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ABSTRACT

In this thesis a new multi agent learning (MAL) algorithm, called Wolf-gradient,
is proposed. In this thesis MAL algorithms are used to learn a good strategy
against opponents of which the used MAL algorithm is known. In this setting a
MAL algorithm learns a good strategy by playing the same game multiple times
against an implementation of the learning strategies of the expected opponents.
After each round all agents update their strategy based on the strategies used
by the other agents.

The performance of a MAL algorithm used in this setting depends heavily
on the learning algorithms used by the other agents. To properly evaluate
a MAL algorithms it would therefore be necessary to have a prior over the
learning algorithms used by the opponents. This is however problematic, with
the publication of a new algorithm this prior is likely to change. To postpone
this problem many research focus on the intermediate goal of finding a MAL
algorithm that converges to a Nash equilibrium in self-play and does not need a
Nash equilibrium as input. This is seen as a minimum requirement for a MAL
algorithm to be considered a good algorithm and none of the current algorithms
is shown to meet this goal. Wolf-Gradient is however the first algorithm to meet
this requirement.

Besides it use as MAL-learning algorithm Wolf-Gradient serves a second
goal, it could be used to find Nash equilibria in N -player, M -action games.
The traditional methods used for this purpose are utterly complex to imple-
ment and no implementation of these algorithms is available which can solve
all the games used in this thesis. The Wolf-Gradient method on the contrary
is extremely simple to implement can solve more games in practise then the
traditional methods.
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1. INTRODUCTION

Humans have always played games. Besides that we enjoy doing it, it also helps
us to develop skills which can be applied in real-life situations, for example the
game of chess which has been used for centuries to teach young nobles basic
strategic skills [20]. Most games are an abstraction or simplification of situation
which could occur in the real world, this allows humans to concentrate only
on the most important and interesting problems, games are therefore an ideal
testbed for Artificial Intelligence algorithms.

1.1 What are games

In this thesis games not only refers to classical board and card games, but to
any situation in which humans and/or computers interact and each player has
a preference for an outcome of the interaction [31]. A game is thus played by
one or more players, usually referred to as agents, and is characterized by a
well defined set of rules. These rules specify: the actions each agent can take
at any point in time, the information every agent has access to and the reward
each agent receives in every possible game ending. This reward can be both an
ordered set for example {Win, Draw,Lose} or a real number. The description of
the game has to be complete and correct in the sense that all possible situations
and combinations of actions by the agents lead to a new valid game state and
that an agent will always prefer to take the actions in the real world that will
give him the highest expected reward in the abstracted game.

1.2 Types of games

Games can differ among several dimensions, this section gives an overview of
the most common classes of games, an overview of all classes discussed is given
in table 1.2.

An eminent distinction is the amount of agents involved in the game. Al-
though there are no theoretical boundaries on the number of agents, the number
of agents observed in literature tends to fall in the following groups: 1, 2, N
and ∞. These four groups give the analysis of the game different properties.
In one player games there is no interaction with other players which simplifies
the problems drastically. The two player case differs from the N player case in
that there is no possibility to create coalitions between players which turns out
to give a mathematical simpler solution. The games with N players are usually
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Dimension Relevant values
Number of Agents 1,2,several, infinite
Action space Discrete/Continues
Observability Complete/Partial
Interest Cooperative/Competitive
Chance Deterministic/Probabilistic

Fig. 1.1: Overview of the classification of games

considered the hardest and because of computational problems the size of N
is typically small (somewhere between 3 and 5). The games with an infinite
number of agents form a separate group. Their application lies mainly in the
illustration of evolutionary or economical principles. Using these kind of games
it is possible to analyse how large groups of agents would behave if all agents
act for their own best interest. An example most readers will be familiar with
is the how a producer should choose the price of a product in a free market [11].

Another common distinction made is whether the actions are discrete or
continues. In discrete games an agent can chose from a finite number of actions
in any point in time (for example chess). In continues games the number of
actions is infinite. This is the case in for example no limit Poker: players can bet
any amount of money they want (discarding the size of the chips), most research
within computer science is based on games with discrete actions, infinite actions
are usually discretized before the game is analyzed.

All agents in a game can have perfect or imperfect information. If all agents
in a game have perfect information all agents have access to all relevant informa-
tion. This is the case in for example chess. Poker on the other hand is mainly
interesting because all agents have different information and have to deduce
from the actions of the other players which cards they posses, this is called a
game with imperfect information.

Then there is the relation between the agents. In a cooperative game the
rewards received in any game ending are equal for all agents 1. In a fully
competitive game the interests of the agents are exactly opposite, this can only
truly exist in a two player game, the rewards of the agents then sum up to a
constant in all endstates.

The final dimension is whether chance plays a role in a game: the outcome in
games like Chess and Go is determined completely by the actions of the agents
and are therefore called deterministic, while in Poker and monopoly chance
plays a significant role, these games are called stochastic.

