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Abstract

A major factor in the complexity of robot path planning can be found in the
demand for collision-free solutions – the agent has to reach its goal without
running into obstacles that it might find on its way. We can actually use the
notion of two colliding or touching bodies to determine a contact-boundary
based upon the shape of the bodies.

We will however focus on handling the local touching of bodies in a 2D
setting. Dorst and Van den Boomgaard [4, 6] found that the tangential dilation
operation, describing the local touching contact of surfaces/functions, could be
reduced to a simple addition operation when using a transform found in the
area of convex analysis – the Legendre-Fenchel transform.

2D bodies can however not be described using a continuous function – it
will typically be represented using some polygonal representation, hence we will
need to find a way to use discrete data combined with the Legendre transform.
In this thesis we will examine the basic theory for the discrete Legendre trans-
form which in turn will be used as a foundation for handling discretized func-
tions effectively, mimicing the behaviour of Legendre transformed continuous
functions. We then present our algorithm for computing the contact of two
polyons using our findings and proposed solutions combined with an adapted
version of a concept proposed by Lucet in [8] which allows us to calculate the
Legendre transform of concave and convex discrete functions in a worst-case
linear instead of the original exponential computational complexity. Moreover,
we have been able to extend the use of this approach for non-convex parts of a
polygon representing some non-convex body by decomposing it into its concave
and convex parts at a decomposition-based additional price.

keywords: collision, polygon, discrete Legendre transform.
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“The walls felt, to their surprise, smooth, and the floor, save for a
step now and again, was straight and even, going ever up at the same
stiff slope. The tunnel was high and wide, so wide that, though the
hobbits walked abreast, only touching the side-walls with their out-
stretched hands, they were separated, cut off alone in the darkness.
Gollum had gone in first and seemed to be only a few steps ahead.
While they were still able to give heed to such things, they could hear
his breath hissing and gasping just in front of them. But after a time
their senses became duller, both touch and hearing seemed to grow
numb, and they kept on, groping, walking, on and on, mainly by
the force of the will with which they had entered, will to go through
and desire to come at last to the high gate beyond. Before they had
gone very far, perhaps, but time and distance soon passed out of his
reckoning, Sam on the right, feeling the wall, was aware that there
was an opening at the side: for a moment he caught a faint breath
of some air less heavy, and then they passed it by”.

– J.R.R. Tolkien: The Two Towers.
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Chapter 1

Introduction

The analysis of potentially contacting bodies is of great importance in robot-
object interaction and computer-graphics. Such an analysis could for instance
be used to construct efficient software for obstacle-avoidance and path planning.
This would then give us the possibility of determining the path past an object
with a high accuracy based on illegal positions of the robot, hence yielding a
tighter traverse past the object. But even when the objects are fully known,
this is a problem that is not easily solved in real time.

Let us consider using only 2D objects and especially polygonal represen-
tations of ’real world’ objects. Imagine polygons O and P to represent some
sort of obstacle and a polygon Q to represent a robotic agent at a location A
operating in an environment E .

PSfrag replacements
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Figure 1.1:

In order to get the agent from A to rendez-vous point B, it will have to find its
way past the obstacles O and P such that it in no way runs into O or P. We
can actually use this requirement by using an operation to compute where Q
touches the obstacles and use the outcome to generate a collision-free traverse
past O and P – if we know the positions of Q sliding along the outskirts of both
O and P, we would know where it would not be desirable to have our agent Q.
These forbidden areas are called contact-boundaries1 given O and P, denoted
by O⊕̆Q and P⊕̆Q and represented by a dashed line.

1See fig.1.2(a) and 1.2(b)
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Figure 1.2: Contact-boundaries O⊕̆Q and P⊕̆Q.

When considering this type of operation i.e. the touching of two objects
to produce their contact-boundary, one possible approach for this analysis is a
transform which has its roots in convex analysis theory, the Legendre-Fenchel
transform L. Dorst and Van den Boomgaard rediscovered this transform in
a more general notation while developing their own Slope transform. In [6],
they found that describing the local contact of two objects, the tangential dila-
tion, denoted by ⊕̆, which they introduced a few years earlier, could in fact be
obtained using the Legendre transform of the separate objects such that

(P⊕̆Q)(x) = L−1
[
[L[P] + L[Q]

]
(x)

hence computing a difficult tangential dilation operation by taking an easier Leg-
endre transform of each object and taking the inverse Legendre of their sum.
Dorst and Van den Boomgaard noted that a similar feature can be found in the
computation of signal-convolution using the Fourier transform, but instead of
additive, like the tangential dilation, convolution becomes multiplicative when
transforming the separate signals to the Fourier domain. Both transforms are
in fact spectral decompositions, sharing a number of algebraic similarities (see
[6]): one describes a signal using frequencies, the other describes objects using
tangent planes.

When examining the touching or kissing of two objects in combination with
the tangential dilation more closely, we find that objects are considered to be
kissing when they are tangent at the point of contact. In doing so, we have no
restriction of intersection of the objects in any way2.
When using the tangential dilation, we allow a possibility of obtaining a contact-
boundary which can be self-intersecting3 (see fig.1.2(b)). We can however re-
obtain the classical dilation if we omit all the self-intersections, if any, such that
we do indeed get a contact-boundary without any intersections of the objects 4.

2See fig.1.3.
3See [6]
4sup(R⊕̆S)(x) = (R⊕ S)(x) (see [4], section 2.2) – this will not be treated in this thesis.
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The emphasis of this thesis will mainly be on the development of a discrete
algorithm of the transform, based upon the theory for functions by Dorst and
Van den Boomgaard, which will be able to handle polygonal data. In order
to do this, we need to examine the workings of the Legendre transform hence
requiring the basic theory, operations and difficulties when using discrete data;
this will be treated in chapter 2.

Chapter 3 examines the parallels of Fourier and Legendre transform based
upon the findings of Dorst and Van den Boomgaard [6] using the decomposition
found by Corrias in [2] and focuses on the possibility of using this decomposition
to develop a fast discrete Legendre transform in much the same way as the fast
discrete Fourier transform, found by Cooley and Tukey [9].

In [8], Lucet describes a method of obtaining an even lower computational
complexity using tangent-support indexing. Both Corrias and Lucet however fo-
cus on using the Legendre transform for solving certain types of non-linear differ-
ential equations (Hamilton-Jacobi-equations) and in doing so omit data-points,
due to the transform, which are essential when using discrete data describing
(a part of) a polygon. Both an adapted version of Lucets’ tangent-support and
the problems contained in the discrete Legendre transform using discrete data
will be treated in chapter 4.

Chapters 5 and 6 focus on the problems that we encounter with polygons
in general and possible solutions for describing (sections of) polygons which for
instance are not purely concave or convex, like polygon P in fig.1.1, and in doing
so, stay close to the actual theory.

We conclude the thesis with the customary conclusions and (possible) future
work.
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Chapter 2

Legendre Transform

Before we can focus on developing an algorithm for the tangential dilation using
discrete data, we will need to examine the theory behind the Legendre trans-
form. In doing so, we have to concentrate on continuous data first i.e. functions.

2.1 Functions

As mentioned in the introduction, the Legendre transform can be found in the
areas of convex analysis and specific non-linear differential calculus; it is defined
for continuous functions f : R → R, denoted by L.

Def : L[f ](ω) ≡
{
f(u)− ωu | f ′(u)− ω = 0

}
(2.1)

Note that L in def.(2.1) transforms f to a function L : Ω→ R with the slope ω
as a base.

The next couple of sections will mainly focus on studying convex or concave
functions with just one extreme value.

2.1.1 A concave example

Define some smooth, concave function f : R → R:

f(x) := −x2 + 3x+ 4

To get a good feeling of what the Legendre transform does, we need some char-
acteristic sample-points, for instance, the maximum of f at ( 3

2 , 6
1
4 ) and (0,4).

As can be seen in fig.2.1(b), the maximum of f is transposed to (0,6 1
4 ) and (0,4)

has become the minimum at (3,4) using the Legendre transform.

An easy, graphical way of looking at this transform using fig. 2.1(b), is by
drawing the tangent of a point P := (px, py) for f(x) in the direction of the
y-axis. We then take the intersection-point of the tangent and the axis – this
will become the L[f ]-coordinate of P ; note that this can be found using eq.(2.1)
→ L[f ] = py − ωpx. Since we have the first order derivative, we can easily
calculate ω, using

ω = f ′(x) = −2x+ 3

4



Chapter 2. Legendre Transform 2.1. Functions

If we then combine the two, we get the Legendre transformed point of P . Take
P to be (0,4) for instance; for x = 0 → ω = 3. The tangent in p is of the form:
y = 3 · x + 4. The intersection-point of the tangent and the y-axis is at (0,4),
yielding the transformed point at (3,4).
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f(x)

–4 –2 2 4 6
x
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Figure 2.1: f(x) and its Legendre transformed L[f ](ω).

To prove that the Legendre transform of a second degree polynomial actually
yields a second degree polynomial L[f ], def.(2.1) can be rewritten through sub-
stitution for f := ax2 + bx+ c, using

ω = 2ax+ b → x =
ω − b

2a

yielding

L[f ](ω) =

(
a
(ω − b

2a

)2

+ b
(ω − b

2a

)
+ c

)
−
(
ω
ω − b

2a

)

=
(a(ω2 − 2bω + b2)

4a2
+
bω − b2

2a
+ c
)
−
(ω2 − bω

2a

)

= −
1

4a
ω2 +

1

4a
2bω −

1

4a
b2 + c = −

1

4a
(ω − b)2 + c

2

Now one can deduce that a function with a steeper slope-function will become
wider under the Legendre transform using the rewritten term posted above; for
higher values of a, directly influencing the slope, we will find wider Legendre
transforms due to the term 1

4a . Conversely, wider functions yield a steeper
transform.

