
SEFFAS

Simulator Environment For

Flexible Assembly Systems

A.H.J. Koning

April 1991

Abstract

This paper describes the design and implementation of a simulator forso-called
flexible assembly systems. These are robot cells with multiplerobots and sensors
designed to be able to produce different kinds of products.This project is a part
of the Esprit Computer Integrated Manufacturing ProjectNo. 2202 - PLAT -
Planning Toolbox for CIM systems. The simulator has tobe capable of interac-
tive simulating a robot cell with multiple robotsand sensors. With simulating
we mean both the emulation of the control ofthe cell, and the visualization of
the simulated robot cell on workstations,so that we can monitor the (emulated)
execution of commands and programs bythe cell.

Contents

1

1 Introduction

1.1 Background

With the evolution of the electronic computer, w ich startedin the early 1950’s,
came the evolution of the robot in the early 1960’s.But it was not until the
late 1970’s that robots became cheap and versatileenough to be used on a large
scale in the industry. During the years thatfollowed robot utilization increased
rapidly and in the mid 1980’s it wasexpected that automated assembly systems
(i.e. robots) would replace thetraditional systems before 1991. But contrary
to the expectations in the second half of the 1980’s theincrease in robot util
zation came to a halt. The reason for this wasthat although the mechanical
evolution had led to robots capable ofalmost any manipulation needed, the real
problems lay with the softwaredevelopment and the integration and interpreta-
tion of sensor data in theassembly process. Research in these areas has led to
the insight that robotsmust not be seen as isolated units but that for successful
application ofrobots it is essential that more emphasis is put on the integra-
tion aspects,leading to the overall oncept of computer integrated manufacturing
(CIM). Together with the introduction of the robot came the problem of howto
program it. Early techniques were based on the teach-in concept. Theprogram-
mer physically moves the robot through the required trajectoryduring which the
motions of the robot’s joints are recorded on tape orotherwise. This recording
then serves as the robot program. Drawbacks ofthis method are that the robot
has to taken out of the production processto be taught and that there i little
control over the correctness of theprogram. With the introduction of textual
representation of robot motionsthe second problem was tackled and the first
robot control languages weredeveloped. These first languages were very sim-
ple and with thedevelopment of high-level general purpose languages such as C
and Pascalcame more and more complex robot languages, some of them based
onextensions or adaptations of general purpose languages. This however ledto
the problem that programming the robot wa no longer a job for theunskilled
operator but that specially trained programmers were needed. Nevertheless at
the moment most industrial robots come with aninterpreter for a specialized
robot language. However this still doesn’tsolve the problem of having to take
the robot out of the productionprocess to program it. This programming with
the help of robot’s controlleritself is called on-line programming and to overcome
this problem of loss ofproductivity off-line programming is introduced. Off-li e
programmingallows us to write the program on a other system than the actual
robotand thus is very appealing [Gini]. The idea of an off-line programming sys-
tem is that we can test thecorrectness of our program without having to use the
real robot. To beable to do this the off-line programming system should contain
a model ofthe robot and its environment. The model should correspond closely
to thereal situation in order to ensure that the program functions correctly.
Part of the Esprit 623 proj ct ”Operational control for robot systemintegration

2

into CIM” was the development of tools for productionplanning and off-line
programming. Production planning and programming inComputer Integrated
Manufacturing are much more complicated problems thanthe off-line program-
ming of a single robot. This means that there agreater chance of errors in the
planning and/or programming than with asingle robot. So in addition to the
reasons mentioned above for a singlerobot, the fact that an error in the planni
g or programming of a CIMsystem can lead to the break down of the complete
production in a factorymakes that we would like to be able to simulate our CIM
system so that wecan test our planning and programs before they are executed.
Among the tools developed as part of this ESPRIT project is theoff-line pro-
gramming and simulation package ROSI [Dillmann][Huck][Rembold] developed
by the University of Karlsruhe. ROSI enables themodelling and programming
of robots, parts and the robot’s work cell.Part of ROSI is the simulation of
the robot trajectories by a graphicssystem. In addition to programming and
planning errors, it is possible thatchanges in the actual status of the robot’s
environment may lead tointerruptions or even a break down of the production
process.This is because in the planning and programming stage we assume a
certainmodel of the reality, which may only partially reflect the real world.To
prevent this from happening we want our robot programs to be able tohan-
dle these so-cal ed exceptions. A robot programming environment capableof
handling exceptions has been proposed [Meijer1] and implemented [Mul]. The
University of Amsterdam participated in this ESPRIT project withthe devel-
opment of the ”Exception Handling Model” (EHM). Exceptionhandling in this
context means that the robot is able to react tounforeseen situations in a such
a way that they can be handled adequatelywithout outside help, so that the
robot system continues to operate.Tools have been developed to gener te and
monitor the recoveryprocedures. One of these tools [Meijer2] uses an expert
system to implement theexception handling. The development and testing of
this tool was donewith a real robot and real sensors. The drawbacks of this
approach areobvious: You can only test the system with the available sensors
androbots, preventing them from being used for other purposes and until the-
exception handling is perfect it is possible for things to go wrong andthe set-up
may get damaged. A suitable simula or would remove thesedrawbacks. Work
along these lines currently continues in Esprit II project 2202:PLATO - Plan-
ning Toolbox for CIM systems. This project has as one of itsobjectives the
development of a complete simulation system for CIMsystems. The University
of Amsterdam will provide sensor based controland exception handling in this
system. Again a simulator capable ofhandling multiple robots and sensors is
needed to create a suitableprograming and testing environment.

1.2 Demands

The availability of low-cost Unix workstations with bit-map graphicsdisplays
opened up a new area in off-line robot programming. Theseworkstations are

3

well suited for the off-line programming of robots andwhen placed in a net-
work these workstations allow companies to have theirdepartments do product
development and production planning at varioussites. Research and develop-
ment is now going on in this field ofapplication, for instance the Esprit PLATO
project. As a part of thisESPRIT project this gr duation project involves the
design andimplementation of a simulator system suitable to run interactively
onUnix workstations, and Sun workstations to be specific, and capable ofgiv-
ing a detailed simulation of an arbitrary robot cell including theintegration of
sensors. As an example of this sensor integration we cantake two robots in a
master-slave configuration, in which one follows theother based on information
from a force sensor held by both robots. For our simulator we would like to
use a st ndard windows environmentand a standard graphics library so that the
simulator package can easily beported and made available on a large number
of machines. As we alreadymentioned Unix is the most wide spread operating
system for workstations thesedays and for Unix systems is the X-windows en-
vironment expected to become thestandard window environment. The PHIGS
graphics library is the standard forthis type of visualization. So what we ulti-
mately would like is to have oursimulator run under X-windows and making use
of the PHIGS library.

1.3 Outset

At the start of this graduation project we had the result of twoprevious projects
at our disposal [Roth][Mul]. This simulator called ROSor ROSI was a partial
port of the ROSI package mentioned earlier,designed to run on Sun 3 worksta-
tions, and it allowed us to simulatemultiple robots. It used the PHIGS library
and ran under the SunView windowenvironment. But while it fulfilled part of
our demands it failed intwo important areas: It took thi simulator 20 seconds
or more to drawone robot, making it more or less impossible to be used interac-
tively.Furthermore the simulator made no provision for the integration ofsensors
and neither was there a way to access the world model used fromoutside the
simulator. Although this simulator did not run under theX-Windows environ-
ment, using a PHIGS library suitable for X-windows wouldenable it to do so.
We started this project by looking if it was possible to use the existingsimulator
and try to fi d ways to speed it up (chapter 2). When we receiveda new and
considerably faster version of this simulator we decided to use itand next we
concentrated on integrating the various parts of our system whichwe already
had available (chapter 3-4) and extending and changing them wherenecessary
(chapter 4-5). This led to a simulation environment which allowed usto realize
an interactive simulation of multiple robots. The important part,sensor integra-
tion, was next and we designed and implemented a way to b abledo this (chapter
6-7). Finally we look at the result of this project and tofuture developments
(chapter 8).

4

2 Orientation

2.1 First Effort

The simulator we had at our disposal was written in Pascal and usedan imple-
mentation of the PHIGS standard graphics library written inFORTRAN. As
we mentioned earlier it ran on Sun 3 workstations. Because wenow also had
the newer and considerably faster Sun 4 workstations to workwith it seemed
to be a good idea to try and por ROSI to these machinesto see what increase
in speed this would give us. Despite repeated efforts we did not succeed in
porting the PHIGSgraphics library (FIGARO), so we could not run our simula-
tor on thefaster SUN 4, SPARC station 1 and SPARC station 1+ machines we
haveavailable. And while the PHIGS package was a commercial product it did-
not integrate well with the SunView windows environment it was runningunder,
so one of our options was to replace it. We took the picturequality of the ROSI
sim lator as our minimum target and searched for away to get the performance
we required to do real-time animation of thesimulated robot cell. This led to
the following experiment:

2.2 Experiment

The first question we had to answer was whether the poor performanceof the
existing program was a software or a hardware problem. We hadlittle documen-
tation about the way PHIGS works, so this was one of thefirst things to figure
out. PHIGS uses an hierarchic tree structure tostore the transformation on the
objects it has to draw and keepspointers to an array with the geometric data.
When given an order to drawan object it walks thought the tree, performs the
transformations anddraws the object. This implicates that either the transfor-
mations or thedrawing or both are costly operations in terms of processor time.
To findout where the problems really lie we did some experiments. First we
needed a estimate of the complexity of the picture we want to draw.Because we
use vector graphics the numbe of edges in the picture will providesuch an esti-
mate. When we looked at the data files used by the existing programto describe
the various elements in our picture, we saw that they consistedonly of polygon
descriptions. One line to describe the polygon, followedby the vertices of that
polygon, with each vertex on a seperate line.Since the number of vertices of a
polygon is the same as the number of edgesof that polygon, we can use the length
of the file in lines as the upperlimit of the number of e ges in the picture. This
yields the following results: About 3500 lines (edges) for a Puma 260robot, and
about 4000 for a Bosch robot. Since our application will beused to simulate co-
operating robots we are looking at a picture withat least about 7,000-8,000 lines.
And as we want an animated picture weprobably need to redraw the picture at
least twice per second. This brings usto a total of 15,000 lines a second. The
transformations are done by means of floating point matrix-vectormultiplicatio

5

s, so we wrote a small program that does 15,000 of thosemultiplications and
timed it. It took a Sun 3 less than a second toexecute, so we can more or less
safely assume that this is not thebottleneck in our application and that the lack
of performance is causedby the limited speed with which the lines are actually
drawn. To test this assumption we wrote and timed a little program whichonly
draws lines. Since most lines in our application are pretty short,our benchmark
program drew 15,000 lines wi h a length of 10 pixels.

