
Final Report 2nd Year Project

Authors:

Francien Barkhof
Sander van den Bent
Oskar Bosgraaf
Sjoerd Gunneweg

Supervisors:

Arnoud Visser
Mitchell Verhaar

June 2022

https://www.linkedin.com/in/oskar-bosgraaf/

Contents

1 Introduction 2
1.1 Client description . 2
1.2 Problem description . 2
1.3 Challenge description . 3
1.4 Product vision . 4
1.5 Previous research . 5

2 Implementation 5
2.1 Proposed solution . 5
2.2 Hardware . 5
2.3 Navigation . 6

2.3.1 Behaviour based . 6
2.3.2 Model based . 6

2.4 Communication . 8
2.4.1 Junos . 8
2.4.2 Developers . 9
2.4.3 Farmer . 9

2.5 Features . 10
2.5.1 Homing . 10
2.5.2 Juno vicinity lights . 10

2.6 Developed product . 10
2.6.1 Junos . 11
2.6.2 Navigation . 11
2.6.3 Homing . 11
2.6.4 Vicinity lights . 11

3 Conclusion 11

4 Appendix 15
4.1 Sensor Use and Reading . 15

1

1 Introduction

In this project our team has participated in the Hackathon - ”Battle of In-
stitutions” of the European Robotics Forum (ERF) in the Ahoy in Rotterdam.
Together with 8 teams of universities in Europe, a robotics challenge was handed
out to see which team was able to apply the best and most efficient solution to
this challenge. The challenge contained a basic robotics operation, split up in
multiple features and abilities that the robot had to fulfill, each feature being
worth a certain amount of points. The companies associated with the ERF who
were participating in handing out challenges were Lely, Franka and Robo House.
These companies handed out their own unique challenge to the participants of
the Hackathon. Every team worked on a challenge from one of these companies.
Arnoud Visser, our initial client and supervisor, had given these specific as-
signments that were suited for sufficient preparation for the challenge. This
knowledge was useful because it was known that ROS eventually had to be used
to control the robot that had to perform the challenge. Also, to get familiar
with working with a robot and ROS, a Mover5 robot was obtained from Brain-
creators. The Mover5 was only for practicing purposes however; for the ERF
challenge itself a robot would be supplied that was suited for the corresponding
challenge.

1.1 Client description

Our client was Lely Industries N.V. (Lely), the company that was selected to
do the challenge for. Lely is a machine manufacturer for agricultural purposes,
helping farmers making their work more easy and their life more pleasant using
the Lely Juno robot which can be seen in Figure 1. The Lely Juno robot is an
automatic feeding robot specifically designed to push back feed to cows without
disturbing them. Initially the Juno 150 was designed, after which an advanced
and smaller version, the Juno 100, was introduced. They have various built-in
sensors which lets them drive various routes around barns.

Throughout the challenge multiple Q&A meetups were had with Lely where
in-depth questions could be asked about the features and how they could be
implemented. There were two of these meetings; one with all the teams of
the universities gathered and one personally for the UvA team. Our robotics
supervisor was Arnoud Visser during the entire project.

1.2 Problem description

The challenge consisted of a robotics operation that essentially had to fulfill 9
tasks, although they were all optional for a set amount of points and it was not
mandatory that the robot had to satisfy all tasks.

The central problem of our challenge consisted of cows being fed hay inside a
barn, and while they were eating the hay would be partially pushed away. The

2

Figure 1: The Lely Juno robot

task of the robot was to push back this hay, and take into accounts other factors
that could be happening inside the barn. 2 robots had to navigate through the
barn, both pushing back hay. This is a multi-agent system problem, where the
robots have to communicate with each other correctly.

1.3 Challenge description

The environment in which the robot had to navigate was a barn in which cows
stand behind fences and were being fed hay. 2 Junos would navigate around, and
respond to each other’s presence. An important note is that inside the actual
environment in which the robot was tested, there was not actually any hay to
be pushed back; only the other features that the robot had to take into account
were being tested. The environment resembled something like the image below.