2.1.2 Translations

A continuous, concave second degree polynomial yields a continuous, convex
second degree polynomial under the Legendre transform, as can be seen in

5



2.1. Functions Chapter 2. Legendre Transform

fig.2.1(a) and 2.1(b). We also know that a translation of a second degree poly-
nomial returns a second degree polynomial. Define a function f̄ = −x2 to be
the ’standard’ concave parabola such that

f̄p(x) + q = f(x)

with

f̄p(x) := f̄(x− p)

where (p, q) can be seen as a translation vector. Hence, our original function f
can be written using f̄ and the translation vector ( 3

2 ,6
1
4 ), moving f̄ up and to

the right.

f̄p(x) + q = −(x−
3

2
)2 + 6

1

4

= −(x2 − 3x+ 2
1

4
) + 6

1

4
= f(x)

The Legendre transform of translations of an n-th degree polynomial also yield
an n-th degree polynomial, as can be found in [4] and [6]. Take some function
f which we translate by a vector (p, q). The Legendre transform can then be
written as:

L[fp](ω) + q = {(fp(u)− ωu) + q | f ′p(u)− ω = 0}

= {(f(v)− ω(v + p)) + q | f ′(v)− ω = 0}

= {(f(v)− ωv − ωp) + q | f ′(v)− ω = 0}

= −ωp+ q + {f(u)− ωu | f ′(u)− ω = 0}

Note that we actually retrieve the original Legendre transform for f(u) and
adding a line −ωp. So, we can rewrite this as

−ωp+ q + L[f ](ω) (2.2)

We can use f and f̄ as defined above to see that this actually works using the
same translation vector and eq.(2.2) for

L[f ](ω) =
1

4
ω2 −

3

2
ω + 6

1

4

L[f̄ ](ω) =
1

4
ω2

such that

L[f̄p](ω) + q = −
3

2
ω + L[f̄ ](ω) + 6

1

4

=
1

4
ω2 −

3

2
ω + 6

1

4
= L[f ](ω)
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Chapter 2. Legendre Transform 2.1. Functions

2.1.3 Combining concave functions

We can use the Legendre transform for computing the contact-boundary of two
functions, g∗ and f , both defined in an individual frame, denoted by F and G.

For the time being, consider g∗ and f to be rigid bodies where g∗ can for
instance represent a robot moving around and f to be an obstacle in the vicin-
ity of g∗. If we were to move/slide g∗ around our fixed object in such a way
that that g∗ does not penetrate the boundary of f we would obtain the contact-
boundary ; g∗ kisses f . The result can be perceived as being a boundary itself;
g∗ can move around f freely as long as it does not venture too close to f . Note
that we can describe the possible configurations of our robot using rotations
R and translations T . In this thesis we will focus on the latter one, using the
robot in a fixed orientation, hence omiting the complex boundaries which occur
when adding rotations.

Using the notion obtained above for 2D data, we can return to functions.
In a schema, computing the contact-boundary would look like this.PSfrag replacements

L L−1

+

⊕̆

f g

L[f ] L[g] L[f ] + L[g]

f⊕̆g

Figure 2.2: Finding the contact-boundary using the Legendre transform.

So, to get the contact-boundary f ⊕̆g, we can add up the separate Legendre
transforms of the 2 functions and do an inverse Legendre on the sum (see [4]
and [6]). Note that fig.2.2 uses g instead of g∗. The function g∗ is actually
known as the transpose of g; g is the point-mirrored image of g∗:

g(x) = −(g∗(−x))

An additional factor in determining the contact-area, is the use of a reference-
point ρ. In general, ρ can be any point in G, determining the relative position
of g∗ with respect to f , hence influencing the transform of g∗; denote this as g∗ρ.
Take ρ to be the point (p, q) in G. By simply applying a vector translation we
can move g∗ to a new position with (p, q) placed in the origin of G.

g∗−p(x)− q

Using this translation and the notion of a transpose function, we no longer have
to worry about keeping track of ρ; it’s simply the origin of G. A few examples
will help to clarify the influence and importance of the choice of a reference-
point.

7



2.1. Functions Chapter 2. Legendre Transform

Let’s look at a simple setup. Define 2 functions f : R → R and g∗ : R → R;

• f(x) := −x2 + 3x+ 4

• g∗(x) := x2

Note that we will use the g∗ as shorthand for g∗(0,0). Now, g can be found using

−g∗(−x) = g(x) → g(x) = −((−x)2) = −x2

To use graphics, we simply place the origin/reference-point of G on the origin
of F . This yields fig.2.3(a). In fig.2.3(b), we see the Legendre transforms of f
and g, L[f ] and L[g], with

L[f ](ω) =
1

4
ω2 −

3

2
ω + 6

1

4

L[g](ω) =
1

4
ω2

–4

–2

2

4

6

8

–2 2 4 6
x
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ω

(b)

Figure 2.3: Transforming f and g.

yielding the second degree polynomial

(L[f ] + L[g])(ω) =
1

2
ω2 −

3

2
ω + 6

1

4

seen in fig.2.4(a). Now we can actually compute the contact-boundary using
the inverse Legendre transform. Since we are still focusing on second degree
polynomials, we only need the basic inverse transform, denoted as

L−1[F ](u) ≡ {F (ω) + uω | F ′(ω) = −u} (2.3)

That it is indeed the inverse follows from

L−1
[
L[f ]

]
(u) = f(u)

8



Chapter 2. Legendre Transform 2.1. Functions

as found in [4] and [6]. The boundary formed between f and f ⊕̆g, as can be
seen in fig.2.4(b), is the area where g∗ may not go, given reference-point ρ and
f . To put it in an other perspective, g∗ can be slid along, with the origin of G
exactly on f⊕̆g 1; g∗ and f will only kiss each other. We can determine f ⊕̆g in
terms of x by applying a rewrite using the first order derivative 2. So

−x = ω −
3

2
→ ω = −x+

3

2

resulting in

L−1
[
L[f ] + L[g]

]
(x) = (

1

2
(−x+

3

2
)2 −

3

2
(−x+

3

2
) + 6

1

4
) + x(−x+

3

2
)

= −
1

2
x2 +

3

2
x+ 5

1

8
= (f⊕̆g)(x)
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Figure 2.4: Constructing f ⊕̆g.

The same thing can be done for g∗ with different reference-points and leaving
f unaltered, for instance g∗(0,2). This in turn yields

g(x) = −x2 + 2

The result, as can be seen in fig.2.5, is that f ⊕̆g has moved up 2 compared to
fig.2.4(b) due to the choice of ρ

(f⊕̆g)(x) = −
1

2
x2 +

3

2
x+ 7

1

8

1f⊕̆g represented by dotted line.
2See eq.2.3.
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2.1. Functions Chapter 2. Legendre Transform
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Figure 2.5:

Another possible reference-point for g∗ could be ( 1
2 , 2

1
4 ), so g

∗
( 12 ,2

1
4 )
, such that

g(x) = −x2 + x+ 2

Note that if we look at g∗, ρ is to the right of the minimum of g∗. This means
that the actual contact-boundary needs to be wider on the right side of f and
tighter on the left side.

(f⊕̆g)(x) = −
1

2
x2 + 2x+ 6

1

2

This notion is confirmed in fig.2.6.
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Figure 2.6:
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Chapter 2. Legendre Transform 2.2. Discrete Functions

2.2 Discrete Functions

Discrete approximations of functions for some finite domain can also be used
for computing collisions – we can view these as being a part of a polygon. The
problem lies in handling the data-format; these discrete functions are built up
of edges and vertices, hence, we can not describe them exactly using some con-
tinuous polynomial.

x x

y y

B

A

−2 2

2 2

−2 2

4 4

Figure 2.7: Examples of discrete functions.

We already noted that, apart from the data-format, discrete functions have fi-
nite bounds. We will examine this in more detail in section 2.2.2. But first, we
will need to focus on the features of discrete functions and the influence that
the Legendre transform has on them. We will examine the easier of the two in
combination with the Legendre transform first.

x

f(x)

(0, a)

Figure 2.8: From edge to vertex.

As can be seen in fig.2.8, the edge E has a certain tangent ω, which intersects
the y-axis at (0, a). We know that in the continuous case, a becomes the L[f]-
coordinate in the Legendre frame. In the discrete case, edge E becomes the
point (ω,a) under the Legendre transform.

With vertices, it is slightly more complicated. The focus in fig.2.9 lies mainly
on point β. We already know what happens to the edge {α, β}, it gets trans-
formed to p1 at (ω1, a). Note that β has a tangent ω1, but, since β also lies on
the edge {β, γ}, it also has a tangent ω2 = 0. Moreover, all tangents ωi which
run from ω1 to ω2 are valid tangents such that:

ω1 ≥ ωi ≥ ω2

11



2.2. Discrete Functions Chapter 2. Legendre Transform

i.e. they form a cone of tangents for point β with angle ϕ. We know that β,
since it lies on the edge {α, β}, get transformed to p1. But since β also lies
on the edge {β, γ}, it gets transformed to p2 as well. If we calculate some of
these ωi, we will find that they end up on the edge {p1, p2}. Note that we can
accurately describe this using the cone in terms of ω1 and ω2

ωi = λω1 + (1− λ)ω2 (2.4)

with

0 ≤ λ ≤ 1

Take the intersection of ω1 trough β with the y-axis to be (0,o1) and (0,o2) for
ω2.

α

β γϕ

ω

f(x)

x

L [f]

PSfrag replacements

L[f ] ω1

ω1

ω2

p1

p2

Figure 2.9: From vertex to edge.

