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Abstract. We train a small Nvidia AI JetRacer to follow the road on
a small DuckieTown highway. In the real-world, the road not always has
the same appearance, so the system should not be trained on lane mark-
ings alone but on the complete view of the front camera. To make this
possible, the system is trained in simulation using a recent reinforcement
learning approach in an end-to-end fashion. This driving experience is
then transferred to the circumstances encountered on a real track. Trans-
fer learning is surprisingly successful, although this method is very sensi-
tive to the details of the vehicle dynamics. We trained multiple models at
different speeds and evaluated their performance both in simulation and
in the real world. Increasing the velocity proves difficult, as the learned
policy breaks down at higher speeds. The result is a small Nvidia AI
JetRacer, which is able to drive around a DuckieTown highway, based
on simulated experiences.

Keywords: Reinforcement Learning · Proximal Policy Optimization ·
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1 Introduction

Autonomous driving has the potential to become one of the most impactful de-
velopments of the 21st century [2]. In recent years, many advances have been
made in the pursuit of fully self-driving cars, most notably in artificial intelli-
gence research [4]. One of the main challenges posed in this pursuit is the safety
concerning these systems in the real-world [5]. The lack of transparency in these
systems means they are difficult to evaluate and verify [20].

With the Meaningful Control of Autonomous Systems initiative (MCAS), we
aim to accelerate research on the topic. To do so, an environment is needed which
allows experimenting with different perception, decision and control algorithms.

The Duckietown [16] platform aims to be a friendly and safe environment
to test and demonstrate artificial intelligence (AI) techniques for autonomous
driving. The platform provides small vehicles, DuckieBots, and standardized
worlds, DuckieTowns, where the DuckieBots can drive around. Together with
the DuckieTown simulator [6] the platform provides the infrastructure for both
simulated and real-world autonomous driving research.
? Supported by the Meaningful Control of Autonomous Systems initiative from TNO,
CWI and UvA.
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Because the current automated vehicles like Tesla Autopilot provide only
support on highways, we modified the DuckieTown standard world (inner track
in Fig. 1a) into a DuckieTown highway (outer track in Fig. 1a). We also upgraded
the DuckieBot with a faster front wheel steering vehicle, the Nvidia AI JetRacer1
shown in Fig. 1b.

Reinforcement learning techniques have been shown to be able to learn to
drive autonomously [11]. It has been shown that Proximal Policy Optimization
(PPO) can be used to solve different types of challenges, such as the OpenAI
Gyms2, more efficiently than previous techniques. Moreover, PPO methods are
simpler to implement and offer better sample complexity than previous methods
[19].

As part of the MCAS initiative, we train a model in an end-to-end fashion in a
simulator using recent reinforcement learning techniques to control a real-world
vehicle around a track. The contribution of this paper is the use of the more
recent reinforcement learning technique PPO in combination with the transfer
to the real-world domain.

(a) The DuckieTown highway used for real-world evalu-
ation. The outer track circle is used for the JetRacer.

(b) The JetRacer vehicle
used for real-world evalua-
tions.

Fig. 1

2 Related work

The problem of avoiding obstacles and keeping to a traffic lane has a long history
of research. In 1989 Pomerleau [17] showed with ALVINN that neural networks
have the capacity to control a vehicle based on its surroundings. The devel-
opments of convolutional neural networks (CNN) in this century enabled the

1 https://www.waveshare.com/jetracer-ai-kit.htm
2 https://gym.openai.com/
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processing of higher resolution images [13], which allows the usage of the full
resolution of the frontal camera.

End-to-end imitation learning is a highly effective technique that can learn
both the representations and policy to solve a given task, without the need for ex-
pert knowledge [7]. This is demonstrated by Bojarski et al. [3] with their DAVE-2
vehicle. Leveraging the recent increases in computing power, their system is fully
capable of driving in traffic.