1 A more precise definition would be: If there is an affine transformation, where the multi-
plication is not equal to zero, for each agent such that all rewards in all endstates are equal
then the game is fully cooperative
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1.3 Relevance

Interactions that can be modelled as games are everywhere. In all situations
where two or more agents meet, each having its own interest, their interaction
can be modelled as a game. In all these situation a better understanding of how
optimal behaviour can be found given the game description would be valuable
in two ways: using these algorithms, computer programs can be created that
play these games on our behalf and using the insights gained from these studies
humans can learn to improve their performance when confronted with these
games. Both examples are becoming reality. Game theory is now being taught
in most economical faculties to aid the students in taking the right decisions and
computer programs based on game theory are not only able to compete with
world champions in several games such as Chess and two-player poker [25, 43],
but are also used in real life situations to let computer programs act on behalf in
real situations. For example the bidding agent on Ebay which increases your bid
until it outbids all other bidders (or reaches your maximum bid) is directly based
on the game theoretic analysis of auctions and is in fact an implementation of
the Vickrey auction [10].

Besides the economical value, game theory also has an important scientific
contribution. More and more disciplines are starting to use game theory to
explain phenomena observed in nature and society. Examples are evolutionary
biology [14], the evolution of language [16] and economical sciences [27].

1.4 Historic overview

Like in most fields insights gained from game theory in the last 100 years can
be found back in ancient history. In the Babylonian Talmud, a compilation of
ancient laws and traditions which formed the foundation for the Jewish Law, it
is discusses how the complete legacy of a man with three wives should be divided
after his death if his total possessions do not equal the amount promised to all
his wives in his will. If the mans will states that his three wives should each
receive respectively 100, 200 and 300 after his death and he leaves only 100 the
Talmud states that the money should be split equal, if he leaves 300 it should be
split proportional to amounts specified in his will and in case the man leaves a
total sum of 200 the money should be split 50, 75, 75. This advice might seems
contradictionary and has baffled Talmud scholars for years, but using recent
results from cooperative game theory these solutions are shown to be in the
Nucleus and are therefore considered fair2 of this game[1].

The first game theoretic analysis of a game is from 1713. In a letter to
Pierre-Remond de Montmort, James Waldegrave gives an analysis of the game
le Her which would now be considered to be optimal play, Waldegrave however
limited his analysis to this single game and did not generalize his approach to
other games [18].

2 The Nucleus is a solution concept in which a division is preferred where the maximum
dissatisfaction is minimized
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Early in the 20th century, important work has been done by Zermelo [42]
who introduced an algorithm to find optimal strategies in fully observable games
now known as Zermelos algorithm.

The modern field of game theory is considered to be founded by von Neu-
mann and Morgenstein [38]. In their 1944 book they bundle the work published
in the past two decades and provide a reference work for decades to come. Short
after this Nash introduced the Nash equilibrium, the most used solution con-
cept3 in the analysis of games[24]. Although Nash has proven that every game
has at least one Nash equilibrium, it remains a question how to find a Nash
equilibrium.

With the increasing power of computers, scientist have been able to build
computer programs which could beat the best human players in larger and more
difficult games. An example is the Deep Blue computer which beat the world
champion chess in 1997. Challenges currently worked on by scientist are building
computer programs which can compete with top human players in two player
Texas Hold’em poker [3] and Go [23]. Go and Poker are considered to be more
difficult then chess because resp. the number of actions is bigger and the game
is partial observable.

1.5 Thesis overview

In this thesis an algorithm will be introduced which learns to select the right
actions from playing the same game multiple times. It can handle all games
which can be represented in the normal form. The normal form can in principle
represent any game with a discrete action space, but in practise is only used for
complete observable games in which all agents make only one decision.

In the next chapter a more precise introduction to game theory is given,
including an introduction to the most important algorithms for finding Nash
equilibria. The third chapter introduces the concept of multiagent learning
in games and defines the precise setting for the algorithm introduced in this
thesis. Chapter four will introduce the proposed multiagent learning algorithm
and chapter five discusses the experimental results. Chapter six discusses the
relevance of this work and gives an outlook to further research which could build
on this algorithm.

3 A more thorough introduction of the Nash equilibrium will be given later, for now it
suffices to think of a Nash equilibrium as optimal play



2. GAME THEORY

Game theory studies how rational agents should behave when playing a game.

Definition 1. A rational agent, is an agent which:

1. is only interested in maximizing its expected reward.

2. is flawless in its execution.

3. has enough computational power to complete the necessary computations.

To maximize its expected reward an agent has to select the right action, it
is however depending on the actions selected by the other agents which action
that is. Whether an agent expects his opponent to be stupid or extremely smart
makes a big difference in the reward it expects after selecting an action. An
action might give a high reward if the opponent reacts in a stupid way, but a
very low reward if the opponent reacts appropriate. Making assumptions on the
behaviour of an opponent is not without risk, an opponent could be deceiving
the agent making him believe he will behave in a stupid fashion and then change
to taking smart decisions to increase its own expected reward. To eliminate the
possibility of agents which act non-optimal it is assumed that:

Assumption 1. All agents are rational and it is common knowledge that they
are.

Where common knowledge is defined as something that everybody knows,
everybody knows that everybody knows that everybody knows and so on ad
infinitum. The common knowledge assumptions is critical even if all agents are
acting rational: if one of the agents thinks that one of the other agents will
play irrational (even if in fact he will not), this agent will adopt his actions to
exploit the expected irrational behavior of this opponent and therefore behave
differently than if the common knowledge assumption was not violated.

In the rest of this chapter is assumed that all players are rational and that
this is common knowledge. The next section introduces the notation needed
to discuss games in normal form. Then the concept of a Nash equilibrium is
introduced, it is discussed how to find this equilibrium and a summary is given
of the discussion on how valuable Nash equilibria is as a solution concept.