Using the linear relation above we get

oi = λo1 + (1− λ)o2

The same linear relations hold in the Legendre domain, hence, a vertex in the
spatial domain gets transformed to an edge in the Legendre domain based on
the ’valid’ slopes using eq.(2.4).

So, vice versa, using the insight obtained above, we can be even more specific
about the transformation of an edge under the Legendre transform: edge E in
the spatial domain becomes a cone at a point in the Legendre domain.

Before proceeding, we need to re-examine our definition of the Legendre
transform to be able to handle discrete functions. It turns out, that we can use
the extended Legendre transform as found in [6]

Def : L[f ](ω) ≡ max
u

{
f(u)− ωu

}
(2.5)

Note that the max -term actually calculates the extreme value, so f ′(u)−ω = 0,
hence retrieving def.(2.1). So, for every possible value of ω, we need to run
through all of the vertices of the function. We can easily calculate useful ω-
values using vertices (xi, yi) and (xi+1, yi+1).

ωi =
( yi+1 − yi
xi+1 − xi

)
(2.6)

12



Chapter 2. Legendre Transform 2.2. Discrete Functions

This way, we only get ω-values which are in the actual discrete function. Con-
sider a (rough) discrete representation Df of the function f = −x2.

x -2 -1 0 1 2
Df (x) -4 -1 0 -1 -4

Using def.(2.5) and eq.(2.6), we get3

ω 3 1 -1 -3
L[Df ](ω) 2 0 0 2

The inverse operation, as found in eq.(2.3), can be presented in a similar
fashion to the Legendre transform in eq.(2.5).

Def : L[f ]−1(x) ≡ min
ω

{
F (ω) + xω

}
(2.7)

where the x’s can be obtained in much the same way as the slopes in (2.6).

xj = −
(L[f ]j+1 − L[f ]j

ωj+1 − ωj

)
(2.8)

It has to be noted that definitions (2.5) and (2.7) work only for concave
discrete functions. When using convex discrete functions, we have only have to
use min in def.(2.5) and max in def(2.7).

2.2.1 Translations

As mentioned in section 2.1.2, eq.(2.2), vector translation in the Legendre do-
main yields the Legendre transform of the function with an additive factor
dependent on the vector translation itself.

ω ωx

(b) (c)

f(x) L L

f

[f]L

(a)

−2w

Figure 2.10: Translations in the Legendre-domain.

If we define the linear translation t to be (2,0), Df , as introduced in the previous
section, would move 2 to the right. Fig.2.10(b) shows the Legendre transform
of Df , together with the −ωt-factor. In fig.2.10(c) we can see the result of
the translation over t ; it’s simply the sum of the line −ωt and the Legendre
transform in fig.2.10(b) as found in eq.(2.2), stretching and tilting it.

3See fig.2.10(a) and (b)
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2.2. Discrete Functions Chapter 2. Legendre Transform

2.2.2 Infinity

An additional problem when using discrete functions that was already noted in
the beginning of section 2.2 is that the domain is finite. So, before we can look
at combining concave discrete functions, we have to examine the influence of
a finite domain. This can be done by combining a concave function f and a
band-pass function. Define a band-pass function B such that

B(x) =

{
0 if p < x < q
−∞ else

The result of this addition, as seen in fig.2.11, is quite straightforward; the
polynomial f will be defined on the domain {p, q}, hence creating a ’discretized’
function.

x p q x xp q

(a) (b) (c)

PSfrag replacements

f(x)

f(x)

B(x) f(x) + B(x)

+ =

Figure 2.11: ’Discretizing’ a continuous function.

To examine the influence of this discretization in the Legendre domain, we can
obtain the Legendre transform of f(x) + B(x) using

f(x) + B(x)
L

−−−→ (L[f ]⊕̆L[B])(ω) (2.9)

as found in [4]. Since f is just a simple concave second degree polynomial,
L[f ](ω) is a convex second degree polynomial, so we need only look at the
transform of the band-pass function B.

ωx

(a) (b)

p q

= 1ω

ω = 2

2−1−2 1

PSfrag replacements

B(x) L[B]

L

L−1

Figure 2.12:
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Chapter 2. Legendre Transform 2.2. Discrete Functions

As can be seen in fig.2.12, B becomes a cone under the Legendre transform4.
Now we can compute L[f ]⊕̆L[B].

(a) (b) (c)

q p

ω ω ω

PSfrag replacements

L[f] L[B] L[f]⊕̆L[B]

⊕̆ =

Figure 2.13: Constructing L[f ]⊕̆L[B].

In fig.2.13, we see that a convex second degree polynomial and the cone result
in a convex section from q to p. Beyond these points, L[f ]⊕̆L[B] becomes linear
as an effect of the cone, as found in [4], section 2.4. So, the cone in fig.2.13(b)
limits the slopes from a certain threshold −pω for ω > 0 and −qω for ω < 0 as
found in fig.2.12(b).

Now we are at the point where we can return to concave discrete functions.
If we want to use a discrete function in the Legendre transform, we have to do
something similar to fig.2.11, hence defining a discrete function Df in such a
way that the first and last vertex of the discrete function become the domain for
which the function holds and that beyond these vertices all x-values will have a
y-value of −∞, so

Df =

{
Df (x) if xv1 < x < xvn
−∞ else

with xv1 and xvn denoting the first and last x-value of the vertices of A.

2.2.3 Potential difficulties

Now that we can use a discrete function in the Legendre transform by adding
a ’sense of infinity’, we can start looking at computing the contact area of 2
discrete functions. But, problems due to the data-format of discrete functions
do not make it straightforward. The following issues need to be resolved:

• loss of vertices due to Legendre and inverse Legendre transform.

• incompatible ω-values.

• handling more complex discrete functions which can not strictly be defined
as being concave or convex.

The first problem is due to the calculation of the ω-values. If we have a discrete
function Df with N vertices, we get N -1 vertices for L[Df ], as can be seen in

4See [4] for proof.
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2.2. Discrete Functions Chapter 2. Legendre Transform

fig.2.10, section 2.2.1 and the corresponding tables. When we then apply the
inverse Legendre transform, we loose another vertex. We do however have to
keep in mind that

L−1[L[Df ]](u) = Df (u)

In other words, a discrete function Df with N vertices has to yield Df with the
same N vertices after an inverse Legendre transform of the Legendre transform
L[Df ].

An additional problem is handling discrete functions with different ω-sets,
so how to treat the addition of two sets of ω-values differing in the amount
of values and/or different values. Hence, we have to find a way to combine 2
Legendre transformed discrete functions in such a way that we obtain a valid
result i.e. they will only kiss each other when they ’share’ a slope.

We also want to be able to handle discrete functions which have a more
complex structure, non-convex discrete functions.

−6 −4 −2 0 2 4 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

X

Y

Figure 2.14: An example of a non-convex discrete function.

These non-convex discrete functions can be perceived as being built up out of
several concave and convex segments, as can be seen in the example above. If
we want to use this notion, we have to find a way to separate and re-attach
the segments in such a way that no data is lost and that all segments are used
properly in the resulting transform.

We will examine these problems in more detail in the chapter on the algorithm
and propose a solution to handle them efficiently.
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Chapter 3

Fast Legendre Transform

The complexity of the Legendre transform is of the same order as the Fourier
Transform. For every slope-value ω and a function described by N sample-
points, we would need N operations. So, for |Ω| slope values, we get a complex-
ity of O(|Ω|N).

In the mid-1960’s, Cooley and Tukey introduced a Fast Fourier algorithm
based on the derivations of the discrete Fourier transform by Danielson and
Lanczos [9]. Danielson and Lanczos proved that it was possible to rewrite a
discrete Fourier transform over N sample-points, with N being a power of 2,
as the sum of two separate Fourier transforms over N/2 points. Although the
rewriting of the Legendre transform is slightly different from that of the Fourier
Transform, we can see clear analogies.

3.1 Discrete Fourier

Using the Danielson-Lanczos Lemma, the discrete Fourier transform can be
written as:

F (ωk) =

N−1∑

u=0

e−2πiuωk/Nf(u)

=

(N/2)−1∑

u=0

e−2πiuωk/(N/2)f(2u) +W k

(N/2)−1∑

u=0

e−2πiuωk/(N/2)f(2u+ 1)

= F (ωk)
e +W kF (ωk)

o

= F e
k +W kF o

k (3.1)

with

W k ≡ (e−2πi/N )ωk

where F e
k denotes the k -th component of the N/2-length Fourier transform

formed from the even components of the original data, while F o
k does the same

for the odd components. Also notice the introduction of the factor W k which is

17



3.2. Discrete Legendre Chapter 3. Fast Legendre Transform

used as translation-factor, so quite similar to the −ωt-factor introduced in the
last section of the previous chapter.

3.2 Discrete Legendre

Before looking at the discrete Legendre transform, we’ll introduce the notion of
step-size ε, determined by N.

ε :=
1

N

Now, define some concave discrete function f for D := [0, 1]. Applying the
Danielson-Lanczos Lemma, as can be found in [2], yields

LN [f ](ωk) = max
u

{
f(u)− ωku

}

= max
{
max
u

{
f(u)− ωku

}
, −ωkε+max

u

{
f(u+ ε)− ωku

}}

= max
{
LN

2
[f ](ωk), −ωkε+ LN

2
[f−ε](ωk)

}

= max
{
LN

2
[f ](ωk), Wk + LN

2
[f−ε](ωk)

}
(3.2)

with

Wk = −ωkε = −
ωk
N

In the case of the Fourier transform we need an addition of two terms, where
one has a multiplicative offset-factor. We see the same sort of thing happening
to the Legendre transform when splitting it, but instead of an addition we need
a maximum-operation on two terms, with one term having an additive offset-
factor (see eq.3.1 and 3.2).

