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Abstract

We address the problem of scene reasoning by au-
tonomously driving vehicles based on multi-view images
and standard-definition maps. Developing models profi-
cient at this task is beneficial for the safe operation of
driverless vehicles. We participate in the Mapless Driving
track of the Autonomous Grand Challenge, which stimulates
the development of models for recognizing traffic elements
and lane centerlines and understanding their topological
relationships. The state-of-the-art LaneSegNet system does
this in an end-to-end manner, using a lane attention module
with a heads-to-regions mechanism and an identical initial-
ization strategy of reference points. We explore the effec-
tiveness of this system by evaluating alternative backbones
in its encoding mechanism. Our analysis shows that using
a backbone larger than the original ResNet-50 baseline de-
grades performance.

1. Introduction
An accurate perception of the environment is essential for
autonomous vehicles to safely navigate. To provide the re-
quired information, efforts have been made to create High-
Definition (HD) maps. These maps contain detailed infor-
mation about road geometry and topology, and serve as a
valuable resource. However, these maps are often unavail-
able due to high annotation costs associated with creating
and keeping them up-to-date. Autonomous vehicle com-
pany Waymo, for instance, manually creates these maps by
driving around in sensor-equipped vehicles, processing the
data offline, and testing the maps before being deployed.
Since the last decade, they have mapped around 25 cities in
the USA, whereas it contains 336 cities with a population of
over 100.000 people. The creation of HD maps is a process
which does not scale easily.
To address this, research is being conducted on the auto-
matic construction of HD maps in an online setting. The
Mapless Driving track of the Autonomous Grand Chal-

lenge, using the OpenLanev2 benchmark, stimulates this
research. In this challenge, the inputs are multi-view im-
ages from several vehicle-mounted cameras and a Standard-
definition (SD) Map containing only topological and posi-
tional priors. Models submitted to the challenge should be
able to use this information to find the drivable lane seg-
ments of the road around itself. One of the SOTA models
that accomplishes this is LaneSegNet, which detects both
centerlines and borders of lane segments, along with their
topology relations.
In this paper, we seek to build off the LaneSegNet model
and find ways to improve it. We experiment with replacing
the ResNet-50 image object classifier used as the encoder
backbone with two alternative backbones.

2. Related work
Previous research has been conducted into developing sys-
tems that can solve complex problems in traffic. To this end,
extensive efforts have been made to detect traffic elements,
such as traffic signs, lights, and lane centerlines. Recently,
topology reasoning has gained interest due to its importance
in downstream tasks such as planning [21]. Topology rea-
soning consists of two parts: linking centerlines to center-
lines and connecting traffic elements to centerlines. Previ-
ous approaches include modular architectures and systems
that operate in an end-to-end manner.

2.1. Centerline detection

Centerline perception, or lane graph learning, focuses on
deciphering the structure of lanes from vehicle-mounted
sensor data, a topic that has seen significant advancements
recently. Various methodologies have emerged to address
this challenge effectively. For instance, STSU [1] intro-
duced a DETR-like network for centerline detection, which
uses a multi-layer perceptron (MLP) to determine connec-
tivity. Building on this foundation, they added minimal
cycle queries to ensure the correct order of overlapping
lines [2]. Another innovative approach is CenterLineDet
[22], which treats centerlines as vertices within a graph and



employs a graph-updating model refined through imitation
learning. LaneGAP [13] introduced a path-wise method for
lane graph reconstruction via an additional conversion al-
gorithm, while TopoNet [8] aimed to explicitly model the
connectivity of centerlines and incorporate various traffic
elements into the network.