2.1 Normal form

The work in this thesis focusses on games represented in the normal form.
Informally one could think of the following scenario: A group of agents meet
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that have never seen each other before nor will meet each other again, all agents
write the action they select on a piece of paper and without showing it to the
other agents hand it over to an oracle. After the oracle has received all papers,
it distributes a certain number of coins among the agents depending on the
actions selected by the agents, it is common knowledge among the agents how
many coins each agent receives for every possible combination of actions the
agents could hand over.1

A famous example game is the prisoners dilemma: two criminals are caught
in a crime and brought to separate detention cells, both are offered two options:
talk or keep silent. It is common knowledge between the agents that talking
will lead to a higher penalty for the other agent and a reduction for the agent
who talks, the reduction is smaller then the increase. Figure 2.1 summarizes
the rewards received by each agent for each combination of actions, this table is
called the reward matrix in two player games, and the reward tensor in games
with more than two players.

Silent talk
Silent (−1,−1) (−20, 0)
Talk (0,−20) (−10,−10)

Fig. 2.1: The reward tensors (matrices) for the prisoners dilemma, agent 1
choses the row index and agent 2 the column index, the two actions together
specify the reward received by the two agents (in years spend in prison). The
first reward given is that of agent 1 and the second of agent 2

The intuition behind the model should now be clear, next a formal descrip-
tion of the model will be given and this will be illustrated with the example of
the prisoners dilemma.

Definition 2. A normal form game is defined by:

• The number of agents N .

• Each agent i has a set of actions Ai = {a|0 < a ≤ Mi} to chose from, all
agents pick their action at the same time without communication.

• The combination of all the individual actions is called the joint action
ā = [ā1 . . . āN ]′ where āi ∈ Ai.

• The vector of all actions except those from agent i is denoted by ā6=i =
[a1 . . . āi−1, āi+1 . . . āN ] and (a, ā6=i) = [a1 . . . āi−1, a, āi+1 . . . āN ] = ā

1 This model might seem somewhat limited, but is actually powerful enough to capture
all games described in the introduction. To include the possibility of limited information
and multiple decisions, every action an agent can pick has to correspond to a vector which
specifies for every possible information set which action the agent should take. If all possible
decision vectors are covered, the whole game is represented. A more in depth coverage of this
conversion can be found in [28] or any other introduction text on game theory
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• The set of all possible joint actions is denoted by A and the set of all
possible joint actions excluding that of agent i is A6=i

• The reward tensor ri for each player that specifies for every joint action,
ā ∈ A, the reward, ri(ā) for player i.

Note that the amount of numbers needed to represent a game grows expo-
nential in the number of agents, if all agents have to make a binary choice there
are n2n numbers needed to describe one game, this exponential relation limits
all research in normal form games to a small number of agents.

The prisoners dilemma can be modelled as a normal form game: there are
two agents, N =2, both agents can choose from two actions, ∀i : Mi = 2, the
set of actions the agents can choose from is therefore: ∀i : Ai = {1, 2}, where
1 responds to deny everything and 2 with accepting the deal. The only thing
left to define are the reward tensors for both players, since there are only two

agents the tensors reduces to matrices:
(
−1 −20
0 −10

)
and

(
−1 0
−20 −10

)
.

2.2 Selecting the right action

This section discusses which action a rational agent should select. To answer
this question it will first be shown that it is relativly easy to find actions which
are never optimal to select, this is discussed in the subsection on dominated
strategies. To refine this technique even more it is demonstrated in the second
subsection that agents sometimes need to randomize their actions. In the last
section the most accepted solution concept is introduced which is called the
Nash equilibrium, this concept is not without discussion and a summary of the
discussion is provided.

2.2.1 Dominated strategies

The concept of dominated strategies is best explained by taking a closer look
at the prisoners dilemma, the agents each could have the following thought
experiment: suppose that the other agent does not talk with the police, what
should I do? If the other agent selects silent, it is better to accept the deal
and talk, this will save one year in prison. What if the other agent talks? I
will go to jail anyway and can better talk as well to at least get a reduction
in sentence. From this thought experiment both agents can conclude that no
matter what the other agent does, it is always better to talk, both agents will
talk and therefore go for 10 years in jail, a rather negative result (or positive
from the police point of view).

The reasoning in the previous paragraph is called deletion of dominated
actions: if for an action there is another action that for all possible combination
of actions selected by the other agents performs better, this action should be
removed from the analysis. Formally it is said that action a by agent i is
dominated by action a′ when:

∀ā6=i : ri(a′, ā6=i) > ri(a, ā6=i) (2.1)
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The deletion of dominated actions is an iterative process, when it is clear that
one of the agents will never select an action because it is dominated, an action
of another agent might become dominated, which was not dominated if the
other player would select its dominated strategy, this is demonstrated in figure
2.2. Note that it is essential that the common knowledge assumption hold. If an
agent can not be certain that the other agents will not select a dominated action
it can not remove a conditional dominated action. It is not always possible to

Left Middle Right
Up (1, 0) (1, 2) (0, 1)
Down (0, 3) (0, 1) (2, 0)

Left Middle
Up (1, 0) (1, 2)
Down (0, 3) (0, 1)