2.3 Result

When we timed the execution of this benchmark on various systems ityielded
the following results:

• SUN 3 (68020), single user: 21 seconds

• SUN 4 (SPARC), 2 users (load average 1.7): 3 seconds

• SPARC station 1, single user: 2 seconds

• SPARC station 1+, 3 users (load average 1.0): 1 second

When we compare the time for the SUN 3 benchmark with the approximate20
seconds needed to draw a real picture (of ab ut 10,000 lines) with theprogram
using FIGARO, we may conclude that our benchmark gives us a goodidea of the
performance which can be attained without additionalhardware. It also shows
that the use of FIGARO slows down things by about30%. This seems a little
more than we expected at first, but the FIGAROimplementation of PHIGS is
written in FORTRAN (not the best language forthis kind of application) and
not specially tuned to the SUNworkstations. From these results we can draw
some conclusions: f we use a SPARCstation 1+ the simulator can draw at the
required speed, but it doesn’tleave much room for overhead caused by the cal-
culations needed to do thesimulation. Nor does it allow for the driver programs
and thecommunication between the drivers and the simulator to consume any
time.So from all this we conclude that we should look for a way to accelerateor
drawing, or somehow reduce the amount of drawing to be done.

2.4 Open questions

After this experiment there are still some op n questions. Forinstance this
experiment learns us nothing about the speed increase whichmight be attained
with the use of additional hardware. Furthermore wehave no data on how fast
we can do things as hidden line removal andlighting/shading to improve the
detail of our simulation. Also we don’tknow how much time the robot and
sensor drivers take, but some littletests show that the faster machines take very
little time to do thesekinds of simple floating point operations.

6

2.5 Options

A already mentioned above if we want to use PHIGS, and continuealong the
same lines as our existing simulation, we probably need to addhardware to at-
tain our goal. So when we look what hardware we can use,the GX accelerator
card offers up to 540,000 2D vectors per second and upto 270,000 3D vectors
per second when installed in a SPARC STATION 1+[Sun1]. While these fig-
ures are of course the optimum, even under lessthan optimal conditions the GX
accelerator card should provide theincrease in performanc we need. To make
the best use of the card’sabilities it is advisable to use the SunPHIGS graphics
library instead ofthe FIGARO implementation we currently use, since it spe-
cially optimized tomake use of the card [Sun2]. And even without the card
SunPHIGS should bebetter adapted to the SunVIEW environment (a problem
with FIGARO), and offerbetter overall performance since it is written in C in-
stead of FORTRAN. Another option may be the development of a simulator
that simplifiesthe picture before it is drawn to reduce to amount of drawing.
When wetake the existing simulation and use it to look at a robot from adis-
tance, a lot of very short lines are drawn, which add little to thequality of the
picture. And when we use a close up view a lot of thelines which are draw
are out side our field of view. This implies thatwhen we write a simulator that
can decide which amount of detail to use, ie. which lines to draw to view a
particular object at a particulardistance, we might achieve the performance e
want, while we will stillbe able to see sufficient detail close up. Of course this
has as aconsequence that we probably cannot use PHIGS and have to start
fromscratch when implementing this simulator. If we are willing to settle for a
simpler visualization another optionmay be to make a new representation with
a 3D CAD or drawing package. Sincewe don’t have such a packe at this moment
we can not experiment with thisoption.

2.6 New developments

At that moment a new version of the exi ting simulator came available andwe
were able to test some of the assumptions made above. This version wascom-
pletely rewritten in C, and came with a new version of thePHIGS library, Sun-
PHIGS. The person who wrote the original simulator nowworks on the same
Esprit PLATO project at the University of Karlsruhe inGermany and they use
it as the simulator for their environment[Negretto]. The simulator program now
is called SIG, for Single InputGraphics. This version of the simulator runs on
Sun 4 machines so that wewere able to test the increase in performance on these
machines. We were also able to test this simulator on a Sparc Station 1+ with
GX card.When we tested the performance of the new simulator, by having it
draw therobot to be simulated, it became obvious that the predictions made
above wereindeed true. When running on the Sparc Station 1+ with acceler-
ator it takesthe simulator less than a second to draw a picture. We cannot

7

time thisexactly in an easy way because the UNIX time command c n not be
used. Thesimulator takes quite some time to start up (about 10 seconds) and
this standsin no proportion to the time required to draw to robot. So when we
took these new developments in consideration, we decidedthat the best thing
we could do was use the new version of the simulator.So what we now had to do
was design our Simulator Environment ForFlexible Assembly Systems around
the SIG simulator. When we have thisdesign we can start to adapt existing
robot simulating/driving programsand mplement our own programs and sensor
simulators to work in SEFFAS.Furthermore since SIG doesn’t make any provi-
sions for the integration ofsensors we will have to come up with a way to do this
and implement it.In the next chapter we will show how SIG works and how we
can use it asthe center of SEFFAS.

8

3 SIG — The Simulator

3.1 SIG — Introduction

SIG is based on a client-server model in which SIG acts as a serverfor a client
program. For a program to become a client and allow it tosend commands
to SIG you can link it with an object file that come withSIG. This object file
contains functions which allow the client programto send commands to the SIG
server. These commands can be divided intotwo catagories: Commands which
affect the way SIG shows us the objectsits simulates, and commands which af-
fect the objects in the simulationthemselves. In the first category fall among
others commands to set theview position, the kind of projection used and the
way objects ar draw,ie. as vector graphics or as filled polygons. In the second
category fallcommands to change the world model, such as the setting the posi-
tion andorientation of objects and commands to alter the configuration of a ob-
ject,for instance the angles and translations of the various links of a robot.When
called with the right parameters these functions allow us completecontrol of the
simulator. As already mentioned SIG stands for Single Input Graphics which
meansthat when used this way it can only ccept commands from one clientpro-
gram at the same time. This is a major drawback since we want tosimulate mul-
tiple robots working independently, so we want to use separatedriver/simulator
programs to do so. To be able to have multiple programssending commands to
SIG we use a front end to SIG called MIG, forMultiple Input Graphics. MIG
allows us to have several programs runningat the same time, all sending their
commands to SIG.

3.2 SIG’s place in SEFFAS

Based on the information available at that time we envisioned oursystem as fol-

lows (fig. 1):

Client 1 Client 2 ...Client N

MIG

SIG

PHIGS

XXXXXXXXXXXX

»»»»»»»»»»»»

Fig re 1.

At this time we decided to first adapt an existing robot driver/simulator ARCS

9

(Amsterdam Robot Controller and Simulator) to work withSIG to get an idea
of the possibilities of the program. After this wasdone we used the framework
of ARCS to create a robot/driver simulator forthe Bosch TurboSCARA 800-4
robot we have in our robot laboratory. We willdiscuss these programs and the
way they interact with SIG in anotherchapter.

3.3 SIG User’s Guide

When you start “mi server” it will start “sig” automaticallyand “sig” in its
turn will start PHIGS. PHIGS is implemented as aseparate program called
“phigschild” , which runs as a independentprocess and takes care of all draw-
ing on the screen. After a short while youwill see two windows,the lower being
the View Window, in which the simulator will show us theworld, and the up-
per window is the Control Panel which can be used toalter the way in which
the simulator shows us the world. The View Windowcan be resiz d to show
a smaller or greater image of the world. As youwill see Phigs always uses a
square view window, whether the parentwindow is square or not. Since we are
going to use this simulator with avariable number of other programs it is not
possible to come up with a defaultplace and size suitable for all applications.
But you can arrange the windowsin the way most suited to your situation. The
control panel (fig. 2) offers a large number of buttons andsliders which can be
used to alter the view pa ameters. We will now givea short tour of the most
important items. First there are three slidersmarked Position X, Y and Z. The
X and Y are the x and y coordinates ofthe viewpoint, i.e. the point to which
we look, in millimeters. SIGstarts with a perspective view and then the z co-
ordinate of the viewpointis 0. This point is always in the center of the view
window. The Z sliderdetermines the height from which we view the world. As
you already willhave noticed there is a grid drawn in the view window. This
grid is 5000millimeter by 5000 millimeter in the real world, which means that
eachsquare of the grid is 50 centimeters square. The sliders use the samescale,
so when SIG starts with a default viewpoint of (2500,2500,1700) weare looking
towards the center of the grid from a height of 170 cm.Another slider, Dis-
tance, sets the distance from the viewpoint, again in millimeters. Figure 2.

10

6

¡
¡
¡
¡
¡
¡µ

-
Viewpoint

Z Axis

X Axis

Y Axis

Figure 3. Three

11

other sliders, Angle 1, 2 and 3, determine theangles from which we look at the
viewpoint in degrees. If, for instance,we want to look at the world from above
we can set slider Angle 2 to 90degrees. We can look at these angles as rota-
tions around the three axisof th local carthesian system of the view point, as
shown above (fig. 3).Slider 1 controls the rotation around the Z-axis, slider
2 the rotationaround the X-axis and slider 3 the rotation around the Y-axis.
Finally theslider Focus length determines the amount of perspective, just as a
cameralens. Short focal lengths give a wide view with large perspective distor-
tion,while long focal lengths zoom in on the scene, showing a smaller portionwith
less distortion. Above the sliders we find a number of switch s which allow us
totoggle a number of options. One of these options, Shading, does not workat
this moment, but it will be implemented in a future version of thesimulator.
The Update option determines whether the simulator will redrawthe picture
immediately after a change to one of the view parameters hasbeen made. When
you want to change a number of parameters and you areworking on a slower
machine it is wise to turn Update off, make thechanges and turn it on again,
because if a complicated picture s to bedraw by such a machine it can take one
or two seconds to generate aframe. If you ’slide’ a slider all positions passed by
the slider will bedrawn unless you have Update turned of. You can manually
update the viewat any time by clicking on the Update button. The Hidden
line buttontoggles hidden line removal. At the moment this only works when
objectsare draw as solid polygons, and it slows down the simulator considerably.
At the top of the window is a row of buttons which allow us todetermi e other,
less frequently changed parameters of the simulator. Allexcept the Quit button
have a menu under them which allows further choicewhich parameter to change.
On the next page is an overview of this menustructure. This will be followed by
a short explanation of the most importantitems. The useris encouraged to play
with the view position parameters and theparameters under the view menu to
create the view most suited for his orher needs and taste.