In [11] the authors discuss that while RL has great potential, the lack of
literature and large scale datasets prevents mature solutions. Specifically, domain
adaptation from a simulator to the real-world is often challenging [11]. The
simulation-reality gap thoroughly tests model generalization, as the model must
both be feature-level and policy-level domain invariant. Steps to reduce the gap
can be taken by transforming virtual images into synthetic real images [15].
Promising results are also shown by using a more realistic simulator, the World
Rally Championship 6 game, as demonstrated by Jaritz et al [10].

Training a self-driving car to stay on the road with Proximal Policy Opti-
mization (PPO) has been demonstrated by Holen et al [8]. However, the transfer
learning was from 2D simulation to 3D (and vise versa), while in this paper it
is demonstrated for 3D simulation to a real vehicle.

Learning to drive in the duckietown world, and its simulator, has already been
approached by many researches and competitors of the Arfiticial Intelligence
Driving Olympics (AI-DO). In the first edition of AI-DO [22], the top contestants
used multiple approaches, ranging from classical to reinforcement learning (RL).
Classical approaches, such as the Hough transform for line detection, are used by
half of the top contestants in AI-DO 2018. From the results of the competition,
it is clear that transferring to the real-world poses challenges. Most participants
did not survive for more than 3 seconds. As each participant is only given 5
trials, it is difficult to draw any conclusions on whether the learning approaches
performed better than the classical ones.

The imitation learning approach by Team JetBrains is elaborated in [18]. A
simple convolutional neural network is trained in an end to end fashion, with
their best result trained on both real-world and simulated data. This method
managed to traverse 30 tiles in 60 seconds in their real-world testing. Using this
method, the team managed first place in the 2019 competition.

A limitation of imitation learning is that it has difficulty generalizing to
unseen scenarios [9]. The policy is limited to learning from the data distribution
of the dataset generated by the teacher. Allowing the agent to optimize its policy
in the target environment could therefore yield better generalization.

Reinforcement learning offers a framework for learning in such environments.
The task of learning to control a vehicle in an end-to-end fashion has been ap-
proached using many of the recent RL techniques, such as Deepmind’s Asyn-
chronous Advantage Actor Critic (A3C) [12]. Other approaches such as Deep
Deterministic Policy Gradients (DDPG) and Deep Q-Network (DQN) have also
been used [11].
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Reinforcement learning has been implemented in the duckietown enviroment
by [1]. In this paper, a deep reinforcement learning approach using Deep Q-
Networks (DQN) is presented. The agent is trained in the simulator, and then
evaluated in the real-world. Their results show that the approach is comparable
to the 2019 winners, team JetBrains.

As DQN can only operate in the discrete domain, the robot is controlled using
three actions. However, the agent may benefit from continuous control over the
vehicle. Recent techniques such as PPO have been shown to outperform DQN,
and are capable of learning in the continuous domain.

3 Method

Reinforcement learning framework In [14] discrete control is shown to perform
poorly in the target domain, as it suffered from severe side-to-side wobbling.
This wobbling can be observed as well in the results from [10], which also im-
plemented a discrete action space. While discretization has often been shown to
improve learning, in the context of steering a car continuous control might still
be preferable. We therefore use Proximal Policy Optimization (PPO), as it is
capable of implementing continuous action spaces.

The DuckieTown simulator is based on OpenAI’s Gym framework and is
a drop-in replacement with existing frameworks and baselines such as OpenAI
baselines. While the simulator fidelity is quite low, the real-world DuckieTown
environment is rather simple, featuring large road markings in an indoor environ-
ment. It does not often feature visual effects such as shadows, water reflections,
or sun flare effects, reducing the need for a photo-realistic simulator. We use
PPO to train the full network in the DuckieTown simulator.

Network architecture We use a simple architecture, due to the comparatively
low complexity of our environment. Furthermore, this reduces computational
needs and training duration. The network architecture is shown in table 1. The
input of the model consists of the last 4 grayscale frames. The network outputs
parameters α and β for a beta distribution from which the steering angle is
sampled. A separate head is used as a critic for PPO.