Left Middle
Up (1, 0) (1, 2)

Middle
Up (1, 2)

Fig. 2.2: In the original payoff matrices ‘up‘ nor ‘down‘ can dominate the other,
middle however can dominate right. If agent one assumes that player two will
never play right, ’down’ becomes dominated after which player two can delete
left, both players are now left with only one action

solve a game by iterative deletion of dominated strategies see figure 2.3. in this
game it is not possible to delete any action as being dominated, if however player
two introduces a new action, which when it is selected with 50% probability
selects either action left or middle, this action will strictly dominate action
right. The addition of this action does not change the game in any way, the
new action is only present in the mind of the players and can be implemented
by an agent which flips a coin and depending on the outcome writes down a
different action on the paper passed to the oracle. Selecting an action based on
a chance process is called a mixed strategy, opposed to a pure strategy in which
one action is selected.

Left Middle Right
Up (1,−1) (−1, 1) (0,−0.1)
Down (−1, 1) (1,−1) (0,−0.1)

Left Middle Right Combination
Up (1,−1) (−1, 1) (0,−0.1) (0, 0)
Down (−1, 1) (1,−1) (0,−0.1) (0, 0)

Fig. 2.3: None of the actions of player two is dominated by any of the other
actions. However a new action which would select action left 1

2 and action
middle 1

2 of the time would strictly dominate action right.
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2.3 Mixed strategies

In the previous section it was shown by example that agent sometimes have to
use mixed strategies, since the pure strategies used up till now can be represented
as a mixed strategy from now on only mixed strategies will be used. In this
section some extra notation needed for mixed strategies is introduced. Mixed
strategies are not limited to the combination of only two actions or to an uniform
distribution over the actions, but can be any probability distribution over the
actions available to the agent. The mixed strategy of agent i is represented as
a vector πi of length Mi. Every element of the vector denotes the probability
that the corresponding action is selected, πia is therefore the probability that
agent i selects action a, π 6=i the joint strategies of all agents except agent i and
π = (πi, π 6=i) denotes the joint strategies of all the players. Not all vectors are
valid mixed strategies, it has to be a proper probability distribution, therefore
all elements have to be between 0 and 1 and the vector has to sum up to one:∑Mi

a=1 πia = 1
∀a : 0 ≤ πia ≤ 1

The set of actions for which hold that they have a none zero probability of being
selected when playing a certain strategy πi is called the support of i:

S(πi) = {a|a ∈ Ai, πia > 0}

Given a certain joint strategy π the expected reward agent i receives when it
would select action a is denoted by uia(π),2:

uia(π) =
∑

ā6=i∈A 6=i

riā

N∏
j=1,j 6=i

πjāj
s.t. ā = (a, ā6=i) (2.2)

Based on the expected reward received for each action the expected reward for
agent i in the current joint strategy is:

Ui(π) =
Mi∑
a=1

πiauia(π) (2.3)

The goal for each rational agent i is that the joint strategy selected by all agents
maximize Ui.

2.4 Nash equilibrium

The deletion of dominated strategies can reduce the size of the payoff matrices
and thereby simplify the game, it can however not always solve the game. Take
the game called rock paper scissor in figure 2.4. Here it is not possible to remove
any action by strict dominance by any strategy, additional tools are therefore
needed to find the optimal strategy for the agents.

2 This quantity resembles the Q-value in Reinforcement learning
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Paper Rock Scissor
Paper (0, 0) (1,−1) (−1, 1)
Rock (−1, 1) (0, 0) (1,−1)
Scissor (1,−1) (−1, 1) (0, 0)

Fig. 2.4: The reward tensors (matrices) for the game of paper, rock, scissor. Two
players make a sign with their hands denoting either paper, rock or scissor, if
both players show the same sign it is a draw, otherwise the following ordering
holds: paper beats rock, rock beats scissor and scissor beats paper.

An important concept in determining the right strategy for an agent is the
best response:

Definition 3. Best response, a strategy that given the strategies of the other
players gives the highest expected reward.

An action a is a best response when:

argmax
a∈Ai

: uia(π) (2.4)

A strategy πi is a best response to the joint strategy π 6=i when all actions in the
support of πi are a best response:

∀a ∈ S(πi) : uia(π) = max
a′∈Ai

uia′(π) s.t. π = (πi, π 6=i) (2.5)

From this and equation 2.3 it follows that agent i is playing a best response
when the following equation holds:

Ui(π) ≥ uia(π) (2.6)

In his 1950 paper [24] Nash introduced the Nash equilibrium:

Definition 4. Nash equilibrium, a joint strategy in which all agents play a best
response to the strategies of the other agents.

Which is equal to stating that any joint strategy π is a Nash equilibrium
when holds that:

∀i∀a : Ui(π) ≥ uia(π) (2.7)

In paper-rock-scissor there is only one Nash equilibrium: both players select
every action with chance 1

3 . To check that this is a Nash equilibrium the values
of Ui(π) and Uia(π) need to be compared, in the proposed Nash equilibrium
they are 0 for all i and a proving that this is indeed a Nash equilibrium.