12

Update => Update

œ[7m--More--(26%)œ[m RedrawView => Attributes => Default Body => Set color Set presentation Set degree of detail Object => Show Hide Show CS Hide CS Set color Set presentation Set degree of detail Color Projection kind => P

rallel Perspektivisch View memory => View load View save View deleteBuild => Create puma260a Create puma260b Create puma260c Create puma260d Create kamro Connect puma260a Connect puma260b Delete all objectsQuit

The Update button we already mentioned. It has two menu items Updateand
Redraw. The former draws the new si uation, while the latter restoresthe picture
should it become distorted by outside influences. Next is theView button which
allows you to further change the view drawn by thesimulator. For instance the
Attributes item allows you to change the waythe simulator draws an object.
When you select one of these items adialogue box appears into which you must
enter the name of the object inthe simulation and a number which determines
the new attribute of theitem. This are some example of the values you migh
use:

Color: 1 Green Presentation: 1 Frame Degree of detail: 1 Frame 2 Red 2 Striped 2 NA etc. 3 Filled 3 Wire

The item Projection allows you to choose either perspectiveprojection (default)
or parallel projection. If we change to a parallelprojection the Z slider becomes
the z coordinate of the view point, whichnow also is no longer at the center of
the view window. The bottom of theview window now is 0, and the Z sliders
controls how far the 0 level ofthe grid is above that bottom. The Build button
offers us a menu with some objects we can put in oursimulator’s world. It was
mainly meant for test purposes, since everyclient program can send the simulator
commands to put objects in theworld. Finally there is the Quit button which
is pretty obvious. Rememberhowever that clicking this button only closes the
windows and halts theprogram. To really stop the program inte rupt it with
‘ctrl-C’ or ‘ctrl-?’.

13

4 ARCS — Adaptation and extension

4.1 Introduction

When we started this project we already had another robot simulator,providing
both kinematic emulation and simple visualization,called ARCS, for Amster-
dam Robot Controller and Simulator. This simulatorwas developed at our
university to control and simulate the OSCAR robot.This is a 6 degrees of
freedom robot designed and build by the Philipscompany. It kinematic struc-
ture is much ike that of the well known Pumarobots. It has 6 rotating links,
but unlike the Puma robot OSCAR has an armwithout sideways offsets. So
the OSCAR can be represented as a line figureas in the following picture (fig.

4).

Link 1 / rotation 1

Link 2 / rotation 2 Link 3 / rotation 3

Gripper / rotation 4-6

´
´
´
´́

ut(60,30)
J
J
J
JJ

-

- ¾

¾

Figure 4.

And this was exactly the way ARCS simulated the OSCAR robot by meansof a
three dimensional line model. The advantage of this type ofsimulation was the
speed. Even when running on a Sun 3 workstation thespeed was large enough
to do real time simulation. That was about theonly advantage because there is
little to see about a line model and itonly gives you a rough impression whether
the simulated move is indeedwhat you expect. But because Unix doesn’t offer
genuine real time controleven this part of the simulation left something to be
desired.

4.2 Adapting ARCS

So we decided to start and try to adapt ARCS to use SIG for graphicsoutput
instead of its own line figure. But there was a little snag.Because SIG offe s
us a detailed representation of the robot it needs anfairly extensive description
of the robot it simulates. And we didn’thave one for the OSCAR robot. Fur-
thermore we didn’t have a 3D CAD ordrawing program suitable to make such
a description. So for the timebeing we decided to use the description of the
Puma 260 robot we did have(fig.5). As already mentioned this robot resembles
the OSCAR robot in itskinematic structure, but not in its dimensions. But
by using thisdescription as a stand-in we woul at least be able to try out SIG
with afamiliar and tested robot driver/simulator.Figure 5.SIG came with a few

14

demonstration client programs, but these programsonly show some robots with-
out moving them. Adapting ARCS so as to sendcommands to SIG to place a
Puma robot in the simulated world at start upwasn’t a problem. Now it was
time to find out how a client program couldmove the robots it had simulated by
SIG. From the sources of SIG welearned that every object in the sim lation that
could be moved had anumber of control values. In case of the PUMA robot these
control valueswere the 6 joint angles. So by sending the simulator a command
to changethese control values and then having it redraw the view we were able
tomove the robot. What we needed to do next was find a point in the existing
simulatorpart of ARCS where these values were known. Fortunately this was
easy asthese values were passed as parameters to the procedure in ARCSrespon-
sible for the simulation. So e could simple put the command tosend these values
to SIG in that procedure and watch SIG draw the robot.At this time we kept
the old simulation so we could compare it to the newone. When we tested this
new version of ARCS it performed exactly as weexpected. Except for the differ-
ences in dimensions between the OSCAR andPUMA robots the movements of
the robots in the old and new simulationwere the same. Furthermore the speed
of the SIG simulation was close tothat of the old ARCS run on a Sun 3 worksta
ion. This proved that weindeed could use SIG as a replacement of our existing
simulation.

4.3 Adding a user interface

While SIG offered us a nice user interface in the form of the controlpanel, at time
ARCS had nothing more to offer than a simple command line,reading its com-
mands from ¡stdin¿. While this made it easy to execute‘programs’ by reading
commands from file rather than from the keyboard,it wasn’t very user friendly
and didn’t look very professional. So as wenow were altering th program anyway
we might as well try to add a moreprofessional and friendly user interface. For
this user interface we hadtwo candidates: First there was the SCIL interface
[Kate], the result ofan earlier image processing project, which is currently being
used as thefront end annex user interface for two image processing programs
SCILAIMand SCILIMAGE. Secondly we could use a control panel created for
use withthe driver program of the OSCAR robot. ARCS offered us the follow-
ing commands: (P)oint to point move,(C)artesian straight line move, (G)rip,
(U)ngrip, (F)ile read, (S)tatusdisplay and (Q)uit. We will have to implement
an user interface with atleast the same functionality. SCIL stands for Standard
C Interpreter Language and this is the mostimportant feature of this user inter-
face. It was developed to offer acomplete development environment for image
processing programs. Inaddition to a C interpreter SCIL also offers a menu sys-
tem, on topof it, which allowsthe user to call compiled fun tions linked to SCIL
and a way to enterparameters for these functions by means of dialogue boxes.
SCIL alsoincludes a command expander which allows the user to call functions
withtheir parameters from a command line. For our ARCS interface we want a

15

convenient way to call the functionsnecessary to perform the commands listed
above. We don’t want to use thecommand expander because ARCS already
offered us that kind of interface.So we placed the commands as functions in a
menu. When such a menu items is selected a dialogue box appears allowing
us to enter the parametersassociated with the function. When used this way
we notice that this is notquite the way SCIL was meant to be used. Dialogue
boxes open for eachfunction (even if it has no parameters) and unless closed
clutter ourscreen. Since is not possible to put commentary or icons in the di-
alogueboxes they all look alike and when a number are open this is confusing.
A solution might be to put a number (or all) of the functions underthe same
menu item and in the same dialogue box. This however would leadto a very
large and ugly dialogue box since every parameter comes on itsown line. To
put in Apple terms: ’The look and feel’ of the interface isnot right for this kind
of application. So we may conclude that while itis possible to use SCIL as the
user interface for a robot driver/simulatorit is not the most optimal solution.
It would however be possible andprobably advisable to use SCIL as the user
interface for vision orientedsensor sim lators which might be developed for SEF-
FAS in the future. Forinstance the use of a stereo camera for object recognition
and/or sensordriven robot control. At this moment we lack a programming en-
vironment suitable for multiplerobots and sensors. This falls outside the scope
of this project, but SCILlooks a good candidate if it is extended with the proper
routines to controland communicate with the client programs. We will return
to this in the finalchapter. But even if we are to use SCIL for this p rpose
we still need aworkable user interface for the immediate control of out robots.
The next option we had was to ‘borrow’ the control panel of the OSCARdriver
program. So we took the relevant source file of that program andreplaced the
various function calls with our own. We did not encounterany difficulties ex-
cept for the single step trace option built into theOSCAR driver program. This
requires the driver program to return controlto the control panel after every
single step in a move. To impl ment thisin our driver/simulator would require
a complete rewrite of the movementroutines so we left this option out. It would
be possible however toimplement a single step trace option in the simulator by
having it waitfor a keypress after each step. But since this is not intuitive and
theold ARCS did not offer this option anyway, it is not implemented. After
implementing this interface and trying it out we could findonly one drawback:
Because it offers all the control options at the sametime it is a bit large. While
this may not be a problem when only one isrunning the screen may become
crammed if two or more are active at thesame time. So the user is advised to
iconify (close) any control panelthat isn’t actively used at a given time. However
it works and looks goodso we decided to stay with this user interface.

