
End-to-end Imitation Learning for Autonomous
Vehicle Steering on a Single-Camera Stream

Thomas van Orden[] and Arnoud Visser[]

Intelligent Robotics Lab, University of Amsterdam, The Netherlands?

Abstract. Vehicles can follow roads based on a forward-looking camera,
but this has to be done reliably in all circumstances. In daily traffic, they
can encounter many unforeseen situations. Training for those situations
in simulations should prepare them for such encounters, but this requires
simulated worlds with enough complexity. In this paper, we compare dif-
ferent convolutional neural networks trained to follow the roads in one of
the most complex environments available in the simulation environment
CARLA: the map Town 3. Still, during training the vehicle encounters a
disproportionate number of simple straight roads, so care has to be taken
on the balance in the training set. End-to-end learning for autonomous
vehicles have been shown before, but not for the complex worlds used
in this paper. After the training, the vehicle can follow the road reliably
in the training map, a behavior that can be transferred to a non-complex
map with circumstances it has not seen before. Complex situations remain
difficult to learn without high-level commands. The learned behavior has
been validated on a map which is just released with the latest version of
the CARLA simulator, Town 10HD. The Xception network architecture
performs best in our benchmark with success rates of 34% and 90% for
complex validation town Town 10HD and non-complex validation town
Town 6 respectively.

Keywords: End-to-end Imitation Learning · Autonomous Vehicles · CARLA
simulator.

1 Introduction

The role of machine learning and in particular deep learning in the car industry
is greater than ever before [3]. Well-known car companies introduce more and
more smart assistants, and some companies like Tesla even construct cars capa-
ble of level 3 autonomous driving [16]. Those innovative products may provide
many benefits, but the main objection for wide adoption is safety. Last year the
Dutch Onderzoeksraad voor Veiligheid investigated several accidents at the Dutch
highways. The report concluded that driving assistant systems may take un-
expected actions that may confuse the driver. Besides, the system’s choices are

? Supported by the Meaningful Control of Autonomous Systems initiative from TNO,
CWI and UvA.

https://orcid.org/0000-0001-5651-6231
https://orcid.org/0000-0002-7525-7017

2 T. van Orden, et al.

difficult to explain and even more difficult to compare with other systems. A
lack of insight into a model’s decisions is also known as the black box problem.
With Meaningful Control for Autonomous Systems (MCAS), we aim to pro-
vide better insight into the black box of a smart system. To better understand
and improve upon driving assistants, a repeatable experiment is key. Therefore,
we use a photo-realistic simulator as testing environment.

CARLA is a state-of-the-art simulator that includes many complex aspects
of the real world such as pedestrians, different junction types, multiple-lane
roads, fifteen different weather conditions [9], and traffic simulation. In addi-
tion, the quality of the representation of the real world is outstanding, includ-
ing a variety of assets such as houses, street lights, trees, and other vehicles. The
current 10 maps range from rural driving areas to highways. Figure 1 shows the
layout of Town 3 that we use for training (1a), the layout of CARLA’s newest
Town 10HD that we use for testing (1b), and the layout of CARLA’s highway
Town 6 that we use for additional validation in this research (1c).

(a) Town 3 (b) Town 10HD

(c) Town 6

Fig. 1: Top-down layout view of used CARLA maps.

Convolutional neural networks (CNN) have proven to be very accurate
at learning features from two-dimensional images [15]. End-to-end imitation
learning takes advantage of these features and tries to solve mapping from raw
sensory input to an action output [10]. Therefore, the network simultaneously
learns to extract features as well as a decision policy based on those features.
We compare different state-of-the-art CNN networks to learn a discrete steer-

End-to-end Imitation Learning for Autonomous Vehicle Steering 3

ing angle from a single raw input image. Our baseline network is inspired by
NVIDIA’s approach [4].

2 Related work

A lot of research has been done in the past few years on the topic of autonomous
driving with end-to-end imitation learning. Bojarski et al. from NVIDIA have
shown that an end-to-end approach can learn to follow the road and stay in one
lane [4]. They used a triple-cam setup in which three cameras were mounted
behind the car’s windshield. Figure 2 shows such a triple-cam setup, as in the
recently announced Autopilot 2.0/Tesla Vision hardware suite. The two off-
center cameras provided the model multiple viewpoints with according steer-
ing angles. A relatively small CNN with 250.000 parameters was fed an input
image from one of the three cameras and the current steering angle. In addi-
tion, a random shift and rotation were applied to the input. After training, the
model could accurately predict the steering angle from only an input image
from the center camera. Even when transferred to the real world the model ob-
tained high autonomy scores of 98%. However, those real-world tests excluded
lane changes and road-crossing turns.

