range. Depth information is gathered by the 3D sensor in the Pepper through
the use of projected light patterns. In this method a pattern of narrow bands
of near-infrared light is projected onto the surroundings, this pattern, while be-
ing perceived as a straight lines from the projecting camera, is seen distorted
through the second camera, see Figure 4. These lines can be used for a geomet-
rical construction of the shape of the surface.

This way of obtaining depth information is quick and costs little processing
power, the downside however is that it is not possible to use the sensors in an
outdoor setting or any setting where near-infrared light is produced, due to the
inference of natural light with the pattern recognition.
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Figure 3: 3D camera located in the left eye of the Pepper2

Figure 4: Structured light scanning, a straight line pattern is projected onto a
curved surface3.

5



2.3 Software

A general note for this project is that all prediction and utility code is written
in Python 2.7 in order to be compatible with the naoqi 2.5 operating system
used on the Pepper robot. A full overview of all packages used can be found in
Section section A.

3 Theoretical Foundations

3.1 Convolutional Neural Networks

Convolutional neural networks first gained popularity when the AlexNet out-
performed all other approaches to image classification in the ImageNet chal-
lenge [4]. Since then they have become the most used approach to almost all
vision related problems[5]. Convolutional neural networks are a variation on
feed-forward neural networks in which the general idea is to capture shapes at
different levels of abstraction and combine them to find complex patterns, such
as humans. CNNs consists of convolutional, pooling or sub sampling, normal-
ization and fully connected layers, connected to each other sequentially. The
first operation in a CNN is the convolutional operation, from which the name of
the network is derived. In this operation, a filter representing a certain feature
is moved across the input image, resulting in a score map for every position,
Figure 5, which can also be interpreted as an image again.

Figure 5: Applying a 3x3 filter on an 9x9 image, generating a new 3x3 image4.

This score map is then rectified, this is usually through the use of the ReLU
function. The ReLU function, Equation 1, sets every negative number to 0
and functions as a rectification and has recently been used over the sigmoid
function[6], as it has been shown to increase performance.

ReLU(x) = max(0, x) (1)

3source: http://www.thefullwiki.org/Structured-light_3D_scanner
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The next step is the Pooling or sub sampling. In this step the image or score
map received is downsized by sliding a window over the image and taking the
maximum value in the window, this value is then used as in the new smaller
image. The distance with which the window moves is called the stride of the
window, the size and stride of the chosen window determine the size of the new
image that is generate. This process can be seen in Figure 6.

Figure 6: 4x4 Max Pooling operation.
Left: original image, Right: resulting image4

The last type of layer is the fully connected layer, usually followed by a softmax
activation function to normalize the results, in a fully connected layer all image
values received are put in a single array and connected to a number of nodes
that represent the classes. All nodes have a certain likelihood to indicate a class,
so if a node that is strongly connected to a class has a high value, it increases
the score of that class, see Figure 7.
These layers form the basics of all CNN’s and can be used in combination with
each other, sequential or parallel, to classify an image. However, before classifi-
cation is possible using the above structures the parameters of this network need
to be learned. The filters, which are able to learn distinctive features, applied in
convolutional layers and the weights of the connections in fully connected layers
are learned during the training of the network. This learning is done through
the use of the backpropagation algorithm.

3.2 Inception architecture

The inception architecture used in this paper was created by Szegedy et al.
[7] and improves upon the standard elements of CNNs by the addition of a
new layer type called the inception layer, Figure 8, and auxiliary classification
structures.

4source: http://brohrer.github.io/how_convolutional_neural_networks_work.html
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Figure 7: Fully connected layer classifying between two classes4

Figure 8: Inception layer5

The Inception layer type is comprised of several of the regular operations present
in CNNs and using them in parallel. The idea behind this is to take advantage
of the benefits of the different sizes of convolutions without having to chose just
one. 1x1 convolutions capture information across image channels, red-green-
blue channels of the image for example, and reduces dimensionality. 3x3 and
5x5 convolutions capture spatial information on different scales and max pooling
layers capture additional information missed by the convolution operations. In
the end the result is concatenated into a single output vector that can be used
as input for the next layer. Auxiliary classifiers in the Inception architecture are
smaller convolutional networks connected to Inception layers in the middle of
the network. These networks are comprised of an average pooling layer followed
by a 1x1 convolutional layer followed by two fully connected layers and finally
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a softmax activation layer, Equation 2.