The challenge consisted mainly out of 9 goals, each being worth a certain amount
of points. These goals were certain functions that the robot had to be able to
do. The goals consisted of:

• When the Juno passes inside a narrow area that is too small for 2 Junos
to pass simultaneously, it must inform the farmer that it is inside this
passage.

• When it encounters a plastic curtain strip, it must pass through it. The
plastic curtain is placed on a random spot inside the barn.

• Be able to deal with holes and missing parts in the fence and keep on
following it. This one contains two subgoals: a farmer should be able to
cross the barn without the Juno colliding into him, and the Juno should
communicate with him that he can cross the barn.

3

Figure 2: Example of barn environment

• Leave from and return to a home ’base’ (a traffic cone) in the middle of
the barn.

• Leave from and return to a home base at a random location inside the
barn.

• Being able to drive around obstacles lying around in the barn; for example
a wheelbarrow.

• Counting the amount of cows that are present with heat detection; the
approximate temperature will be between 75 and 100 degrees Celsius.

• Turn on lights if there is another Juno in the neighborhood.

It was not possible to implement all these challenges, so a list of features had
to be made that was ordered and ranked by importance.

1.4 Product vision

It was not realistic to implement all the 9 features so a selection was made of
features of which were thought to be important and they were ordered by pri-
ority.
Because the robot had to navigate through a barn and do specific tasks, there
were three very important elements to these operations: navigation, communi-
cation and extra features. For this reason, our product vision is mainly focused
on subsections of these elements and they were expanded by specifying concrete
features.

The navigation of the robot was a fundamental part because the Juno needed
to move around the barn to (hypothetically) push back hay to the cows.

4

For communication, it was necessary to create a sufficient messaging between
the Juno and the farmer, but also communication between the 2 Junos.

1.5 Previous research

Navigational robotics are not a new field in terms of research and thus a sufficient
amount of knowledge about autonomous and guided navigation is available in
papers like [6]. This paper gave a global overview of different navigational
techniques and their strengths and weaknesses, which is helpful in the initial
stages of robotic design. Promising for our product vision were autonomous
methodologies with the use of vision [5] and sensor networks [2]. There is no
public information available about the navigational driver code and methods
used, for the existing Juno platform developed by Lely because this is a private
and closed source project.
Although Lely has already implementated such a navigation robot, there is room
for improvement in the area of multi-agent systems and the integration of image
processing and computer vision.

2 Implementation

2.1 Proposed solution

In order to fulfill the wishes of our client a threefold solution was proposed
and implemented. First of all, the robots needed to navigate through the barn
while keeping the correct distance to the wall. This was done by using both a
behaviour based and model based approach for each of the Junos so that only
a few sensors were utilized. Secondly, the robots needed to interact with each
other, communicate with the farmer and send log info to the developers. The
interaction between the Junos was established by the ROS features ’client’ and
’master’. An app was built to directly send information to the farmer. The
ROSboard was used in order to update the developers on the current status
and sensory input. Lastly, the extra features such as homing, distance detection
and cow count were implemented with computer vision for which we needed the
camera input.

2.2 Hardware

RoboHouse supplied every contestant of the Hackathon with hardware to test
their implementation on. This hardware included a Mirte robot with integrated
Orange Pi single board computer (OPI), a Raspberry Pi (RPI), an Arduino
Uno R3 and multiple separate sensors. Because the Mirte robot is designed to
be used in a classroom setting, equipped with an array of simple sensors for
learning about the basics of robotics, multiple types of sensors could not be
connected and used in combination with the Mirte’s OPI.
This resulted in the choice being made to test the solution on two Robotis

5

https://www.lely.com/nl/oplossingen/voeren/juno/
https://www.robotis.us/turtlebot-3/
https://www.robotis.us/turtlebot-3/

Right distance Front distance Action
+R +F Adjust right
+R -F Turn left
R +F Move ahead
R -F Turn left
- R +F Adjust left
- R -F Turn left

Table 1: State-action scheme to follow the right wall

TurtleBot 3’s, which make use of a RPI to connect all sensors. With the Turtle-
Bot3’s proprietary software and it being a well documented platform, the testing
with especially the centrally mounted LiDAR scanner was almost effortless.
See the Appendix for an in-depth explanation of the sensor mounting, connec-
tion and issues.