Fig. 2: Example of triple-cam setup behind car’s windshield, with below this
example the view of the triple camera’s from left, middle to right camera.

Codevilla et al. from Intel Labs have combined high-level human commands
and CNNs [7]. In contrast to other approaches, human interaction acts as a
decision module for the network. A high-level sub-module is activated upon
the human’s command. Besides the output of the sub-module, an acceleration

4 T. van Orden, et al.

value is predicted. The dataset is generated in CARLA Town 1 using a triple-
cam setup with human expert annotations. Crucial to the success of the model is
data augmentation. By injecting noise to the steering commands of the teacher
while driving, the dataset includes recovery situations. These might prevent
overfitting to a perfect driver. Evaluation in Town 2 is done in a similar fashion
as Bojarski et al. Results in simulation as well as in the real world, using a scale
model radio controlled car, show that the proposed architecture is capable of
reaching the goal without many failures.

Abdou et al. propose a network that combines Intel’s and NVIDIA’s ap-
proaches [1]. The CARLA Autopilot system is used to generate a large dataset of
images. The used model consists of a feature extraction part based on NVIDIA’s
model and is then conditioned on a CARLA command signal. This command
signal determines which branch of the Intel-inspired decision part is then used
to predict the steering angle. Every branch corresponds to a possible task such
as take a left turn, go straight. Besides, a speed branch is attached that predicts
a throttle value. Evaluating is done in Town 1 and 2 of CARLA under different
weather conditions. It outperforms Intel’s architecture in almost all tasks, but
this measurement is only based on the success rate where the model reached
the destination in time. Factors such as collisions with other cars or traffic rules
do not directly affect this rate.

Haavaldsen et al. were also inspired by NVIDIA’s approach and used CARLA’s
Town 1 and 2 for training [10]. They augmented the CNN with a long-term
short-term (LSTM) layer which is used as a feature extractor. The LSTM layer
improved the robustness of the controller, with a superior reaction to sudden
changes in the scenery caused by other traffic.

Chen et al. propose a new approach to imitation learning [5]. First, an agent
learns a driving policy by imitating an expert. The agent in this stage is pro-
vided with all environmental information. Second, a new agent learns to imi-
tate the first agent but without access to the environment’s state. They achieve
a 100% success rate on the CARLA benchmark in Town 1 and Town 2.

In this study, we concentrate on robust driving on the trajectory first, for the
more challenging scenario of CARLA’s Town 3. In addition, we aim to identify
the agents’ strengths and weaknesses to set the outline for future work.

3 Experiment

For this experiment, we use CARLA simulator version 0.9.8 and Town 3 map
for training and testing. Note that the logic inside the simulator changed sig-
nificantly recently, which means that the results in this paper cannot directly
be compared with results obtained from versions < 0.9.6. The results can be as
large as a difference in completion rate of 30% [5]. Town 3 includes different
complex situations such as 5-lane junctions, a roundabout, and a tunnel. Ac-
cording to CARLA’s documentation, Town 3 is the most complex. The recently
released Town 6 and Town 10HD are used for validation.

End-to-end Imitation Learning for Autonomous Vehicle Steering 5

First of all, we generated the 2020621 dataset by using the CARLA way-
point function. The selected ego-vehicle, a Toyota Prius (see Fig. 3), has an RGB
camera mounted on top its windshield. The camera has a standard 105 degrees
field of view (FOV), capturing an image at every simulator time-step. A fixed
velocity vector of

[
0.0001 0.0001 0.0001

]
is applied to the ego-vehicle which cor-

responds to approximately 0.1 km/h.

Fig. 3: CARLA simulator with model inference vector (green) and vehicle for-
ward vector (red).

To prevent overfitting the weather conditions are cycled throughout the
simulation to ensure a uniform distributed dataset per weather condition. The
weather conditions change the lightning of the environment as well and can
thus be seen as a form of data augmentation. To ensure a realistic path for the
ego-vehicle we use the waypoints included in Town 3. Those waypoints are
calculated by CARLA. At every time-step, we choose a random waypoint out
of the set of valid next waypoints. Valid waypoints are defined by CARLA and
are dynamically changing based on the ego-vehicles’ position. For example, an
intersection provides multiple valid waypoints for every possible turn. Also, to
prevent overfitting to a perfect path, we add noise to the location of the way-
point (1).

waypoint =

x
y
z

+

N (0, 0.8)
N (0, 0.8)

0

 (1)

The resulting dataset consists of 131 thousand 720× 1280 RGB images, in-
cluding the corresponding steering angles. A sample with the corresponding
steering angle is shown in Figure 4. Note that the steering angle is in the inter-
val

[
−1, 1

]
.