σ(z)j =
ezk∑K
k=1 e

zk
forj = 1, ...,K (2)

The loss of these classifiers is weighted and added to the total loss of the network.
The purpose of these layers is to provide regularization and help capture detail
at different levels of abstraction, this is necessary because the depth of the
network could result in detail getting lost due to the long path to the final
loss function. These networks are only used during the training phase and are
meant to improve performance, they are discarded for testing. For a model of
the auxiliary classifiers see Figure 9.

Figure 9: Auxiliary convnet classifier

The entire Inception network is then created by combining traditional convolu-
tional layers with Inception layers. Starting with standard convolutional layers
in the lower layers of the network for memory efficiency and Inception layers
higher up, with max pooling layers added at specific points. The entire archi-
tecture can be seen in Figure 10.

Figure 10: InceptionV1 architecture
Convolutional layers in blue, pooling layers in red, connecting layers in green

and softmax activation layers in yellow [7].

4 Related Work

Several approaches to human detection have been taken in the past by teams
in the @Home competition. Correa et al.[8] used a system in which different
stages of detection and recognition were used to detect people through the use
of both 2D visual images and thermal information. In their approach a full
body detection was first performed using the thermal information, after which
candidates for facial recognition are gathered by running face detection on the

5source: https://www.slideshare.net/aurot/googlenet-insights
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obtained full bodies. They were able to recognize humans in a robust and sta-
ble manner, through the use of the different sensors available to them. Their
method however, was unable to detect people that were not facing the robot
directly due to their reliance on facial recognition.

A different approach taken by Belle et al. [9] is to use random forests for both
detection and recognition. By first training a detection random forest (RF) and
retraining it when faces are detected by adding additional labels, the RF is able
to detect, learn and recognize in one step, while never stopping the system.

Lastly, Figueroa et al. [10] used a Microsoft Kinect in combination with color
images to detect objects using SIFT to generate interest points. These interest
points are then used to generate a region of interest, which is transposed on the
depth image. Finally the centroid of this region of interest is used to determine
the distance to the object. This approach is similar to the one taken in this
paper, however this paper focuses on stability through a detection history and
people detection rather than general object detection.

5 Methodology

To recall, the aim of this research is to:

Develop a people detection method using the different sensors available
to the Softbank Pepper and find the best way of combining the different
detection methods.

The Methodology consists of three Sections, Section subsection 5.1 details what
base network was used, what dataset the network was trained on, what param-
eters were adjusted to make the network suitable for people detection. Section
subsection 5.2 describes the details of the stereo-image people detection method
starting with the adaptation of the flood fill algorithm[11] to stereo images and
consequently how the adapted algorithm is used to generate candidate blobs for
people detection. finally, Section subsection 5.3 explains how the two detection
methods are combined to provide the final predictions. People detection is usu-
ally implemented as either face detection or full-body detection depending on
the specific problem[12]. Stewart et al. [13] used head detection to find people
in crowded scenes such as bars, while using full body detection to detect pedes-
trians on a street. As the aim of this research is to combine different sensors,
the choice was made to use full-body detection as the level of detail provided
by the 3D sensor, while high enough for tasks such as full body recognition, is
not accurate enough for tasks such as head detection at the range required for
this research [14].

5.1 Detection using a Convolutional Neural Network

Because of the time restraints on this project and the high performance of exist-
ing implementations the choice was made to use the Tensorbox object detection
framework6 and retrain the supplied networks for people detection. The Ten-

6https://github.com/TensorBox/TensorBox
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sorbox framework allows the use of either the Inception v1 [7] or Resnet [15]
classification networks combined with an attention network to identify potential
objects. For this research the choice was made to use the Inception v1 network
because tests showed no significant difference between the two on the data used
for this research and the Inception v1 network has a shorter training dura-
tion.The networks are implemented in Tensorflow [16] and all testing/training
code is written in Python.

5.1.1 Datasets

There are several datasets for full body people detection available, multiple
datasets will be used in order to find the best performing dataset for people
detection on the Pepper robot. The first dataset that will be used is the TUD-
Brussels[2] dataset. This dataset consists of 1018 images taken from a car driving
through a busy city centre. The second dataset that will be used is the TUD-
Motionpairs dataset, this dataset contains 2184 images taken at eye level from
a stationary camera at various public squares and shopping streets. Example
images with bounding boxes from these datasets can be seen in Figure 11.
Finally the datasets will be combined into a single larger dataset, this final
dataset also contains images from the smaller TUD-crossing, TUD-campus and
TUD-pedestrian datasets, which are similar to the TUD-Motionpairs dataset.
All images together add up to a dataset of 4130 images. An additional note
on this dataset is the incompleteness of the annotations. It is often the case
in the annotation of networks that the choice to label a certain object that is
very obscured or distant is not straightforward, however several images in this
dataset miss annotations that should decidedly be present. It seems however
that this does not impact the learning of distinctive features significantly, as
these examples are generally still detected during training.

