
ERF Hackathon 2022

Part of Tweedejaarsproject BSc KI

Derck Prinzhorn 13058207
Thijmen Nijdam 12994448
Jurgen de Heus 13162829
Juell Sprott 13101817

FNWI
University of Amsterdam

Netherlands
July 3rd 2022

Contents

1 Introduction 2
1.1 Client description . 2
1.2 Problem description . 2
1.3 Challenge description . 3
1.4 Previous research . 5
1.5 Product vision . 5

2 Implementation 5
2.1 Proposed solution . 5
2.2 Provided hardware and software 5
2.3 Navigation . 5

2.3.1 Model-based approach . 5
2.3.2 Behaviour-based approach 10
2.3.3 The algorithm . 10

2.4 Communication . 11
2.4.1 Approach . 11
2.4.2 Between Junos . 12
2.4.3 Developer . 13

2.5 Features . 13
2.5.1 Homing . 13
2.5.2 Juno vicinity lights . 15

3 Conclusion 15
3.1 Juno 1 . 15

3.1.1 Problems . 16
3.1.2 Future improvements . 16

3.2 Juno 2 . 16
3.2.1 Problems . 17
3.2.2 Future improvements . 17

4 References 17

Appendices 17

A ROS 17

B Hardware 18

C Software 18

D Sensor hardware and software 18

E Other open source ROS packages 19

F diagrams 20

1

1 Introduction

1.1 Client description

Innovations are found in a variety of places in society. This report focuses on
innovations in the agricultural sector. There are two main clients involved. An
agricultural innovating company and a robotics company. Those two companies
are connected to us through our third client, Arnoud Visser. He is our supervisor
from the UvA and a professor specialized in robotics.

Company introduction Lely

One of the pioneers in agricultural innovation is Lely, which is the client involved
in this project. Lely offers solutions for almost all activities in the cowshed, to
make agrarian life easier.

Company introduction RoboHouse

RoboHouse is a company with a network of robotics experts and industry part-
ners, which believes new innovations are necessary to make work more healthy
and empowering. It’s located in the TU Delft Campus where innovative orga-
nizations can come together to develop and test their developed applications in
a realistic lifelike environment.

1.2 Problem description

In a barn, cows need to be fed. One of the ways in which they are being fed
is by grass-like food, for example hay. The cows reach through a feeding fence,
to eat the feed but also slowly push the feed away from the fence. They can
do this until they are unable to reach the feed. Therefore the feed needs to be
pushed back to the fence by the farmer. This is very time-consuming which is
the reason why Lely invented the Juno robot (Figure 1). The Juno is a feed
pushing robot that pushes feed towards the feeding fence.

2

Figure 1: The Juno robot in a barn.

1.3 Challenge description

Lely has the ambition to create smarter robots and wants to challenge students
to come up with creative ideas and solutions. This year Lely collaborates with
Robohouse during the ERF, and organizes a hackathon. There are many chal-
lenges for robots, such as the Juno, because of the different factors in the barn
which vary. The barn the Juno has to drive through could be dirty. The layout
of the barn could be different, with people walking around. In addition cows
could be sticking their heads through the feeding fence. The Juno has to ensure
that the barn is a safe environment for the people and animals in it by being
able to sense the environment and communicating about this to the farmer and
other robots. In this challenge two Juno robots have to push the feed in a barn
environment in as less time as possible. An example barn environment is shown
in Figure 2. Junos must drive a route through the barn environment. Barns
vary every day, but there will always be a narrow passage where only one Juno
can pass at once. The Junos are not allowed to collide with each other and the
farmer.

3

Figure 2: Example of a barn environment.

In addition to the principal problem statement, there are additional challenges
to be completed to gain extra points in the Hackathon:

1. The Juno needs to (autonomously) inform the farmer that it is in the
narrow passage where only one Juno can pass.

2. Pass through a plastic strip curtain. The curtain will be set up in an
unknown location in the barn environment when the teams decide to tackle
this challenge.