The Nash equilibrium is often presented as a solution concept in the sense
that every agent should play a strategy which is part of a Nash equilibrium. It
is however not without discussion since it does not give a complete solution in
all games. In the article in which Nash introduces the Nash equilibrium he also
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Cinema Ballet
Cinema (2, 1) (−1,−1)
Ballet (−1,−1) (1, 2)

Fig. 2.5: The battle of the sexes, a man and a woman want to go on a date
together. Although both find it most important that they enjoy the company
of the other, each prefers a different activity to undertake together.

proves that every game has at least one Nash equilibrium. If there is only one
Nash equilibrium the game is solved and the agent know which strategy to pick.
It could however be the case that multiple Nash equilibria exist in one game, it
is then unclear which Nash equilibrium the agents should pick. This is called
the Nash equilibrium selection problem.

A famous example is a game called battle of the sexes as shown in figure
2.5. This game has two Nash equilibria which are both in the pure strategies:
(Cinema, Cinema) and (Ballet, Ballet). Since the agents can not communicate
and have never met before nor will meet again, they have no idea which action
the other will take and can not communicate with the other agent to reach an
agreement. So despite the fact that they both want to play their part of a Nash
equilibrium it is still unclear which action to pick.

Many attempts have been taken to refine the Nash equilibrium by introduc-
ing refined definitions of rationality, the general opinion is however that none of
these give a satisfactionary solution[17].

In games where N = 2 and the rewards for any joint strategy sum up to
a constant, the equilibrium selection problem is not relevant. In these games
playing a Nash equilibrium guarantees a minimal payoff, independent of the
Nash equilibrium selected by the other agent.

Proof. If the payoff of a player increases, that of the other agent decreases (con-
stant sum). In a Nash equilibrium both players are playing a best response
to the strategy of the other player neither agent can therefore increase its ex-
pected reward by picking another strategy. If the other player can not increase
its expected payoff, the expected payoff of an agent playing a Nash equilibrium
strategy can never be lower then the expected payoff he will get if both players
played a Nash equilibrium. Q.E.D.

Therefore if multiple Nash equilibria exists the agents get the same payoff
even if the other agent selects a different Nash equilibrium. In this setting the
Nash equilibrium is also considered to be more valuable for another reason, if the
other agents are not rational, an agent playing a Nash equilibrium is guaranteed
a minimal payoff and is therefore playing a conservative strategy. This kind of
guarantee is however not transferable to games with more then 2 agents.
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2.5 Finding Nash equilibria

Despite the Nash equilibria selection problem in multiplayer games, a lot of
effort has been put in algorithms capable of finding Nash equilibria in normal
form games. In this section the algorithms used for solving the three major
classes of games are discussed: solving a two player constant sum game as a
Linear program, the Lemke-Howson algorithm for solving two player general
sum games and the algorithms for solving N -player,M -action games.

2.5.1 Two player

Solving two player constant sum games is well understood, this problem can
be cast into a linear program which can be solved with any standard linear
program. The rest of this sub section explains how a linear program can be
constructed that finds a Nash equilibrium for a normal form game, for a more
complete introduction the reader is referred to [37] of which this section is a
summary.

In the two player case the payoff tensors are actually two matrices, the
expected reward for player i can therefore be calculated as:

ui = πT
2 Riπ1

Suppose that player one fixes its strategy then the goal of player two becomes:

maximize πT
2 R2π1

subject to:
∑M2

a=1 π2a = 1
π2a ≥ 0

Because the game is constant sum, R1 + R2 = c, the maximizing the reward of
agent two is equal to minimizing the reward of agent one: πT

2 R1π1. This is equal
to selecting the minimum element from a vector and the solution is therefore a
vector which is zero everywhere except for one position where it is one. It can
thus be replaced by the unconstrained minimisation problem:

min
a

eT
a R1π1 (2.8)

where ea is the pure strategy selecting action a. Player 1 can thus predict the
response by player 2 to any strategy he proposes, he will thus try to solve the
following optimisation problem:

maximize min
a

eT
a R1π1

subject to:
∑M1

a=1 π1a = 1
π1j ≥ 0

This can be solved as a linear program which finds the maximum lowerbound,
v, on the payoff of player 1:
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maximize v
subject to: v < min

a
eT
a R1π1∑M1

a=1 π1a = 1
π1a ≥ 0

The optimal strategy for player 2 can be found in a similar manner, it turns
out that the linear program to find the strategy for player 2 is the dual of that
of finding the optimal strategy for player 1. It should be clear to the reader
that this efficient method can only be used in the two player constant sum case,
because it needs the special relationship between the two payoff matrices and
the fact that the calculation of the utilities from the payoff tensors and strategies
can be written as a matrix multiplication.

The best known algorithm for finding Nash equilibria in two player general
sum games is the Lemke Howson algorithm[19]. It has been published in 1964
and has since been the reference method with whom all work has been compared.
In this algorithm the finding of Nash equilibria is considered as a special case of
the Linear Complementarity Problem. The details of the algorithm are beyond
the scope of this thesis, for a complete introduction the reader is referred to [34].
Only recently algorithms have been published which outperform the Lemke-
Howson method [29, 32].

2.5.2 General case

Work on algorithms capable of finding Nash equilibria in games with more than
two players has only appeared recently. The first method was published in 1987
by van der Laan et al. [36]. It builds a triangulated grid over the space of mixed
strategy profiles and uses a path following algorithm to find a joint strategy for
which holds that:

Ui(π) + ε ≥ uia(π) (2.9)

It then refines the grid to find strategies with a smaller and smaller ε until it
becomes zero.