A more general notation will prove to be quite handy, since pre-processing
the function to map it to D will take extra time. Given a discrete function f ,
take the boundary points to be (px, py) and (qx, qy). Take the x-values of these
points such that px < qx. Now, we can map D to [px, qx], using [4]

f((qx − px)x) −→ L[f ](
ω

qx − px
)

such that

f−px((qx − px)x) = f((qx − px)x+ px) = py for x = 0

f−px((qx − px)x) = qy for x = 1

We will also have to redefine our definition of ε

ε :=
qx − px

N
(3.3)

Now, we can rewrite eq.(3.2) as

max
{
LN

2
[f−px ](

ωk
qx − px

), Wk + LN
2
[f−px−ε](

ωk
qx − px

)
}

(3.4)
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Chapter 3. Fast Legendre Transform 3.2. Discrete Legendre

thus running through N samples from point p to q-ε. Note that the first part
of eq.(3.2) and eq.(3.4) calculate the samples

{0, 2ε, 4ε, 6ε, 8ε · · · 1− 2ε}︸ ︷︷ ︸
N
2 even terms

and that the second part calculates

{ε, 3ε, 5ε, 7ε, 9ε · · · 1− ε}︸ ︷︷ ︸
N
2 odd terms

due to the additive ε-term in determining f(u). We can even do successive
subdivisions using eq.(3.4), thus splitting the ’even’ half over N samples into 2
sections of each N /4 samples, so an ’even-even’ ({0, 4ε · · · }) and an ’even-odd’
part ({2, 6ε · · · }). The same applies for the ’odd’ half, yielding an ’odd-even’
({ε, 5ε · · · }) and an ’odd-odd’ part ({3ε, 7ε · · · }). Using the following construct,
we can keep splitting each section up to the point where each section only con-
tains 2 values.

Fast Discrete Legendre Transform

fdlt(ω,f ,ε,∆,S)
with
offset ∆ initialized at 0
stopvalue S set to (qx − px)

for 2ε < S
return max

(
fdlt(ω,f , 2ε, ∆,S), −ωε + fdlt(ω,f , 2ε, ∆+ ε,S)

)

else

temp1 = f(u+∆)− ωu
temp2 = f(u+∆+ ε)− ωu
return max(temp1, temp2)

end

For example, 8 samples at the top get divided into 2 sections of 4, which in turn
can be divided into 4 sections of 2 samples, yielding

{0,ε,2ε,3ε...7ε}

{0,2ε,4ε,6ε} {ε,3ε,5ε,7ε}

{ε,5ε} {3ε,7ε}

∆=2ε

∆=ε

∆=ε

{2ε,6ε}{0,4ε}

This way, we can reduce the computation of an |Ω|-point Legendre transform,
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3.2. Discrete Legendre Chapter 3. Fast Legendre Transform

obtained from an N -point sampled function, to log(N) calculations for each
slope-value ω. Hence, calculating |Ω| slope-values would be of the order |Ω|
log(N).

3.2.1 Sampling and its Side-effects

Let’s look at the fast Legendre algorithm as proposed in the previous section.
When sampling, we’re actually using linear interpolation to get data-points with
a fixed spacing ε based upon the original inputdata. In order to obtain a faster
transform, we have to keep in mind that, given a discrete function with n vertices
and |Ω| unique slopes, we need O(|Ω|n) calculations. This means that we can
only get a more efficient algorithm in the number of computations used if we
use a number of samples N such that

log(N) < n

with N being a power of 2. Note that the focus in this setting is mainly based
on efficiency; we do not have any qualitative restrictions.

Take discrete function B as seen in section 2.2, fig.2.7; B has 4 points and 3
slopes. In this setting, an obvious sample-rate would be

N = 4 → ε = 1

hence, we would only need 3 · log(4) = 6 calculations instead of the original 12.
Note that the data is already equidistant and that the number of points are a
power of 2. When altering either of these two features, we find that there are
a number of drawbacks when sampling is applied to discrete functions with a
low number of vertices. Since the drawbacks apply for both, we will focus our
attention on the last feature.

−2 0

   2

   4

  2

= 4

Object 

N 
Ay

x

Figure 3.1: Low sample-rate, loss of distinct features.

Discrete function A has 5 vertices and 4 slopes. When using the same amount
of samples, we find that distinct features of A have been cut, as can be seen
in fig.3.1. It is obvious that we do not want to use these rough approximations
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Chapter 3. Fast Legendre Transform 3.2. Discrete Legendre

in contact computation. To increase the accuracy we would need to use more
samples.

4

2

Object A
N = 8

y

Figure 3.2: Better approximation using higher sample-rate.

In fig.3.2, we have increased the number of samples to 8 and extracted a
section of A. The drawback of the sampling-proces is that it yields 3 additional
slopes; the sampling does not correspond exactly to the vertices of A. More-
over, in the worst case scenario, |Ω| unique slopes yield |Ω|-1 additional slopes,
thereby increasing the number of calculations needed to determine the Legen-
dre values. Although being more accurate, the sampling still cuts the original
discrete functions’ important features as can be clearly seen when looking at the
third vertex of A. We have to find a way to determine the number of samples
based on the discrete function itself such that the loss of features is minimized.

There are a few ways to use the data of the discrete function, but it is not
at all straightforward. In the examples used above, we already noticed that the
number of vertices in the original discrete function need not be a good estimate
for the number of samples. Conversely, if we were to use the same discrete func-
tion A but with a much greater number of vertices to ’describe’ it, we would
find that the actual number of samples needed for a satisfactory result would
be relatively low compared to the number of vertices.

Another way would be to look at the data-spacing. This way we can de-
termine the smallest edge of the discrete function, hence being able to set the
sample-rate in such a way that we include all the edges. But this also leaves us
with possible problems; take the same discrete function A but instead of spread-
ing a large amount of extra points on the existing edges, concentrate them on a
single edge. This way, we obtain a very small value for the shortest edge, hence
increasing the number of samples. This in turn means that all but one of the
edges of A will be ’oversampled’, resulting in the same problem as described
previously i.e. only a small amount of values will actually be worthwile.
We can do slightly better by using the average data-spacing but this also leads
to possible problems since the longer edges will stretch the average which will
in turn set the sampling in such a way that a number of edges, or even worse,
potentially interesting features, will be cut.
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3.2. Discrete Legendre Chapter 3. Fast Legendre Transform

We can extend this if we want to use sampling for treating non-convex dis-
crete functions like the one in section 2.2.3; ’undersampling’ one or several
segments would lead to large differences between the original discrete function
and its sampled image. This still leaves us with treating two colliding discrete
functions; the number of samples used for both discrete functions might poten-
tially be too low (or too high) for one of the discrete functions if we were to use
one of the possible solutions mentioned above.

In order to keep the number of samples at an acceptable level and increase
the accuracy, the best approach is to define a threshold κ; a sampled vertex vε
is acceptable if

yv − yvε ≤ κ ≡ c
(xn − x1

N

)
= cε

using some user-defined constant c with

0 < c ≤ 1

and yvε being the y-value found through interpolation of the x-value closest to
the x-value of vertex v using sample-rate ε. Once the threshold κ has been set,
we need only check the difference of the interpolated data with each point in
the original discrete function and update N if needed – increasing the number
of samples will decrease the distance of the sample-point nearest to v, thereby
decreasing the error in the approximated y-value until yv − yvε ≤ κ.
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Figure 3.3: Accuracy using sampling.

In fig.3.3(a) and 3.3(b)1 we can clearly see that the resulting approximation of
the Legendre transform does indeed approach the actual transform of A, getting
closer for an increasing amount of samples. Note that we do however obtain an
increasing number of points for each edge in the spatial domain if we increase
the sample-rate. This in turn means that we have to run trough all these points
for the calculation of the slopes of A when only a small amount of points will

1fig.3.3(b) is an enlarged segment of the transforms found in fig.3.3(a)

22



Chapter 3. Fast Legendre Transform 3.2. Discrete Legendre

actually be of any use; we will find the same slope-value k− 1 times for an edge
with k sample-points, clearly decreasing efficiency.

So, when actually using sampling on a ’simple’ discrete function, we find that
we have to use a sample-rate which will be sufficiently accurate to retain as
much of the original features as possible and that the apparent simplicity of
a discrete function can be deceptive, resulting in a increase of the number of
calculations that we need to obtain the slopes which in turn adds to the num-
ber of calculations needed to compute the (approximated) transform using the
proposed algorithm. Hence, the use of equidistant sample-points does not seem
to be the ideal approach for handling discrete functions; we will need to find an
other way to find the global maximum.
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Chapter 4

Linearity using Local

Knowledge

In the previous chapters we have always focused our attention on computing the
Legendre transform using global maximum computation. It turns out that we
can actually determine this maximum using only local knowledge without the
use of sampling but by using the vertices and edges that build up the discrete
function, reducing the problem to one of a linear computational complexity.

4.1 Slope Support Index

The basic idea behind determining the maximum locally, adapting a method
proposed in [8], is to build an index of those points which yield a maximum for
a given slope sj .

Given some arbitrary n-point concave discrete function C, we can obtain the
m slopes ω using eq.(2.6). Note that

ω1 > ω2 > · · · > ωm

Suppose we have a set of slopes s1:p for which we want to compute the Legendre
transform; we denote this as Σω. Since the sequence (ωi)i=1:m is decreasing, we
can easily determine an index of vertices of C using slopes s ∈ Σω such that
a slope sj will support C at vertex k; we will denote this set of indices as SSI
(Slope Support Index). Formalizing this concept yields

Lemma:

(i) If s > ω1, SSI(s) = {1}

(ii) If ωk−1 > s > ωk, SSI(s) = {k}

(iii) If ωk = s, SSI(s) = {k, k + 1}

(iv) If ωm > s, SSI(s) = {n}
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Figure 4.1: Obtaining a global maximum using local knowledge.