3. Be able to cope with parts of the feeding fence having been removed.

(a) A farmer could cross the road at the section without the feeding
fence.

(b) Communicate to the farmer that he can cross.

4. Leave from/return to ‘home’ base (touch traffic cone) in the middle of the
arena instead of a corner.

5. Leave from/return to ‘home’ base (touch traffic cone) at a random location
in the arena instead of a corner or exactly the middle of the arena.

6. Drive around obstacle(s) (for example, mini wheelbarrows).

7. Count (our inflatable ‘hot’) cows and inform the farmer. The heat will be
provided by infrared heating lamps in a protective cage. The approximate
temperature will be 75 - 100 ◦C.

8. Deal with failing network during route (communication). The robot should
still be able to perform his tasks without the connection to the cloud or
second Juno.

4

9. Turn lights on if there is a Juno in the neighborhood.

1.4 Previous research

The current Juno robot is a stand alone robot, which uses a predefined route
to navigate in the barn environment. The benefits reported by Lely themselves
are firstly an increase in the food consumption of cows, which has multiple
advantages. For example, the improvement of overall health, fertility and milk
production. Secondly, Lely mentions that farmers report that they are saving
180 hours a year (half an hour a day), which can be spent doing other activities
on the farm.

1.5 Product vision

The software for the Juno has to be implemented in very short time, less than
two weeks. Therefore the goal is to create feasible robot software with at least
three primary assets. The first asset is navigation. The Junos have to be able
to navigate in the barn without any objects in it, following the route along the
fence. The second asset is obstacle avoidance. While navigating in the barn the
Junos have to avoid random object in the barn and continue it’s route. The
third primary asset is communication. The farmer has to be informed in special
situations, for example when the farmer wants to cross the Juno. Furthermore
the Junos have to inform each other, so they don’t collide. In addition to the
primary assets extra features, like counting cows and moving through a curtain,
are possible secondary assets.

2 Implementation

2.1 Proposed solution

There are two Junos. One is the master Juno and the other is the client Juno.
The master Juno will follow a model-based approach.
The client Juno will follow a behaviour based approach.

2.2 Provided hardware and software

For this project, we have received a Mirte robot, a Turtlebot3 robot and a Juno
robot during the 3 hackathon days. Each of these also make use of ROS, a
framework that allows us to control these robots. More information about the
hardware and software can be found in the appendix.

2.3 Navigation

2.3.1 Model-based approach

The first Juno, the master Juno, will use a model-based approach for navigation.
This approach makes use of advanced techniques in order to generate a route

5

that can be used by the Juno to traverse the environment. It is very important
that the model is representative for the environment in which the robot has
to be able to operate. This approach requires a greater degree of ROS under-
standing, but allows for more diverse applications. When the model is accurate
this approach has the potential to be a great fitting solution for our problem,
as it can more accurately handle unique cases in our environment which other
approaches will tend to struggle with. Since there are limitations on hardware,
this approach is feasible on only one Juno.

This approach makes use of the ROS Navigation Stack. While this uses sensor
inputs similarly to other approaches, it makes use of these sensor inputs to both
generate a cognitive map for the robot to move in, as well as give the robot to
orient itself inside this map. Using these inputs, it is then possible for us to
generate a plan for the robot which it can then traverse. This approach has two
large advantages. The first is that for our challenge a path must be traversed
that requires us to traverse one side of the barn environment from x distance to
the barn wall, and then return according to the same path from y distance to the
wall. The navigation stack significantly streamlines the path planning involved
in this task as it can simply pass path plans to our robot after which they will
autonomously follow the given path. The second is that, due to its smart usage
of sensor inputs, the robot can actively avoid obstacles without any interfer-
ence from our end. This makes the model-based approach near perfect for our
problem. However, implementing this approach has several downsides. For one,
using this method requires some preparations for our robot, both hardware and
software. Second, after first implementation and testing of the navigation stack,
fine-tuning is required for path planning to achieve the desired route with high
accuracy.