2.2. Traffic element detection

Shifting to map detection, recent trends emphasize moving
from 2D camera plane detections to 3D space mappings
to minimize projection errors. Bird-Eye-View (BEV) per-
ception has set new benchmarks in this domain, focusing
on high-definition maps through segmentation and vector-
based methods. Despite the granularity provided by dense
segmentation, challenges in representing overlapping ele-
ments persist. Addressing this, VectorMapNet [14] repre-
sents each map element as a sequence of points, facilitating
accurate decoding of lane line locations. MapTR [12] uses
a permutation-based model for points, improving perfor-
mance and clarity, while PivotNet [3] offers a picot-based
set prediction framework to minimize redundancy and im-
prove accuracy. StreamMapNet [23] enhances detection
stability through multi-point attention and temporal data.
Our chosen model, LaneSegNet [13], leverages these ad-
vancements by adopting a unified lane segment represen-
tation for all HD map elements, integrating segment-level
geometry and semantics to advance autonomous driving ca-
pabilities.

2.3. Topology reasoning before LaneSegNet

Liao et al. [12] propose MapTR, an end-to-end transformer
designed to create high-definition (HD) maps using input
images captured by sensors mounted on a vehicle. With
their approach, a map element is represented by a set of
points together with a group of equivalent permutations.
The former is required because map elements often have dy-
namic shapes, which can not be captured well using bound-
ing boxes. The latter is useful in fixing ambiguities in rep-
resenting map elements as polylines and polygons. Further-
more, they use a hierarchical query embedding mechanism
to encode information and to learn map elements.
TopoNet, released after MapTR, is the first end-to-end
method capable of complex topology reasoning in traffic
environments [9]. Initially, it extracts front-view features
and bird’s-eye-view features from the input multi-view im-
ages. Then, two separate branches of deformable decoders
are used on the features to create instance-level embeddings
for traffic elements and centerlines. A Scene Graph Neu-
ral Network is then used to refine the centerlines queries (in
terms of position and topology). Lastly, heads transform the
queries into the final predictions.
After TopoNet, TopoMLP [21] was introduced as a pipeline
for topology reasoning. This method represents centerlines

as Bézier curves, characterized by an anchor point and mul-
tiple control points. Detection is performed using a ResNet-
50 backbone to generate feature maps from multi-view in-
put images. The authors use 3D position embeddings en-
coded into visual features. Learnable 3D anchor points are
initialized and updated using a stack of transformer decoder
layers. Then, two MLPs are used to predict the positions
of the control points. Traffic element detection uses query-
based detection (deformable DETR) improved by YOLOv8
bounding box proposals. Lastly, lane-lane and lane-traffic
element relationship predictions are made using MLP net-
works.

2.4. OpenLane-V2

OpenLane-V2 is the first dataset emphasizing the topo-
logical relationship between traffic elements and lane cen-
terlines [20]. OpenLane-V2 expands upon the original
OpenLane dataset, which solely contains images annotated
with 3D centerlines. Added to this dataset are 2D anno-
tations (bounding boxes) of traffic elements in the front-
view images and their connection to centerlines. Besides
the dataset, the authors propose a new “scene structure per-
ception and reasoning” learning task with the corresponding
OLS (OpenLane-V2 score) metric. For models to achieve
a high score on this metric, they must be proficient at de-
termining the drivability of lines given their state, influ-
enced by the presence of traffic elements. In addition, traffic
elements, centerlines and connections between centerlines
must be determined correctly.

2.5. Snellius supercomputer

Snellius is a supercomputer located in the Netherlands used
to perform scientific research hosted at SURF. The com-
puter consists of nodes containing different computational
resources. In total, the supercomputer can reach a perfor-
mance of 14 petaflops/s1.

3. Methodology
In this section, we explain how the LaneSegNet architec-
ture works and what attempts were made to run LaneSegNet
and improve its performance according to the OpenLane-
V2 scoring metrics [20].

3.1. LaneSegNet

LaneSegNet is one of the traffic element and centerline
detection methods provided, serving as a baseline for the
CVPR Mapless Driving challenge. As LaneSegNet boasts a
superior accuracy compared to the other provided methods,
we have opted to expand upon LaneSegNet as our contribu-
tion to the Mapless Driving challenge [10].

1https://servicedesk.surf.nl/wiki/display/WIKI/
Snellius
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The LaneSegNet architecture consists of three main com-
ponents:
• LaneSeg Encoder, the encoder converts the multiple-view

input images to a BEV (birds-eye view) feature. In the
original paper, a ResNet-50 backbone is used to obtain
a feature map from the set of input images. The input
images in conjunction with their feature maps are used in
the BEVFormer [11] module to transform the images into
a BEV feature.