Our baseline CNN network (see Fig. 5) consists of an input layer with shape[
720, 1280, 3

]
followed by a cropping and resizing layer which transforms the

images to
[
104, 256, 3

]
. The transformation is done to reduce memory usage and

6 T. van Orden, et al.

Fig. 4: Samples from encountered situation in Town 3 (left) and Town 10HD
(right). Steering angles: 0.439225 (green vector) and 0.385478 (blue vector).

to ensure the image only captures the road below the horizon. Besides, the color
space is transformed from RGB to YUV. The feature extraction part of the model
is based on NVIDIA’s architecture consisting of 5 convolution layers. The first
3 layers use a 3× 3 convolution kernel and the last two use a 2× 2 kernel. All
convolution layers have Exponential Linear Unit (ELU) activation functions.
The feature extraction part is followed by a decision module that starts with a
0.3 dropout layer. Followed by a flatten layer and two dense layers. The final
output layer consists of 5 nodes with a softmax activation function. Categorical
cross-entropy is used as loss function in combination with an Adam optimizer
(with learning rate 10−4) [14].

We compare our baseline to the following state-of-the-art CNN networks:
ResNet50 [11], ResNet101V2 [12], DenseNet121 [13], Xception [6] and Efficient-
NetB7 [17]. All architectures are extended with a flatten and softmax dense
layer to match the five class output. Table 1 compares the number of trainable
parameters for all models. Our network is the smallest in terms of trainable
parameters.

Fig. 5: Illustration of the model architecture. All question marks represent the
non-fixed batch size.

To enhance insight into the models’ decisions the direction vectors of the
ego-vehicle and the model’s prediction are plotted as an overlay in the simu-
lation. Figure 3 shows an example simulation snapshot with a vector overlay.
In addition, the continuous regression problem of predicting a steering angle
is converted to a discrete classification problem. The models’ five output nodes
correspond to the action space of possible steering angles:

[
920o, 910o, 0o, 10o, 20o].

Class balancing is done to create an equally distributed dataset over all classes.

End-to-end Imitation Learning for Autonomous Vehicle Steering 7

Evaluating and comparing the models is done in two ways. First, the F1
scores are calculated for the validation set of the dataset. Second, the models are
tested in the CARLA simulator combined with a custom benchmark to provide
success rates and lane marking infractions.

To average out CARLA’s non-determinism, the benchmark consists of a
number of runs that consist of several episodes. During an episode, all steering
is done by model inference. We use a random start position for the ego-vehicle
at each episode which is a sample from the provided set of possible spawn po-
sitions by CARLA. During the benchmark, several statistics are captured such
as lane marking invasions and collisions. Those statistics are provided by the
CARLA simulator.

In this study, we configured the benchmark to match the original CARLA
benchmark as good as possible [9]. The velocity v of the ego-vehicle is fixed at
2.78 m/s. An episode is considered done when the ego-vehicle has covered a
maximum distance d of 200 meters or caused a collision of any sort. In addition,
to prevent endless episodes a time constraint, t, of 79.2 seconds is dynamically
calculated (see Eq. 2).

t =
d
v

(2)

We set the benchmark to 25 episodes per run for a total of 5 runs per model.
This comes down to a maximum of 25 000 driven meters per model. The CARLA
simulation ran with the -benchmark -fps 25 settings to ensure a constant frame
rate and repeatable experiment. Besides, all other traffic was turned off.

4 Result

Table 1 shows the models’ detailed epoch F1 scores and epoch losses across the
training and validation set. The number of epochs the models took to converge
is mentioned as well. All models converge to an excellent validation F1-score
of 0.90 or above.

Table 1: Model comparison on CARLA 20200621 dataset. All values are from
the best epoch, based on validation loss. Best values are marked bold.

