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Abstract

A large amount of research is being done in the field of
autonomous driving. Constructing a description of the sur-
rounding environment is hard, due to the complex nature of
traffic. Constructing a system that enables a car to under-
stand its environment with the level of perception akin to a
human is a big challenge. In this context, the Autonomous
Grand Challenge is an opportunity to develop the field and
search for its boundaries.

Our model is proposed within this framework, and with
it we enhance to complete the current state of the art,
SparseOcc. This model has surpassed previous models in
terms of both performance and speed, but lacks of one of the
main goals of the challenge: a representation of the flow in
the scene. With our approach, SparseOcc includes a specific
module for flow, and it is our task in this paper to examine
it and explore which configurations lead to better results.

1. Introduction

The field of autonomous driving is evolving rapidly, and to-
gether with advancements within machine learning there are
many new challenges to face within the areas of perception,
planning and prediction of autonomous vehicles. This work
was developed for the Autonomous Grand Challenge 2024
[8], a competition organized by OpenDriveLab that aims to
improve autonomous driving in the form of seven challenge
tracks. In this work, we focus on the Occupancy and Flow
track, where the goal is to predict the 3D occupancy of the
complete scene and the flow of the foreground objects given
the input image from six cameras.

Occupancy estimation refers to determining whether a

specific volume of space is occupied by objects. In au-
tonomous driving systems, it is important for the vehicle to
have an accurate estimation of the size, location and type of
the objects surrounding it. While traditional methods usu-
ally rely on 3D bounding boxes, a full occupancy estimation
provides a more detailed and accurate representation of the
environment: bounding boxes often suffer from limitations
such as imprecise object localization and inability to rep-
resent the true shape and size, especially for protruding or
complex objects. In contrast, occupancy estimation allows
for a voxel-based representation of the space like the one
we can visualize in Figure 1b, capturing more information
from the actual volume occupied by objects.

Flow estimation refers to determining the motion of the
objects that are being detected as they move through differ-
ent frames over time. This capability is crucial for dynamic
scene understanding, enabling autonomous systems to track
moving objects and anticipate their future positions.

While autonomous vehicles often have many different
types of sensors in order to get more accurate and robust re-
sults, the task in the challenge is limited to a vision-centric
approach, relying only on six cameras pointing in different
directions as the singular perception system of the vehicle
during inference. As cameras are generally lighter and less
expensive compared to other sensors like LiDAR and radar,
forgoing the use of those other sensors has the large benefit
of being able to make more compact and affordable vehi-
cle bodies. However, an approach relying solely on cam-
eras also has limitations: cameras are affected by lighting
conditions significantly, and their depth estimation is not as
accurate and reliable as that provided by other sensors, so
performance might not be as good or robust compared to a
multi-sensor approach in all scenarios. Lastly, high quality



vision-based algorithms also involve significant computa-
tional cost.

In this work, we combine ideas from OccNet [9], the
baseline model for the challenge, and SparseOcc [7], a re-
cent approach that performs occupancy prediction in a fully
sparse manner. First, we have reproduced SparseOcc, con-
firming its reproducibility. Then, inspired by the challenge
and its goals, we provided SparseOcc with an additional
network that predicts flow vectors. Finally, we have ex-
periment with different parameters in order to find better
configurations of this extended SparseOcc.

The code is published at https://github.com/
oxkitsune/occ-flow-2024.

2. Related Work

In recent years, the advancement of fully autonomous vehi-
cles has driven substantial research in the area of 3D scene
reconstruction and object detection. These fields play an
important role in enabling automobiles to understand the
world around them and make decisions on how to navigate
through it.

However, the traditional 3D bounding box around ob-
jects often fails to accurately represent outliers and anoma-
lies for specific object types. An example of this can be seen
in Figure 1a, where the bounding box inherently misses the
arm of the truck. This limitation underscores the need for
more refined modeling techniques to accurately depict the
complexity of real-world objects.

(a) 3d bounding representation

(b) Voxel representation

Figure 1. A 3d bounding box representation compared to the voxel
representation, adapted from [9].

Due to the issues highlighted previously, it is essential to

reconstruct the environment with the highest possible pre-
cision. A more accurate modeling method is the voxel rep-
resentation (Figure 1b), where each voxel is defined as ei-
ther occupied or empty. Occupied voxels can additionally
be segmented into specific classes such as a car or pedes-
trian. The movement of objects can be modelled by as-
signing each voxel a “flow” vector, describing the current
motion of the voxel.