The current state of the art is formed by the Govindan-Wilson algorithm
[13] and the simple search method[29]. The simple search method exploits the
observation that although it is hard to find a Nash equilibrium, it is relatively
easy to check whether a Nash equilibrium exists with a certain support. The
simple search method therefore starts searching all possible support sets, ordered
from small to large, for a Nash equilibrium. This method turns out to work well
especially for games often used in literature, in games generated using random
numbers the advantages of the method declines.

The Govindan-Wilson method is based on a deep mathematical analysis of
the problem structure and uses Newton method to find a gradient ascent to
the Nash equilibria. In the original article the authors node that the method is
hard to implement due the numerical stability issues that might arise, to deal
with these accumulated errors the authors introduced a procedure they called
wobbles, which might cause infinite loops.
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Most algorithms discussed in this chapter, except for the simple search
method (for which no reference implementation is available), are implemented
in a software package called Gambit [21] . When the supplied algorithms where
ran on the testset used in this thesis all algorithms failed on all but the smallest
games. Our hypothesis is that in the case of the Govindan-Wilson algorithm this
is caused due the wobble procedure. In the case of the Simplicial subdivision the
cause could be that no real Nash equilibrium is near the early selected ε-Nash
equilibrium. This is however a guess, the limited knowledge of the details of the
algorithm by the author do not allow a more specific analysis.

2.6 Conclusion

The Nash equilibrium is a valuable concept. If it is common knowledge that
all agents are rational all agents should play a strategy that is part of a Nash
equilibrium. When looking at games with more then two player or games which
are not constant sum this is not enough, there could be multiple Nash equilibria
and the agents somehow have to coordinate their actions to select the same
Nash equilibrium, it is unclear how this could be solved.

Even if the selection problem was solved a problem remains to compute
Nash equilibria. Due to the exponential increase of the payoff matrices only
small games, in the number of actions and agents, can be solved. Moreover the
current methods for games with more than two players are inherently complex
and hard to implement. The reference implementations suffer from numerical
stability issues and are not able to solve large instances of the games in the test
suit used in this thesis.



3. MULTIAGENT LEARNING IN GAMES

Multiagent learning (MAL) is almost as old as game theory and studies how
agents can learn to play a game by repetitive play. The field is started by
the publication of the fictitious play algorithm in the fifties[8] and recently two
books have summarized the advances in the field [12, 40]. The research in MAL
is diverse and strives many different goals. In a recent article Shoham et al.[33]
suggested a list of the five most important goals in MAL:

Computational The computational agenda views multiagent learning algorithms
as a computational means to find (Nash) equilibria in games. Compared
to the Nash equilibrium finders discussed in the previous chapter these
methods are usually not very efficient, but they can be easily understood
and implemented.

Descriptive Finding formal models of learning that agree with behaviour ob-
served in humans, animals, organisations and/or other agents. These
works are on the boundary of Mathematics/Computer Science and other
sciences like Economics, Biology, Psychology or Language.

Normative Determining which learning algorithms are in equilibrium. Two al-
gorithms are in equilibrium when a rational agent will not switch to an-
other learning algorithm if it knowns the learning algorithm of the other
agents.

Prescriptive In prescriptive multiagent machine learning it is studied which
learning algorithms maximizes the expected reward in an environment
with other adapting agents. Agents might be using different learning algo-
rithms and they might not be all equally effective.There is a big difference
between the cooperative and non-cooperative case and these are considered
to be different agendas. The cooperative case is generally considered more
easy, since all agents have the same goal, there is no incentive to deceive
each other.

In this thesis a new MAL algorithm will be introduced which focusses on the
non-cooperative prescriptive goal, but is also a solution to the computational
goal.
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Left Right
Up (1, 0) (3, 2)
Down (2, 1) (4, 0)

Fig. 3.1: There is only one Nash equilibrium (Down,Left), however in a repetitive
game rational learners should converge to a joint strategy where (Up,Right) has
a big chance to occur.

3.1 Repetitive play

When an agent is learning it plays the same game multiple times against the
same agents, this is called repetitive play. There are two different goals an agent
could pursue in such a situation:

• Maximize the sum of the rewards received during all games played

• Maximize the expected reward in a single game

That these goals lead to different optimal strategies is illustrated in the
game displayed in figure 3.1. In this game there is only one Nash equilibrium
(Down,Left). Two agent which are interested in maximizing their reward in
the current game will play this Nash equilibrium. Two agents interested in
maximizing the sum of their rewards received during all the games played will
adopt a joint strategy where (Right,Up) has a big chance to occur1. This gives
both agents a higher expected payoff, Shoram et al. refer to this learning process
as teaching, since agent one could teach agent two to play Right instead of Left
by selecting Up most of the time.