Figure 11: Dataset examples. Left: TUD-Brussels, Right: TUD-Motionpairs

5.1.2 Parameter Optimization

Tensorbox allows for the customization of a number of parameters of the net-
work. The first parameter that was modified was the size of the input image
and with that the size of the grid used by the network. The original size of the
input image is 480 by 640, but a version of the network for images with a size
of 240 by 300. The grid sizes of these networks can be seen in Table 1.
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Table 1: Sizes for the different networks used

image width image height grid width grid height region size
max size 480 640 15 20 32
small size 240 300 10 8 30

The use of a smaller of network speeds up the training and evaluation of the
network. However, there is a slight performance decrease, see Figure 12, which
is unnecessary as this research is not concerned with optimizing the runtime of
the network.

Figure 12: Test accuracies of the network trained on full size images in green
and the network trained on half size images in orange

5.1.3 Training

As has been mentioned in subsection 5.1, both the Resnet and Inception V1
networks are available in Tensorbox. Both networks were trained until their
weights, accuracy and loss functions stabilized, this takes around 40000 itera-
tions of training. Training was done on a GTX960 GPU and takes around an
hour to complete. For graphs of the accuracy during the training and testing of
the network on the combined dataset, see Figure 13.

5.1.4 Filtering Results

The default way to use tensorbox uses a threshold on the confidence scores to
determine final detections. The default value for this threshold is 0.5, however
testing showed that the confidence could be lowered to 0.1 in order to increase
recall, without having an impact on the precision.

Figure 13: Left: test accuracy, Center: confidence loss, Right: regression loss
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5.2 Detection using Flood Fill on a 3D Point Cloud

The approach taken to 3D people detection in this research is to find blobs in
the image that are potentially people. This approach is not intended to function
well as a single detector, instead serving to solidify detections made by the 2D
detector, by making faster but less reliable detections by searching for areas of
points the image that are similar in depth. The Pepper robot is able to retrieve
3D data in six different formats called: Yuv, rgb, depth, xyz and distance. In
this research the choice was made to use Yuv because is the smallest format
available. In this format the data is scaled in range 0 to 255 and returned as a
greyscale image, see Figure 14. This approach has the disadvantage of losing the
absolute distance from the robot, tests with other formats have shown however
that absolute data does not improve the detection rate significantly. Instead
the relative distance between points is more important, as it provides most
information. One experiment was done were the distance to person candidates
was used to filter candidates by determining if the blobs were human sized,
however the size proved to inconsistent for filtering to be effective and it would
also filter out obscured people.

Figure 14: Yuv greyscale image retrieved from Pepper

5.2.1 Adapting Flood Fill for 3D Data

The flood fill algorithm is a classic algorithm [11] for determining the connected
area between some boundary and is usually used in graphical programs to find
an area of similar color and fill it. It looks for free areas connected to the ini-
tial area and adds them to a list, from those new areas it again finds the next
free area until there are no more free areas. To be able to use flood fill on the
point cloud data the filling condition for potentially fillable area’s needs to be
changed from just free to satisfying a certain condition. In the case of 3D data
the condition is that the distance between the current area and the next area
is smaller than a certain threshold value. Different threshold values were tested
and while the scaled nature of the data means that the absolute value of the
distance between one point and another varies between images, a distance of 5
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generally performs well.

Some adjustments need to be made to the flood fill algorithm in order to
efficiently use it for detection. The flood fill algorithm can take significantly
longer than usual to complete when the starting point falls within a large field
of similar depth such as a wall or a person obscuring the camera. To ensure a
predictable running time a threshold is used to stop calculations when a certain
amount of fills is reached. A threshold of 2000 points is used as tests show
that blobs formed from people never exceed this size. Another adjustment is
the addition of a set to keep track of all filled points and return them, these
points are needed for determining if a new startpoint has already been included
in a previous fill iteration. A full pseudocode description of the 3D flood fill
algorithm can be found in Algorithm 1.

