
Project Artificial Intelligence

Visual Odometry with the
Ricoh Theta

Students:
O. Munteanu (10656901)
R. Pronk (10121897)

Supervisor:
Arnoud Visser

February 5, 2014



Abstract

In this paper, we highlight the idea of visual odometry using the
Ricoh Theta camera. A brute-force based method is presented which
aims at finding the best matching transformation between two consec-
utive frames. By computing motion fields a distance measure between
frames is calculated which is used to extract the estimation of two
transformations, namely rotation and translation. We show that us-
ing this method will yield good estimations for the transformations but
is still too computationally expensive for real-time use.

1 Introduction

There are many research papers regarding Visual odometry (VO) for omni-
directional cameras [3], however VO for a full 360 degrees spherical camera
like the Ricoh Theta is still a fairly new research topic. In order to get an
estimation of the ego-motion of this sensor, we study the effect of optical
flow between consecutive frames given the spherical domain. Based on these
motion fields we estimate two main transformations such as rotation and
translation. For this we use a brute-force approach where we try to match
the best transformation and so get a close enough estimation of the actual
transformation.

2 Visual Odometry

Visual odometry[1] is the process of estimating the motion (i.e., position and
orientation) of an agent (i.e., robot, vehicle, human) by analyzing various im-
ages used as inputs for the camera. The appliance of visual odometry covers
several fields such as robotics, automotive, augmented reality, and wearable
computing.
The visual odometry works properly when there is sufficient illumination in
the environment and a static scene with enough texture to allow apparent
motion to be extracted. Furthermore, consecutive frames should be captured
by ensuring that they have sufficient scene overlap.
The advantage encounted by visual odometry compared to wheel odome-
try is that visual odometry is not affected by wheel slip when taking into
consideration some adverse conditions leading to a more accurate trajectory
estimates.

1



The problems of visual odometry concern motion drift due to the errors ac-
cumulated over time from the occurance of displacements among consecutive
poses. This drift becomes evident after a few hundred meters and the results
rely on the features in the environment, the resolution of the camera, the
presence of moving objects such as people or vehicles, and the illumination
conditions. The problem of motion drift can be solved if the agent revisits
the place that has been already observed previously.
Regarding the usefulness of visual odometry, this can be used in several
domains, namely GPS, inertial measurement units (IMUs), laser odometry,
wheel odometry.

3 The Ricoh Theta

The Ricoh Theta camera1 is a full 360 degrees spherical camera with two
lenses, where the images obtained by the two lenses are automatically stitched
together. We assume that the images outputted by the camera are direct
polar which is also known as spherical or equirectangular projection. This
assumption is based on the fact that a simple wrapping around a sphere in
order to create the unit sphere (see figure 1) already provides a good result,
which for now should be enough to make an estimation for the ego-motion.

Figure 1: Simple wrapping around a sphere

Below we provide the code for wrapping an image in Matlab:

1https://theta360.com/en/

2



I = imread(’theta1.JPG’);

[x,y,z] = sphere(100);

figure;

warp(x,y,z,flipud(I));

3.1 Camera calibration

In order to obtain depth information and achieve better results, the camera
needs to be calibrated[2]. At this point, however, we were unable to use
pre-existing calibration toolboxes for this sensor. Due to this, we provide an
visual odometry solution for this camera where calibration is not required.

4 Ego-motion estimation

4.1 Optical flow

For achieving more insights regarding the approach of visual odometry, we
focus on the optical flow for obtaining the scene’s motion field. The optical
flow is a method that provides a measure of the apparent motion within a
sequence of images.
Our optical flow is implemented using Lucas Kanade algorithm that uses
gradient information obtained from consecutive frames. In order to improve
the method’s ability to track fast movements, Gaussian pyramids are used.
When using Gaussian pyramids, we look at different layers of detail of the im-
ages made by using Gaussian smoothing and rescaling. Using these different
layers also more general movements (derived from the smoothed images) can
be extracted. For our computations, we use the Lucas Kanade algorithm2

using Gaussian pyramids while taking three pyramid levels into consideration
when computing the optical flow.