2.3 Navigation

2.3.1 Behaviour based

Behaviour based robots are able to switch behaviours according to its current
state of the environment measured by sensory input. The chosen behaviour
based approach to navigate one robot is the implementation of a wall following
algorithm based on sonar distance inputs. A scheme of the different states
of the environment, such as being in a corner or following a wall, has been
linked to different behaviours which was then translated to code and adjusted
by testing. To make the robot as cheap and sustainable as possible, only three
sonar distance sensors were attached to the robot. This resulted in only having
three measuring points; to the left, to the front and to the right. When following
the right wall it is important that the robot is in the correct distance range from
the wall while making sure there is nothing in front of it, creating the scheme
in Table 1 in which the distances in Figure 3 are used.

A behaviour based approach has the advantage of being simple and therefore
easy to implement, understand and adjust. However, because it chooses its
behaviour based upon very basic requirements, it does not acquire any actual
knowledge about the environment. Therefore, it is not able to deal with fluctu-
ation in the environment such as a missing part of the wall.

2.3.2 Model based

Model based robots do acquire knowledge about the environment which they
try to capture in a model. Based upon this created model they are able to be-
have and interact with the environment. The chosen behaviour based approach
to navigate the other robot is the creation of a cognitive map with a LiDAR
scanner [7] in which it follows the corners of the map.

6

https://www.robotis.us/turtlebot-3/
https://www.robotis.us/turtlebot-3/

Figure 3: Visual definition of the terms used in Table one. R corresponds to
being in the perfect distance to the wall, -R is close to the wall and +R to far.

Figure 4: Map of the testing environment created by the SLAM algorithm

To create a map of the environment a LiDAR scanner has been used. LiDAR
stands for Light Detection and Ranging. It is a technique with which the envi-
ronment can be scanned to calculate distances to the walls and objects. With
the use of the LiDAR scanner input, the SLAM (Simultaneous Localization and
Mapping) algorithm [1] has been implemented. In this algorithm, localization
and mapping is done simultaneously, which means that it is able to map the
area whilst keeping track of the location of the robot within that area. In Figure
4 an example of such a SLAM map of our test environment can be seen.

When the map and localization is accurate, a path within this map needs
to be planned. For the path planning, two solutions were proposed.

First of all, multiple points with the coordinates of the corners were manu-

7

Figure 5: Visualisation of a hypothetical FSM for path planning

ally selected on the map. With these points a finite state machine (FSM) [4]
was created of which each of the states represents a corner, as seen in Figure 5.
By moving from one state to the other in the FSM a different corner was set
as goal position for the robot. In this way it follows the path along the corners
while keeping the correct distance.

Secondly, multiple points with the coordinates of the corners were found by
the implementation of the Harris corner detection algorithm [3]. This algorithm
takes an image of the map created by slam as input. In this image the algo-
rithm determines the junction of two edges, where an edge is a sudden change in
image brightness, and returns the corner’s coordinates on the given image. The
coordinates of the corners were then also used to automatically create the FSM.
From this point on wards the path planning is the same as the first proposed
solution.

The advantage of the model based approach in comparison to the behaviour
based approach is the fact that the robot is able to deal with a fluctuating
environment as described above while following it’s route more accurately. In
order to make the robot as autonomous and automatic as possible the second
solution of the model based is preferred to first proposed solution. However,
in the tests the first semi-manual solution performed much better. Therefore,
both solutions were proposed but only the first model based solution has been
actually implemented.

2.4 Communication

In order to ensure no collision and understandability of the robots, two types of
communication needed to be implemented. First of all, the two Junos cannot
simultaneously be in a narrow passage. Therefore, they need to interact with
each other about moving through a narrow passage so that only one Juno at
the time will pass the corridor. Secondly, the robots need to communicate with
the farmer to inform him/her about their statuses such as ’following the wall’
or ’being in a narrow passage’. Lastly, the developers need to be updated on
the current status and sensory input

2.4.1 Junos

The communication between the Junos was implemented by the usage of the
ROS features ’client’ and ’master’ [8]. This entails that one Juno is the master

8

Figure 6: ROSboard example

and the other the client. The client Juno is only allowed to pass the corridor
when the master client has already passed. This implies that when the client
Juno arrives in the corridor while the master client has not passed yet, it has to
move backward to make space and wait until the master Juno has passed. To
obtain this specific behaviour they need to inform each other about their in or
out corridor status. This was done by sending boolean (in/out) messages from
client to master and the other way around.