• LaneSeg Decoder, the decoder refines Lane Segment
queries through self-attention and cross-attention with the
BEV features from the encoder. For Lane Attention, local
and distant details in the image are important for decision-
making. Thus, LaneSegNet proposes a two-part mecha-
nism to capture all details:
– A ”heads-to-regions” mechanism that uniformly dis-

tributes samples within a lane segment.
– A ”multi-branch” mechanism where each attention

head attends to a set of locations within a region from
the heads-to-region mechanism.

Mathematically, lane attention is calculated by:

LaneAttn(qi, pi, B) =

M∑
m=1

Wm[

K∑
k=1

ai,m,k·

W ′
mBi− Linear(B, pi,m + δpi,m,k)]

Where B is a BEV-feature, qi is a lane segment query fea-
ture, pi is a set of reference points, m is the attention head,
k are the indices of the sampling locations, W ′

mandWm

are learnable weights.
The positions of reference points need to be determined
for the lane attention module to focus on sampling points.
LaneSegNet uses an identical initialization mechanism to
distribute these reference points. For each query, refer-
ence points are placed depending on the segment predic-
tion of the previous layer. The heads of the first layer are
adjusted to identical reference points generated from the
positional query.

• LaneSeg Predictor, the predictor generates a predicted
lane segment from the refined lane segment query. The
predictor consists of two main branches:
– A topology branch for centerline and lane offset pre-

diction.
– A topology branch that takes the query features and

outputs a weighted adjacency matrix for the lane graph
G.

3.2. LaneSegNet reproduction

Our first step to improving the architecture of LaneSegNet
is to reproduce the results presented in the original paper
[10] and use it to generate a valid submission file for the
Mapless driving challenge.

3.2.1 OpenLane-V2 preprocessing

To train the LaneSegNet architecture, the OpenLane-V2
dataset is used [20]. The OpenLane-V2 paper introduces
a GitHub repository that provides instructions for prepro-
cessing the data into .pkl files. For LaneSegNet, we use the
custom preprocessing provided by the authors to preprocess
OpenLane-V2 test, train, and validation data into .pkl files.
After preprocessing, we set up a symbolic link from Lane-
SegNet to the preprocessed OpenLane-V2 data.

3.2.2 Local

After creating a working custom Conda environment for
LaneSegNet, we trained LaneSegNet for five epochs on a
single Nvidia RTX 3080 GPU using a ResNet-34 backbone.
Although the ResNet-34 training results have been gener-
ated for testing purposes only, we have decided to mention
them in the paper as they serve as an interesting comparison
to our results from the ResNet-101 backbone.

3.2.3 Snellius

We tried running the LaneSegNet architecture on the super-
computer cluster, Snellius 2, to further improve our results.
Using the GPUs of this cluster which are A100s3 on the
GCN node, we knew that larger backbones would be able
to fit as they have more VRAM than we had locally, 40GB
vs 10 GB respectively. Using the same Conda environment
as locally, we did not manage to run it due to package is-
sues related to MMCV that were not recognizing the GPU
compiler on Snellius.

3.2.4 UvA Robolab Workstation

We thus reverted to using a machine we could have easier
access to, namely a workstation from the Robolab equipped
with an RTX 3090 GPU. This GPU has 24GB of VRAM4,
more than we used locally. Subsequently, we installed all
of the packages required to run LaneSegNet on this work-
station, and we got it to work with ResNet-101 as the back-
bone.

3.3. Improving LaneSegNet

In this subsection, we will be introducing two improve-
ments we considered to achieve a better score. The results
and analysis of these results will later be presented in Sec-
tion 4.