2We use an implementation written by Sohaib Khan and can be downloaded from
http://crcv.ucf.edu/source/optical

3



4.2 Data-set

In order to be able to accurately test our system, we started by making
a data-set consisting of basic transformations made with the Ricoh Theta
camera. For testing our methods with respect to rotational transformations,
we took pictures under different angle degrees alternating every 5 degrees.
For translational transformations, we created a data-set for sideways and
forward translations. Where for each image taken, we considered different
scales interchanging every 1 cm.

4.3 Extracting the transformations

4.3.1 Rotation

When looking at the direct polar representation of the image we receive from
the camera, we can see the full 360 degree vision and most importantly we
can see that the horizontal axis has a range of 360 degrees (see figure 2). In
our approach we exploit this property and use this property to apply simple
rotational transformations on the image.

Figure 2: Range horizontal axis

In order to extract a close approximation of the rotation, we rotate the
new image (applying a circular shift) and see at which degree of rotation
it gives the lowest error compared to the original image. The error in this
case is given by the sum of vector lengths given the motion field between the
two images. For calculating this error we use an implementation of Lucas
Kanade algorithm using Gaussian pyramids where for each angle i assigned,

4



we calculate the corresponding sum of the motion vector lengths. We use
the build-in Matlab function circshift for the circular shifting of the image
in the horizontal axis. Therefore, an estimation of the degree of rotation can
be calculated by:

Shift image in horizontal direction → SizeImageX

360
× i (1)

Calculate Error → Error = sum of motion vectors lengths (2)

Degree of rotation → Argmin(Error(i)) (3)

Below we provide a part of the Matlab’s code regarding the computation
of errors according to the angle i:

for i = 1:10

[u,v,~] = HierarchicalLK(image1, ...

circshift(image2,[0 -round((size(image2,2)/360)*i)]),

3, 4, 2, 0);

errors(i) = sum(sum(abs(u))) + sum(sum(abs(v)));

end

4.3.2 Translation

In order to extract the translational transformations, we have to look at
specific parts of the image. Therefore the first step is to extract important
regions which indicate translational movement (in this case regions indicating
sideways movement see figure 3).

In order to get scale of translation in the sideways direction, we take the
same approach as with the rotational transformation. This time however
instead of applying a circular shift to the image, we zoom in/out on the
interest regions. Where we zoom in on one interest region and zoom out
on the other interest region, which region to zoom in on depends on the
direction of the agent. This direction can also be found by comparing the

5



Figure 3: Important regions for sideways movement

error of zooming in and out, in the same way we do throughout this paper.
To find the scale of translation, we zoom in/out with scale i and see which i
yields the lowest error. The estimation of scale can therefore be found as:

Zoom in/out on interest regions → Zoom with scale i (4)

Calculate Error → Error = sum of motion vectors lengths (5)

Scale of translation → Argmin(Error(i)) (6)

Below we present a part of the Matlab’s code regarding the computation
of errors for extracting the scale of translation:

% Extract interest regions

IRLeft1 = image1(IRLX1:IRLX2,IRLY1:IRLY2);

IRRight1 = image1(IRRX1:IRRX2,IRRY1:IRRY2);

numrows = size(IRLeft1,1);

numcols = size(IRLeft1,2);

offset = 1;

6



% Try for 10 zoom magnifications

errors = zeros(1,10);

for i = 1:10

IRLeft2 = image2((IRLX1+(i-1)*offset):(IRLX2-(i-1)*offset),

(IRLY1+(i-1)*offset):(IRLY2-(i-1)*offset));

IRLeft2 = imresize(IRLeft2 ,[numrows, numcols]);