The voxel representation is able to represent possible
anomalies with greater detail and model individually mov-
ing parts of an object, making it perfect for complex envi-
ronments such as traffic scenarios. The following section
introduces recent developments in vision-centric voxel oc-
cupancy and flow prediction techniques, along with relevant
background information.

Tong et al. introduced OccNet: a multi-view vision-
centric pipeline aimed at reconstructing 3D occupancy by
employing a cascade and temporal voxel decoder. It uses a
backbone model to extract features from the images, these
features are then used to create additional features, in a dif-
ferent space. Namely the Bird’s Eye View (BEV) space,
using the encoder part of the BEVFormer architecture [5].
The BEVFormer creates a BEV representation using multi-
ple visual inputs. Both the image features and BEV features
are then used to create a dense voxel representation of the
environment, where each voxel is assigned a class and a
flow vector. However, computing a dense voxel represen-
tation of an environment is computationally expensive, es-
pecially considering the temporal and semantic consistency
are achieved using an attention mechanism. Temporal and
semantic consistency are important to deal with possible oc-
clusions of objects and clear object boundaries.

The Mask Transformer [3] was designed to address oc-
clusions and object boundaries in segmentation tasks more
efficiently using a mask-based attention mechanism. This
mechanism masks certain parts of the input using a binary
mask, allowing it filter out irrelevant parts of the input be-
fore applying the attention mechanism. The mask operates
similarly to the queries, keys and values in the standard at-
tention mechanism [10] and dynamically generates a mask
for each input. The mask transformer is able to learn which
parts of the input are important, by optimising the mask
generation during the training process. While this could be
used to improve the efficiency of the attention in the origi-
nal OccNet, the dense voxel representation contains mostly
empty voxels.

To address this, Liu et al. proposed SparseOcc; a novel
approach using a fully sparse latent representation. Liu et al.
measured the sparsity of geometry in the voxel scene rep-
resentations and found that scenes mostly contain empty
voxels (See Figure 2). SparseOcc builds on SparseBEV
[6], which uses sparse convolutional techniques to create
BEV representations. SparseBEV creates sparse BEV rep-
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resentations by learning the appropriate scale of attention
for each query, allowing it to create multi-scale representa-
tions without explicitly constructing a dense BEV represen-
tation. Additionally it uses adaptive spatio-temporal sam-
pling, using a linear layer to generate a set of sampling oft-
sets adaptively from the query features. This improves the
spatial and temporal coherence of the points used for sam-
pling the image features. To decode features from the sparse
BEV representation, it dynamically adjusts the weight of a
feature based on the queries.

SparseQOcc [7] utilizes the SparseBEV features and em-
ploys a cascading approach to decode them into multiple
levels of voxel features. This hierarchical decoding process
enables SparseOcc to effectively capture various levels of
spatial details within the voxel grid. To classify the voxels,
SparseOcc utilizes a mask transformer.

By integrating the SparseBEV features with the
Mask2Former-based mask transformer [3], SparseOcc is
able to accurately predict the occupancy of the scene. The
sparse BEV features offer an efficient representation of the
environment, while the mask transformer enhances this rep-
resentation by introducing a powerful mechanism for voxel-
wise classification. This combination enables SparseOcc to
achieve precise and computationally efficient scene under-
standing, making it well-suited for applications in complex
and dynamic environments.

SparseOcc

SparseOcc, proposed by Liu et al., introduces a novel ap-
proach to utilizing fully sparse latent representation. Previ-
ous methods typically used dense 3D features at some point
of their models (as we will discuss in section 2). However,
SparseOcc has shown that a sparse approach can be used
efficiently when exploiting the sparsity of the scene data, as
shown in Figure 2.

8.7%

91.3% Free

= Non-free

Figure 2. After measuring geometry sparsity, the Liu et al. found
that even the scene with the fewest empty voxels still has over 90%
empty voxels.

With this approach, SparseOcc becomes the first fully
sparse occupancy network and achieves the state of the art
in both running time and performance, thanks to the intro-

duction of the sparse latent diffuser, which effectively lever-
ages the sparse nature of the of the scenes.