16

4.4 ARCS User’s Manual

You can start ARCS by executing the program arcs after you havestarted the
simulator SIG. ARCS will now prompt you to enter the mode inwhich it ill run.
Enter “m” to put ARCS in master mode and be able to move the robot with
the control panel. The use of slave mode will be explainedin the chapter about
the World Model Manager. Next you’ll have to wait afew moments while the
simulator loads the description of the Puma robot.You will see the robot appear
in the simulators view window and finallythe control panel will appear (fig. 6).
You can now enter a destination by either moving the sliders or bytyping the
desired coordinates after the Value: prompt. Don’t forget toclick the Set button
to set the sliders to these values. When enteringthe destination’s coordinates
remember that the size of the Puma robot inthe simulation is about half that
of the OSCAR robot. This means thatwhen you enter the coordinates shown in
the program above the Puma robot willappear to move to about (662,0,350). It
was easier to leave it thisway so that if we get data files for an OSCAR robot
we don’t have toadapt ARCS again. At the moment the adaption of AR S is
more meant as atrial to see how this combination with SIG would work out.
Next you can use the Steps slider to set the number of steps in whichthe simu-
lator will show the move. On slower machines without a graphicsaccelerator it
is advisable not to use more than 20 steps. Finally youcan change the desired
motion type from point to point to straight lineor back. The robot will try to
execute the move to the position andorientation set by you when you click the
Move button. If a position orori ntation can not be reached the robot will stop
and a message willappear. You can open and close the gripper with the Grasp
and Detach buttonsbut at the moment there is no provision in ARCS to pick
up an object evenif there is one in the simulation. See the chapter about fu-
tureextensions for more information. At any time you can move the robot toits
home position in 10 steps by pressing the Reset button. Clicking onPrint info
will print information about the position and orientation ofthe robot. F nally
ARCS can execute off-line programs by entering thefilename and clicking the
Execute button in the lower part of the controlpanel. As already mentioned in
the previous paragraph the Single steptrace option doesn’t work. Off-line pro-
grams consist of the commands mentioned earlier, followedby their parameters
if any. For instance the following programs firstprints the current position then
performs a straight line move toposition (1324, 0, 700) and orientation (0, 90,
0) in 20 steps andfinally prints the new position:

17

s c 1324 0 700 0 90 0 20 s

Note that this is exactly the way you would have entered the commandsin the
earlier versions of ARCS.Figure 6.

18

5 BOSROS — BOsch Scara RObot Simulator

5.1 Introduction

So now we had a working combination of a client and server programwhich
proved that we could implement a robot simulation this waywhich suited our
needs. We could now start o implement a simulation forthe Bosch TurboSCARA
SR 800-4 robot which we have in our robotlaboratory. This is a powerful indus-
try robot which among other things isbeing used for research involving vision
driven robot control. It wouldbe desirable to have a simulator to use instead
of the real robot whenexperimenting with this type of control. We already had
the right graphical data for the Bosch robot, butthere were two problems: First
of all the data appeared to be corruptedas SIG crashed when w tried to load
it. Secondly the Bosch robot camewith a complete set of hardware which takes
care of driving the robot.This functions as a black box which allows us to spec-
ify a goal positionand then takes care of the path planning, inverse kinematics
and dynamicsto have to robot move to it. So in addition to trying to repair
the datafiles we would also have to implement a black box of our own to act
asthe driver/simulator program.After we succeeded in repairing the files (see
appendix B) weencount red another slight problem in the fact that the Bosch
descriptioncame without a gripper. Instead we used the Puma gripper as this is
similarto one of the grippers we have for the Bosch. But these and the problem
withthe OSCAR robot shows that it might be advisable to obtain a 3D CAD
ordrawing program capable of creating files in this format or some format that-
can be converted to it. Together these files give us a quite workablesimulation
of the Bosch robot (fig. 7).

5.2 BOSROS — The driver simulator

Now we had the files working it was time to implement a driver/simulator pro-
gram. Because we wanted the same functionality as ARCSoffers we decided
to replace the kinematic routines in ARCS with routinessuitable for the Bosch
SCARA robot. There is one difference however,while ARCS was intended to
study the dynamic behavior of the robot, thisis not one of the main concerns
with the Bosch robot. One of the Boschrobot’s main applications is the combi-
nation of robot control and vision,so p sitioning is more important than speed.
And since the robot can movefaster than the simulator can draw anyway we
decided to ignore thedynamics and just simulate the movement. It would be
possible however toextend the simulator to include dynamics.Figure 7.ARCS

19

uses matrix calculations to solve the kinematics of the OSCARrobot. Instead
of trying to adapt these routines it was simpler to usesome simple trigonometry
to solve the kinematics of the SCARA robot. Therobot has onl 4 degrees of
freedom as opposed to the 6 of the OSCARrobot (fig. 8). The orientation of is
controlled by one rotation and inaddition movement in the Z direction depends
on only one translation inthat direction. This means that the X,Y positioning
is controlled by tworotations. This implies that we only have to solve the 2
dimensionaloblique triangle formed by the links of the robot and the imaginary
linefrom the first rotation axis of the robot link to the last rotation andtransla-
tion axis (fig. 9)
The calculation goes as follows:

X = x coordinate of destination Y = y coordinate of destination A = length of first link B = length of second link C = sqrt (X * X + Y * Y) s = (A + B + C) / 2 h = 2 / C * sqrt (s * (s - A) * (s - B) * (s - C)) alpha = asin (X / C) + asin (h / A) beta = - asin (h / A) - asin (h / B)

There are other ways to perform the same calculation but they don’thold any sig-
nificant advantage over this ne. After the angles arecalculated this way they are
corrected for the configuration of the arm(left or right bend) and the quadrant
in which the destination lies. Next we implement the two ways of movement:
Point to Point andStraight Line. Since the Bosch controller is implemented
as a black boxwe have no access to the functions used to perform these move-
ments.Experimentally determining them would fall outside the scope of thispro-
ject, so we decided to implement our own functions. Point to point ovement is
achieved by interpolating the starting and destination jointangles with a cubic
spline, while straight line movement is achieved byinterpolation with a cubic
spline along a straight line. The number of steps in which the move takes place
has no relation withany real world time. It is simply the degree of accuracy
with which themovement is simulated. If we were to have a faster machine we
couldextend the simulation to do real time simulation.Figure 8.Figure 9

20

5.3 BOSROS User’s Manual

Since BOSROS uses the same control panel as ARCS, see paragraph 5.4for a
description of this. There are some small differences between theway BOSROS
functions and the way ARCS functions. First as the Bosch SCARArobot has
only 4 degrees of freedom, only the first four sliders are used(fig. 10). Setting the
last two sliders has no effect whatsoever.Furthermore since we use the right files
for the Bosch robot the grid ofthe simulator, which is equal to 00 mm by 500 mm,
can be used todetermine the destination coordinates. Be careful however when
settingthe Z coordinate. The simulator uses a Puma type gripper and BOSROS
usesthe length of this gripper to calculate the translation parameter. Ourown
Bosch robot is frequently equipped with a much longer gripper andthis will lead
to a difference between the real and the simulated view.Again the remedy would
be to create the necessary data files and adaptBOSROS. Finally in contrast to
ARCS, BOSROS will refuse to start to execute amove of which the destination
can not be reached. This is true for bothpoint to point and straight line moves.
This is done on purpose since ifa destination can not be reached the command
to go there was probably amistake and to prevent damage to objects which may
be in the way of therobot the robot refuses to move, giving the human controller
the chanceto check the entered coordinates. Note that both the simulator and
thereal Bosch robot don’t know about the floor or tab e and will happily tryto
press the gripper right trough it if you tell them to do so.Figure 10.

21

6 World Model Manager — Design

6.1 Introduction

When we want to do a faithful simulation of a robot workstation, weneed more
than just a graphical simulation of the robot and itssurroundings. For instance,
we also want to be able to detect collisionsbetween the robot and the other
objects in the simulation. And if we havemore robots working together, we also
w nt a mechanism to coordinate theactions of the robots. Finally we want to be
able to expand oursimulation with sensor simulation. So what we really want is
a simulationof the entire world around our robots. The relevant data of thissim-
ulated world must be kept somewhere and be made available to whomeverneeds
it. To do this we need a so called world manager. In the nextparagraphs we
will look at what would be the best design for such a worldmanager in our
specific environment. In our environment w use our own programs as clients
of SIG, whichinclude ARCS (Amsterdam Robot Controller & Simulator) for a
OSCAR (Puma260 like) robot, and BOSROS (BOsch Scara RObot Simulator).
These clientsacts as robot controllers: The user can enter commands for the
robot, andthese programs will try to perform these commands. The results of
theseprograms are new states of the robots, and these are be shown by thes-
imulator server program, SIG (fig. 11). When we want to include sensorsand
we want our robots to act n information from these sensors we need away for
the robot drivers to obtain this sensor information and for thesensors to obtain
information about the world.

6.2 Our current system

If we want to implement a world manager it will have to work closelywith the
simulator, so we had to take a closer look at our MIG/SIGsimulator to get an
idea how it is organized exactly. It became apparentto us that the way we en-
visioned our system wasn’t completely right. Thenames of the programs MIG
and S G, for Multiple and Single Input Graphicsare confusing, and some might
say badly chosen. Instead of one MIGaccepting input from multiple clients,
each client program has its ownMIG. These MIGs all communicate with SIG.
So each MIG has only a singleinput, while SIG receives input from multiple
MIGs. Figure 11.At the moment a fully operational simulation system with N

22

clientslooks like this (fig. 12):

Client 1 ramebox(20,5)Client 2...Client N

MIG 1 MIG 2 ...MIG N MIG N+1

SIG

PHIGS

aaaaaaaa

!!!!!!!!

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

Layer 1

Layer 2

Layer 3

Layer 4
Figure 12.

6.3 The current model

It is obvious that since we are simulating robots, we already have apart of
our world model in the model of these robots and theirsurroundings. This
model is stored in layer 3 and used by layer 4 of oursimulation system. It
consists of groups of polygons to describe thegeometry of the various parts of a
robot, and of transformations todescribe the relations between the parts. This
data is normally kept infiles, and read in at the start of the simulation. The
client programs have knowledge of the robot they are supposedlycontrolling, but
this is incomplete and unstructured data. And althoughthere is communication
possible between the various layers in our currentenvironment, at the moment
there is no provision for use of data in thelower layers by th clients. So what
we have are a collection of polygons and the relation betweenvarious groups of
these polygons, which are not readily accessible.

6.4 Desires, wishes and needs

What we want is a world simulation that contains all data normallyused by a
robot workstation regarding its surroundings and itself. Incase of sensor driven
controllers this means that we want to be able tohave our controllers obtain
data from the sensors in our world. Thesesensors will probably be simulated
by eparate processes, which in theirturn also need information from the world
(since this is exactly theirjob). So what we need is a world model that can be
accessed by bothcontroller and sensor simulators.

6.5 Solutions

Some of the data we need is already present in our simulation, i.e.the geometry of
the objects in our simulated world together with theirposition and configuration.

23

The problem is that we can not easily accessit. To be able to do so would require
a major extension of SIG. urthermore it would drasticly increase the information
stream betweenlayer 1 and layer 3. Since this data has to be present in the SIG
layer we have twooptions left: Either we implement the World Model Manager
as a separateprocess which keep a copy of that data, or we extend SIG to include
theWorld Model Manager. If we implement our World Model Manager along the
same lines as thegraphic simulator this will lead to the following situation (fig.