The ROS Navigation Stack has several key points, which will be discussed one
by one:

• sensor streams

• robot odometry

• map creation

• path planning

Sensor software and hardware are further discussed in the appendix.

Robot odometry is an import aspect of the navigation stack, as it is used in
combination with sensor inputs to provide improved map creation as well as
active route planning when dealing with obstacle avoidance. Odometry pro-
vides an estimate of the robot’s position relative to it’s starting position using
either additional sensor inputs or wheel encoders. In the case of wheel encoders,
these record the position and orientation of a robot position over time. This is

6

done by by keeping track of the movement of the wheels and converting these
in both positional and orientational coordinates. This information can be used
to obtain localization. Localization can be used in tandem with a given map to
estimate the robot’s position relative to the given map, which will prove useful
to both map creation as well as path planning. For our final implementation,
two methods of localization are used. One for map creation and another for path
planning. These are the SLAM algorithm and AMCL algorithm respectively.

In order for us to plan a path for the robot, a static map must be created
which contains the entire environment in which the autonomous robot has to
navigate. This map can then serve as a reference point for where static ob-
stacles and walls could possibly be so it is possible to plan around them. The
navigation stack uses the SLAM algorithm to perform map creation. Otherwise
known as simultaneous localization and mapping. This technique makes use
of LiDAR inputs in conjunction with the previously mentioned localization in
order to actively create a static map while driving through the environment.

Figure 3: A map created of the barn environment using SLAM, visualized in
Rviz.

The SLAM algorithm will use feature extraction on the laser inputs in order
to obtain static walls and obstacles, which are then saved in a map. Simul-
taneously, the same laser scan data is used by SLAM to localize the robot
within that same map. The method used for localization generally differs be-
tween each SLAM algorithm, however most algorithms generally use laser data
or wheel odometry. Due to the fact that wheel odometry can be unstable in

7

certain environments – such as the barn environment – the decision has been
made to use the Hector-SLAM algorithm, which is far less reliant on odometry
data. In turn, the algorithm is far more reliant on the LiDAR. This algorithm
has been optimized for usage with the LiDAR however and due to it’s budget
friendly nature compared to other algorithms, as well as better ease of use and
more documentation, Hector-SLAM has ultimately been chosen for the final
implementation.

Map creation, robot position and eventual map saving are all visualized
within Rviz, a GUI made for ROS that supports the ROS navigation stack
which takes in topic messages and visualizes them for improved ease of use and
debugging.

With map creation out of the way, the next step is working with the core
of the navigation stack. The move base package provides the stack with the
required code and nodes to get a functioning path planning setup. Move base
takes in the aforementioned sensor streams, robot odometry and static map to
set up the navigation stack core. With this and a goal pose within the given
map given by either the user or a separate program to then calculate the most
optimal path towards said goal.

The move base core consists of a global costmap, a local costmap, a global
planner and a local planner. A global costmap consists of the normal SLAM-
generated map combined with map layers that modify the map in various ways.
By the default an inflation layer is placed on top of the costmap which inflates
any objects on the map, resulting in any planners being used attempting to
plan around these inflations, which ultimately provides safer path planning.
The global costmap makes use of the map created with the SLAM algorithm to
generate a path from the initial pose towards a given goal. This is done with the
global planner, which generates the most optimal route from the initial pose to
the goal using one of the algorithms that can be configured. For the challenge,
a route that follows the walls is required with a focus on straight paths. Several
configuration combinations have been tested on both Mirte and Turtlebot3 to
achieve this goal, with the ideal configurations shown below:

use_grid_path=True

use_dijkstra=True

old_navfn_behaviour=False

The grid path straightens the path as a grid is overlayed over the map. Any plan-
ners used with this grid map will only follow lines on the grid. The use dijkstra
variable will determine whether Dijkstra’s algorithm or A* algorithm is used for
path planning. For both algorithms, each point in the coordinate frame of the
map that does not fall within the inflation layer is used for calculating the op-
timal path.
With the global plan created, the next step is working locally with the local
costmap and local planner. The local costmap uses both localization and Li-