By incorporating sparse convolution layers and contex-

tual aggregation blocks, the sparse latent diffuser achieves a
balance between spatial sparsity and scene completion. Ad-
ditionally, SparseOcc incorporates a sparse feature pyramid
to enable multi-scale representation and employs a trans-
former head for the final occupancy prediction.
Although SparseOcc primarily utilizes sparse representa-
tions to enhance efficiency and minimize computational
burden, it is not completely sparse. The model introduces
dense components at certain stages to improve performance.
More specifically, SparseOcc integrates dense layers in the
later stages of its pipeline to refine the features extracted
by the sparse convolutions. Furtheremore, the transformer
head use for the final processing involves some level of den-
sification to ensure precise 3D scene reconstruction.

3. Methodology
3.1. Model description

As introduced in previous sections, our work uses
SparseOcc [7] as a baseline. This model achieved a state
of the art performance by exploiting the sparse nature of the
scene geometry.

The SparseOcc architecture consists of the following
steps, visualized in Figure 3: First, it uses an image back-
bone to extract 2D features from the multi-view images that
are collected in each time step. In our case, the pre-trained
weights ! for the ResNet-50 [4] backbone are taken from a
Cascading R-CNN [2]. This backbone is pre-trained on the
nuScenes dataset, this makes it easier for the model learn
the voxel representation. Next, these features are sent into a
Sparse Voxel Decoder and a Mask Transformer.

The Sparse Voxel Decoder divides the 3D space in K
voxels of equal size, assigns an occupancy score to each
one and finally, conducts pruning to remove empty voxel
grids. The pruning is done by either eliminating voxels
with a score under a certain threshold, or by retaining the
top-k voxels with the largest score. This pruning strategy is
named dynamic thresholding as scores under certain thresh-
olds are eliminated to on areas more likely to be relevant. As
the original authors concluded that the top-k approach was
the preferred method on the nuScenes dataset, we leverage
it for our experiments as well.

The detailed architecture of the Sparse Voxel Decoder
is visualized in Figure 4. It uses a transformer-like archi-
tecture with a self-attention mechanism to aggregate local
and global features for each query voxel. Each voxel is
represented by query, key, and value vectors. The decoder
processes voxel representations through multiple layers,
with self-attention followed by feed-forward networks,

Uhttps://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages
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Figure 3. The SparseOcc architecture consists of a Sparse Voxel Decoder and a Mask Transformer. They take the features from the image
backbone, and output the predicted occupied voxels with their class label prediction [7].

combining local and global features to enhance spatial
detail and overall scene understanding.

At each layer’s end, the decoder upsamples each voxel
by 2x, subdividing it for higher resolution predictions. It
then estimates occupation scores for these smaller voxels.
Voxel grids are pruned based on scores, either by eliminat-
ing low-score voxels or retaining the top-K highest scores,
focusing on the most relevant regions. The occupation
scores are supervised using a Binary Cross Entropy (BCE)
loss, guiding the model to improve predictions. The
remaining voxel tokens after pruning serve as inputs for
the next layer, refining voxel representations iteratively and
enhancing model accuracy. This architecture effectively
transforms 2D image features into high-resolution 3D
occupancy predictions.

The Mask Transformer used in the model is inspired
by Mask2Former [3]. It consists of three main steps: multi-
head self-attention (MHSA), mask-guided sparse sampling,
and adaptive mixing. The MHSA mechanism allows the
model to capture dependencies within the data by attending
to different parts of the input simultaneously. After this, a
mask-guided sparse sampling focuses the attention mech-
anism on relevant parts of the input. This effectively re-
duces computational load and improves on efficiency. Fi-
nally, adaptive mixing combines the information from the
sampled regions to generate refined mask predictions. The
Mask Transformer uses N sparse queries, including a ”no
object” category, to predict the mask and label for each seg-
ment.

Finally, the outputs of the Sparse Voxel Decoder and
Mask Transformer are combined to give an occupancy pre-
diction of the surroundings, with a class assigned to each
occupied voxel.
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Figure 4. Detailed architecture of the Sparse Voxel Decoder archi-
tecture [7]

3.2. Flow Estimation

The original implementation of the SparseOcc network only
predicts the occupancy and classes of the voxels, and not
their flow over the frames. In the original dense OccNet
implementation [9], a single MLP is added to predict the
flow vectors for each voxel. However, this approach will
not work for the voxel decoder used in SparseOcc. This is
because the sparse occupancy is predicted on multiple levels
of detail, and the sparse nature of the occupancy predictions
makes it impractical to simply run the occupancy through an
MLP to predict flow vectors.