2https : / / www . surf . nl / diensten / snellius - de -
nationale-supercomputer

3Hardware on Snellius: https : / / servicedesk .
surf . nl / wiki / display / WIKI / Snellius + hardware #
Snelliushardware-NodesOverview

4https://www.nvidia.com/en-my/geforce/graphics-
cards/30-series/rtx-3090-3090ti/

https://www.surf.nl/diensten/snellius-de-nationale-supercomputer
https://www.surf.nl/diensten/snellius-de-nationale-supercomputer
https://servicedesk.surf.nl/wiki/display/WIKI/Snellius+hardware#Snelliushardware-NodesOverview
https://servicedesk.surf.nl/wiki/display/WIKI/Snellius+hardware#Snelliushardware-NodesOverview
https://servicedesk.surf.nl/wiki/display/WIKI/Snellius+hardware#Snelliushardware-NodesOverview
https://www.nvidia.com/en-my/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.com/en-my/geforce/graphics-cards/30-series/rtx-3090-3090ti/


3.3.1 PV-to-BEV backbones

One of the improvements we decided to look into was using
different backbones for detecting objects and specifically
lanes in our use case. We decided to experiment with
different backbones.

• EfficientNet Mingxing & Quoc [18] introduce Effi-
cientNets, which we wanted to experiment with as it
achieved much better performance than ResNet-50 on the
ImageNet dataset and transferred well to other datasets.
Unfortunately, none of the different EfficientNet versions
seemed to fit on the Workstation’s GPU, as a result, we
followed with experimenting on different backbones.

• MobileNet We thought of using a lighter version of
EfficientNets which we found with MobileNetV2 and
MobileNetV3 [17][5], but unfortunately the same issue
arose, namely that it would not fit on the GPU.

• MaxVit The pytorch MaxVit model [19] did not fit on our
GPU, similar to the EfficientNet and MobileNet models.

• SwinTransformer The format of the SwinTransformer
[15] did not directly work with the LaneSegNet architec-
ture, which is why we decided to look at different models
first.

• ResNet. We looked at the larger ResNet models [4] that
boast higher accuracies on the ImageNet dataset com-
pared to the ResNet-50 that has been used in the original
LaneSegnet architecture. While ResNet-152 appeared to
be too large to fit on the workstation GPU, we were able
to run LaneSegNet using ResNet-101.

Besides the models mentioned above, we have looked at the
following models:
• regnetx 400mf [16]
• DenseNet [6]
• NASNet [25]
Unfortunately, none of these models were found in Lane-
SegNet’s model registry so we were not able to use them.

3.4. Metrics

The primary metric used in the CVPR 2024 Mapless Driv-
ing challenge is the OLUS (OpenLane-V2 UniScore)5.
OLUS is an average of the metrics that cover the primary
task of Lane Segmentation and Topological reasoning:

OLUS =
1

5
[DETl+DETa+DETt+f(TOPu)+f(TOPlt)]

DETl is the mAP of centerline perception performance,
based on the Frèchet distance between the ground truth and
recreated BEVs as seen in Figure 2. The lane attention role
within the LaneSegNet decoder plays a significant role in
improving the DETl score.
DETa is the mAP of map elements such as pedestrian

crossings and road boundaries and are measured similarly
using Chamfer distance to DETl. To improve the DETa

score in LaneSegNet, an additional MapTR attention head
is used in the LaneSegNet decoder to detect map elements
[12].
DETt is the mAP of traffic elements such as traffic lights
and is measured using IoU. To improve the DETt score,
LaneSegNet uses a deformable DETR head to detect traffic
elements [24].

TOPll is the mAP over vertices on the topology among
lane segments. TOPlt is the mAP over vertices on the
topology between lane segments and traffic elements. The
mAP between the GT vertices (V,E) and the predicted
vertices (V̂ ′, Ê′) is calculated using the following formula:

mAP =
1

|V |
∑
v∈V

∑
n̂∈N̂(v) P (n̂)1(n̂ ∈ N(v))

|N(v)|

Where N(v) is the list of neighbors of vertex v and P (v) is
the precision of vertex v in the list [20].
To improve DETl, DETa, and DETt scores individually,
an option is to improve the attention heads mechanisms
used to calculate these scores individually. A second op-
tion is to improve the LaneSegNet encoder that serves as an
input for the Transformer-based detection in the decoder.
TOPll and TOPlt are directly influenced by the perfor-
mance of the encoder as they use the lane predictions for
the topology calculations. Thus, the primary focus of our
efforts is to increase the DETl and DETa scores through
data augmentation and backbone improvements.