8

DAR laser scans to generate a local costmap within the robot’s vicinity. This
local costmap works similarly to the global costmap, but uses LiDAR input data
to actively change the map in order to account for obstacles not found in the
global costmap. This way, even if the environment changes after creating the
SLAM map, the robot can still cope with new obstacles. This is then combined
with a local planner, which takes the global planner and attempts to follow the
global plan while attempting to navigate past obstacles and adjust the orienta-
tion and position of the robot such that the robot does not run into collision
problems.

Figure 4: An example of a planned path.

Once the navigation stack is configured, the next step is to generate a route
that moves along the walls in both directions. For this we create a finite state
machine that takes in a set of goals – referred to as way-points from this point
on wards – and sends these way-points to the robot one by one. After each
way-point, a check is done if the final point is reached. If not, the robot will
then obtain the next way-point and send the path for this point to the robot
until each point has been reached. A finite state machine has been chosen as
we can add additional features like communication that can run simultaneously
with route navigation. The ROS Smach package perfectly integrates these func-
tions as both our navigation and our additional features are ROS-based. This
allows easier creation of the FSM and debugging and improving our FSM. More
information about the ROS Smach package and a detailed FSM used by the
Mirte, Turtlebot3 and Juno can be found in the appendix.

9

2.3.2 Behaviour-based approach

The second Juno, the client, will use a behaviour-based approach for navigation.
This is the most simple approach. With few sensors and generalized behaviours,
it is easy to create a robust robot. A behaviour-based robot is also very explain-
able since it follows clear logical rules about interaction with the environment.
However, due to it’s simplicity it is not expected to be the most optimal solu-
tion for our problem. Since there are two Junos and limitations on hardware
(sensors), the behaviour-based approach seems to be a good baseline for both
Junos, and possibly the best approach for a less equipped Juno.

The robot has the ability to navigate and avoid obstacles. behaviour-based sys-
tems (an example is shown in figure 5) consist out of different modules, called
behaviours. A behaviour is a programmed response to a certain sensorial input
and/or other system modules. The behaviours can be programmed with a set
of functions and can even be designed like a FSM (Finite State Machine) which
allows to have transitions through states within a behaviour (Jones and Roth,
2004). The behaviours send outputs to the effectors of the robot and possibly
other behaviour modules.

Figure 5: Schematic representation of a simple behaviour-based system.
(Matarić and Michaud, 2008)

2.3.3 The algorithm

Navigation is the most important part of the robot. Without navigation, the
robot is not able to do anything useful. The robot needs to follow the fence, for
which a wall-following behaviour is implemented. In the code block below two
cases are described in pseudo-code. The core of the behaviour based approach
is that the current state of the robot is checked every iteration of a for loop. By
choosing the right behaviour based on conditions with if statements, the robot
can follow a wall for a longer period of time. If the robot is too close to the
wall and the front is clear, adjust a bit to the right. However, if the front sensor
detects something very close, a turn is required.

10

if right_wall is far and front_wall is far:

adjust_to_right()

elif right_wall is far and front_wall is close:

turn_left()

elif right_wall is good and front_wall is far:

move_ahead()

elif right_wall is good and front_wall is close:

turn_left()

elif right_wall is close and front_wall is far:

adjust_to_left()

elif right_wall is close and front_wall is close:

turn_left()

Figure 6: Visualization of the wall distance. R corresponds to being in the
perfect distance to the wall, -R is close to the wall and +R to far.

2.4 Communication

Concerning the communication, the goal was to set up communication between
the Junos and the developer, between the Junos and the farmer and to set up a
multi-agent system involving the two Junos. Unfortunately, due to time limits,
it was not possible to implement the communication channel between the farmer
and the Junos. For this, it was planned to create a web-application using Azure.