3.2 On and offline learning

If the opponents are stable it depends on whether the learning takes place in
an on or offline setting which of the two goals an agent pursues. In online
learning the agent is put into the real world with an initial strategy and learns
while playing the game. The agent is thus learning on the job and wants to
maximize its total reward received. In offline learning the agent is put in a
simulator with agents it is likely to have as an opponent when it is going to play
the game for real. It can practice in this simulation how the other agents are
adapting and search for the optimal strategy against these opponents. After
the training the agent can either be placed in a setting in which it plays once
against each opponent or in an online learning setting where the found strategy
can be used as an initial strategy. In the first case the agent should optimize for
a maximal expected reward in each game, in the latter it should maximize the
total received reward. In a (semi) cooperative setting this could be used in the

1 Such a mixed joint policy is the Nash equilibrium of the game which consists of an infinite
number of repetitions of the single shot game
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same way humans learn to cooperate as a team, they practise for example soccer
by playing the game over and over again in a trainings mode and then play the
game for real in a real match. In the non-cooperative setting a researcher could
implement the learning algorithms it oughts likely to be used by the other agents
and let its own algorithm learn against them.

In this thesis the goal is to build an offline learning algorithm which finds a
optimal strategy for the one-shot game.

3.3 Evaluation of performance

How could the performance of two algorithms be compared? An important step
in evaluating the performance is an exact goal definition, Shoram et al. [33]
formulated the goal of a learning agent as:

designing an optimal (or at least effective) agent for a given environ-
ment, where an environment consists of a game and the other agents
(which may do some learning of their own).

The performance of an algorithm is therefore dependend of the games it has
to play and the agents it will encounter as its opponents.

The games encountered in the literature are quite stable and it is there-
fore possible to have a reasonable prior. There are test suits available like the
Gamut[26] set which contains a huge collection of games often studied in litera-
ture and form a good representation of the games such an agent will encounter.
The algorithms of the other agents are however continuously changing and are an
ongoing field of research. For general purpose algorithms one might be tempted
to search for algorithms which perform well against all possible agents, this is
however not possible due to the no-free-lunch theorem [39, 41]. If there is no
good prior on the agents which can be encountered and it is not possible to de-
sign an algorithm which will perform better then any other algorithm averaged
over all possible opponents, how could one evaluate two multiagent learners?
This remains an open question, in the literature there is however general con-
sensus that a good multiagent learning algorithm should at least satisfy the
following minimal requirements [9]:

1. Against stationary2opponents the algorithm should converge to a best
response strategy.

2. In self-play an algorithm should converge to a Nash equilibrium.

Requirement (1) is motivated by the fact that the single agent learners developed
in the seventies, eg. q-learning or Sarsa-learning [35], are able to solve this case
and any new suggested algorithm should therefore be able to achieve this.

Requirement (2) is motivated by the following observation: When finding an
optimal strategy for an one-shot game an optimal learning algorithm learns to
play the optimal response against the policies of the other agents. Therefore if all

2 A stationary agent is an agent which does not change its strategy between two games.
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agents are using an optimal learning algorithm, the strategies have to converge
to a Nash equilibrium [15]. From this it follows that an optimal algorithm in
self play has to converge to Nash.

These requirements are considered to be minimal in the sense that any al-
gorithm that fails these requirements is considered to be a non satisfying learn-
ing algorithm. Satisfying these requirements is however not sufficient to be a
good multiagent machine learning algorithm. This is often the case with the
algorithms proposed in literature, although they generally satisfy the minimal
requirements they have at least one of the following prerequisites:

1. The agents have to agree before the start of the algorithm to which Nash
equilibrium they converge.

2. All agents can observe the strategies of all other agents.

Pre computing a Nash equilibrium requires the hard to implement methods of
chapter 2 and if the computational power needed to find a Nash equilibrium is
present, the agents could just as well play a Nash equilibrium strategy from the
beginning. The second prerequisite is only a problem when using the learning
algorithm online. In that setting the strategies of the other players are not
visible, only their actions can be observed. In offline training however it is
acceptable to observe the strategies of the other players, since everything is ran
in a simulation and this information can be made available. As long as there
are no algorithms that meet the minimum requirements and do not need a Nash
equilibrium as input, the problem of evaluating the algorithms against different
MAL algorithms can be postponed.

An interesting observation is that if an algorithm is found which meets mini-
mal requirement (2) then this algorithm is also a solution for the computational
goal, in this case it is off course essential that prerequisite (1) is not needed. It
is therefore natural to suggest algorithms which are a solution to both research
goals.

3.4 ε-Nash equilibrium

Due to the approximate nature of the multiagent learning algorithms they will
most likely not converge to a true Nash equilibrium. It is therefore common to
take an ε and then state that an joint strategy is an ε-Nash equilibrium iff:

∀i∀a : Ui(π) + ε ≥ uia(π)

Although there is no guarantee that there is an actual Nash equilibrium near an
ε-Nash equilibrium in the strategy space, it is often used as an approximation
where a smaller ε is considered a better approximation.

Nash equilibria are robust under affine transformations, r′iā = αi(riā +
βi) s.t. αi 6= 0 , of the payoff matrices:

maxa(uia − Ui) = 0 ⇔ maxa((uia + βi)− (Ui + βi)) = 0
⇔ maxa(αi(uia + βi)− αi(Ui + βi)) = 0
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However this does not hold for an ε-Nash equilibrium [4]:

maxa(uia − Ui) < ε ⇔ maxa((uia + βi)− (Ui + βi)) < ε
; maxa(αi(uia + βi)− (αiUi + βi)) < ε

This is really awkward, its intuitive meaning would be that depending on how
much money an agent possesses before the start of the game or whether the game
is played in dollars or Euro, a certain set of strategies is an ε-Nash equilibrium or
not. We therefore propose to normalize the payoff matrices of all agents before
the analysis of the game:

r̃ia =
(ria −mina(ria))

maxa(ria)−mina(ria)

The normalized reward tensor, r̃i, is not effected by the affine transformation
applied in the original tensor and the affine transformation can therefore no
longer affect whether a joint strategy is an ε-Nash equilibrium or not. Since the
normalization is an affine transformation itself, it does not effect the real Nash
equilibria.