5https://github.com/OpenDriveLab/OpenLane-V2/
blob/master/docs/metrics.md#openlane-topology
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Figure 1. Example of the seven OpenLane-V2 camera angles taken at a crossroad .

Figure 2. BEV Scene recreation of the input images from Figure 1. The two leftmost images are taken from the original LaneSegNet
paper running on the ResNet-50 backbone. The two rightmost images are results from our ResNet-34 test training and ResNet-101 training
respectively. Orange lines depict the center lines and lane direction. Blue lines depict lane separators. Yellow lines depict traffic elements
such as crossroads.

4. Results & Analysis

Table 1. Test set scores from the original LaneSegNet GitHub page
and our training on ResNet-34 and ResNet-101

Method OLUS DETl DETa DETt TOPll TOPlt

LaneSegNet (Original) 0.36 0.278 0.238 0.369 0.241 0.213
LaneSegNet-34, 5 Epochs 0.159 0.61 0.53 0.175 0.56 0.73
LaneSegNet-101, 24 Epochs 0.171 0.165 0.131 0.77 0.14 0.11

As seen in Table 1, our locally trained model expectantly
shows a worse performance compared to the original Lane-
SegNet. Contrary to our expectations, LaneSegNet trained
using a ResNet-101 backbone also does not outperform

Table 2. Test set scores from a selection of CVPR 2024 challengers

Method OLUS DETl DETa DETt TOPll TOPlt

LGmap 0.66 0.51 0.58 0.82 0.46 0.54
MapVision 0.58 0.39 0.40 0.80 0.38 0.48
BoschXCASW 0.51 0.39 0.30 0.76 0.32 0.32

the original LaneSegNet and shows a similar score to
our locally trained model. In particular, the DETa and
TOPlt are significantly lower compared to the original
LaneSegNet, with TOPlt having an even lower score than
our locally trained model. Despite both models we have
trained having a similar OLUS score, the reconstructed

https://openreview.net/forum?id=A9MYawslvE
https://openreview.net/forum?id=XxYDgc7l98
https://openreview.net/forum?id=gT1M1I0EY9


BEV images are considerably more accurate for the Lane-
SegNet trained on ResNet-101 as seen in Figure 2. Some
lanes, however, are missing or incorrect in the BEV from
the ResNet-101 training.

One reason for our low overall scores may be related to the
interruption of our training. During our 24-epoch training
on the ResNet-101 backbone, training was interrupted at
nine epochs. We used a checkpoint of epoch 9 to resume
the training for the next 15 epochs. A possibility is that the
checkpoint has not been loaded correctly with the desyn-
chronized evaluation resulting from the interruption.
The limited performance of ResNet-101 as an object clas-
sifier, in comparison with more advanced models, could be
another reason for our low score. As can be seen in [18],
ResNet-101’s performance falls between that of ResNet-50
and ResNet-152, and it performs similarly to, if not worse
than, the smallest EfficientNet model in terms of accuracy
on Imagenet. Finding a better-performing backbone would
help get better results.