2.4.1 Approach

The multi-agent system was implemented using a master and client-system. One
Juno was intended to be the master and the other one the client. For this, the
ROS-master URI of the client, which is normally just the IP-address of the client

11

itself, receives the IP-address of the master resulting in the client Juno becoming
the client to the master Juno. Because of this, the client Juno participates in
the ROS-process of the master Juno. This means that the master and client now
share the same ROS-process and thus are connected to each other. Now, one
Juno can subscribe to a topic to which another Juno publishes and thus they
can communicate to each other. However, the problem of this is that when the
Junos share the same ROS-process, they also share the same ”cmd vel” topic
which sends the movement commands to the robot. This means that the two
robots perform the exact same movements. To resolve this, namespaces had
to be created for the topics for which a seperation between the two Junos was
required.
For communication between Junos and the farmer, we work with the Azure
services provided by Lely to create two resources. These resources are the IoT
Hub and the Web App of Azure. For the IoT Hub we make use of the Ros Azure
IoT Hub package which allows the robot to send messages and information to
the Azure servers. This information can then be send to a web app on a mobile
device to notify the farmer about necessary information for the challenge. Ex-
amples being route progress and hardware errors.

2.4.2 Between Junos

After this setup was created, the Junos were able to communicate with each
other about their states and a multi-agent system was realised. This is primarily
necessary for avoiding a collision between the two Junos in the narrow passage.
As described above, this is accomplished by making one Juno the master and the
other one the client. By making this distinction, this case can be implemented
as a Juno-encounter behaviour. The master Juno always gets priority over the
client Juno. The master Juno constantly detects whether it is inside the corridor.
This is being realized by adding the minimum distance to a wall to the left to
the minimum distance to the right and checking whether this distance is smaller
then a certain threshold value, approximately the breadth of the narrow passage.
The master thus constantly sends a boolean message of this to the client Juno
which thus constantly receives this message and simply stops to driving to avoid
a collision. Whenever the messages are true again the client Juno will continue
it’s wall following. Another more sophisticated approach was also implemented
where the client itself also detects whether it’s inside the narrow passage. Then
if the master and the client are both inside the narrow passage, the client will
know this and will move backwards out of the corridor and wait outside of it to
avoid a collision. If thereafter, the master passed the corridor, the client will be
aware of this and will continue it’s wall following. However, due to difficulties
and time limits, this approach was not used.

12

2.4.3 Developer

Besides the communication between the Junos, the developer should also be
kept up to date about the processes of the two Junos. Because ROS mainly
drives on the communication channels called topics, the data that is being sent
through these topics is all the developer needs. Because of this, ROSboard is
being used. This is a dashboard which presents all the data of the topics in a
appropriate way. To realise this, only the required package has to be installed
in the workspace. In figure 7 the ROSboard is presented during the processes of
the Junos. For example, in the upper left corner, the scan data from the LiDAR
is presented. Next to it, the boolean messages of whether the master is in the
narrow passage are presented.

Figure 7: ROSboard during Juno processes

2.5 Features

To score more points, several extra features for the Juno robot were imple-
mented.

2.5.1 Homing

The homing feature was developed using computer vision to detect the base of
the Juno. In the challenge it was known to be a traffic cone, which is char-
acteristic of its orange color. With this in mind, an orange blob detector was
implemented. The final blob detected actually consists of more smaller blobs
combined (Figure 8). To make our algorithm more noise resistant, a threshold
is set for the size of the blobs which were allowed to be combined into the final
blob (Figure 9).

13

Figure 8: Detected blobs versus combined blobs

Figure 9: With noise (above) versus without noise (below)

To be able to follow this blob, a simple algorithm was developed to adjust the
angular speed of the Juno. First the center of the blob was calculated, and then
based on in which predefined region of the x-axis it was, a function was called
adjusting the angular speed more or less. There are 5 regions, of which 1 is the
center region. If the center of the blob is already in the center of the screen, the
angular speed was set to zero. Depending on in which region (far left, left, right
or far right), the angular speed was slightly changed or more heavily changed.