Instead, the flow vectors are predicted in meters per sec-
ond for each level in the voxel decoder and are returned
alongside the occupancy predictions. The loss for the flow
is calculated using the mean squared error between the pre-
dicted flow vectors and the ground truth. This loss is com-
puted individually for each level of the voxel decoder, sim-
ilar to the occupancy predictions.

The voxel decoder predicts occupancy and flow from
coarse to fine, while the ground truth label is only available



for the fine occupancy grid. To compute the loss for the
coarser levels, the ground truth is down sampled to match
the level’s resolution. The prediction by the final level of
the voxel decoder is more important than the lower levels,
as it is used for the mask loss. Similarly we assign a higher
weight to the flow prediction at the final level, to avoid the
loss of the lower levels causing noisy losses.

4. Experiments
4.1. Dataset

In the original work for SparseOcc, Liu et al. trained the
model on Occ3D-nus, an occupancy dataset based on the
full nuScenes dataset [1]. Due to training time constraints,
we modified the code and annotation files to train on only
the nuScenes-mini subset. This subset trains and validates
on only 8 and 2 scenes respectively, compared to the 700
and 150 in the full nuScenes dataset. While the code was
adapted for the subset, training the model remains fully
compatible with the full dataset.

4.2. Occupancy metric

SparseOcc [7] also introduces a novel metric for occupancy
scoring: Ray-level mloU (RayloU for short). The authors
motivate that the classic mloU approach is insufficient, as it
does not consistently penalize behind occluded areas. This
often leads to predicting distances to be closer than they
really are, as seen in Figure 5.
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Figure 5. Computed IoU in three different situations: The model
penalizes the depth of objects to be inconsistently. In the first case,
where the distance is predicted to be d, further than the ground
truth, the IoU is 0.0. In the third case, where the distance is pre-
dicted to be d,, closer than the ground truth, the IoU is 0.5. This
discrepancy leads to distance predictions being biased to being
closer than the ground truth.

RaylIoU manages to avoid this issue through:

1. Emulating LiDAR by projecting query rays into both the
predicted 3D occupancy volume and to the ground-truth
occupancy, computing the distance rays travel before in-
tersecting any surface, and retrieving the corresponding
class label.

2. Computing the metric by only evaluating voxels that are
present in the ground truth.

3. Considering as True Positive predictions that are in the
correct class label and have an L1 error of the predicted
depth of objects under a certain threshold, that might

be specified through hyperparameters with values as 1m,
2m, 4m, etc.

4.3. Flow metric

The metric we use to measure the flow is the one provided
by nuScenes datasets [1], average velocity error (AVE).
This metric is computed as the absolute velocity error in
m/s.

4.4. Our contribution

In this project our contribution can be summarize in these

two goals:

* Reproducing the original SparseOcc from Liu et al. over
the nuScenes-mini subset of the dataset, in order to eval-
uate its reproducibility.

* Incorporate a flow module to the model, aligning with
the goals of the challenge. We will test this new model
over different configurations, changing the backbone and
batchsize, and comparing the different results we got.

5. Results

In Table 1 we compare the reported RayloU in the original
paper for SparseOcc with the results we got after reproduc-
ing the model. The lower value of RayloU in our model can
be due to the fact that we trained over a reduced subset of
the dataset: a decrease of the 88% of the dataset has lead to
a decrease of the 73% in the RayloU.

Table 1. Comparison of RayloU obtained by the original paper of
SparseOcc, our reproduction of SparseOcc over the subset of data
and our extension of SparseOcc with the flow module.

Method | RayloU
Original SparseOcc | 340
Rep. SparseOcc | 9.848

SparseOcc + Flow Module | 8.725

Table 2. Comparison of training runs with and without the flow
module.

Model | LR | RayloU | RayloU,, | RayloUs,, | RayloUs,, |
R50-SparseOcc (flow) | 4e-4 | 9.6 | 6.3 \ 9.3 \ 13.1 \
R50-SparseOcc | 4e-4 | 90 | 5.9 \ 8.8 [ 123 |
R50-SparseOcc (flow) | 2¢-4 | 87 | 58 | 84 | 120 |
R50-SparseOcc | 2¢-4 | 98 | 6.7 | 9.6 | 132 |

In the table above Table 2, we notice something inter-
esting in the Ray-IoU metrics, where the runs trained with
a higher learning rate seem to benefit more from the flow
module. This is likely caused by the fact that the flow pre-
diction could indirectly lead to a focus on temporal consis-
tency.