13):

SIW

MIW 1 MIW 2 ...MIW N MIW N+1

Client 1 Client 2 ...Client N

MIG 1 MIG 2 ...MIG N MIG N+1

SIG

PHIGS

œ[7m–More–(52Layer 3

Layer 4

Layer 5

Layer 6
Figure 13. If

24

we choose the second option there will be little change in oursystem, since there

will be no new processes or communication lines (fig. 14):

Client 1 Client 2 ...Client N

MIG 1

MIG 2 ...MIG N MIG N+1

SIG-WMM

PHIGS

aaaaaaaa

!!!!!!!!

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ

Layer 1

Layer 2

Layer 3

Layer 4
Figure 14.

6.6 Conclusions

The first option is certainly the most flexible, it allows uscomplete freedom in
the way we want to implement our world model and weare able to run the
World Model Manager on a different workstation thatthe one(s) we use to run
the clients and the graphic simulator.Furthermore it prevents us from having to
change SIG. But there are a number of substantial drawbacks to this approach.
First of all it willincrease the number of separate processes from 2N+3 to 3N+5.
This willincrease the memory, processor and communication overhead consider-
ably.Secondly since we’re using a large data structure we introduce morememory
and processor overhead in maintaining it. Thirdly the whole systemwill become
rather unwieldy to run and maintain for the user. If we expand the existing SIG
program to include our World ModelManager, we do not introd ce any new pro-
cesses, and the communicationoverhead will be less because we do not need to
tell our world model ofchanges like new objects, positions of objects and control
values ofobjects, since these will be send to SIG any way and we can intercept-
them, or use the data kept by SIG. As I’ve already mentioned we do notneed
to keep a separate copy of our object data, since we can use SIG’s.Furthermore
we do not introduce any new difficulties for the user. He canuse the new system
the same way he wou d use the old one. With theexpectation that future users
of this system won’t have access to or willwant to use multiple workstations
at the same time, the drawback that theWorld Model Manager runs on the
same machine as the graphic simulator andcan not be run on a different one
is not a problem.So if we consider all these arguments it seems that the best

25

thing wecan do is implement an extension to SIG to become our World Mod-
elManager. Graphically this SIG-WMM combination will look as follows (fig.

15):

Extended Communications

World Manager Graphics Routines

Data Structures

-
¾

-
¾

Clients

PHIGS

Figure 15.

In the next cha ter we will show how the World Management and theextended
communications will be implemented. We will implement an examplein which
we have a slave robot following a master robot, guided byinformation from a
force sensor held by both robots.

26

7 WMM — Implementation

7.1 Introduction

This chapter will go into the technical details of the completesimulation envi-
ronment and can serve as a guide when one want toimplement his own robot or
sensor driver/simulators for use w th thesimulator. First we will explain how
the design from the previous chapterfor a world model manager is implemented
and later we will show how it can beextended to be used with other robots and
sensors. What we are going to implement is a way to exchange information-
between our world model and the client programs. The information flowgoes
in both directions: The robot for instance send information aboutits position
to the world model, while a sensor retrieves thisinformation and uses it to cal
ulate a sensor value. This sensor value isthen passed back to the world model
so that it is available for whomeveris interested in it. SIG as it is offers us a
way to send information to it. We simply usethe same mechanism that is used
to send commands to it, to sendinformation to our world model manager. We
can then intercept thesemessages in SIG and pass them on to our own routines.
There is however aproblem with the communication in the other direction. This
becomesapparent when we look at the way the communication is implemented
in SIG.

7.2 SEFFAS’s communication scheme

The SIG part of the simulator is implemented as a program which readsits com-
mands from ‘stdin’, which on the Sun workstations under Unixnormally means
the keyboard. So when we would start the program called“sig” we could type in
commands on the keyboard and SIG would try toexecute them. This is of course
not what we would like. We want out robotdriver/simulator programs to give
the commands. This can be accom lishedby using a pipe to connect the ‘stdout’
of our client program to the ‘stdin’of SIG. However this prevents us from using
more than one client programat the same time. So instead of using just SIG
we use the front-end “mig server” .When we start this program it starts SIG
and connects its ‘stdout’ to‘stdin’ of SIG and vice versa. When we now start a
client program, thisprograms makes contact with the mig-server be means of a
communicationconstruct called a socket. This socket allows two wa communica-
tion between the twoprograms. Next mig-server forks off a copy of itself (starts
a duplicateof itself) which then waits for another client program. If another
clientis started and makes contact with this duplicate the whole processrepeats
itself. All copies of mig-server will use the same pipes to SIG.To prevent mul-
tiple mig-servers from using the pipes at the same time aread/write semaphore
(a construct used to prevent multiple clients fromusing the same resource at the
same time) on the ipes. This leads to the following communications protocol:
When a clientwants to send a command to SIG it first sends it to its mig-sever

27

whichthen tries to set the semaphore to get read/write permission on thepipes.
It keeps trying until it gets permission and then writes thecommand it received
from the client to the pipe to SIG. What happens nextdepends on whether the
client program has set answer mode or not. If ithas it will wait until it receives
an answer from SIG whether the commandwas suc essfully executed. So if an-
swer mode is set the mig-server waitsfor a answer from SIG and then passes it
on to its client. It thenreleases its read/write permission so that other clients
can send theircommands. While this protocol and its implementation functions
well when givingcommands and receiving immediate answers it makes it im-
possible for SIGto send information, for instance about changes in the world
model, tothe client programs. If we want full two way communication we will
haveto rewrit the entire communications routines of all the programsinvolved:
sig, mig-server and the client programs. As this was outsidethe scope of this
project we decided not to change the communicationroutines but to slightly al-
ter the protocol to allow the client programsto poll the world model manager
for changes in the world model whichwould affect them. We implemented a
routine which intercepts messages meant for WMM andpasses them on to a
routine which determines which data item or items weare inter sted in and then
calls the appropriate routine to retrieve themof change them. We also had to
implement a mechanism to prevent clientsfrom changing data items before all
programs dependent on those itemshave taken note of the value of that items.
This is because, as we areusing independently running programs, we can not
guarantee that everyprogram takes his turn in a regular sequence and if we do
not implementsuch a mechanism client programs will miss certain changes in
the worldmodel.

7.3 mplementation aspects

We will have to confirm to the communication method offered by SIGwhich is
based on strings. With these strings we will have to implementthree kind of mes-
sages: First the initial report of a client to WMM,secondly the request/inquiry
send by the client, and thirdly thetransmission of data either as reaction on
a request/inquiry (by WMM) oras world state information (by a client). We
decided on the following structure: The string starts with “WMM:’to allow our
routine in IG to recognize and intercept our command. Thisis followed by a
client number, under which the client is know to WMM. Incase of a new client
this client number is 0. The rest of the string isdetermined by which kind of
message is to be send. In case of the initialmessage the 0 is followed by the
client ID. Every client program inSEFFAS should have its own unique ID. To
be able to implement a data dependency mechanism a client shouldknow on
which other client programs it depends for information. T eclient ID’s of these
programs follow the client’s own ID in the initialmessage. So in case of a sensor
(ID=1) depending on the actions of onerobot (ID=2) the initial string to be
send may look as follows:

28

WMM: 0 1 2\n

For easy construction of this string a number of constants aredefined in the file
”wmm.h” (see appendix D). The ID of every client towork with SEFFAS should
be defined in this file. The construction of thestring can now be done with the
following s atement:

sprintf(string, "WMM: %i %i %i\n", NEW_CLIENT, SENSOR_ID, ROBOT_ID);

This string can then be send to SIG and the answer received in thefollowing
way:

mig_send(string); mig_receive(answer);

The answer which the client receives is also a string which in thiscase only
contains an integer. This is the client number under which WMMknows the
client and should be used for further communication with WMM. When a lient
changes something in the world model it will have tonotify WMM. To do this a
client can send a string containing the commandto do so together with the new
data. For instance if we want to changethe 4 joint parameters of a Bosch robot
we can build a string as follows:

sprintf(string, "WMM: %i %i %lf %lf %lf %lf\n", client_number, SET_BOSCH_INFO, joint1, joint2, joint3, joint4);

SET BOSCH INFO is a command number which should be defined in the“wmm.
” file. Every command needs its own routine in WMM. So if we wantto keep
track of the joint parameters of the Bosch robot we will have towrite a routine
which reads the 4 values from the string and stores themsomewhere safe. In
case of simple data items the routine necessary toretrieve this information can
be implemented in the file “wmm.c” (seeappendix E). To allow the routine to be
called when WMM receives thecommand above the command number should be
a case in the switch statementin the wmm h ndle routine in this file. Complex
data item handlingroutines can be implemented in separate modules, as long
they are calledas a result of the switch statement in wmm handle. Because of
the great diversity in data which can be available in a(simulated) robot cell it is
impossible to give standard data structuresfor these items. Anyone who wants
to extend WMM will have to provide hisown data structures and the routines
to put them in a string. At themoment SIG limits the string length to 1000 cha
acters so if very largedata structures are to be passed it might be advisable to
use files as anintermediary and only transmit file names via the strings. Now
another client can request information about the robot from theworld model
manager by sending a string with its client number and acommand number.
Again we will have to implement a routine in WMM which inreaction to the
command retrieves the data stored and puts in a stringwhich can then be send
as an answer to the client. For an example of owall this exactly works look at
the files “wmm.c” and “fsensor.c”(appendices E and F). To solve the problem

29

of clients changing the data before otherclients have taken note of it, we have
implemented a semaphore-likemechanism. WMM keeps a two dimensional ar-
ray of dependencies based on theinformation provided by the clients when they
make the initial contact.It also keeps an array of flags which indicate whether
a client hasnoticed the change or not. A client is not allowed to change a data
i embefore all clients which depend on it have taken note of the old value.If it
tries to do soit will receive a answer string containing a “WAIT” value, indicat-
ingthat the item has not been changed and that it will have to try again. Ifall
clients have been notified WMM allows the data item to be changed andreturn a
“OK” value to the client. As an simple example consider one robotwith a force
sensor in the gripper. If the robot (simulator) closes the gripperit is not allowed
to open it until the sensor (simulator) has taken note that thegripper has been
closed. The diagram on the following page (fig. 16) shows us the control flow in

30

WMM.