Reward function and setup A similar reward function to [1] is used, shown in
Equation 1. This is similar to previous work, such as [10]. The reward function
incorporates both the angle θ to the lane, and distance d to the center of the
track, shown in Fig. 2, as well as a base negative reward. In contrast to Jaritz
et al. [10], the reward is not scaled by the velocity v as we use a fixed velocity.
In addition, a small negative offset with a value of 0.1 is included to incentivize
action.

Ours R = cos(θ)− d− 0.1

Jaritz et al. [10] and Almási et al. [1] R = v(cos(θ)− d) (1)
Mnih et al. [12] R = v(cos(θ))
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Layer Size Channels Kernel Stride Activation
Input 96x96 4
Conv1 96x96 8 4 2 ReLU
Conv2 47x47 16 3 2 ReLU
Conv3 23x23 32 3 2 ReLU
Conv4 11x11 64 3 2 ReLU
Conv5 5x5 128 3 1 ReLU
Conv6 3x3 256 3 1 ReLU
Flatten 256
Layer Input Output Activation
Critic Fc1 256 100 ReLU
Critic Fc2 100 1
Actor Fc1 256 100 ReLU
Actor Fc2 α 100 1 Softplus
Actor Fc2 β 100 1 Softplus

Table 1: The network architecture used to drive autonomously.

Fig. 2: Reward function symbols

The state space consists of the last 4 frames, to provide the model with more
information about its position. These frames are downscaled to 96x96 gray-scale
images and are rendered using the same 160° field of view as the camera module
present on the JetRacer.

To simplify the task, the velocity is fixed, and only the steering angle is
predicted by the network. Furthermore, each action is repeated 8 frames, which
helps improve driving behavior as shown by [21]. Each episode consists of at
most 500 timesteps, or until the vehicle crosses the road markings after which
the episode is ended with a penalty. In 500 timesteps a perfect agent is able to
perform at least one lap around large maps. To prevent unfairly difficult starting
positions, the vehicle is oriented to within 4°offset to the lane direction at the
start of each episode. For all experiments, the simulator is set to render images
at 30 frames per second. The hyper-parameters used for training are summarized
in Table 2.



6 T. Wiggers et al

Parameter Value
Learning rate 0.001

Replay buffer size 2000
Batch size 128
Gamma 0.99

Optimization epochs 10
Max gradient norm 0.5

Value function clip param 0.1

Table 2: The hyper-parameters used for training using PPO.

We experimented using three models trained in three different circumstances.
The first model, Baseline, is trained on the "Straight road" map at 0.14m/s to
provide a baseline. The second model, MediumSpeed, is trained on the "Zigzag"
map at a fixed speed of 0.14m/s. The final model, HighSpeed, is also trained on
the "Zigzag" map with a higher speed of 0.35m/s, which allows for real-world
evaluations at a higher speed. The "Zigzag" map is used because it offers a good
balance between left turns, right turns, and straight roads. It also features some
objects and vehicles outside of the track as a distraction. All maps are illustrated
in Fig. 3.

To evaluate the performance of the trained models we count the number of
infractions occurring in 100 episodes. The mean and standard deviation of the
positional error is also measured and presented relative to the width of the road,
to indicate the models’ ability to follow the lane. The positional error is measured
as the difference between the agent position to the center of the lane it must
follow. The final evaluation is performed on the real-world DuckieTown highway
using the JetRacer. This world has been adjusted to have larger corners, which
are necessary for the JetRacer due to its large turning radius. The DuckieTown
highway is comparable in length to the "Loop empty" map. The number of
infractions during the attempts at the laps are counted. Similar to the episodes in
the simulation, after each infraction the JetRacer is reset to its starting position.
A lap is therefore only successful and counted if the JetRacer fully completes
the track from its starting position.

Fig. 3: DuckieTown maps used for training.
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For the real-world evaluation, we deviate slightly from other papers. As the
JetRacer is wider than a standard Duckiebot, moves faster, and is limited in
its turning radius, we did not count crossing into the opposing lane and only
considered leaving the track as an infraction.