Algorithm 1 Flood fill for 3D data

1: procedure Flood Fill(image, threshold, (startx, starty), maxiterations,
fillValue)

2: indexList = [(startx, starty)]
3: stack = set(indexlist)
4: currentIteration = 0
5: while stack is not free and iteration < maxIterations do
6: (x, y) = stack.pop()
7: if (absolute(image[x, y] - originalValue) ≤ threshold then
8: append (x, y) to indexList

9: image[x,y] = fillValue
10: if x then > 0:
11: stack.add((x - 1, y))

12: if x then < image.width():
13: stack.add((x + 1, y))

14: if y then > 0:
15: stack.add((x, y - 1))

16: if y then < image.height():
17: stack.add((x, y + 1))

18:
return indexList

5.2.2 Flood Fill Candidate Selection

The Flood Fill algorithm on its own does not detect human sized blobs, it only
finds the connected area to a given point. To be able to use Flood Fill for
detection, flood fill is initialized on different positions in the image and the
resulting blobs are filtered on size and shape. The first step is generating the
starting points on a grid, Figure 15 left.
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Figure 15: 3D detection. Left: Image with grid, Right: Final Detections

The detection works if at least a single point is initiated on the person to de-
tect. Due to the vertical shape of upright standing humans, the horizontal axis
requires a higher density of points. People are generally detectable when they
take up at at least a third of the vertical space available, any smaller than that
and the shape detected by the camera varies too much and becomes to similar
to background to be reliably detected. The next step is to apply Flood fill to
all start points. To further speed up the detection the indices retrieved from
each fill are stored and used to check if a different starting point is not already
filled, start points that have a value of 0, represented as black in all 3D images
see Figure 14, are discarded, as 0 is returned when no distance is found. After
the fill algorithm is done with expanding a point, a number of conditions are
then used to filter the candidate blobs. First blobs consisting of less than 200
indices are thrown away. Next the arithmetic mean and standard deviation
of the blob, are calculated. Human blobs are assumed to always have a bigger
height than width and the blobs are therefore filtered on having a larger vertical
than horizontal standard deviation. The standard deviation is used to remove
all indices from the blob that are more than 2 times the horizontal standard
deviation from the center, this negates the effect of expansions into for example
the floor that could give maximal or minimal values that do not represent the
size of the blob well. The points that remain after these conditions have been
applied are considered detections and are returned. For a pseudocode version
of the algorithm see Algorithm 2.
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Algorithm 2 3D People Blob Detection Using Flood Fill

1: procedure Detect Blobs(maxIterations, gridsize, threshold, fillValue)
2: startpoints = makeGrid(gridSize.x, gridSize.y)
3: image = takeImage()
4: filledPoints = list
5: detections = []
6: detectionIndices = []
7: for startpoint in startpoints do
8: if image[startpoint.x][startpoint.y] > 0 then
9: indexList = FloodFill(image, threshold, startpoint, maxItera-

tions, fillValue)
10: filledPoints.add(indexList)
11: if length(indexList) > 200 then
12: standardDeviation = std(indexList)
13: center = average(indexList)
14: if standardDeviation.y > standardDeviation.x then
15: detections.add(center)

16: for index in indexList do
17: if index.x > center.x + std.x * 2 then
18: detectionIndices.remove(index)

19: if index.x < center.x - std.x * 2 then
20: detectionIndices.remove(index)

21: detectionIndices.add(indexList)
return detections, detectionIndices

5.3 Combining the Detectors

The final step in the combined detection algorithm is the combination of the two
different detectors. The convolutional neural network has returned bounding
boxes and confidences, while the stereo image detector has returned blobs of
indices. The first step in combining these two detections is to transform them
to the same coordinate system. As can be seen in Figure 16, the two images get
more misaligned the further the pixel is located to the left. This is due to the
positioning of the camera on the robot, see subsection 2.2.