Model Trainable parameters Epochs Train Loss Val Loss Train F1 Val F1
Our work 2.799.153 31/50 0.002762 0.02298 0.9989 0.9956
ResNet50 23.862.277 34/50 0.0085174 0.03973 0.9949 0.9887

ResNet101V2 42.856.581 9/50 0.191 0.1711 0.9172 0.9402
DenseNet121 7.076.741 5/50 0.1917 0.2192 0.9147 0.9193

Xception 21.134.637 4/50 0.1649 0.1539 0.9237 0.959
EfficientNetB7 64.196.565 16/50 0.1417 0.1943 0.9271 0.9336

8 T. van Orden, et al.

Table 2: Benchmark results in training town, Town 3, with mean and stan-
dard deviation below. All values, except "Success rate", are per kilometer. All
lane marking types are in italics. Only lane markings with non-zero values are
shown. Best values are marked bold.

Model Success rate Infractions NONE Broken Solid SolidSolid SolidBroken BrokenSolid Curb

Our work 0.504 0.5652 0.065 0.1132 0.2113 0.062 0.0562 0.0553 0.0021
±0.0599 ±0.5172 ±0.1468 ±0.3325 ±0.2778 ±0.1227 ±0.1359 ±0.145 ±0.0192

ResNet50 0.592 0.6577 0.0846 0.0906 0.2444 0.06564 0.0929 0.0759 0.0036
±0.064 ±0.4085 ±0.1502 ±0.1296 ±0.2811 ±0.1184 ±0.1858 ±0.1451 ±0.0251

ResNet101V2 0.368 1.1111 0.1272 0.0915 0.4325 0.161 0.1957 0.0983 0.0049
±0.1372 ±1.6274 ±0.3134 ±0.162 ±0.8442 ±0.4959 ±0.6192 ±0.3007 ±0.0325

DenseNet121 0.616 0.6635 0.0761 0.186 0.2125 0.0411 0.0598 0.0773 0.0106
±0.0697 ±0.5414 ±0.1581 ±0.3218 ±0.3239 ±0.0984 ±0.1992 ±0.2046 ±0.0715

Xception 0.624 0.7092 0.1159 0.0952 0.2294 0.0862 0.0971 0.0839 0.0016
±0.0824 ±0.5159 ±0.1847 ±0.2104 ±0.2934 ±0.1986 ±0.221 ±0.1847 ±0.0122

EfficientNetB7 0.4 0.6449 0.0807 0.1347 0.2083 0.074 0.0917 0.0545 0.001
±0.1131 ±0.5851 ±0.1838 ±0.2267 ±0.3301 ±0.1764 ±0.2467 ±0.2152 ±0.0106

The results of the benchmark in the training town, Town 3, are shown in
Table 2. The exact definition per lane marking type is defined by the Open-
DRIVE 1.4 standard [2]. Broken, NONE and Other lane marking types may be
crossed in real-life circumstances. During the crossing of a junction, the vehi-
cle will always cross some of those lane marking types since junctions contain
lane markings too. To provide a more relative metric, we calculated the success-
rate and averaged the lane marking infractions over the lane marking types per
kilometer. The success rate is defined as the percentage of episodes in which
the vehicle reached the end of the episode, in relation to the total number of
episodes. In other words, the percentage of non-collision episodes in relation to
the total number of episodes.

Even though the models are trained and benchmarked in the same town,
it proves to be difficult to reach high success rates. Our method seems to per-
form well in terms of infraction rate, but Xception outperforms ours in terms
of success rate. DenseNet121 performs very well too, since its Solid and Solid-
Solid infraction rates are best or second-best in addition to a second-best success
rate. DenseNet121 is about 3 times smaller than Xception in terms of trainable
parameters, see Table 1.

To evaluate the generalization performance of the model we used the bench-
mark in Town 10HD. This town is more realistic than Town 3 concerning tex-
tures, although the layout is slightly simpler. The possible traffic situations dif-
fer enough from Town 3 to make this a good validation map. This town has no
roundabouts, but includes a larger junction which the model has never faced
before, see Figure 1b and Figure 4. As shown in Table 3 almost every model
yields a two times lower success rate in comparison to the training town. Xcep-
tion is the best model in terms of success and infraction rate. Our method yields

End-to-end Imitation Learning for Autonomous Vehicle Steering 9

Table 3: Benchmark results in validation town, Town 10HD, with mean and
standard deviation below.