IRRight2 = image2((IRRX1-(i-1)*offset):(IRRX2+(i-1)*offset),

(IRRY1-(i-1)*offset):(IRRY2+(i-1)*offset));

IRRight2 = imresize(IRRight2 ,[numrows, numcols]);

[u1,v1,~] = HierarchicalLK(IRLeft1, IRLeft2, 3, 4, 2, 0);

[u2,v2,~] = HierarchicalLK(IRRight1, IRRight2, 3, 4, 2, 0);

errors(i) = sum(sum(abs(u1))) + sum(sum(abs(v1))) + ...

sum(sum(abs(u2))) + sum(sum(abs(v2)));

end

5 Results

5.1 Rotation

An example regarding the results obtained after implementing the rotation is
given considering image1 (original position) and image2 (rotated 5 degrees).

Figure 4: Image for 0 degree (Left Side) and Image for 5 degrees (Right Side)

From Figure 5 we can observe that the lowest error of the motion vectors
lengths is provided by the angle i=5 degrees, which was also the degree of
rotation for image2. Given this result we can see that our method is able to
make close estimations of the actual degree of rotation and is in this case spot

7



Figure 5: Errors plotted per degree of rotation

on. For a more accurate measure however, a larger resolution image should
be used (now downscaled to save computational expenses) and shorter angle
intervals should be checked. More results regarding the estimation of degree
of rotation can be found in appendix A. Here can be seen that larger rotations
do become harder for the system, however using a bigger (original) resolution
for the image would yield higher accuracy given these big rotations.

5.2 Translation

After running the implementation for the sideways translation, we obtain the
lowest error for i=5 as can be seen in figure 6. However, this scale is something
relative and all we can conclude based on this is that there is a certain
translation in the sideways direction. However, how many centimeter this
translations actually consists of is unknown. For comparison we also added
results for other scale of translations (see appendix B) and what can seen
from these results is that relativity between translations is still maintained.
Meaning that a bigger translation yields a bigger scale and vice versa.

8



Figure 6: Errors plotted per scale of translation (sideways movement)

6 Conclusion

Shown is that rotational transformations can be estimated quite well, where
even higher accuracy could be achieved by using higher resolution images
(which were now downscaled due to the computational expenses). Also the
translational transformations can be estimated but will only give relative
values for the measure of translation. This relative values however, can cer-
tainly be used during the VO process as the relativity between translations is
maintained. The brute-force method is however still quite computationally
expensive where running this in real time is still an unfeasible task.

7 Future Work

With our current work we are able to estimate the degree of rotation and a
relative translation measure. These estimations are however still done sep-
arately, it would be more convenient to make this into a single operation
which finds the rotation and translation at the same time. Another improve-
ment would be to change the relative translation measure to something more
concrete, which could be achieved by first calibrating the camera. But also
taking a more mathematical approach instead of brute-force estimation and
so creating a method which can also run real-time will be a great improve-
ment.

9



References

[1] Roland Siegwart, Illah L. Nourbakhsh & Davide Scaramuzza Introduction
to Autonomous Mobile Robots, 2nd Edition. The MIT Press, Cambridge,
Massachusetts London, England. 2011.

[2] Peter Corke Robotics, Vision and Control - Fundamental Algorithms in
MATLAB, The MIT Press, Cambridge, Massachusetts London, England.
Spring.

[3] Chris McCarthy, Nick Barnes & Mandyam Srinivasan Real Time
Biologically-Inspired Depth Maps from Spherical Flow

[4] Sohaib Khan Hierarchical Lukas Kanade, downloaded from:
http://crcv.ucf.edu/source/optical,2003.

10



Appendix

A Rotation

Errors plotted per degree

Figure 7: Testing 0-10 degrees (Left) & 0-15 degrees (Right)

Figure 8: Testing 0-20 degrees (Left) & 0-25 degrees (Right)

11



B Translation

Errors plotted per scale

Figure 9: Testing 2 cm sideways (Left) & 4 cm sideways (Right)

12