14

2.5.2 Juno vicinity lights

The same function detecting green blobs was modified to detect blue blobs as
well. Instead of calculating the center of this blob, a toggle on function was
called whenever the blue blob was detected 5 frames in row. If the light was
on and the blob was not in detected 5 frames in a row, the toggle off function
was called. Using the manufacturers own product API and the paho-mqtt API,
messages were published from the developers laptop to a mqtt broker on a
specific topic. A Shelly Plug-S is subscribed to this topic and therefore listens
to the messages, relayed by the broker. The contents of these messages are
HTTP commands for changing values in the plugs power settings.

3 Conclusion

Unfortunately, not everything which was developed in the preparation phase
also worked on the Juno robots in Ahoy. A model based and behaviour based
approach was developed for each robot, including communication between the
two robots. On top of this, a homing feature was developed using computer
vision. The same computer vision techniques were used to detect a different
blob color as the other Juno to switch on the lights when the Juno was seen.
However, the LiDAR sensor could not get a sufficient enough range to be able
to localize itself in SLAM. Therefore, some adjustments had to be made to the
setup of the two Junos.

3.1 Juno 1

Since it was not possible to navigate in SLAM with the new LiDAR configura-
tion, a behaviour based approach was required on Juno 1.
This Juno, a stripped down version of the original model (Figure 10), had the
LiDAR sensor mounted close to the ground in front, getting as much range as
possible while being low enough to the ground to also detect the hay bales.

15

Figure 10: Stripped down Juno (Juno 1) versus regular Juno (Juno 2)

3.1.1 Problems

A problem with this LiDAR setup is that the center of the LiDAR is not the
center of the Juno. This caused the Juno to turn too early in right turns,
thinking the right side is already clear for the whole Juno. In reality only the
front of the Juno passed the wall, while the rest was still alongside it.

3.1.2 Future improvements

Improvements can be made to this algorithm by hard coding a delay in a right
turn and let the Juno drive forward for a longer time. However, to finetune this
behaviour extensive testing would be required.

3.2 Juno 2

Needing to attach sonar sensors to the second Juno to be able to navigate,
wedges were developed such that the sonar sensors were pointed downwards.
This was needed because placing the sonars all the way on the bottom was not
possible due to the power cables for the sensors not being long enough.

Unfortunately, there could not be made a sufficient distinction in distance be-
tween the side of the hay, and the ground or top of the hay bales. This required

16

us to give up on navigating with the second Juno, and instead only demonstrate
our blob following algorithm on this Juno. The feature to lit the lights next to
the barn environment was implemented on this Juno as well.

3.2.1 Problems

The problem with the blob following algorithm was that it was still very sensitive
to noise. When there was green detected somewhere else in the image, the square
would be drawn around this blob as well. This caused the square of the center
to be in the wrong place and not correct the angular speed of the robot the
right way.

3.2.2 Future improvements

A solution for this problem could be to only calculate the center of the biggest
detected blob, or weight the center of the smaller blobs relative to the size of
the blob.

4 References

Batalin, M. A., Sukhatme, G. S., & Hattig, M. (2004). Mobile robot navigation
using a sensor network. IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004, 1, 636–641.

Huang, T. (n.d.). Rplidar-a3 laser range scannerrobotlaserrangescanner. https:
//www.slamtec.com/en/Lidar/A3

Jones, J., & Roth, D. (2004). Robot programming: A practical guide to behavior-
based robotics. McGraw Hill Professional.

Master and client communication documentation. (n.d.). http://wiki.ros.org/
ROS/Tutorials/MultipleMachines

Matarić, M. J., & Michaud, F. (2008). Behavior-based systems. In B. Siciliano &
O. Khatib (Eds.), Springer handbook of robotics (pp. 891–909). Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-540-30301-5 39

The Construct. [Online; accessed June 8, 2022]. (2022).
Yi-bo, L., & Jun-Jun, L. (2011). Harris corner detection algorithm based on

improved contourlet transform. Procedia Engineering, 15, 2239–2243.