In fact, we have already done something similar when we noted that a vertex
of in the spatial domain gets transformed to an edge in the Legendre domain1,
but now we are interested in the vertex itself given some slope sj i.e. we want
to find the vertex xk for which

sj = λωk−1 + (1− λ)ωk with 0 ≤ λ ≤ 1 (4.1)

is valid, resulting in an index SSI(sj) = {k}. Note that this can be the only
valid vertex since

ω1 > · · · > ωk−1 ≥ sj ≥ ωk > · · · > ωm

Also note that multiple slopes are valid support for C at (xi, yi) using eq.(4.1);
we do however still have to prove that yk − sjxk is the maximum for sj ; parts
(i) and (iv) of the lemma are straightforward, hence proof will be omited.

Proof Clause (ii) Assume that ωk−1 > sj > ωk. The first inequality of (ii) can
be written as

yk − yk−1

xk − xk−1
> sj

implying that

yk − sjxk > yk−1 − sjxk−1

Moreover, since the sequence (ωi)i=1,..,m is decreasing, we know that ωk−2 >
ωk−1, implying that yk−1 − sjxk−1 > yk−2 − sjxk−2. Hence we can write the
sequence ωi for i = 2, · · · , k − 1 as

yk − sjxk > yk−1 − sxk−1 > · · · > y1 − sjx1 (4.2)

1See section 2.2.
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4.1. Slope Support Index Chapter 4. Local Knowledge

The second inequality can be done in a similar fashion:

sj >
yk+1 − yk
xk+1 − xk

such that

yk − sjxk > yk+1 − sjxk+1 > · · · > ym − sjxm (4.3)

for i = k, · · · ,m. Using inequalities (4.2) and (4.3) yields yk− sjxk as the strict
maximum in the sequence, resulting in an index: SSI(sj) = {k}.

2

Proof Clause (iii)

yk+1 − yk
xk+1 − xk

= sj

implies that

yk+1 − sjxk+1 = yk − sjxk

We can combine this with the previous proof, hence using the notion that the
sequence ωi is decreasing, so,

yk+1 − sjxk+1 = yk − sjxk > yk−1 − sjxk−1 > · · · > y1 − sjx1

and

yk − sjxk = yk+1 − sjxk+1 > · · · > yn − sjxn

2

In fig.4.1(a) we see a graphical representation of clause (ii) using a positive
slope sj such that ωk−1 > sj > ωk. We can clearly see that sj does indeed give
us the strict maximum yk − sjxk and that

∀i 6= k with i = 1, · · · ,m : yk − sjxk > yi − sjxi

A similar construct holds for fig.4.1(b), depicting clause (iii). It has to be noted
that the only index needed in the actual programming for this clause is xk; xk+1

is redundant.

Calculating the index for convex discrete functions can be done in much the
same way, we only have to alter the ’greater than’ in clauses (i), (ii) and (iv) of
the lemma and use ’smaller than’, hence we will omit any further proof.
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Slope Support Index

support(C,S)
with
the set of slopes of discrete function C; m elements
the slopes S with S = Σω; v elements

note: Take the input to be concave.

j = 1;

while S(j) ≥ C(1)
SSI (j) = {1}, j = j + 1;

end

for i = 2 : m;
while S(j) ≥ C(i) & j < v

SSI (j) = {i}, j = j + 1;
end

end

% Index any remaining slopes in Σω

for w = 1 : v − j;
if S((j − 1) + w) ≥ C(m)
SSI ((j − 1) + w) = {m};

else

SSI ((j − 1) + w) = {m+ 1};
end

end

4.2 Index-based Legendre Transform

Now we can combine the Slope Support Index from the previous section with
the concept proposed in section 2.2.2.

4.2.1 A Single Discrete Function

In section 2.1.3 and 2.2.3, it was noted that the inverse of a Legendre transform
of a discrete function has to yield the original discrete functions. So, before
looking at contact, we have to look at the operations for a single discrete function
and show that this does indeed happen. In order to do this, we have to resolve
the first issue noted in section 2.2 – the loss of data due to the transform and
its inverse.

Handling Infinity

For a possible solution, we have to take another look at section 2.2.2. By
proposing to define a ’sense of infinity’, we would also ’create’ 2 additional

27
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data-points. But we have to be more specific; for concave discrete functions, we
can use the construct proposed in that section; for convex discrete functions we
simply have to change the sign in front of the infinity-term. In fact, we have
to be careful about using the actual infinity-term in the algorithm. It poses
a problem when we want to apply the inverse Legendre transform on discrete
data; if we choose to use the first and last vertex of the function as a double-
valued point, we cannot avoid dividing by 0. A possible solution would be to
use a small constant δ in such a way that we ’create’ a new first vertex with

vx0 = vx1 − δ

and a new last vertex with

vxn+1
= vxn + δ

This however does not solve the problem either since using infinity-terms in
eq.(2.8) results in infinity, hence crucial data on the first and last vertex are
lost.

In fact, the last solution can be used if we simply ’redefine’ infinity in such a
way that it can be used in the algorithm, hence using some high-value constant.
Let’s denote this by ∞̃. It has to be noted that there are a number of factors
influencing this constant. Hence, we need to check the dimensions of the input
and slope and adjust it accordingly. Note that the ’maximum’ Legendre-value
possible for any given concave discrete function is

Ľ = ymax −min
(
(ωmin · xmax), (ωmax · xmin)

)

Also note that ymax need not be connected to the slopes and extreme x-values
in any way. This does however mean that Ľ is at least the size of the actual
Legendre-maximum Lmax of the discrete function (see fig.4.2).

PSfrag replacements

Lmax

Ľ

ωmax

ωmax

ωmin

ωmin

ymax
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xmaxxmin

Figure 4.2: Obtaining the ’maximum’ Legendre-value.

Convex discrete functions can be done in much the same way for the ’minimum’
Legendre-value with some small alterations.
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Chapter 4. Local Knowledge 4.2. Index-based Legendre Transform

To use this construct as straightforward as possible we can use one single
value and define the other two in terms of the first one. For instance

∞̃ = 1.06; δ =
1

∞̃
; ω∞̃ =

∞̃

δ
= ∞̃2

Now we can simply check each of the three variables using the data from the
discrete function and its slopes; if one (or more) of these fails, we can easily
update the ∞̃-term, thereby adjusting the other two values as well. We can then
use these values in constructing our final transform with an included infinity,
resulting in similar transforms as seen in section 2.2.2, so

x0 = x1 − δ; y0 = y1 − ∞̃ → L∞̃(left) = y0 − ω∞̃ · x0 (4.4)

The same can be done for {xn+1, yn+1}.

xn+1 = xn + δ; yn+1 = yn − ∞̃ → L∞̃(right) = yn+1 − (−ω∞̃) · xn+1 (4.5)

For convex discrete functions we only have to alter the subtraction for y0 and
yn+1 into an addition and swap ω∞̃ for -ω∞̃ and vice versa. This way, we don’t
have to worry about the convexity of the function when checking the dimen-
sions.

Now we can focus on proving what we set out to do at the beginning of this
section. For instance, take discrete function A from fig.3.1 – computing the
transform using SSI yields 4 indices, all resulting from clause (iii) of the lemma
in section 4.2; Σω only needs to contain the slopes which are in A to compute
the Legendre transform i.e. Σω = ωA.

Σω 3 1 -1 -3
SSI 1 2 3 4

The maximum for each slope s ∈ Σ has already been incorporated in the index,
therefore computation of the Legendre value is quite straightforward:

∀si ∈ Σω : L[A](s) = ySSI(si) − si · xSSI(si) (4.6)

for i = 1, · · · , h with h = |Σω|. We can rewrite eq.(2.7) in a similar way to
eq.(4.6) to compute the inverse such that

∀x ∈ X : L−1[L[A]](x) = L[A](si) + xi · si (4.7)

for i = 1, · · · , h − 1. Note that we actually added the left and right ω∞̃ using
the relative infinity-method, so we have 6 slopes in Σω. We do however need to
apply eq.(2.8) to obtain the x-values, yielding 5 (= h − 1) points. Now, using
eq.(4.7), we get

x -1 0 1 2 3
y 0 3 4 3 0

such that we do indeed obtain our original discrete function A.
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4.2. Index-based Legendre Transform Chapter 4. Local Knowledge

4.2.2 Colliding Discrete Functions

Before proceeding with 2 contacting discrete functions, we will need to focus our
attention on the second issue noted in section 2.2.3 – the possibility of differing
slope-values ω.

Combining Discrete Functions

Take the discrete functions A and B to have no common slopes i.e.

ωA ∩ ωB = ∅

By simply taking the union of both sets, we obtain a compound and unique
set of values Σω. We can then use the slopes in Σω to calculate the Legendre
values of both A and B and do a simple addition of these values for each slope in
Σω. Note that this approach is valid given the properties of a discrete function
described in section 2.2; edges get transformed to (a cone on) a vertex and
vertices are transformed to edges. This is due to the ’valid’ slopes which pass
through each of these vertices even though they might not be directly apparent
from the discrete function2. This means that for all slopes s ∈ Σω, we can
always find a vertex i for any discrete function for which

sj = λωi−1 + (1− λ)ωi with 0 ≤ λ ≤ 1 (4.8)

holds. The only two possible exceptions are the first and last vertex of the
discrete function. Note that we can however find these vertices for a slope sj
using

sj > ω1 or sj < ωn (4.9)

for concave discrete functions; the converse holds for the convex version. In
section 2.2.3 we already noted that two discrete functions can only ’kiss’ when
sharing a slope. So, if a slope sj is present in either function, we will see the two
edges with slope sj ’kiss’ and slide alongside each other. If sj is only directly
found in one of them, we will find that the edge of one discrete function will
’kiss’ and slide along the vertex v of the other one, given that v is valid for
eq.(4.8) or (4.9). Note that we can omit any further occurrences of the same
value in Σω for a non-empty intersection; we only need to use a slope once.
Simply adding the Legendre values for each slope results in the data needed to
compute the tangential dilation of A and B using the inverse transform.