4.1. Comparison to other challengers6

Table 2 presents the public test server results from various
teams that participated in the CVPR 2024 Mapless Driving
Challenge.
The LGMap team, which secured first place, implemented
a novel online mapping pipeline, LGMap, which excels in
long-range temporal modelling. Key features of their ap-
proach include the Symmetric View Transformation (SVT)
module, which we have also implemented but not had time
to run. Their method uses depth perception and seman-
tic driving prior information to address forward sparse fea-
ture representation limitations. Secondly, they proposed
the Hierarchical Temporal Fusion (HTF) module, which
leverages local and global temporal information for stable
long-range HD map construction. Finally, their innovative
pedestrian crossing resampling technique simplifies repre-
sentation, enhancing the convergence performance of the
instance attention-based decoder. These innovations led
LGMap to achieve an OLUS score of 0.66.
One of the backbones we have attempted to run is Swin
and Vit-t. BoschXCASW / Supertrainer proves that it is
possible to use Vit-t for up-scaling and Swin as a back-
bone to generate BEV features, which leads to a consid-
erable increase in their scores. Lastly, MapVision improved
by utilizing YOLOX as its element detection backbone
and incorporating both Standard-Definition (SD) maps and
multi-perspective camera images into the input of LaneSeg-
Net. These inputs enhanced scene understanding, partic-

6As the challenge just ended and submissions of technical reports just
finished, we suppose that they are still being reviewed. As a result, we
were unable to have access to the actual reports and provide this link to the
abstracts of the different submissions mentioned in Table 2.

ularly in occluded images and the far end of roads. This
approach significantly boosted their model’s performance.
Using the workstation to train this network for 24 epochs
took around 104 hours on an RTX 3090 GPU. Locally, to
train the model for five epochs, it took around 37 hours on
an RTX 3080 GPU. Utilizing the online tool available at
https://mlco2.github.io/impact/#compute,
we estimated the carbon emissions to amount to approx-
imately 18.42 kg CO2 equivalent through 141 hours of
GPU computing, assuming a carbon efficiency of 0.382
kg/kWh, according to https://www.nowtricity.
com/country/netherlands/ for May 2024 in the
Netherlands. In total, this approximates driving around 74
km with an average internal combustion engine car7. The
carbon emission figures are estimated because we were un-
able to obtain precise measurements of emissions for the
workstation we utilized from the UvA campus, the amount
of power used for both training should be slightly higher
due to CPU usage.

5. Conclusion
In this paper, we reproduced the LaneSegNet paper for
topology prediction without using HD maps. We attempted
to improve the model by changing out the ResNet-50 back-
bone of the BEV encoder module to several different mod-
els. We encountered difficulties with several backbones
having larger memory requirements, despite having fewer
parameters than ResNet-50. This issue is particularly sig-
nificant for our research area, as the models we develop
are intended for deployment in self-driving vehicles, which
have limited hardware resources available. The larger ver-
sion of ResNet that we tried did run successfully but per-
formed worse than the baseline. We hypothesize that this
may be caused by issues during the training procedure. It
could also have been caused by ResNet-101 overfitting due
to its greater expressivity.

6. Limitations & Future research
6.1. Limitations

During our research, we encountered various issues. The
first of which was the size of the OpenLane-V2 dataset [20].
With a size of roughly 142.5 GB, downloading and prepro-
cessing the dataset locally, on Snellius, and on the work-
station was a timely process. The most glaring issue we
encountered during our research was issues we faced with
the various environments provided by TopoNet, TopoMLP,
and LaneSegNet. Due to outdated packages or version
mismatches in the environments provided by TopoNet and
TopoMLP, training these models would take too much time,

7https://www.epa.gov/energy/greenhouse-gases-
equivalencies - calculator - calculations - and -
references
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thus forcing us to focus our efforts on LaneSegNet. The
LaneSegNet environment also contained multiple version
mismatches that would produce errors based on the hard-
ware architecture it was run on. On our older Nvidia RTX
2070 Super GPU, the environment could be run with min-
imal adjustments to the versions of the cuDNN, Shapely,
and Yapf packages. However, to run LaneSegNet with
a ResNet-50 or larger backbone, we would have to train
on a machine that has access to a considerable amount of
VRAM, such as Snellius. Tracing the steps we had done lo-
cally, the LaneSegNet environment would produce CUDA
or MMCV errors on Snellius. To solve these issues, we have
attempted to change package versions individually and use
an alternative environment provided by the authors through
communication with them that did not solve our issues. In
none of our attempts have we succeeded in getting LaneSeg-
Net to run on Snellius, which cost us a significant amount
of time. Another limitation in our research was the long
training times of LaneSegNet. Training LaneSegNet for 24
epochs to match the original paper would take up to five
days and had to be done multiple times to verify the Lane-
SegNet results and improve upon them. The amount of time
lost through training and dependency issues limited us in
the changes we could make to LaneSegNet in the remaining
weeks. For this reason, we decided to stick to implementing
higher-level adjustments that could yield a relatively high
increase in both the DETl and DETa scores.