4 Result

Simulator evaluation In Table 3 the number of infractions in 100 episodes is
shown, as well as the lane position error mean and standard deviation relative
to the width of the road. These metrics provide insight into how well the agent
was able to maintain the correct position on the lane. An infraction is counted
whenever the agent touches the outside lines of the road, after which the episode
is terminated.

Surprisingly, the Baseline model trained only on the "Straight road" map
generalizes very well. The model performs well on unseen maps that include
turns, and even maps which include intersections. This is likely due to the many
corrections and recoveries needed to learn to follow the straight track during
training.

The models MediumSpeed and HighSpeed learn to stay on the road quite
well. They have not learned to drive perfectly, as in some of the corners the
models struggle to recover from errors and exceeds the track limits. In maps
without difficult corners where recovery errors are less likely, such as "Small loop"
the agent makes few mistakes. These errors are often introduced due to side-to-
side "wobbling" behavior on straight roads. On the unseen map "Loop empty",
which is similar to "Zigzag", the model performance is equal. An example of the
driving behavior can be seen in this video3.

Once trained, the models perform surprisingly well on the "Udem1" map,
which introduces unseen 3 and 4-way intersections. This is likely because the in-
tersections provide multiple valid directions for the vehicle to continue, and are
therefore less susceptible to imperfect positioning due to wobbling. An example
of the resulting driving behavior on this map can be seen in this video4.

Increasing the velocity causes both the MediumSpeed and HighSpeed agents
to crash much more often, as shown in table 3. This effect has slightly been mit-
igated by reducing the action repetition from 8 to 4 during evaluation, resulting
in better performance at speeds above training speed. Reducing the speed also
reduced the number of infractions incurred by the MediumSpeed model.

real-world evaluation The real-world performance of the MediumSpeed model is
tested using the JetRacer and the DuckieTown Highway. The base speed of the
JetRacer is relatively high, at around 0.5m/s. This higher speed is compensated
by processing as many frames as possible, around 15 per second.
3 Driving on the Zigzag map used for training: https://youtu.be/7cju-CylTHQ
4 Driving on the unseen Udem1 map: https://youtu.be/7xWd9aIqzmg

https://youtu.be/7cju-CylTHQ
https://youtu.be/7xWd9aIqzmg
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Model name Speed Evaluation map Infractions Lane pose Lane pose
mean error std dev

Baseline 0.14m/s udem1 36/100 7.3 % 12.5 %
Baseline 0.14m/s Zigzag 74/100 9.2 % 15.5 %
Baseline 0.14m/s small loop 29/100 9.9 % 15.8 %
Baseline 0.14m/s loop empty 29/100 5.7 % 12.2 %
MediumSpeed 0.07m/s Udem1 12/100 14.0 % 16.9 %
MediumSpeed 0.07m/s Zigzag 21/100 16.7 % 18.6 %
MediumSpeed 0.07m/s Small loop 0/100 20.4 % 17.4 %
MediumSpeed 0.07m/s Loop empty 12/100 13.6 % 17.3 %
MediumSpeed 0.14m/s Udem1 8/100 7.0 % 11.6 %
MediumSpeed 0.14m/s Zigzag 30/100 10.4 % 15.8 %
MediumSpeed 0.14m/s Small loop 7/100 19.5 % 17.8 %
MediumSpeed 0.14m/s Loop empty 25/100 14.1 % 18.1 %
MediumSpeed 0.28m/s Udem1 48/100 7.2 % 12.6 %
MediumSpeed 0.28m/s Zigzag 80/100 12.2 % 17.5 %
MediumSpeed 0.28m/s Small loop 40/100 8.5 % 14.4 %
MediumSpeed 0.28m/s Loop empty 38/100 7.9 % 14.8 %
HighSpeed 0.35m/s Udem1 27/100 6.1 % 7.7 %
HighSpeed 0.35m/s Zigzag 17/100 3.5 % 5.9 %
HighSpeed 0.35m/s Small loop 22/100 3.5 % 6.4 %
HighSpeed 0.35m/s Loop empty 19/100 4.4 % 5.8 %
HighSpeed 0.42m/s Udem1 28/100 6.0 % 7.3 %
HighSpeed 0.42m/s Zigzag 43/100 4.7 % 8.4 %
HighSpeed 0.42m/s Small loop 49/100 5.9 % 9.8 %
HighSpeed 0.42m/s Loop empty 62/100 5.0 % 6.7 %