Take the discrete functions A and B as shown in fig.4.3 be the colliding bod-
ies. Note that the discrete functions used are treated similarly to the examples
in section 2.1.3, hence we have to keep in mind that one of these functions has
its transpose in the actual contact; define B∗ to be B’s transpose 3.
In the same section we chose to fix the reference-point in the origin; the ’X’ used
in fig.4.3 has no real purpose other than to enhance readability in the following
figures.

2See section 2.2
3Choice of function is arbitrary; sometimes, choosing one over the other does however add

to readability of figures of resulting contact
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Chapter 4. Local Knowledge 4.2. Index-based Legendre Transform
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Figure 4.3:

Given the compound, unique set Σω, we need to calculate the index for all
slopes s ∈ Σω using the slopes of the separate discrete functions. Hence, a set
of indices is obtained for both A and B; denote the sets as SSIA and SSIB.
Note that, since we use Σω for both functions,

|SSIA| = |SSIB|

Using eq.(4.6) yields LA and LB (see fig.4.4(a)).
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y
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A + B
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Figure 4.4: Legendre transforms and the resulting contact A⊕̆B.

Now, we can simply add up the Legendre values obtained using eq.(4.6), yielding
LA+LB. The resulting contact A⊕̆B in fig.4.4(b)4 clearly shows all of the slopes
in Σω and is similar to the last example in the section on concave functions,
being tighter on one side and wider on the other due to the functions’ position
in the frame relative to the reference-point (’X’). In fact, we find that if we
compute the contact of a convex and a concave discrete function, as seen in the

4A⊕̆B represented by dashed line.
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4.2. Index-based Legendre Transform Chapter 4. Local Knowledge

previous example, we always find a result which is single-valued (see [4]), so for
every valid x in the domain, we only find 1 corresponding y-value; we’re simply
sliding a convex discrete body, approaching from above, along the outside of a
concave discrete body or vice versa, with the concave body approaching from
below.

This however does not strictly hold when combining two discrete functions
with the same ’shape’. Using 2 other, simple functions (fig.4.5), we obtain a
contact for which the statement made above does not hold.

2

−2 2

y

x
−2 2

2

x

y

D

C

Figure 4.5:

D∗ slides nicely along the first edge of C, both having the same first slope, but
when sliding along the second one, D also intersects with the third edge; to slide
back along the third edge, C⊕̆D has to fold back; the last vertex of D∗ is the
only point at which D∗ can ’kiss’ C due to clause (iv) of the lemma.
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2
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3

1
4

2
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C

Figure 4.6: C⊕̆D: Kissing with penetration.

Note that the point of intersection of edge 2 and 4 corresponds to a multiple
contact of D∗ with the second and third edge of C.

Another feature which we will only find for certain combinations of 2 con-
cave/ convex discrete functions is the appearance of an edge (or edges) which
at first does not seem to belong in the resulting contact.

Take function C as used in the previous example and take E to be quite similar
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Chapter 4. Local Knowledge 4.3. Complexity

to D but with higher slope-values5. If we were to omit the first and last edge
of C⊕̆E , the resulting contact would seem to fit much better. But if we were to
use this altered version, denoted by I, in combination with C, we find that

L−1
[
L[C + I](ω)

]
(x) 6= E

but a single point (0,3), confirming that I is indeed a simple linear translation
of C. Hence, we find that these edges do indeed belong to the actual contact, so
sliding the first edge of E∗ along the first vertex of C and the second edge along
the last vertex of C.

−2

2

2−2 x

y

C

−2

2

2

y

−2 x

E

Figure 4.7: C⊕̆E : Kissing with penetration(2).

4.3 Complexity

The linear complexity of the algorithm using on this Slope Support Index is
mainly based on the sorting of two sequences.

Take some discrete function C to have n points and m unique slopes with
m ≈ n. We require O(n) operations for calculating the slopes and to deter-
mine the convexity of the function. Since we know that Σω and the sequence of
slopes (ωi)i=1,...,m for C are the same, we need O(m) operations for calculating
the SSI of C since both sequences are either increasing or decreasing, depending
on the convexity. This way, the indices will always be sorted in ascending order
and makes the actual programming much more straightforward. This leaves us
with O(m) calculations for the actual Legendre transform, yielding an O(n+m)
complexity at the end.

To show that it is indeed a worst-case linear algorithm, we can use an in-
creasingly accurate discrete representation of a concave/convex second degree
polynomial.

5See fig.4.7

33



4.3. Complexity Chapter 4. Local Knowledge

0 10 20 30 40 50 60 70
3

4

5

6

7

8

9

10

11

12
x 10

−3

# of points

Tim
e

Figure 4.8: Computing Legendre and its inverse for a single discrete function.

The complexity for computing the contact of two discrete functions can be
proven in a similar fashion to the Legendre and inverse transform of a single
discrete function.

Again, presume a worst-case scenario. This means that the two functions must
be (roughly) of the same order in the number of points (n) and slopes (m),
m ≈ n. Moreover, the intersection of both sets of slopes should be empty.
Hence, Σω will be twice the size of either functions’ slope-set. We still need O(n)
calculations to obtain the slopes and the convexity of the discrete functions.
To calculate the SSI of each discrete function, we need to run through Σω

twice. Suppose that Σω has h (≈ 2m) elements. This leaves us with O(h+m)
operations needed for indexing each function. At the end, we need a further O(h)
calculations to get the Legendre transform, yielding an O(n + m) complexity
overall6.
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Figure 4.9: Computing contact-boundary of 2 discrete functions.

6Benchmark used for fig 4.8 and 4.9: Sun Enterprise 450 (4 X UltraSPARC-II 296MHz)’
(4 X UltraSPARC-II cpus) @ 296.0 MHz 1024 MB.
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Chapter 5

Non-Convex Discrete

Functions

We also want to be able to handle more complex discrete functions in contact
computation like the one shown below. We already noted that a non-convex
discrete function can be perceived as a set of concave and convex segments
pasted together1. In fact, one can determine whether a discrete function is
concave or convex given the second order derivative σ; we know that the discrete
first order derivative can be found using eq.(2.6), hence, the values σi of the
second order derivative can be obtained using

σi =
( yi+1 − yi
xi+1 − xi

)′
=
(ωi+1 − ωi
xi+1 − xi

)
(5.1)

So, for every discrete function we can determine its convexity:

Def :

{
’concave’ for [xp, xq] if σp,··· ,q ≤ 0
’convex’ for [xp, xq] if σp,··· ,q ≥ 0

If we were to use the global maximum approach on a complete non-convex dis-
crete function, global maxima would be found for every slope ω.
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Inverse of Legendre transform of F  
Object F                            

Figure 5.1: Non-convex discrete function M.

1See section 2.2.3.
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5.1. Segmentation Chapter 5. Non-Convex Discrete Functions

The result of this can also be found in fig.5.1; the inverse of the Legendre trans-
form of M without using any segmentation yields a concave hull, ’destroying’
the specific features.

To use the notion of a compound discrete function we need not only segment
and re-attach the segments correctly but we also have to see to it that the
separate segments, when used in an actual contact with some other body, yield
a correct result. But, before we can start looking at colliding discrete functions
we need to be able to handle a function like M in fig.5.1 and be able to show
that

L−1
[
L[M](ω)

]
(x) =M (5.2)

5.1 Segmentation

In order to obtain an acceptable segmentation of the non-convex discrete func-
tions into a set of concave and convex segments, we have to examine the Leg-
endre transform of continuous functions with similar features.
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Figure 5.2: Transforming a non-convex function.

If we examine the function f in fig.5.2(a) in combination with fig.5.2(b), we find
that the points where 5.2(b) folds back (’cusps’) are actually the points where
the second order derivative of f equals zero. This means that the transform for
a similar non-convex discrete function should yield a similar result.

One of the major problems with discrete data when using the second order
derivative is that we do not have a continuous change of slopes, hence, the
’switchpoints’ in functions like f need not be found for all discrete functions.
We have however noted that we can use the second order derivative to determine
a discrete functions’ convexity. Moreover, if we determine the second order
derivative σ using eq.(5.1) of M, found in this chapters’ introduction, we find
that there are several interesting points.

σM - 13 -2 1 1
3 1 - 12 -2
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Chapter 5. Non-Convex Discrete Functions 5.1. Segmentation

Notice that there are 2 sign-changes in the sequence. The continuous function
f actually has the same features; it swaps over from a negative to a positive
value for the first ’switchpoint’ and vice versa for the second one. Hence, we
have found a way to locate the crossing-over of a concave segment to a convex
one and vice versa, so sign(σi) 6= sign(σi+1).