6.2. Future Research

One promising area for future research is the development
of more advanced backbone networks, particularly those
tailored specifically for traffic-related tasks. By designing
a backbone that can effectively capture the unique features
of traffic environments, such as varying lighting conditions
and occlusions, the overall performance of lane detection
and segmentation models could be improved.
Exploring variations in the LaneSegNetTransformer layers
is another valuable research direction. This includes ex-
perimenting with different configurations of DETR layers,
such as altering the number of attention heads or adjusting
the dropout rates. This can help determine the optimal bal-
ance between model complexity and performance, leading
to more efficient and effective lane detection systems.
Additionally, we attempted to perform data augmentation
on OpenLane-V2. Incorporating a wider range of data aug-
mentation techniques is critical for enhancing model gen-
eralization and robustness. We made a horizontally flipped
version of images and corresponding annotated coordinates.
This was however not tested due to a lack of resources
and time. We also anticipated that this data augmentation
would not be beneficial to the model as it was suggested
that this would introduce noise in the dataset and confuse
the model. Future research should investigate augmenta-

tion strategies that can simulate various traffic scenarios and
conditions more effectively. Such as geometric transfor-
mations and colour/brightness augmentations to enrich the
training dataset. This will help create models that can better
adapt to real-world traffic environments.
Additionally, we could employ upsampling. Upsampling
plays a crucial role in restoring high-resolution details in
segmentation tasks. Future work could focus on evaluating
various upsampling techniques, such as transposed convo-
lutions or advanced interpolation methods. This may result
in increased spatial accuracy and detail preservation in lane
segmentation outputs.
At last, the most recent model, Topo2D [7], claims to have
achieved an OLS of 44.5% on the OpenLane-V2 test set.
Topo2D’s novel approach centres on leveraging 2D lane in-
stances to initialize 3D queries and 3D positional embed-
dings using a Transformer-based framework. By explicitly
incorporating 2D lane features into the detection of topol-
ogy relationships among lane centerlines and between lane
centerlines and traffic elements, Topo2D outperformed ex-
isting methods. It achieved 44.5% OLS on the OpenLane-
V2 benchmark for multi-view topology reasoning and a
62.6% F-score on the OpenLane benchmark for single-view
3D lane detection. Thus, incorporating 2D lane priors into
3D lane segment detection has great potential to increase
performance.



References
[1] Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and

Luc Van Gool. Structured bird’s-eye-view traffic scene un-
derstanding from onboard images. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 15661–15670, 2021. 1

[2] Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and
Luc Van Gool. Topology preserving local road network es-
timation from single onboard camera image. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 17263–17272, 2022. 1

[3] Wenjie Ding, Limeng Qiao, Xi Qiu, and Chi Zhang. Pivot-
net: Vectorized pivot learning for end-to-end hd map con-
struction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3672–3682, 2023. 2

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[5] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. CoRR, abs/1905.02244,
2019. 4

[6] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely
connected convolutional networks. CoRR, abs/1608.06993,
2016. 4

[7] Han Li, Zehao Huang, Zitian Wang, Wenge Rong, Naiyan
Wang, and Si Liu. Enhancing 3d lane detection and
topology reasoning with 2d lane priors. arXiv preprint
arXiv:2406.03105, 2024. 7

[8] Tianyu Li, Li Chen, Xiangwei Geng, Huijie Wang, Yang Li,
Zhenbo Liu, Shengyin Jiang, Yuting Wang, Hang Xu, Chun-
jing Xu, et al. Topology reasoning for driving scenes. arXiv
preprint arXiv:2304.05277, 2023. 2