MediumSpeed ∼0.5 m/s DuckieTown Highway
(real-world) 10/100 - -

Table 3: Infractions and lane position accuracy score’s for trained models. Each
map is evaluated for 100 episodes and 500 timesteps. Best result for each map
is highlighted.

The real-world evaluation was performed using the MediumSpeed model, as
it is the best model that transferred to the real-world. The JetRacer performed
the laps at its base speed, as increasing the speed renders the model incapable
of completing a lap. The HighSpeed model failed to transfer to the real-world as
it fails to complete a single lap at all tested speeds.

The JetRacer completed 100 laps, in which it caused 10 infractions by leaving
the track. These infractions are often caused by poor positioning going into the
corners of the track, due to some wobbling behavior on the straights. An example
of a lap can be seen in this video 5.

5 Driving in the real-world Duckietown Highway: https://youtu.be/hi1qfQrnXq4

https://youtu.be/hi1qfQrnXq4


Learning to drive fast on a DuckieTown highway 9

Comparison to state-of-the-art In the previous work of [1], the agents are shown
to have a success rate of 96% in the real-world. Our approach shows a 90%
success rate, which is competitive with to the result of [1] given the stochastic
nature of these tests.

The agents presented in AI-DO are capable of driving 13 tiles in 30 seconds
[22]. The 2019 winners are capable of driving up to 19 tiles. Given that the
tiles are 0.42m, this gives a speed estimate of 0.16 m/s to 0.26 m/s. The base
speed of the JetRacer is significantly faster than this, driving at almost 0.5 m/s.
While our agent drives significantly faster in the real world, these figures are not
directly comparable due to the relaxed rules concerning lane infractions.

5 Discusion

In Osiński et al. [14] it is shown that discrete control performs poorly to stay on
the road. Simply introducing continuous control doesn’t solve this issue. This is
likely caused by the reward function, which does not discriminate between an
agent that often corrects course erratically and one that corrects more carefully.
The wobbling is also seen in our real-world tests, and is often the root cause of
later infractions.

Increasing the speed of the vehicle quickly increases the number of infractions
caused by the agent. This suggest the learned policies are not robust against
changes in vehicle dynamics. This effect is again demonstrated in the real-world
evaluations, where the tested models are highly sensitive to the vehicle dynamics.
While reducing the action repetition to increase the update frequency can help
to improve the speed of the vehicle, it does not directly address the problem
arising due to the simulator reality gap.

6 Conclusion

The MediumSpeed model trained using proximal policy optimization is capable
of driving autonomously on several maps. Moreover, it performs well on un-
seen maps with new road types such as intersections. This shows high levels of
generalization can be obtained using reinforcement learning. This generalization
extends to real-world tracks, as the model can successfully complete multiple
laps around the DuckieTown highway.

We show that the approach is comparable to state-of-the-art, but drives
significantly faster. Increasing the speed more proves difficult, as policy-level
generalization concerning the vehicle dynamics is not readily learned. This is
exemplified by the failure of the HighSpeed model to transfer to the real-world.
Randomisation of the vehicle dynamics in the simulator could help close the
simulator-reality gap, yielding models with a more general policy. These might
be able to better control vehicles outside of the vehicle in its training domain,
such as high-speed real-world vehicles like the JetRacer.

While training in a simulator enables the use of reinforcement learning, cor-
rectly adapting to the real-world domain requires high levels of generalization.
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The use of intermediate state spaces, such as those produced by segmentation
networks as in [13], could further increase the ability of the agent to operate in
the real-world.

The trained model and created environment provide a real-world test bed for
continued research on safe autonomous driving for the MCAS initiative.
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