SIG receives

command string

WMM command? SIG
yes no

WMM

Determine

command

“New Client” “Set Data Item” “Get Data Item”

Register All clients Retrieve

new client notified? item’s value
yes no

Set new value

Return answer

to SIG

SIG sends

answer back

? -

?

?

?? ?

? ? ?

?

?

?
-¾

?

Figure 16.

7.4 SEFFAS in practice

We already mentioned the example of the two robots linked by a forcesensor
and now we have implemented our World Model Manager it is time toput it
all together: In this example SEFFAS will consist of the followingelements:
SIG, WMM, 2 BOSROS’s and FSENSOR. Whichmeans that we will use two
Bosch robots for our example coupled by theforce sensor FSENSOR. Before we
make some changes to BOSROS to allow usto run it in ‘slave mode’ and add
the appropriate routines to WMM, wemust implement our force sensor. Im-
plementing a faithful force sensor would mean that in addition tothe direction
of movement we would have to take into account the mass ofthe robots, the
acceleration of the master robot, dyn mics (compliance)of the force sensor, de-

31

lay between the master’s movement and the slave’sreaction, and perhaps more.
But none of these is available in the currentsimulation or even in our real world
environment. Again obtaining thisdata and implementing it in the simulation
would be a project in itselfso we decided to simplify our problem. When we
look at BOSROS we see that our unit of time is defined interms of the number
of steps in which to execute a move. The larger thenumber of steps the lon
er a move will take. But also the smaller thechange in position in one step.
If we set the delay time to one step, addto this a sensor which is compliant
enough to allow for the movement totake place and discard all other factors we
can base our simulation onthe fact that the force on the sensor will be linear
with the size of themovement step and in the direction of the movement. So
when we take thedifference between the old position and the new position of
the masterrobot we have a vector which gi es us the size and the direction of
theforce on the sensor. This is true for movement in the X, Y and Z direction
of the robotbut our robot has an additional rotation which changes the orien-
tation ofthe gripper. If we imagine our sensor as a stick held in the grippers
ofthe robots changing the orientation will also lead to a force on thesensor (fig.

17).

čtor(1,0)15´
´
´
´́36

dX

dY

dO

Sensor in old

position.

Sensor in new

position.

Figure 17. To
implement this force we take the end of the stick (in thegripper of the slave
robot) as the action point for our force and we alsotake the difference in orien-
tation as a fourth component of our force. Sonow we have a sensor which takes
the difference between the old positionand the new position of the end of the
imaginary sensor together with thedifference in orientation as a measure of the
moment applied to it. To putit in pseudo code:

X_Value = (New_X - sin (New_O) * Sensor_Length) - (Old_X - sin (Old_O) * Sensor_Length) Y_Value = (New_Y - cos (New_O)

Sensor_Length) - (Old_Y - cos (Old_O) * Sensor_Length) Z_Value = New_Z - Old_Z O_Value = New_O - Old_O

We could put together a function to more faithfully represent thisforce but when
we remember that we will only use it to have the slaverobot ‘follow the leader’,
we realize that we can use it directly to havethe slave robot to a new position,
resulting in a negation of the forceplaced on the sensor. So our master – sensor
– slave interaction will goas follo s: The master does a movement step and sends
its new position tothe world model manager. The sensor which polls WMM for

32

a change in thisposition receives the new position, calculates the difference as
shownabove and sends this as a new sensor value to WMM. The slave which in
itsturn polls WMM for the sensor value sees the new value and uses it tomove
to a new position. This means that in this particular case our worldmodel
will consist of nothing more than the position of the robot and thesensor val e
which is a result of the movement of that robot. So now we put the necessary
functions in WMM and BOSROS. We extendBOSROS with the option to put
it in ‘slave mode’, which means that itwill not take its input from a control
panel but instead starts pollingWMM for the sensor value. When there is a
force registered by thesensor the slave robot moves to the position indicated
by the sensor value.We also addsome code which sends the new position of
the robot to WMM when BOSROSruns in master mode. A ess elegant way
would have been to add code toWMM to calculate the new position of the
robot based on the new linkcontrol values (the angles and translation). This
would have saved us theadditional sending of the position. Our FSENSOR
program simply consists of a loop which polls WMM for achange in position of
the master robot and when it receives one sends thenew sensor value to WMM
and shows it graphically in a window. So now weare ready to put this example
to work. First we start the SIG-WMMco bination as we used to, by starting
mig server. Next we start twoBOSROSes. We can first start a BOSROS in slave
mode and put it in thebackground and then start a BOSROS in master mode
in the foreground orstart them in separate windows. It then doesn’t matter
which we startfirst. We must now align the two robots so we can place our
imaginarysensor between them. As we don’t have control of the slave robot
and oursensor has a fixed length we will have to move the master to (800, -
100,193, 0) using the control panel. This will place the master directlyin front
of the slave, which is still at its home position. And we cannow put our sensor
between themby starting the program fsensor. From now on the slave will try
to followthe master (fig. 18). Be careful not to force the slave to go somewhere
itcan’t because the simulation doesn’t incorporate exception handling andthe
slave will get hopelessly confused.Figure 18.

33

8 Conclusions and recommendations

8.1 Conclu ions

When we look back at the goals we had set, namely a simulator environmentca-
pable of simulating multiple robots and sensors and suitable for interactiveuse,
we can draw the following conclusions: Although our experimental set-up of
two robots and sensor has littlepractical use, it shows us that we are able to
use SEFFAS as a simulationenvironment for multiple robots and sensors. We
can easily extend SEFFASfor use with other robot drivers and sensor simula-
tors. Since on a standardSun SPARC w rkstation it takes about a second to
perform one step in thesimulation which includes two robots, we can use it in-
teractively withoutunacceptable delays between each step. SEFFAS also shows
us that with this simulation we are operation atthe limit of the processing power
of simple workstations. Especially ifwe are using multiple robots and sensors
the whole simulation will down,depending not only on the complexity of the
robots to be visualized but alsoon the sensor complexity, i.e. vision based s
nsors like a camera will requirea lot of processing time.The use of a worksta-
tion with a graphics accelerator removes the limitimposed by the drawing of
the picture, but it introduces a new one in theform of the communication. The
communication scheme used, sending stringsover ‘stdio’ channels, is certainly
not the best possible. According to theimplementor of SIG it takes about 30
ms to transmit a string. Thus the useof polling by the clients wastes computing
power. While workstations like the S n SPARC’s we are using offer thepossibil-
ity to provide better and more detailed pictures of the simulatedcell, without
additional hardware they lack the power to do sointeractively. The lack of a
geometric modelling package limits the extensionpossibilities of SEFFAS. If we
want other objects or robots in oursimulation we will need the geometric data
in order for SIG to be able toshow them.

8.2 Future developments

As already mentioned the University of Karlsruhe works on the sameproj ct. The
SIG simulator is not completely finished so when a newversion become available
it is advisable to update our simulator.Furthermore it is advisable to keep an eye
on further developments fromKarlsruhe especially the way they plan to incorpo-
rate sensors in theirsimulation although the progress of the project is not known.
When we look at our own future there are a number of points of thesimulator
environment which can be improved. First there is the additionof a programing
environment suitab e for programming multiple robots. Thisenvironment must
be able to access sensor information and communicatewith multiple programs
at the same time. If we are to use SCIL as aprogramming environment for
our robot, SCIL would allow us to write ourprograms in C and this is a major
advantage. But we don’t want to programone robot, we want to be able to pro-

34

gram a complete robot cell with multiplerobots and sensors. All these robots
and sensors are independent runningprograms and SCIL only allows us to a cess
functions of the module(s) linkedto it. So in this form it can not be used to
control a complete cell. To beable to do this we will need to add our own com-
munication and control routinesto SCIL. Another point of irritation which may
stand in the way of futuredevelopments is the limited communication scheme.
We would like anothercommunication scheme which allows us to directly ex-
change informationbetween the programs. One way to implement this would
be message passing.In addition to this ther is the general movement to a stan-
dardizedwindows environment for UNIX machines called X-Windows. Many
programsdeveloped by our university at this moment already use X-Windows.
If wewant to port SEFFAS to X-Windows we will have to use another PHIGSli-
brary for SIG and we will have to reimplement our control panels, butin addition
to conforming to a standard, using X will offer us a new wayto implement our
communication. X-Windows supports message passing and wecan use this to
implement two way commun cation betweenall the separate programs. It would
also make the mig server programsobsolete. When we look at the future of our
robot and sensor simulations therewill be the need to implement more realistic
simulators. We might look atobject oriented programming to implement these
simulators, which wouldalso nicely complement the object oriented approach of
the X-Windowsenvironment. A interesting project would be to implement a
force basedsensor in the gripper of a robot which would be able to de œ[7m–
More–(78ent design, where the raw sensor data is available in our worldmodel,
[Weller] suggests the use of so-called sensor primitives to createabstract data
types which cover all types of sensors. In case of morecomplicated sensors like
cameras not the image data but the result ofinterpreting the data is available.
It may be interesting to examine ifand how these sensor primitives may be used
in SEFFAS.

35

A Installation

To be able to run the simulator program SIG and its clie ts a number ofenviron-
ment variables has to be set. Here follows a list of these variablestheir current
value and their function:

MIG_BIN /usr/koninga/DiSiSy/bin44

This is the directory in which the “mig server” executable is kept.

SIG_BIN /usr/koninga/DiSiSy/bin44

This is the directory in which the “sig” executable is kept.

PHIGSDIR /carol/usr/lib/phigs1.1/lib

This is the directory in which the PHIGS library files are kept.

DISISY /usr/koninga/DiSiSyMIG /usr/koninga/DiSiSy

This is the directory in which the subdirectories “OBJECTS” and“GEOMETRY”
are. These two directories contain the data files used by thesimulator. In this
“DiSiSy” directory are also all other directoriesrelated to the SIG simulator
package.

MIG_HOST ‘hostname‘

This variable has to contain the name of the machine on which the “mig server’
program was started and must be defined on the machine onwhich the client
programs are to be run. This is true even if both clients andsimulator run on
the same machine. It is advisable to use the predefinedvariable “hostname” to
set “MIG HOST” on log-in.
Finally the source and executables of the client programs, like ARCSand BOSROS
are in the directory “/usr/koninga/arcs”.