Model Success rate Infractions NONE Broken Solid SolidSolid

Our work 0.304 0.5982 0.002 0.273 0.1579 0.1653
±0.1061 ±1.1649 ±0.0166 ±0.5517 ±0.3514 ±0.3935

ResNet50 0.288 0.4774 0.0054 0.2451 0.1142 0.1128
±0.0776 ±0.5229 ±0.0364 ±0.3729 ±0.1985 ±0.2142

ResNet101V2 0.28 0.7119 0.0034 0.3664 0.1361 0.2059
±0.0912 ±1.3838 ±0.031 ±0.7647 ±0.3236 ±0.4813

DenseNet121 0.24 0.9242 0.0059 0.407 0.2153 0.296
±0.1315 ±1.1605 ±0.0401 ±0.5079 ±0.3594 ±0.6334

Xception 0.3449 0.4475 0.0 0.178 0.1167 0.1528
±0.150 ±0.6345 ±0.0 ±0.2598 ±0.2202 ±0.4305

EfficientNetB7 0.184 0.85 0.0056 0.3671 0.2146 0.2626
±0.0543 ±1.8165 ±0.0443 ±0.9452 ±0.452 ±0.5982

a second-best success rate but has a significantly higher infraction rate in com-
parison to Xception. ResNet50 performs best concerning Solid and SolidSolid
infraction rates.

Figure 6 shows the trajectories driven by the best performing model, Xcep-
tion, during the benchmark in Town 3 (6a), Town 6 (6c) and Town 10HD (6b).
We used Town 6 as an additional validation benchmark since Figure 6b shows
that the Xception agent lacks at handling complex situations such as large junc-
tions in Town 10HD. Town 6 is mainly highway and therefore a good validation
for non-complex situations. Table 4 shows the results of the benchmark for the
Xception agent in Town 6 in comparison to Town 3 and Town 10HD. The suc-
cess rate in validation town Town 6 is about 2.5 times higher, compared to vali-
dation town Town 10HD. Note that infractions and lane marking types cannot
be directly compared since the distribution of lane markings differ from town
to town.

Table 4: Xception Agent validation on Town 6 (Highways). Lane markings with
no infractions are left out.

Town Success rate Infractions NONE Broken Solid SolidSolid SolidBroken BrokenSolid Curb

Town 3 0.624 0.7092 0.1159 0.0952 0.2294 0.0862 0.0971 0.0839 0.0016
±0.0824 ±0.5159 ±0.1847 ±0.2104 ±0.2934 ±0.1986 ±0.221 ±0.1847 ±0.0122

Town 6 0.904 0.4218 0.0346 0.3563 0.0309 - - - -
±0.0599 ±0.4038 ±0.088 ±0.3865 ±0.0753 - - - -

Town 10HD 0.3449 0.4475 0.0 0.178 0.1167 0.1528 - - -
±0.150 ±0.6345 ±0.0 ±0.2598 ±0.2202 ±0.4305 - - -

10 T. van Orden, et al.

(a) Town 3 (b) Town 10HD

(c) Town 6

Fig. 6: Trajectories driven during benchmark for Xception model. Green trajec-
tories are successful. Red trajectories are failures due to a collision.

5 Discussion

We hypothesize that the feature extraction capabilities of our proposed model,
in comparison to the Xception model, are correlated with the difference be-
tween our and Xception’s infraction rate. Chollet [6] mentions that depthwise
separable convolutions, as used in Xception, outperform standard convolution
on image tasks. These depthwise separable convolutions could therefore result
in better feature extraction capabilities of the Xception model in comparison to
our model since we only use standard convolutions. More robust feature ex-
traction may subsequently increase the accuracy of identifying lane markings
and therefore possibly lowering infraction rates.

End-to-end Imitation Learning for Autonomous Vehicle Steering 11

As shown by Haalvaldsen et al. [10] adding a specialized layer such as a
Long Short Term Memory (LSTM) to the model improves the general model’s
performance. Incorporating a segmentation layer in our proposed network might
improve the model’s performance as well. A segmentation layer should be able
to mask lane markings resulting in only a few classes per image instead of view-
ing every pixel independently. Therefore, a better intermediate representation
might be achieved which could result in further optimized policies.

To better facilitate goal-directed scenarios and improve performance in com-
plex situations a high-level conditional command unit as proposed by Codev-
illa et al. [7] might be necessary. Although adding such a module still relies
on a robust feature extraction model. Thoroughly testing and evaluating this
model’s foundation should therefore be done first.

Our proposed benchmark in combination with the simulation vector over-
lay gives more insight into the model’s shortcomings. However, future research
in the model’s internal state representations could facilitate more insight into
the reasoning behind the model’s decisions. Approaching the problem in two
stages as proposed by Chen et al. [5] could improve this too. Regarding safety,
explainable decisions should be a huge step towards safer systems.