An other way to find this cross-over, as noted previously, is when encoun-
tering a zero in the second order derivative of a non-convex discrete functions.
The problem with actually finding a zero at σi, is to be absolutely sure that we
do indeed see a sign-change i.e.

sign(σi−1) 6= sign(σi+1) & (σi−1) 6= 0 & (σi−1) 6= 0 (5.3)

The problem can be easily illustrated using the concave discrete function A from
chapter 4.
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Figure 5.3:

We just added a few vertices to it; note that the placing of the extra vertices,
although spaced at equal intervals, do not influence the results given the index-
method explained in the previous section; they can be placed at any point,
along any edge. The only restrictions are that they should be placed on an
edge, thereby not altering the actual discrete function, and that we do not want
vertices to occur more than once, hence avoiding division by zero. When looking
at the second order derivative of A, we find

σA 0 -4 0 -4 0 -4 0

But looking at A, we can easily see that there’s not apparent reason to actually
segment it; A is concave since

∀i : σAi
≤ 0

with i = 1, · · · , |ωA| − 1. When we elect to use a similar method for M, for
instance by adding a vertex somewhere along the second edge, we would see

σM - 13 0 -4 1 1
3 1 - 12 -2

hence, we have to keep track of certain features in the sequence. Since multiple
zeros might occur when we find several vertices which are valid for a single slope-
value, we have to be certain that we actually find the last one. One way to this
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5.1. Segmentation Chapter 5. Non-Convex Discrete Functions

is by keeping track of the sign of the last non-zero second order derivative-value;
denote this by σ 6=0. Now, when we find a zero at σi, we only segment M if

(i) σi+1 6= 0

(ii) sign(σ 6=0) 6= sign(σi+1)

hence specifying eq.(5.3). Note that the procedures presented need to be recur-
sive to correctly segment a non-convex discrete function where needed i.e. we
have check the remainder of the function when a segment has been found.

When we look closer at the original version ofM we can actually find more
that one way to do the segmentation. One way would be to cut it up at a
vertex; the sequence (σi) has a sign-change for i = 3 and i = 5. Let’s look
at the first one. When examining M in fig.5.1, we find that the third vertex
seems to be good place for segmentation using definition posted at the be-
ginning of this chapter. The problem with segmenting a non-convex discrete
function at a mutual vertex is the resulting transform that we obtain; consider
segmenting M at the third and fifth vertex; hence we obtain three segments:
{x1, . . . , x3}, {x3, · · · , x5} and {x5, · · · , x8}. We can clearly see that when we
compute the Legendre transform for each of these segments, we will end up with
three separate transforms which are not connected like the transform of f in
fig.5.2(b).

To stay close to the actual transform in the continuous setting, we have
find a way to segment a non-convex discrete function in such a way that the
combination of the separate segments yields a result similar to that of fig.5.2(b).
When re-examining M, we might also have elected to segment the function at
the fourth vertex instead of the third; the first segment would still be convex
and would not influence the convexity of the second segment; this would require
us to alter our definition. We have however already noted that an edge gets
transformed to a vertex in section 2.2. We can actually combine these two
notions; if we were to segment using mutual edges, we would obtain the same
point in the Legendre domain for neighbouring segments given their mutual
edge. So, forM, given the sign-change for i = 3, we get a mutual edge {x3, x4}
for the first and second segment and {x5, x6} for the second and third segment.
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Segment M
Segment

Segment

M
M1
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Figure 5.4: Segmenting a non-covex discrete function.

Now that we have our segmentsM1,··· ,3, we can apply the index-based Legendre
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Chapter 5. Non-Convex Discrete Functions 5.2. Fusion

transform on each segment separately. If we then re-attach these segments using
the mutual edge-approach and apply eq.(4.6), we obtain the Legendre transform
of M.
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Figure 5.5: Transforming a non-convex discrete function.

If we then apply eq.(4.7) on L[M](ω) 2, we re-obtain M, thereby proving that
eq.(5.2) does indeed apply.

5.2 Fusion

When we want to actually use these non-convex discrete functions in a collision
with a concave/convex discrete function, we can not simply treat every separate
segment of the non-convex function as being a separate discrete function col-
liding with a concave/convex discrete function and then re-attach the separate
transforms at the end. This is mainly due to the use of the mutual edges that
we use to do the segmentation, hence, we have to re-examine the construction
of our compound, unique set Σω as presented in section 4.3. In fact, we can
distinguish 3 separate cases; the two outer segments, so the left and right one
and the possible segment(s) situated in between. We will examine the outer
segments first.

Consider using the non-convex discrete function M in combination with
some discrete function C. When looking at the first, concave segment of M we
find 3 slopes. We can denote these slopes for segmentM1 as ωM1:1

, ωM1:2
etc.

Using eq.(4.8) and (4.9), we know that we can find a vertex in M1 such that
C∗ ’kisses’ M1. Note that the last edge of segment M1 is also the first edge
of segment M2 – given the notion that two discrete functions can only ’kiss’
when sharing a slope immediately results in the restriction that the only slopes
in ωC which are valid for collision with M2 are slopes greater or equal to the
first slope of M2, so ωM2:1

(= ωM1:3
). This means that we can only use slopes

2Remember that on left the slope ω∞̃ has been added to the first segment and on the right
slope −ω∞̃ has been added to last segment.
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5.3. Complexity Chapter 5. Non-Convex Discrete Functions

from C for which

ωCi ≥ ωM1:3

holds when colliding with segment M1. We can then simply take the unique
union of this set with the slopes of M1 to find Σω for computing the first
contact-boundary.

A similar setup can be used for the last segment. The only valid slopes for
colliding C∗ with segment M3 due to segment M2 are slopes that are smaller
or equal to ωM2:3

. This in turn results in the restrictions for valid slopes for
segment 2; the only valid slopes in C are slopes greater or equal to ωM2:1

and
smaller or equal to ωM2:3

.

When formalizing this, we find that valid slopes (ωCi)i=1···n of a discrete
function C for constructing Σω with a non-convex discrete functionM, consist-
ing of v segments, are those for which the following holds:

• segment M1 with ω1,··· ,r

– ‘concave’: ωCi ≥ ωM1:r

– ‘convex’: ωCi ≤ ωM1:r

• segment Mj with ω1,··· ,s and 1 < j < v

– ‘concave’: ωMj:1
≥ ωCi ≥ ωMj:s

– ‘convex’: ωMj:1
≤ ωCi ≤ ωMj:s

• segment Mv with ω1,··· ,t

– ‘concave’: ωCi ≤ ωMv:1

– ‘convex’: ωCi ≥ ωMv:1

5.3 Complexity

We can derive the computational complexity for a non-convex discrete function
in a similar way to that of a concave/convex discrete function in section 4.3.
In fact, we can easily extend the proof in that section for some non-convex
function C with N vertices and M slopes: we need O(N) to determine slopes
and segmentation. Assume that C has k segments, each containing n vertices
and m slopes (m ≈ n), such that

k∑

i=1

|Ci| = N + 2(k − 1);
k∑

i=1

|ωCi
| = M + (k − 1)

Note that the additional terms 2(k − 1) and (k − 1) are due to the use of the
(k − 1) mutual edges. We already know that we need O(n + m) calculations
for a concave/convex discrete functions i.e. a segment of C. Hence, using all k
segments results in

k∑

i=1

O(|Ci|+ |ωCi
|) = O(

k∑

i=1

|Ci|+
k∑

i=1

|ωCi
|)
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yielding an O(N +M + 3(k − 1)) worst-case complexity.

The complexity for computing the contact of C and a concave/convex discrete
function D can be done along the same lines. Given the proof in section 4.3,
we know that we have an O(n +m) worst-case complexity for computing two
contacting concave/convex discrete functions i.e. the contact of a segment of C
and D. In order to obtain an upper bound for computing the contact of C and
D, the intersection of the slopes of each segment of C and D has to be empty
i.e.

∀i : ωCi ∩ ωD = ∅

with i = 1, · · · , k, combined with the demand that no slopes are lost in fusion3.
When using all k segments with N points and M slopes, we simply need to sum
over the k separate contacts, yielding an O(N +M + 3(k − 1)) computational
complexity.

3See section 5.2.
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Chapter 6

Polygons

Now that we can handle concave, convex and non-convex discrete functions,
we can extend this to 2D objects like polygons. A polygon is assumed have a
circular data-structure

A polygon P is an ordered list of N vertices of which it is assumed that each
pair of vertices {vi, v(i MOD N)+1} with 1 ≤ i ≤ N determines an edge of P.

P is assumed to be closed and not self-intersecting. Furthermore, we assume
that a polygon, representing some geometrical object/body, has a clockwise
orientation – if we traverse along the edges of the polygon, we will always find
the polygon on the right-hand side. Note that, in order to use a polygon P
using the discrete linear Legendre transform, we need to split it into an upper
and a lower part; the transform only applies for Ω→ R. In doing so, we obtain
similar objects to those used in previous chapters.

6.1 Splitting Polygons

One way to split P is by first acquiring the left-most and right-most vertex –
using these two vertices, we can split the list of vertices V into two smaller
lists. Assume that we have a polygon P with N vertices described by an
ordered list V such that the left-most vertex is the first vertex in the list1.
Take vk to be the right-most vertex of P, hence, we obtain the two parts of
P : {v1, · · · , vk} and {vk, · · · , vN , v1}.

Note that we restrict the data of a polygon such that we exclude self-intersections
and ’fold-backs’ – it is built up out of an upper and a lower discrete function,
hence the x-values need to be increasing i.e. xi < xi+1. This does however
mean that we have to flip the sequence {vk, · · · , vN , v1} around such that the
restriction holds, resulting in {v1, vN , · · · , vk}.

Since we made the assumptions concerning clockwise orientation and self-
intersection, we have a trivial solution for determining the upper and lower

1In the algorithm the general case has been implemented.
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Chapter 6. Polygons 6.2. Colliding Polygons

half of the polygon; denote these parts as Pup and Pdown. This results in
Pup = {v1, · · · , vk} and Pdown = {v1, vN , · · · , vk}.