Appendices

A ROS

Robot Operating System is a set of frameworks that allows us to communicate
between different components of a robot environment using Python and C++.
ROS is generally used in Ubuntu but can also be used in Windows. There
are several distributions for ROS, however for this project, only ROS1 Noetic

17

(all hardware used in this project) and ROS1 Melodic (Juno robot) are used.
As mentioned in Communication, ROS works by using topics, listeners and
talkers to communicate information and data between nodes, which in turn
are seperately run programs. This method of communication between different
processes allows for easy programming of robot control, but can also be used to
work with different aspects of robots, such as sensor input processing. There
are a plethora of open source ROS packages and libraries on the world wide
web which can be used for a variety of end goals, most important being the
connection between sensors, robots and our control over such robots.

B Hardware

The hardware used for the preparation, testing and demonstration of our code
is based on the Mirte navigation robot provided by Robohouse, the Turtlebot3
navigation robot provided by the UvA and the Juno navigation provided by
Lely during the 3 day hackathon. Each of these robots use a differential drive
motor for wheels. On top of this, each of these has been supplied with the
required software to convert the hardware signals into easily usable software
code. For each of these robots, the main processing units are an Orange Pi
Zero, a Raspberry Pi 3B+ and our own laptops respectively. Each of these run
a version of Ubuntu. The Mirte robot is supplied with an RPLidar 360 degrees
laser range scanner, 4 HC-SR04 ultrasonic sensors, a Logitech C930e stereo
camera and a MPU6050 gyroscope + accelerator. The turtlebot3 is supplied
with a similar LiDAR and gyroscope + accelerator. The Juno robot contains
NDA-classified hardware and as such only the USB CAN connection between
the hardware and our laptops is available as information.

C Software

Both Mirte and Turtlebot3 are supplied with their own ROS packages with
varying levels of usability and flexibility. Turtlebots are widely used in real world
robot tests and as such contains far more open source packages that can be used
for testing purposes. The Juno robot supplied to us contains a docker image
with ROS1 Melodic with limited usability. It’s sole goal is to communicate with
our laptops for controlling the wheels. All other computations must be done on
our laptops.

D Sensor hardware and software

The connection between sensor hardware and sensor software is called sensor
streams. Sensor streams refer to the connection between the sensor inputs that
our robot receives from the attached sensors and the stack. Software was set
up to receive these software inputs. For our implementation, it is not required

18

to have any sensor inputs other than the LiDAR scanner for model-based nav-
igation, since the laser scans will provide sufficient accuracy for path planning
within the barn environment.
By default, most ROS packages and code that make use of LiDAR inputs are
already linked to the standard scanner topic, while our LiDAR laser scanner
has packages that send the inputs to the same topic, thus setting up the sensor
stream is of relative ease. For behaviour based navigation, we use the HC-SR04
ultrasonic sensors, as they can provide us with enough sensor data to mimic a
limited LiDAR laser scanner. This is required for the challenge as we are only
allowed to use one LiDAR in total. The sonars use open source ROS packages
that easily set up the software stream required for use with the sonar.

E Other open source ROS packages

The following links contain all the open source packages used during the project:
https://github.com/microsoft/ros azure iothub
https://github.com/Slamtec/rplidar ros
https://github.com/engcang/HC-SR04-UltraSonicSensor-ROS-RaspberryPi
https://github.com/ros-planning/navigation https://github.com/tu-darmstadt-ros-pkg/
hector slam https://github.com/yoraish/lidar bot/tree/wall-follow-example/src/
ros/wall follower sim

19

F diagrams

ROS Smach FSM used for model-based route planning

make wps

load next wp
generate path

follow path

check comms

check lights

waypoint check

check final wp reachfinish program
yes

no

20