2.4.2 Developers

The developers needed to understand the current robotic behaviour, to interpret
the implementation and to make debugging or improvement possible. Therefore,
insight into our implementation, robot statuses and sensory input needed to be
shown and visualised in a compact and comprehensible manner. In order to
do so the ROSboard was used. ROSboard is a node that runs a webserver
on the robot. This allows the developers to receive information of the robot’s
status and sensory input in the form of textual information and visualisations.
A ROSboard example can be seen in Figure 6.

2.4.3 Farmer

The farmer needed to be informed and updated about the current states of
the robots and in particularly about being in a narrow passage as described in
one of the challenges. This was supposed to be done by the usage of an mobile
application. The mobile app receives information from the Azure services which
receives information from the robot. Unfortunately, due to time limits, it was
not possible to implement the communication channel between the farmer.

9

2.5 Features

2.5.1 Homing

One of the requirements was to make the Juno autonomously move back to its
home base, a processed which is called homing. The challenge of this require-
ment was the fact that the base could be anywhere in the barn, even outside
its route and could also be relocated during the challenge. Therefore, a robust
and relocation invariant solution was desired. In order to achieve this an exter-
nal webcam was used and a ’blob detection’ algorithm was implemented. This
computer vision algorithm was specifically designed to detect orange blobs since
the home base was covered by an orange cloth. The algorithm captured orange
parts on the screen and returned the bounding box and coordinates of the center
orange object. The center of the orange object that was detected was used to
determine if the robot had to navigate to the left or to the right. If the center
of the blob was on the left side of the camera, left adjustment was made and
vice versa. This way the robot was able to safely go home back to its base.

2.5.2 Juno vicinity lights

Because one of the Juno robots had an orange exterior, the blob detection and
its size could also be used to estimate the distance from the camera to the
recognised blob, and thus could be utilised as a distance metric between the
two Juno robots. To receive extra points in the jury’s grading, the Internet
of Things based Shelly Plug-S needed to be turned on whenever the two Junos
were within a certain distance of each other and off again whenever object/Juno
avoidance had been accomplished. Using the manufacturers own product API
and the paho-mqtt API, messages were published from the developers laptop,
to a mqtt broker on a specific topic. A Shelly Plug-S is subscribed to this topic
and therefore listens to the messages, relayed by the broker. The contents of
these messages are HTTP commands for changing values in the plugs power
settings. The use of this API was recommended by the Hackathon organisers in
the preparation stage, due to the planned setup for the Shelly plugs including
the necessity for a ways of authorisation. The final setup of these devices did
not include any required means of authorisation whatsoever and a simple GET
request function was written to change the power setting on the two plugs.

2.6 Developed product

In the developed product at the ERF the sensor mounting differed from the
proposed solution as well as the environment and the technical interface of the
Juno robot. This resulted in changes in our navigation approach and proposed
solution, which will be discussed in this paragraph.

10

2.6.1 Junos

The first Juno robot was open, i.e. it did not have the red cap on it. Therefore, it
was possible to mount the LiDAR scanner to it on the front using a 3D designed
attachment. The second Juno was closed making it very hard to attach any
Sonar sensor to it. Therefore, the camera was mounted on the second Juno.

2.6.2 Navigation

Due to the difference in sensor mounting with respect to the proposed solution,
the navigation approach was changed as well. For the first Juno, mounted
with the LiDAR scanner, the behaviour based approach was used instead of
the model based approach that was proposed. The main reason for this was
the fact that it was not possible to receive a 360 degrees range from the LiDAR
scanner which resulted in a map that was not accurate enough for path planning.
Therefore, the behaviour based approach was used to navigate the first Juno
through the barn. For the second Juno, mounted with the camera, a blob
following algorithm, as described in section 2.5.1, was used to navigate the
robot instead of the behaviour based approach. The main reason for this was
the fact that the behaviour based approach required distance sensors such as a
Sonar sensor which was not attached to this Juno.