Figure 16: Comparison of the 2D and 3D images

This misalignment is solved by rescaling the 3D points along the horizontal axis.
The error of the points increases to the left up to a maximum of around 20 pixels
on the 2D image, by redistributing all coordinates according to Equation 3. This
solution works well for the level of detail that is provided by the depth sensor,
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see Figure 17. Once the detections have been rescaled the information needs to
be combined.

f(x) = x− offset

imagewidth
· x (3)

Figure 17: Placing. Left: Uncorrected, Right: Corrected

The first approach is to use the bounding boxes generated by the convolutional
neural network as final detections, but filter them using the 3D blobs. Firstly, all
centroids that lie within of a CNN bounding box are selected. The percentage
of indices of the blob that lie within the bounding box is then calculated, if this
is higher than 50% the detection is accepted. This is the strictest method and
while it removes up to 99% of all false positives, it also removes all detections
where one of the two detectors did not correctly identify the person, signifi-
cantly impacting recall. Another downside of this method is that the detection
range of the 3D blob detector is significantly shorter than that of the CNN, this
results in a lot of true positives being filtered because they are to far away to
be detected by the 3D blob detector.

Figure 18: Combined algorithm with history

In the second approach, Figure 18, a detection history is used to stabilize de-
tections. In the current frame all detections are accepted and are placed in a
history. All blob locations that are not for at least 50% inside a CNN detection
are then checked in the history. If a detection was made in the history at the
same location, 50% overlap between the blob and bounding box, as the blob
in the current frame, the detection from the history is reused. Additionally it
is then also repositioned on the horizontal axis to be centered on the centroid
of the blob. This stabilizes the detector by still correctly finding people in the
frames where the CNN failed to do so. The vertical axis is not used for repo-
sitioning however as the vertical location of the centroid is not as stable as the
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horizontal position. This is due to the fact that legs and heads are sometimes
not capture by the blob detector, thereby changing the average y position.

6 Evaluation

In this section the different detectors will be evaluated on a new test dataset
called the IRL-Students dataset7. This dataset was created because there is no
existing dataset for this specific configuration of cameras and combination of
sensors. This dataset consists of several small sets of 2D and 3D images. The
images are taken in the Intelligent Robotics Lab at the University of Amsterdam,
where people stood and walked in front of the robot at distances of 0-2, 2-4 and
4-6 meters, for a full description of the dataset see Table 2 and for examples see
Figure 19.

Figure 19: Example images from the IRL-lab testset (left to right).
Top: single 2m, single 4m, single 6m.

Bottom: multiple 2m, multiple 4m, crowd all

Table 2: Data for the IRL-lab test set.

name distance n people n images
single 2m 0-2m 1 105
multiple 2m 0-2m 2 134
single 4m 2-4m 1 101
multiple 4m 2-4m 2 118
single 6m 4-6m 1 150
crowd 4m 0-6m 7 140

7Dataset available at http://uvahome.nl/publications.html
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6.1 CNN Performance

In order to find the baseline performance, the convolutional neural network was
tested on the IRL-students dataset. The metrics used for the evaluations are
defined as follows:

1. Precision = correct detections
total detections , where correct detections are defined as de-

tections overlapping with the ground truth for at least 50%

2. IoU(Intersection over Union) = ground truth ∩ detection
ground truth ∪ detection

3. Recall = detected people
people in image

As can be seen in Table 3, the performance of the CNN is consistent on datasets
that contain only 1 or 2 people. It performs slightly worse on datasets that con-
tain people that are close to the camera, the single and multiple 2m sets, in
comparison to the sets where people are further away from the camera: sin-
gle4m, multiple4m and single6m. The precision in these sets stays roughly the
same, which means that correct detections are usually centered very well on
the person and that detections that overlap just above the 50% threshold occur
only rarely. The performance on the crowd set gives a better indication of the
weak points of the detector. A sharp drop in recall and precision is seen when
many people are crowded together. The problem can likely be attributed to the
fact that outlines of people are harder to recognize in these scenes, as people
are often obscured by each other. The IoU does not suffer the same loss in per-
formance, indicating that the fewer detections that are made are still centered
well on the person.

To conclude, the weak points of the CNN detector are people in close proximity
to the camera and detection of people in a large crowd. The first problem can be
partly attributed to the scarcity of images that contain people within a 1 meter
distance of the camera in the dataset, but also to the fact that the performance
of the InceptionV1 network on objects that take up a large section is usually
worse as the original network was not designed for the detection of large objects
[7]. The second problem can also be contributed to a lack of large overlapping
crowds in the dataset, but also to the inherent difficulty of detecting people in
crowds[13].

single2m single4m single6m multi2m multi4m multi2-4m crowd
IoU 0.86 0.89 0.85 0.81 0.88 0.86 0.77
Recall 0.84 1 1 0.63 0.98 0.95 0.54
Precision 0.847 1 0.99 0.83 0.99 0.88 0.68

Table 3: CNN performance on IRL-students dataset

6.2 Blob detector performance

To measure the performance of the 3D blob detector, the metrics used need to
be slightly modified. Firstly, IoU cannot be calculated in the same manner as
for the CNN, because the detector does not return bounding boxes, but blobs.
To still get a sense of how well the blobs are placed on the person, the following
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metrics will be defined:

• Accuracy = blob size
blob ∪ground truth

• Precision = correct detections
total detections , where correct detections are defined as

blobs of which at least 50% of the indices lie within a bounding box.