6.2 Colliding Polygons

Consider some polygon P and Q representing two rigid bodies with Q moving
around (obstacle) P. In order to the compute the contact-boundary P⊕̆Q we
have to combine the right parts of each polygon in the Legendre transform i.e.
Qup can only kiss Pdown when Q approaches P from below and Qdown can only
kiss Pup when Q approaches P from above.

But before we can proceed, we have to examine the possible restrictions and
problems which did not surface when treating discrete functions. We have al-
ready noticed in chapter 4 that we are limited in the control of the contact –
we are not able to influence wether a discrete function B∗ approaches a discrete
function A from above or below – it is simply based on the Legendre transform
in combination with the convexity of the functions used.

Take A to be concave; if B∗ is convex, we find that the resulting contact-
boundary, like the one in fig.4.4(b), is concave such that B∗ seems to be ap-
proaching A from above. If B∗ is concave however, we obtain a contact-
boundary similar to fig.4.6 or 4.7 where B∗ seems to be approaching A from
below. Hence, if we want to want to slide a polygon Q along a polygon P, we
have to be sure that if Qup is concave, Pdown needs to be convex or non-convex
such that the resulting contact-boundary ’suggests’ that Q slides along the out-
side of the bottom of P. The converse is true when Qup is convex i.e. Pdown
needs to be concave or non-convex. A similar combination-restriction can be
formulated for Qdown and Pup.

This leaves us with tackling the problem which was last noted in section 4.3:
the appearance of seemingly invalid edges. Note that this problem only arises
for certain cases of concave vs. concave or convex vs. convex : for two concave
discrete functions it occurs when the first slope(s) of the ’moving’ function is/are
greater than the first slope of the ’fixed’ function that it collides with and/or
when the last slope(s) of the first function is/are smaller then the last slope of
the second function. The converse holds for two convex discrete functions.
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Figure 6.1: C⊕̆E : Kissing with penetration(2).
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If we want to obtain a contact-boundary of Q sliding along the outside of P, we
have to find that

v1(Pup⊕̆Qdown) = v1(Pdown⊕̆Qup)

vs(Pup⊕̆Qdown) = vt(Pdown⊕̆Qup)

with vs being the last vertex of the upper contact and vt being the last vertex of
the lower contact. Of course we do want to be able to use the objects in fig.6.1
as parts of a polygon. One way to resolve the problem is by applying a similar
’sense of infinity’ to the upper and lower parts of one of the polygons, as seen in
fig.6.2, and use the updated parts as input for the actual Legendre algorithm.
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Figure 6.2: Splitting a polygon.

Consider C to be the lower part of P, so C = Pdown and E to be the transposed
upper part of Q. If we then apply the same concept as described above to up-
date C, we obtain
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Figure 6.3: Resolving ’fold backs’.

If we then omit the first and last edge of C⊕̆E , we find that we can slide E∗

along C i.e. Qup slides along Pdown, with Qup approaching Pdown from below.
Note that we no longer have to use convex upper parts and concave lower parts
for the ’fixed’ polygon, in this case polygon P, due to this update, they will be
treated as non-convex.
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Now we are at the point where we can look at the bigger picture. To sim-
plify the use and readability of the resulting contact-boundaries, we have built
up the algorithm in such a way that the first polygon, P is considered to be
the representation of the ’fixed’ object in the real world and the second one, Q,
to represent the ’moving’ object. After both polygons have been spit into their
upper and lower parts, we can apply the translation noted in section 2.1.3 on
Qup and Qdown, so point-mirroring both parts in the origin. This way, we need
not worry about any translations that we have to do at the end (WYSIWYG)2.

For the time being we will use polygons representing the ’moving’ object with
a concave upper and convex lower part. Consider using two simple diamond-
shaped polygons PA and PB;
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Figure 6.4: Two kissing diamonds.

The result is quite straightforward and needs no further explanation. If we alter
the shape of PA and add some additional vertices we get a polygon PC which
still has a concave upper and a convex lower part but is more complex than PA.
Computing the contact-boundary of PC and PB yields fig.6.5(c).
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Figure 6.5: PB kissing PC .

Altering the position of PB using some linear translation T will effectively have
the same result as seen in section 2.1: it will simply translate PC⊕̆PB using the
inverse linear translation −T .

2What You See Is What You Get.
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We already noted that we can also use the ’fixed’ polygon with a concave
lower (or convex upper) part using the added ’sense of infinity’. So if we com-
pute the contact of polygon PB with PD we get fig.6.6(c).
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Figure 6.6: PB kissing PD.

This leaves us with treating polygons with a non-convex upper (and/or lower)
part like polygon PE in fig.6.2.
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Figure 6.7: PB kissing PE with penetration.

When PB slides along the third edge of the upper part of PE it also intersects
with the fourth and fifth edge; PE⊕̆PB has to fold back in order to slide PB

along the fourth and fifth edge and proceed along the remainder of PE .

The other way to interpret the collision of two polygons was already hinted
at at the beginning of this section – colliding polygons P and Q with Q moving
along the inside of P. One possible interpretation of the resulting contact-
boundary is by viewing P as an environment in which Q operates. Note that
we can introduce a similar approach to do this; the only difference lies in the
combination of the contacting parts of both polygons i.e. Qup can only contact
Pup and Qdown can only contact Pdown.

If we take the polygons from fig.6.4(a) and 6.4(b) we get a straightforward
contact-boundary (see fig.6.8(c)) in much the same way as in fig.6.4(c).
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Figure 6.8: PB moving inside PA.

We can do the same for PC and PB, resulting in fig.6.9(c).
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Figure 6.9: PB moving inside PC .

PC⊕̆PB seems to be quite complex but can for the largest part be explained in
a similar fashion to PE⊕̆PB in fig.6.7(c); PC⊕̆PB has to fold back when sliding
PB from the last edge of the upper part to the last edge of the lower part i.e.
the lower part of PB intersects the lower part of PC when the upper part of PB
kisses the upper part of PC .

Even though we can easily see that PB will in no way fit within PD in such
a way that the resulting contact-boundary can be interpreted as PB moving
around ’in’ PD, we can compute PD⊕̆PB, as can be seen in fig.6.10(c).

Finally, we can slide PB within PE , resulting in the contact-boundary shown
in fig.6.11(c).
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Figure 6.10: PB moving inside PD with penetration.
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Figure 6.11: PB moving inside PE with penetration.

When looking at the complexity for computing the contact-boundary for
polygons like the ones we have used in this section, we can extend the proofs
provided in sections 4.3 and 5.3 for computing the contact of the separate parts
of the polygons used, yielding an O(N +M) computational complexity for two
N -point polygons with a possible additive factor for the segmentation of a non-
convex part of one of the polygons.
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Conclusion

The spectral decomposition of the Legendre transform for boundaries of discrete
objects i.e. 2D polygons representing some ’real world’ object, has provided
us with a simplification for computing the contact-boundary of two potential
colliding bodies; a complicated dilation operation based on tangent planes be-
comes a straightforward addition in the Legendre domain. This provides us
with a tractable and potentially powerful tool for mathematical morphology
and with possible implications in the areas of robot-object-interaction (collision-
avoidance) and computer graphics.

We have shown that a discrete implementation is indeed possible based upon
the theory on the Legendre transform and the tangential dilation as presented
by Dorst and Van den Boomgaard. Moreover, the algebraic parallels between
the Legendre and Fourier transform, as found in [6], and the decomposition
proposed by Corrias [2], have indeed proven their potential to convert a discrete
Legendre transform into a faster transform, analogous to that of the Fast Fourier
transform, hence compressing the computational complexity of the transform
itself and, in turn, of the tangential dilation operation to O(|Ω|logN).
We have however found a number of problems when applying this approach to
(parts of) polygonal objects concerning the accuracy of describing objects using
equidistant sampling and (possible) redundant computation, implying that this
approach, although usable, is not most suited for handling this kind of data1.

In constructing the algorithm we found that, in order to use finite discrete
data, we had to find a way to mimic the behaviour of continuous data such
that we would stay very close to the mathematical theory and still obtain valid
contact-boundaries given the data. This meant finding a way to counter the loss
of data when using a discretized version of the Legendre transform combined
with a valid theoretical foundation. We proposed to introduce a constant depen-
dent on the dimension and slopes of the objects used, resolving both data-loss
and theoretical difficulties2.
Combining this with the alternative approach for local maximum-computation,
proposed by Lucet in [8], provided us with a solid foundation for developing a
linear complexity algorithm suited for polygonal data. We extended the pos-

1See section 3.2.1.
2See section 4.2.1.
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sibilities of the algorithm by introducing a method to handle polygons with
non-convex parts – we found that we could segment non-convex parts of poly-
gons into its concave and convex components using mutual edges and re-attach
them after applying the transform on the components separately (see chapter
5). The result is a O(N) worst-case complexity algorithm able to handle nu-
merous polygon-collisions which could be of value in the areas of robotics and
computer-graphics.

Future work

The algorithm in its present form, even though being able to proces numerous
types of polygons and polygon-collisions, still lacks the possibility of handling
’fold backs’ in polygons and the contact of two non-convex polygons.

Fold backs posed a problem since there was no way to use the segmentation
that was introduced in this thesis. A possible alternative might be constructed
using an adapted version of a polygon partitioning algorithm [1].

Handling the contact of a non-convex part P and a concave/convex part Q
requires us to keep track of the slopes bounded by the slopes of the individual
segments of the non-convex part which in turn are based upon the position
of the segment within P i.e. keeping track of valid slopes for each contact of
a segment of P with Q3. The possibility of an extension for two non-convex
parts therefore seems to be applicable but does need some additional research
to obtain valid transforms in the Legendre domain and, in turn, to yield valid
contact-boundaries.

3See section 5.2.
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