36

B Graphical data problems

When implementing the Bosch simulation we encountered a problem withth
data files used by the SIG simulator. When we examined the data fileswe not
only found that one of the files contained two copies of the samedata, but also
that the files were of a slightly different format. Thesefiles consist of ASCII data
describing the polygons in a picture as follows:

POLYGON { 4} POLYGON 4 -400,-400,0 N 0,0,-1 -400,-400,0 N 0,0,-1 -400,-350,0 N 0,0,-1 -400,-350,0 N 0,0,-1 -350,-350,0 N 0,0,-1 -350,-3

0,0 N 0,0,-1 -350,-400,0 N 0,0,-1 -350,-400,0 N 0,0,-1 functioning format defect format

The remedy is obvious: Place the curly brackets around the number ofvertices
in the polygon. The cause of this problem probably lies in theversion of the
program used to create the files.

37

C Changes to SIG

The following changes have been made to the source files of the SIGsimulator
package:

sig.c: Added following line to

fix a bug line 4279: sig_set_light_mode(0);sig_interface.c: Added the following to intercept WMM messages and pass them on to our ‘‘wmm_handle’’ routine. line 735: else if (strcmp(command_name , "WMM:") == 0) { strcat(answer, wmm_handle(&command_bp)); skip_rest_of_line(&command_bp); }makefile: Changed the various directories to suit our needs and

added "wmm.c" and "wmm.o" to the files to be compiled and linked to "sig"

38

D “WMM.H”

file: "wmm.h"---/* This are the commands on which WMM reacts */#define NEW_CLIENT 0#define SET_ROBOT_POS 1#define GET_ROBOT_POS 2#define SET_SENSOR_VAL 3#define GET_SENSOR_VAL 4#define SET_BOSCH_POS 5#define GET_BOSCH_POS 6#define SET_PSENSOR_VAL 7#define G

T_PSENSOR_VAL 8/* This are answers from WMM */#define WAIT 0#define OK 1/* This are client id’s, every client should have its own id */#define MASTER_ID 0#define SENSOR_ID 1#define SLAVE_ID 2#define BOSCH_ID 3#define PSENSOR_ID 4#define PUMA_ID 5/* This are offset used to mark the difference between slave * * and master clients of the same name. SLAVE_ID should be * * greater than the heighest client id. */#define MASTER

0#define SLAVE 256

39

E “WMM.C”

file: "wmm.c"---#include <stdio.h>#include "phigs_include/phigs.h"#include "wmm.h"/* Currently we put the maximum number of clients on 32 */#define MAXCLIENTS 32#define TRUE 1#define FALSE 0extern Pint master_workid;extern char msg_str_space[1000];#define print_msg pmessage(master_workid, msg_str_space);static char wmm_ans[1000]; /* Buffer fo

the answer message */static int notified[MAXCLIENTS+1]; /* Array with notified flags */static int depends[MAXCLIENTS+1][MAXCLIENTS+1]; /* Array with dependencies */static int client_id[MAXCLIENTS+1]; /* Array with client id’s */static int no_clients = 0; /* Current number of clients */static robot_pos = 0; /* Two dummy variables for test purposes only */static sensor_val = 0; typedef struct{ double x; double y; double z; double o;} POS; /* Data structure which holds robot positio

s and sensor values */static POS pos = { 0.0, 0.0, 0.0, 0.0 }; /* Initial unknown robot position */static POS val = { 0.0, 0.0, 0.0, 0.0 }; /* Initial unknown sensor value */do_print(string, number)char *string;int number;/* Function to print in SIG’s message window, since we cannot use stdout * * Will print a string and an integer, for debugging purposes only. */{ sprintf(msg_str_space, "%s %i ", string, number); print_msg;}int client_slot(id)int id;/* Function which looks up whi

h client number is * * associated with a specific client ID, if any. */{ int i=0; while ((client_id[++i]!=id)&&(i<=no_clients)); if (i<=no_clients) return(i); else return(0);}int all_notified(client)int client;/* Function which checks whether all clients dependent on * * "client" are notified of the state associated with it */{ int i; for (i=1; i<(no_clients+1); i++) if ((depends[client][i])&&(!notified[i])) return(FALSE); return(TRUE);}clear_notified(client)

int client;/* After changing the state of "client" this function resets * * the notified flags of the clients that depend on "client". */{ int i; for (i=1; i<(no_clients+1); i++) if (depends[client][i]==TRUE) notified[i]=FALSE;}int future_client(cid)int cid;/* If a client "cid" on which another client will depend is not * known to WMM yet, WMM notes this client as a future client. */{ int client, i; if (no_clients==MAXCLIENTS) return(0); else { client=++no_clien

s; client_id[client]=cid; for (i=1; i<MAXCLIENTS+1; i++) depends[client][i]=FALSE; } return(client); }int new_client(cbpp)char **cbpp;/* This function handles the "NEW_CLIENT" command of WMM. The variable * "cbpp" points to a pointer to the string containing the command. */{ int client, cid, master, i; get_int(cbpp, &cid); if (!(client=client_slot(cid))) { if (no_clients==MAXCLIENTS) return(0); else { client=++no_clients; client_id[clien

]=cid; for (i=1; i<MAXCLIENTS+1; i++) depends[client][i]=FALSE; } } notified[client]=TRUE; while (get_int(cbpp, &cid)) { master=client_slot(cid); if (master==0) master=future_client(cid); depends[master][client]=TRUE; } return(client);}char *wmm_handle(cbpp)char **cbpp;/* This function is the entrance point from SIG. It determines which * * command was send and then calls the appropriate function to execute it . */{ int wmm_com, client; get_

nt(cbpp, &client); if (client==NEW_CLIENT) sprintf(wmm_ans, "%i", new_client(cbpp)); else { get_int(cbpp, &wmm_com); switch (wmm_com) { /* The first four commands are dummies used for * * debugging purposes only. They do show how the * * dependancy problem is taken care of. */ case SET_ROBOT_POS: if (all_notified(client)) { /* set robot position */ robot_pos++; if (robot_pos==256) robot_pos=0

/* just a dummy for now */ clear_notified(client); sprintf(wmm_ans, "%i", OK); } else sprintf(wmm_ans, "%i", WAIT); break; case GET_ROBOT_POS: sprintf(wmm_ans, "%i", robot_pos); notified[client]=TRUE; break; case SET_SENSOR_VAL: if (all_notified(client)) { get_int(cbpp, &sensor_val); clear_notified(client); sprintf(wmm_ans, "%i", OK); } else

sprintf(wmm_ans, "%i", WAIT); break; case GET_SENSOR_VAL: sprintf(wmm_ans, "%i", sensor_val); notified[client]=TRUE; break; /* The next four functions are the functions used * * by the current set-up of SEFFAS. They handle the * * position of one robot, and the value of one sensor. */ case SET_BOSCH_POS: set_bosch_pos(cbpp, client); break; case GET_BOSCH_POS: get_bosch_pos(client); break;

case SET_PSENSOR_VAL: set_psensor_val(cbpp, client); break; case GET_PSENSOR_VAL: get_psensor_val(client); break; } } return(wmm_ans);}set_bosch_pos(cbpp, client)char **cbpp;int client;/* This function sets a new position of the master BOSCH * * robot (client"), providing all dependent clients * * (normally only FSENSOR) have taken note of the old value. */{ if (all_notified(client)) { get_double(cbpp, &pos.x); get_double(cbpp

&pos.y); get_double(cbpp, &pos.z); get_double(cbpp, &pos.o); clear_notified(client); sprintf(wmm_ans, "%i", OK); } else sprintf(wmm_ans, "%i", WAIT);}get_bosch_pos(client)int client;/* This function returns the position of the BOSCH * * robot to any "client" who expresses interest in it. * * (Normally just the FSENSOR sensor.) */{ sprintf(wmm_ans, "%lf %lf %lf %lf", pos.x, pos.y, pos.z, pos.o); notified[client]=TRUE;}set_psensor_val(cbpp

client)char **cbpp;int client;/* This function sets a new value of the FSENSOR sensor * * ("client"), providing all dependent clients (normally * * only the slave BOSCH) have taken note of the old value. */{ if (all_notified(client)) { get_double(cbpp, &val.x); get_double(cbpp, &val.y); get_double(cbpp, &val.z); get_double(cbpp, &val.o); clear_notified(client); sprintf(wmm_ans, "%i", OK); } else sprintf(wmm_ans, "%i", WAIT);}get_psensor_val(client)int cli

nt;/* This function returns the value of the FSENSOR sensor * * to any "client" who expresses interest in it. * * (Normally just the slave BOSCH robot.) */{ if (notified[client]==FALSE) { sprintf(wmm_ans, "%lf %lf %lf %lf", val.x, val.y, val.z, val.o); notified[client]=TRUE; } else sprintf(wmm_ans, "%lf %lf %lf %lf", 0.0, 0.0, 0.0, 0.0);}

40

F “FSENSOR.C”

file: "fsensor.c"--------

--#include <suntool/sunview.h>#include <suntool/canvas.h>#include <sunwindow/notify.h>#include <sys/time.h>#include <math.h>#include "../DiSiSy/MIG/use_mig.h"#include "../DiSiSy/MIG/use_mig_procs.h"#include "../DiSiSy/SIG/wmm.h"#define DISTANCE 170.0/* This is the starting distance between the master and the slave * * in the Y direction in mm. It implies that the master is at * * -100/800 while the slave is at its home position. It should be *

* interpreted as the length of the sensor. */#define TRUE 1#define FALSE 0#define MAX(a,b) ((a)>(b)?(a):(b))#define MIN(a,b) ((a)<(b)?(a):(b))typedef struct{ double x; double y; double z; double o;} POS; /* Data structure to hold the position of the robot * * and the value of the sensor. */POS npos = { 0.0, 0.0, 0.0, 0.0 }; /* Arrays holding the old and new */POS nval = { 0.0, 0.0, 0.0, 0.0 }; /* positions of the robot and */POS

opos = { 0.0, 0.0, 0.0, 0.0 }; /* values of the sensor. */POS oval = { 0.0, 0.0, 0.0, 0.0 }; int first = TRUE; /* Flag for the first run */int my_id; /* Variable to hold client number */char answer[1000], command[1000]; /* Send and receive buffers */Pixwin *Pw;draw_wind()/* Function to draw the graphical output window of FSENSOR. */{ pw_text(Pw, 30, 15, PIX_SRC, (Pixfont *) NULL, "-100"); pw_text(Pw, 130, 15, PIX_SRC, (Pixfont *) NULL, " 0 "); pw_text(Pw, 230, 15, PIX_SRC,