• Recall = detected people
people in image

The first note here is that precision is still defined using correct people detec-
tions. However, it can be said that detections of non humans are not incorrect,
because it is not designed to only capture humans, but rather to find all vertical
shaped blobs in the data. The results of the detector can be seen in Table 4.

single2m single4m single6m multi2m multi4m multi2-4m crowd
accuracy 0.98 0.97 na 0.94 0.97 0.98 0.95
recall 0.99 0.87 0 0.97 0.911 0.69 0.64
precision 0.35 0.22 0 0.24 0.25 0.28 0.44

Table 4: Performance of Blob detector on IRL-students dataset

As can be seen, accuracy is consistently high across the datasets where blobs
are visible. This indicates that blobs rarely extend outside the ground truth
bounding boxes. Recall is high in the instances where people were close enough
to the camera, which can be seen by the near perfect performance on the sin-
gle2m dataset. However the limited detection range reduces the recall, as can
be seen by the performance on single4m. Upon visual inspection, Figure 20, it
was discovered that people would become undetectable as soon as the distance
of 4 meters was even slightly surpassed. Precision stays consistent throughout
the dataset, rising slightly in the easiest single2m set, where very little objects
were present beside the person. Additionally, precision is higher in the crowd
set due to humans obscuring most other objects, making any detected object
likelier to be human and thus increasing precision.

6.3 Combined Detection Performance

The goal of the combined detector is to find humans in the given 2D images,
with additional information being supplied from 3D images. This means that
2D bounding boxes are the final output of the detector and therefore the same
metrics; IoU, precision and recall, will be used to evaluate the output of the
detector. The results of the combined detector can be seen in Table 5.

single2m single4m single6m multiple2m multiple4m multiple2-4m crowd
IoU 0.8 0.85 0.85 0.78 0.881 0.83 0.75
recall 0.85 1 1 0.7 0.983 0.96 0.65
precision 0.85 1 0.99 0.83 0.991 0.86 0.60

Table 5: Performance of the Combined Detector on IRL-students

Generally, a dip in the IoU score can be seen across all datasets, this is likely due
to the shape of detections that are obtained from the history. These detections
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Figure 20: Left Test subject crosses maximum distance measurable by the 3D
sensor. Top: 3D images, Bottom: 2D images

are repositioned to the correct horizontal spot, but can still differ in their vertical
position. Additionally, a persons bounding box can differ significantly in size
if they change their pose. For example an extended arm or a sideways turn
can increase or decrease the width of the ground truth bounding box, while the
bounding box obtained from the memory would still be sized according to the old
pose. The precision stays approximately equal compared to the CNN only based
approach, from this can be concluded that the restrictions on accepting histories
and the repositioning of the detection accepted from history are strict enough.
Finally the recall, while not improving much in the single and multiple datasets,
sees a significant increase of 10% in the crowd set. Additionally, performance
on the multiple2m dataset was also higher, which on visual inspection seems to
originate from a more stable detection on partly obscured people in the dataset.
While the recall on the crowd set is still not as high as that obtained from the
other sets, it has to be noted that around half of the people in the crowd set
are out of range of the 3D sensor. If the 3D blob detector is unable to find
human shaped blobs, the history method can not make use of those to detect
people. Additionally, a slight delay between the moment the 2D image and the
3D image were taken can be seen in the dataset. This delay causes the person
and 3D blob to be in a different position when the person moves across the
camera in a fast pace. For an example of a history generated bounding box, see
Figure 21.
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Figure 21: An example where the CNN did not correctly detect people that
were detected in the previous frame, but were then detected using the history

approach. Ground truth in blue, CNN detections in purple, blob shapes in
yellow, blob centroids in red and with detections obtained through the history

with 3D blobs in green

7 Discussion

Some concern has been expressed that the use of the InceptionV1 network, while
performing well in this research, is not very practical for live detection and
classification. Its performance overshadows that of the 3D detector somewhat
and it can be said that the performance of the two individual classifiers can not
be compared as they do not have the same level of complexity. For example if a
convolutional neural network were to be trained on the 3D data interpreted as
an image, it would likely outperform the current classifier. However the point
that 3D data can provide additional information which can be used to increase
performance still stands. Another point of concern is that while the dataset is
varied in distance and people density, all images were taken at the same location,
making it possible that the results are not representative for other locations.