2.6.3 Homing

Due to the difference of the environment the blob detection algorithm to make
the Juno move back to its home also differed from the proposed solution. A lot
of red objects were positioned within the barn environment created by Lely. To
prevent our blob detection algorithm from detecting red objects as the traffic
cones (the base), the colour green was used in the blob detection algorithm of
the developed product.

2.6.4 Vicinity lights

For the Junos to detect if there is another Juno around, blob detection was used
as well. The Juno with the LiDAR was given a blue colour, so whenever it would
approach the other Juno it would appear as a blue blob within its camera, and
after a certain amount of time being in its vision the light would go on.

3 Conclusion

In conclusion, there were a few methods that worked quite well, both at the UvA
and at the ERF, and some that didn’t. There were a couple of adjustments that
were made at the ERF, because some things that worked well on the Turtlebots
did not work on the Junos.

Because of the structure of the Junos, the LiDAR could not be placed in the

11

middle with a 360 degree range like it could with the Turtlebots. Instead, it was
mounted on the front of the Juno. As a consequence of this, the scanning of
the environment went worse, and in some situations the Juno performed a turn
too early. In the future, this could be prevented by giving it a delay so that it
waits a bit longer before taking the turn or transforming the LiDAR input as if
it was mounted in the center of the robot.

Furthermore, the SONAR distance sensors could not be used, due to an in-
efficient way of mounting. This resulted in inaccurate measurements. In the
future, it would be sensible to find a good way to mount them correctly, as the
SONARS distance sensors can be a very helpful part of the robot.

With regard to navigation, a model based approach seemed better in theory
since it allows for more diverse applications. When the model is accurate this
approach has the potential to be a great fitting solution for our problem, as it
can more accurately handle unique cases in our environment which other ap-
proaches will tend to struggle with. Unfortunately, the model was not accurate
enough and could not be used in practice because of the offset of the scanner
with regards to the centre of the robot. In the future, this approach could work
if a LiDAR range of 360 degrees could be realised, if more time could be spend
on fine tuning the map and localization and if the LiDAR could be transformed.

To improve upon the communication between the Junos, two parts of the pro-
posed to solution should be revised and their problems should be taken into
account. First of all, by implementing the multi-agent system with a master
and client-system , the Junos share the same ROS-process and they also share
the same ”cmd vel” topic which sends the movement commands to the robot.
This means that the two robots perform the exact same movements. To resolve
this, names paces can be created for the topics for which a separation between
the two Junos is required. Secondly, the communication could be made smarter
in the future. In the current implementation, the client Juno always has to wait
for the master Juno to pass the corridor before the client Juno is allowed to
pass. However, this could be very time consuming whenever the client Juno ar-
rives at the corridor first. In future work, this could be resolved by dynamically
assigning the roles of master and client, based on the corridor status of either
robot.

In future work, a mobile application should be implemented in order to up-
date to Farmer about the robot’s states. This way it is easier for the farmer to
cooperate with the robot while understanding what it is doing and be informed
whenever a human operation is needed. The app should be implemented as it
is our client’s goal to make the life of the farmer more pleasant. For the mobile
application the usage of the Azure services is proposed.

With regard to the homing aspect of the final product, this implementation
has a couple of distinct disadvantages when trying to use this in a real barn set-

12

ting. The implemented way of homing back to the start/stop base relies on the
distinct colour of the object and the recognised blobs, done with camera vision.
Since a real barn environment would definitely not be clean, this dependence
on colour would hinder the robustness of this homing solution. Another, more
robust method for implementing the back to base feature would be to integrate
the base locations in a cognitive map, to be able to simply provide this location
as the final waypoint in the Juno’s route. Since a model-based approached was
used for the final product, this method was not looked at, but could be valuable
for future work.

13

References

[1] Josep Aulinas et al. “The SLAM problem: a survey”. In: Artificial Intelli-
gence Research and Development (2008), pp. 363–371.