Pixfont *) NULL, " 100"); pw_vector(Pw, 50, 18, 50, 192, PIX_SRC, 1); pw_vector(Pw, 150, 18, 150, 192, PIX_SRC, 1); pw_vector(Pw, 250, 18, 250, 192, PIX_SRC, 1); pw_char(Pw, 20, 30, PIX_SRC, (Pixfont *) NULL, ’X’); pw_char(Pw, 20, 80, PIX_SRC, (Pixfont *) NULL, ’Y’); pw_char(Pw, 20, 130, PIX_SRC, (Pixfont *) NULL, ’Z’); pw_char(Pw, 20, 180, PIX_SRC, (Pixfont *) NULL, ’O’);}draw_bar(x1, y1, x2, y2)int x1, y1, x2, y2;/* Function to draw a bar (empty rectangle) quickly. * * The

arameters are opposite corners of the bar. */{ pw_vector(Pw, x1, y1, x2, y1, PIX_SRC, 1); pw_vector(Pw, x2, y1, x2, y2, PIX_SRC, 1); pw_vector(Pw, x2, y2, x1, y2, PIX_SRC, 1); pw_vector(Pw, x1, y2, x1, y1, PIX_SRC, 1);}undraw_bar(x1, y1, x2, y2)int x1, y1, x2, y2;/* Function to remove a bar quickly. * * The parameters are opposite corners of the bar. */{ pw_vector(Pw, x1, y1, x2, y1, PIX_SRC, 0); pw_vector(Pw, x2, y1, x2, y2, PIX_SRC, 0); pw_vector(Pw, x2, y2, x

, y2, PIX_SRC, 0); pw_vector(Pw, x1, y2, x1, y1, PIX_SRC, 0);}my_sensor_func()/* Function which is called on a periodical basis and then checks whether * * the position of the the master robot has changed. If it has, this * * function will compute the new sensor value, send it back to SIG-WMM as * * a world state change and finally show it graphically in its window. */{ /* Get the new position of the robot.*/ sprintf(command, "WMM: %i %i\n", my_id, GET_BOSCH_POS); mig_send(co

mand); mig_receive(answer); sscanf(answer, "%lf %lf %lf %lf", &npos.x, &npos.y, &npos.z, &npos.o); /* Calculate the new sensor value. */ nval.x=(npos.x-sin(npos.o)*DISTANCE)-(opos.x-sin(opos.o)*DISTANCE); nval.y=(npos.y-cos(npos.o)*DISTANCE)-(opos.y-cos(opos.o)*DISTANCE); nval.z=npos.z-opos.z; nval.o=npos.o-opos.o; if ((opos.x!=0.0)&&(opos.y!=0.0)) { /* Send the new sensor value back to SIG-WMM. */ sprintf(command, "WMM: %i %i %lf %lf %lf %lf\n",

my_id, SET_FSENSOR_VAL, nval.x, nval.y, nval.z, nval.o); do { mig_send(command); mig_receive(answer); } while (atoi(answer)==WAIT); if (first) first=FALSE; else { /* Remove the old sensor value from the graphics window. */ if (oval.x>0.0) undraw_bar(150, 20, 150+MIN((int)oval.x, 100), 40); else undraw_bar(150+MAX((int)oval.x, -100), 20, 150, 40); if (oval.y>0.0) undraw_

ar(150, 70, 150+MIN((int)oval.y, 100), 90); else undraw_bar(150+MAX((int)oval.y, -100), 70, 150, 90); if (oval.z>0.0) undraw_bar(150, 120, 150+MIN((int)oval.z, 100), 140); else undraw_bar(150+MAX((int)oval.z, -100), 120, 150, 140); if (oval.o>0.0) undraw_bar(150, 170, 150+MIN((int)(oval.o*57.295779), 100), 190); else undraw_bar(150+MAX((int)(oval.o*57.295779), -100), 170, 150,

190); /* Restore the window. */ draw_wind(); } /* Draw the new sensor value in the graphics window. */ if (nval.x>0.0) draw_bar(150, 20, 150+MIN((int)nval.x, 100), 40); else draw_bar(150+MAX((int)nval.x, -100), 20, 150, 40); if (nval.y>0.0) draw_bar(150, 70, 150+MIN((int)nval.y, 100), 90); else draw_bar(150+MAX((int)nval.y, -100), 70, 150, 90); if (nval.z>0.0) draw_bar(150, 120, 150+MIN((int)n

al.z, 100), 140); else draw_bar(150+MAX((int)nval.z, -100), 120, 150, 140); if (nval.o>0.0) draw_bar(150, 170, 150+MIN((int)(nval.o*57.295779), 100), 190); else draw_bar(150+MAX((int)(nval.o*57.295779), -100), 170, 150, 190); } /* Remember the values for the next time. */ opos.x=npos.x; opos.y=npos.y; opos.z=npos.z; opos.o=npos.o; oval.x=nval.x; oval.y=nval.y; oval.z=nval.z; oval.o=nval.o;/* printf("Robot pos: %lf %lf %lf

%lf\n", npos.x, npos.y, npos.z, npos.o); */}main(){ Frame frame; Canvas canvas; static struct itimerval timer = { {0, 10000}, {0, 10000} }; frame=window_create(NULL, FRAME, FRAME_LABEL, "fsensor", WIN_WIDTH, 300, WIN_HEIGHT, 220, 0); canvas=window_create(frame, CANVAS, 0); Pw=canvas_pixwin(canvas); strcpy(answer,""); /* Make contact with MIG (SIG-WMM). */ mig_connect(); mig_set_reply_mode(1); /* Report to WMM as a new client. */ sprintf(command,

"WMM: %i %i %i\n", NEW_CLIENT, FSENSOR_ID, BOSCH_ID); mig_send(command); mig_receive(answer); printf("Client %s\n", answer); /* Receive our client number from WMM. */ my_id=atoi(answer); /* Draw the initial window. */ pw_text(Pw, 30, 15, PIX_SRC, (Pixfont *) NULL, "-100"); pw_text(Pw, 130, 15, PIX_SRC, (Pixfont *) NULL, " 0 "); pw_text(Pw, 230, 15, PIX_SRC, (Pixfont *) NULL, " 100"); pw_vector(Pw, 50, 18, 50, 192, PIX_SRC, 1); pw_vector(Pw, 150, 18, 150, 192, PIX_SR

, 1); pw_vector(Pw, 250, 18, 250, 192, PIX_SRC, 1); pw_char(Pw, 20, 30, PIX_SRC, (Pixfont *) NULL, ’X’); pw_char(Pw, 20, 80, PIX_SRC, (Pixfont *) NULL, ’Y’); pw_char(Pw, 20, 130, PIX_SRC, (Pixfont *) NULL, ’Z’); pw_char(Pw, 20, 180, PIX_SRC, (Pixfont *) NULL, ’O’); /* Since the only way to handle window messages in SunView is waiting on * * them in an event-loop, we will have to do our polling on a timer event * * taking place every 10 milliseconds. The function my_sensor_func wil

* * be called automatically by the SunView runtime handler. */ notify_set_itimer_func(frame, my_sensor_func, ITIMER_REAL, &timer, (struct itimerval *) NULL); window_main_loop(frame); exit(0);}

41

Literature

[Gini] M. Gini
The future of robot programming
Robotica, 5, 235-246
1987

[Dillmann] R. Dillmann, B. Hornung, M. Huck
Interactive programming of robots using textual programming
and simulation techniques
Proceedings of 16th ISIR conference
1986 - Brussels, Belgium

[Huck] M. Huck
PhD thesis on Robot Programming Systems
1990 - Karlsruhe, Germany

[Rembold] U. Rembold, K. Hoermann
Programming of Industrial Robots; Today and in the future
Proceedings of the NATO international Advanced Research Workshop on
Languages for sensor based Control in Robotics
NATO-ASI Series F29
September 1986 - Italy

[Meijer1] G.R. Meijer, L.O. Hertzberger
Off-line Programming of Exception Handling Strategies
Robot Control 1988
Preprints of the IFAC-Symposium
October 1988 - Karlsruhe, Germany

[Meijer2] G.R. Meijer, T.L. Mai, E. Gaussens, L.O. Hertzberger,
F. Arlabosse
Robot Control with Procedural Expert System
Proceedings of NATO Advanced Study Institute on Expert
Systems and Robotics
NATO-ASI Series F
July 1990 - Corfu, Greece

[Mul] Peter Mul
Robot programming and simulation system for robot control

42

featuring exception handling
December 1988 - Amsterdam, The Netherlands

[Roth] Harald Roth
Entwurf und Implementierung eines Visua isierungsmodul fuer
ein Robotersimulationssystem unter Verwendung eines
Grafikstandards
May 1988 - Karlsruhe, Germany

[Negretto] U. Negretto, P. Mul
Task Planning and Simulation of Flexible Assembly Systems
G2-UKA-01.90/1
January 1990 - Karlsruhe, Germany

[Sun1] SunPHIGS information brochure
Sun Microsystems Inc.
1988 - Mountain View CA, USA

[Sun2] Sun SPARC station 1+ and 1+ GX information brochure
Sun Microsystems Inc.
1990 - Mountain View CA, USA

[Kate] Ton K. ten Kate, Richard van Balen,
Arnold W.M. Smeulders, Frans C.A. Groen, George A. den Boer
SCILAIM: A multi-level interactive image processing
environment
Pattern Recognition Letters 11 (1990) 429441, North-Holland
1990 - Amsterdam, The Netherlands

[Dondorp] Er in Dondorp
ASSIM - De Amsterdam Sensor Simulator
June 1990 - Amsterdam, The Netherlands

[Weller] G.A. Weller, G.R. Meijer, F.C.A. Groen, L.O. Hertzberger
Sensor based control for autonomous robots
Universiteit Van Amsterdam
Amsterdam, The Netherlands

43