The rapid development of CARLA causes inconsistency between studies
with other training and testing environments. Other researches have used older,
less complex towns such as Town 1 and Town 2 [10][1]. Yet, according to Chen
et al [5] this is a solved problem. Even the more recent NoCrash benchmark [8]
is based on those two towns. In contrast, we use the most complex and realistic
town CARLA currently offers. Comparing the conclusions and results between
different papers should therefore be done with great care.

6 Conclusion

We have proposed a detailed comparison of different state-of-the-art CNN net-
works and our baseline. The proposed benchmark quantifies a set of the mod-
els’ shortcomings in addition to the trajectory plots. Xception has proven to
perform best, especially in non-complex situations with a 90% success rate. A
specific set of problematic situations facilitates the potential of end-to-end im-
itation learning on a single camera stream to be exploited even further. In ad-
dition, testing in a highly realistic environment such as Town 10HD ensures
models to be robust to changes in lighting conditions. We propose the use of
realistic simulation environments in combination with robust networks and
benchmarks to provide a starting point to improve the safety of modern-day
driving assistants.

Acknowledgements

Special thanks go to Thomas Wiggers for noteworthy suggestions and helpful
discussions.

12 T. van Orden, et al.

References

1. Abdou, M., Kamal, H., El-Tantawy, S., Abdelkhalek, A., Adel, O., Hamdy, K., Abaas,
M.: End-to-end deep conditional imitation learning for autonomous driving. In: 31st
International Conference on Microelectronics (ICM). pp. 346–350. ICM (2019)

2. Association for Standardization of Automation and Measuring Systems: ASAM
OpenDRIVE: Open dynamic road information for vehicle environment, version 1.6.
Published online (March 2020)

3. Badue, C., Guidolini, R., Carneiro, R.V., Azevedo, P., Cardoso, V.B., Forechi, A., Je-
sus, L., Berriel, R., Paixão, T.M., Mutz, F., et al.: Self-driving cars: A survey. Expert
Systems with Applications 165(no. 113816) (March 2021)

4. Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end
learning for self-driving cars. CoRR abs/1604.07316 (2016)

5. Chen, D., Zhou, B., Koltun, V., Krähenbühl, P.: Learning by cheating. In: Conference
on Robot Learning. vol. 100, pp. 66–75. PMLR (2020), preprint arXiv:1912.12294

6. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
IEEE conference on Computer Vision and Pattern Recognition. pp. 1251–1258. CVPR
(2017), preprint arXiv:1610.02357

7. Codevilla, F., Müller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driving
via conditional imitation learning. In: IEEE International Conference on Robotics
and Automation. pp. 1–9. ICRA (2018), preprint arXiv:1710.02410

8. Codevilla, F., Santana, E., Lopez, A.M., Gaidon, A.: Exploring the limitations of be-
havior cloning for autonomous driving. In: IEEE/CVF International Conference on
Computer Vision (ICCV) (October 2019), preprint arXiv:1904.08980

9. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open urban
driving simulator. In: 1st Annual Conference on Robot Learning. pp. 1–16 (2017),
preprint arXiv:1711.03938

10. Haavaldsen, H., Aasboe, M., Lindseth, F.: Autonomous vehicle control: End-to-end
learning in simulated urban environments. In: Symposium of the Norwegian AI
Society. pp. 40–51. Springer (2019), preprint arXiv:1905.06712

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
IEEE conference on Computer Vision and Pattern Recognition. pp. 770–778. CVPR
(2016), preprint arXiv:1512.03385

12. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
European Conference on Computer Vision. pp. 630–645. Springer (2016), preprint
arXiv:1603.05027

13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convo-
lutional networks. In: IEEE conference on Computer Vision and Pattern Recognition.
pp. 4700–4708. CVPR (2017), preprint arXiv:1608.06993

14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International
Conference on Learning Representation. ICLR (2015), preprint arXiv:1412.6980

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convo-
lutional neural networks. In: Advances in Neural Information Processing Systems.
pp. 1097–1105. NIPS (2012)

16. SAE International: Automated driving – levels of driving automation. Defined in
SAE International Standard J3016. Published online (2014)

17. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning. pp. 6105–6114. PMLR
(2019), preprint arXiv:1905.11946

https://www.asam.net/standards/detail/opendrive/
https://web.archive.org/web/20180701034327/https://cdn.oemoffhighway.com/files/base/acbm/ooh/document/2016/03/automated_driving.pdf