8 Conclusion

To recall the goal given in the introduction, the aim of this research is to:
Develop a People detection method using the different sensors available
to the Softbank Pepper and find the best way of combining the different
detection methods.
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To achieve the research goal, the following two questions had to be answered,
firstly:

Q1 How can the different sensors of the Softbank Pepper be used to
detect people?

The combination of the 3D sensor and the 2D cameras was chosen to detect peo-
ple. A convolutional neural network based approach was taken to detect people
in 2D images and a grid based blob detection system based on an expansion
algorithm, with filtering was developed to detect people in 3D images. These
two approaches were combined using a history based system to reuse earlier
detections. This answers the question of how the different sensors can be used
to detect people. The second question to be answered was:

Q2 Does the inclusion of additional detection methods improve the overall
performance in people detection?

In order to measure the performance of the new combined detector, a new
dataset called the IRL-students dataset was made. Results show that a CNN
detector performs very well on images containing one or two people in the range
of 4 to 6 meters from the Pepper, but decreases in performance when people are
at a distance of 2 meters to the camera due to the large size of the object to
detect. Additionally, it struggles with finding distinct people in large crowds.
The blob detector is able to find blobs of people with high recall, but low preci-
sion. Combining the two detectors by verifying past detections for the current
state using a detection history increases recall for crowded scenes, although the
limitations of the hardware do not allow it to detect further than 4 meters.
Overall the results indicate that 3D sensor data from the Pepper can be used to
improve performance of a convolutional neural network, however a CNN only
approach already performs very well for most situations.

An important question now is the performance of the detector in the context of
the RoboCup@Home competition. It has been shown that the people detection
system described in this paper performs well on different combinations of peo-
ple density and position. Additionally the test settings used are not unlike the
setting of the @Home competition [17], making it likely that performance there
would be similar. However the runtime of the detector, while not a concern for
this research, is likely to long for use in the competition. However, if the Incep-
tion network were to be replaced by a less computationally intensive network,
the use of the detector could become more viable.

9 Future Work

A noteworthy addition to this research would be the use of 3D data to separate
detections made by the CNN. Some tests done during this research indicate that
crowds can be more easily separated into individuals through the use of depth
data, as it is easier to recognize a difference in distance in 3D data than to recog-
nize the individuals in 2D images. Another improvement from a practical point
of view would be the testing of additional networks that require less computa-
tional power, which would make them more suitable for the @Home competition.
Finally, additional the use of more complex machine learning techniques, such
as clustering algorithms, on the 3D blob detector could further decrease the
amount of non-human objects detected and improve detection accuracy.
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A Appendix

Dataset description

Images for the IRL-students dataset were taken in two different sessions in the
Intelligent Robotics lab in the University of Asterdam. Test subjects were asked
to participate in the making of a people detection dataset, some people who
could not be reached have had their faces blurred for public release. The data
recorded as 6 different smaller sets, each one with different content in terms of
distance to the test subjects and the number of test subjects. Images were an-
notated using the sloth annotation tool, Appendix section A. Obscured people
were annotated as long as at least half of their body was visible. Additionally
when two people cross each other, only a single bounding box was drawn in the
frames where one person was entirely obscured. Examples of pairs of annotated
color images, bounding boxes in purple, and their 3D counterparts follow on the
next pages.
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Examples of annotations
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Software List

External packages:

• opencv2 http://opencv.org/

• numpy http://www.numpy.org/

• naoqi http://doc.aldebaran.com/2-1/dev/community_software.html

• scipy https://www.scipy.org/

• PIL https://pypi.python.org/pypi/PIL

• matplotlib http://matplotlib.org/api/pyplot_summary.html

Used repositories:

• https://github.com/cvhciKIT/sloth

• https://github.com/TensorBox/TensorBox

• https://github.com/tensorflow/models

Project repositories:

• https://github.com/jonathan-gerb/UvA-Home

• https://github.com/jonathan-gerb/silver-succotash
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