[2] Maxim A Batalin, Gaurav S Sukhatme, and Myron Hattig. “Mobile robot
navigation using a sensor network”. In: IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004. Vol. 1. IEEE.
2004, pp. 636–641.

[3] Li Yi-bo and Li Jun-Jun. “Harris corner detection algorithm based on im-
proved contourlet transform”. In: Procedia Engineering 15 (2011), pp. 2239–
2243.

[4] Li Caihong et al. “A complete coverage path planning algorithm for mo-
bile robot based on FSM and rolling window approach in unknown envi-
ronment”. In: 2015 34th Chinese Control Conference (CCC). IEEE. 2015,
pp. 5881–5885.

[5] Guilherme N DeSouza and Avinash C Kak. “Vision for mobile robot navi-
gation: A survey”. In: IEEE transactions on pattern analysis and machine
intelligence 24.2 (2002), pp. 237–267.

[6] Faiza Gul, Wan Rahiman, and Syed Sahal Nazli Alhady. “A comprehensive
study for robot navigation techniques”. In: Cogent Engineering 6.1 (2019),
p. 1632046.

[7] Tony Huang. RPLIDAR-A3 Laser Range Scannerrobotlaserrangescanner.
url: https://www.slamtec.com/en/Lidar/A3.

[8] Master and client communication documentation. url: http://wiki.ros.
org/ROS/Tutorials/MultipleMachines.

14

https://www.slamtec.com/en/Lidar/A3
http://wiki.ros.org/ROS/Tutorials/MultipleMachines
http://wiki.ros.org/ROS/Tutorials/MultipleMachines

Figure 7: Circuit diagram of three HC-SR04 SONAR sensors connected to an
Arduino UNO 3 circuit board.

4 Appendix

4.1 Sensor Use and Reading

The RoboHouse Mirte robot is intended for use of two SONAR based Time-
of-Flight (ToF) sensors (HC-SR04) and two IR-scanners (Amg883). Because
the whole Mirte PCB is designed for these types and amounts of sensors, the
required three ToF sensors could not be connected to the OPI directly and thus
an alternative connection schematic was created for connecting these SONAR
distance sensors to an Arduino Uno R3, as seen in figure 7. All VCC (5V) and
GND (ground) pins were wired in series, but the TRIG (trigger of signal) and
ECHO (return of signal) pins needed their own digital pins on the Arduino.
The RPLiDAR-A1 also couldn’t be used on the Mirte’s OPI. Since the OPI is
a low level integrated computer, it does not rely on a lot of accessible random
access memory. The around 480 megabytes of RAM were by far not enough
to process or relay the LiDAR’s point cloud data, which caused the LiDAR to
crash after a couple of seconds of receiving power. A solution would have been
to assign more memory to a swap file to increase the amount of effective ran-
dom access memory the OPI could use, but this method in itself posed several
problems regarding stability. The choice was made to directly connect the Li-
DAR scanner to a laptop to receive and process the point cloud data instead of
relaying the information through a microprocessor of microcontroller.
Even though the reception of the point cloud was simplified, the optimal mount-
ing location for the LiDAR in the center of the Juno robot was not accessible,
due to the hay bales being too low for mounting on the top and the insides of
the robot being too cluttered with electronics. This prompted the search for a

15

Figure 8: Open source, 3d printable RP-LiDAR mount, designed by David M,
used for mounting the LiDAR scanner on the Lely Juno Robot.

specific 3D printable sensor mount, for relative easy installation on the front of
the robot, near the ground. The open source mount chosen, is made by David
M and downloadable at https://www.grabcad.com and can be seen in figure 8.

16

https://grabcad.com/library/slamtec-rplidar-with-bracket-for-3030-extrusion-1

	Introduction
	Client description
	Problem description
	Challenge description
	Product vision
	Previous research

	Implementation
	Proposed solution
	Hardware
	Navigation
	Behaviour based
	Model based

	Communication
	Junos
	Developers
	Farmer

	Features
	Homing
	Juno vicinity lights

	Developed product
	Junos
	Navigation
	Homing
	Vicinity lights

	Conclusion
	Appendix
	Sensor Use and Reading