Lastly, we ran an experiment with a different image fea-
ture backbone, using a ResNet-101 model, with pre-trained
weights taken from the R101 version of the Cascading R-
CNN [2] used for the main experiment.

Table 3. RayloU scores on the test set for models using a
ResNet101 feature backbone.

Model | LR | RayloU | RayloUy,, | RayloUs, | RayloU, |

R101-SparseOcc (flow) | 4e-4 | 99 | 6.2 \ 9.4 \ 14.2 \
R101-SparseOcc ‘ 4e-4 ‘ 8.3 ‘ 54 ‘ 8.2 ‘ 114 ‘

From the results in Table 3 it is clear that the larger im-
age backbone results in better scores. However, the larger
backbone resulted in an increased training time, which is to
be expected.

6. Discussion
6.1. Reproduction and improvement

The work cited by the Occupancy and Flow challenge as
baseline proved difficult to reproduce and improve on. It
was difficult to reproduce, as some dependencies were not
available on our compute cluster. The approach to predict-
ing the voxel flow in the original OccNet, using a single
feed-forward layer, could not be adapted to the SparseOcc
pipeline directly, due to the differences in the voxel repre-
sentations. Instead it inspired the technique applied on each
level in SparseOcc’s the voxel decoder.

6.2. Limitations

Due to the enormous amount of data and limitations with
our compute cluster we decided to train our models on a
small subset of the nuScenes dataset. This resulted in sig-
nificantly lower scores on the metrics. We trained a baseline
on the same subset of data, to have a point of reference for
the results of the other experiments. We were able to im-
prove the scores of the model using our improvements.

Due to time constraints we were unable to verify whether
our changes scale, and still lead to improved scores when
training on the full dataset. Additionally the weights set for
each level of the flow loss should be experimented with, as
they were arbitrarily set to 0.5, 1.0, 2.0 respectively.

We also hypothesize that the base SparseOcc can be im-
proved significantly by improving the pruning of empty
voxels. The current top-k approach works well, and is com-
putationally efficient. However, using a more complex ap-
proach inspired by the masked attention in Mask2Former
or adapting the matrix memory approach introduced by the
novel xLSTM architecture could definitely lead to improve-
ments.

7. Conclusion

In this paper, we have successfully implemented a flow
module to the current state-of-the-art model, SparseOcc,
aligning it with the remaining goal of the challenge that it
lacked of. More experiments should be done in the future
in order to improve the performance in our model, as due
to the limited time and computation resources we had ac-
cess to, our model will serve as a first baseline over which
improve.

In order to make the dataset more manageable, we
have created a mini subset of the original nuScenes
dataset,reducing it to the 89% of the dataset. This substan-
tial reduction resulted in significantly increased processing
speed.

We have also run the original SparseOcc code as an ex-
periment in reproducibility over our reduced dataset, result-
ing in a smaller performance compared to the original ap-
proach. This decrease in the RayloU finds its explanation
in the smaller dataset we have used, which did not allow the
model to reach its full potential. Nonetheless, we can con-
clude that the experiment was successful as we didn’t find
any problems making their code work.

Finally, another experiment was performed with differ-
ent configurations of backbones, batches and learning rates
in order to find the best configuration of all of them.

8. Work Distribution among members

We divided our efforts among organization, research, cod-

ing, and writing. Initially, our tasks were more fixed, but

by the end of the project, all of us contributed to different
aspects. Here is an overview of each team member’s contri-
butions:

* Gijs de Jong: For the code: Reproduction, extra experi-
ments, dataset preprocessing, flow module, flow loss, run-
ning experiments. Poster preparation. For the report, re-
lated work, discussion, methodology, introduction and re-
sults.

* Robin Reitsma: Report writing, related work studies &
summaries, poster work

* Harold Ruiter: For the code: Reproduction, extra experi-
ments, dataset preprocessing, flow module. Poster design.

* Marina Orozco: Organization and coordination. Theo-
retical research. Poster design and presentation. For the
report: Abstract, Introduction, Model description, Occu-
pancy and Flow metric, Results. Reviewing.

* Danilo Toapanta: Review model architectures to improve
SparceOcc and expand on related work. Prepare prepro-
cessing on the smaller nuScenes dataset
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