[9] Tianyu Li, Li Chen, Huijie Wang, Yang Li, Jiazhi Yang,
Xiangwei Geng, Shengyin Jiang, Yuting Wang, Hang Xu,
Chunjing Xu, Junchi Yan, Ping Luo, and Hongyang Li.
Graph-based topology reasoning for driving scenes, 2023. 2

[10] Tianyu Li, Peijin Jia, Bangjun Wang, Li Chen, Kun Jiang,
Junchi Yan, and Hongyang Li. Lanesegnet: Map learning
with lane segment perception for autonomous driving. arXiv
preprint arXiv:2312.16108, 2023. 2, 3

[11] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-
hao Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer:
Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers. In European con-
ference on computer vision, pages 1–18. Springer, 2022. 3

[12] Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng
Cheng, Qian Zhang, Wenyu Liu, and Chang Huang. Maptr:
Structured modeling and learning for online vectorized hd
map construction. arXiv preprint arXiv:2208.14437, 2022.
2, 4

[13] Bencheng Liao, Shaoyu Chen, Bo Jiang, Tianheng Cheng,
Qian Zhang, Wenyu Liu, Chang Huang, and Xinggang
Wang. Lane graph as path: Continuity-preserving path-wise

modeling for online lane graph construction. arXiv preprint
arXiv:2303.08815, 2023. 2

[14] Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun Wang, and
Hang Zhao. Vectormapnet: End-to-end vectorized hd map
learning. In International Conference on Machine Learning,
pages 22352–22369. PMLR, 2023. 2

[15] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 4

[16] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. CoRR, abs/2003.13678, 2020. 4

[17] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Inverted residuals and
linear bottlenecks: Mobile networks for classification, detec-
tion and segmentation. CoRR, abs/1801.04381, 2018. 4

[18] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. CoRR,
abs/1905.11946, 2019. 4, 6

[19] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxvit:
Multi-axis vision transformer. In European conference on
computer vision, pages 459–479. Springer, 2022. 4

[20] Huijie Wang, Tianyu Li, Yang Li, Li Chen, Chonghao
Sima, Zhenbo Liu, Bangjun Wang, Peijin Jia, Yuting Wang,
Shengyin Jiang, et al. Openlane-v2: A topology reasoning
benchmark for unified 3d hd mapping. Advances in Neural
Information Processing Systems, 36, 2024. 2, 3, 4, 6

[21] Dongming Wu, Jiahao Chang, Fan Jia, Yingfei Liu, Tiancai
Wang, and Jianbing Shen. Topomlp: A simple yet strong
pipeline for driving topology reasoning, 2023. 1, 2

[22] Zhenhua Xu, Yuxuan Liu, Yuxiang Sun, Ming Liu, and Lu-
jia Wang. Centerlinedet: Road lane centerline graph detec-
tion with vehicle-mounted sensors by transformer for high-
definition map creation. arXiv preprint arXiv:2209.07734, 1
(2):7, 2022. 1

[23] Tianyuan Yuan, Yicheng Liu, Yue Wang, Yilun Wang, and
Hang Zhao. Streammapnet: Streaming mapping network for
vectorized online hd map construction. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 7356–7365, 2024. 2

[24] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 4

[25] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.
Le. Learning transferable architectures for scalable image
recognition. CoRR, abs/1707.07012, 2017. 4


	. Introduction
	. Related work
	. Centerline detection
	. Traffic element detection
	. Topology reasoning before LaneSegNet
	. OpenLane-V2
	. Snellius supercomputer

	. Methodology
	. LaneSegNet
	. LaneSegNet reproduction
	OpenLane-V2 preprocessing
	Local
	Snellius
	UvA Robolab Workstation

	. Improving LaneSegNet
	PV-to-BEV backbones

	. Metrics

	. Results & Analysis
	. Comparison to other challengersAs the challenge just ended and submissions of technical reports just finished, we suppose that they are still being reviewed. As a result, we were unable to have access to the actual reports and provide this link to the abstracts of the different submissions mentioned in Table 2.

	. Conclusion
	. Limitations & Future research
	. Limitations
	. Future Research