3.5 Overview of MAL algorithms proposed in literature

Over the years many MAL algorithms have been proposed, many of them satisfy
the minimal requirements in at least a well defined category of games, but none
satisfies both requirements in all games and does not need a Nash equilibrium
as input. In this section an overview of the most important algorithms will be
given.

3.5.1 Awesome

Awesome is an acronym for Adapt When Everybody is Stationary, Otherwise
Move to Equilibrium and is a direct implementation of the minimum require-
ments [9]. Every agent running this learning algorithm keeps a distribution of
the actions selected by all the agents. Using this distribution it judges whether
one of the agents is adopting its strategy, if all agent seem to be stationary
the agent changes its strategy towards a best response against its current es-
timation of the other agents strategies. If however one of the agents appears
to have changed it strategy, the agent moves its strategy towards a predefined
Nash equilibrium and forgets all the data it has on the actions selected by the
other agents. In order to keep synchronized with the other agents, every agents
also checks if its own actions indicate a changing strategy, if so the agent also
resets its learning progress (even if in fact its strategy is stationary, this is done
to easy the proving of convergence).

The whole design of the algorithm is build around the two minimum require-
ments and the algorithm is therefore proven to meet them in all games, there
are no experimental results included in the paper on how fast this convergence
is met.
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Although the algorithm meets the minimum requirements it is not going
to perform very well against other agents which learn according to a different
learning algorithm. It is hardwired in the algorithm to which Nash equilibrium
it converges, suppose that all other agents converge to a strategy around a
different Nash equilibrium, but never converge completely and therefore will
never become stationary, this algorithm will then still converge to its predefined
Nash equilibrium and not towards a best response. Furthermore it needs a
Nash equilibrium as input in order to move towards it, which we identified as
an undesirable property.

3.5.2 Regret Minimization

Regret quantifies how much better an agent would have done if it would have
always selected action a instead of the strategies it used:

RT
ia =

T∑
t=1

(λ(uia(πt)− Ui(πt)))

where λ(x) =
{

0 x < 0
x x > 0 , T is the amount of rounds played up till now and

πt is the strategy at time t. An action with a relative big regret should be chosen
more often, the exact implementation of how many times a specific action should
be selected is varied a lot between implementations. In this thesis one of the
most simplest version is considered [3]. In this version the strategy at time T is
chosen as follows:

πia =
RT

ia∑Mi

a′=1 RT
ia′

Regret minimisation has been used successfully to build a competitive 2-player
poker bot [43], but as will be shown in this thesis it does not converge to a Nash
equilibrium in self-play very well when applied in N -player normal form games.

3.5.3 Wolf-PHC

Wolf-PHC, Win or Learn Fast - Policy Hill Climbing [5, 6], is a multiagent
learning algorithm based on q-learning [35] which is proven to converge to a
Nash equilibrium in the 2-player, 2-action case. Every agent keeps a vector
which is an estimation of the expected reward received after selecting each
action, this vector is called the Q-values and is updated by each agent after
selecting action a:

Q̂i(a)← (1− α)Q̂i(a) + αriā

where riā is the observed received reward in this round, ā the joint action
selected and α the update speed which is typically in the order of 0.01. After
the q-values are updated the policy is updated using:

πia ← πia +
{

δ if a = argmaxa′ Q̂i(a′)
−δ

Mi−1
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The stepsize δ can have two predetermined values, if an agent is winning a
bigger value is used then if an agent is losing. An agent is winning when, given
the current estimations of the q-values, the average strategy up till this point:

π̄ia =
∑t=T

t=1 πt
ia

T

is performing worse then the current strategy:

a=Mi∑
a=1

πiaQ̂i(a) >

a=Mi∑
a=1

π̄iaQ̂i(a)

The algorithm is proven to converge to a Nash equilibrium only in the 2-player,
2-action case, it is empirically shown that the algorithm converges to an ε-nash
equilibrium in some simple example games. If the algorithm is however tested
on a wider class of games it hardly converges, as is shown in the results section.

In the problem setting described in this thesis, it is acceptable to use the
observed strategies of the other players, this should speed up the learning curve,
in the algorithm implemented to compare performance we used the following
update rule:

Q̂i(a)← (1− α)Q̂i(a) + αuia(π)

Which is a direct implementation of equation 2.2.

3.5.4 RedValer

The RedValer, Replicator Dynamics with Variable Learning rate, algorithm is a
based on the Wolf principle, but is proven to meet the minimum requirements [2].
The algorithm resembles the Wolf-PHC algorithm but uses a different update
rule of its strategies, the update rule used is based on the replicator dynamics
which updates the strategies according to the difference between the expected
reward of each action and the current expected payoff:

πia ← πialia(uia(π)− Ui(π))

where li is the learning rate. This learning rate is dependent on whether the
other agents changed their strategy and if an action is selected more often then
in a predefined Nash equilibrium π∗:

lia =

 1 if π 6=i is fixed{
1 + δ if πia < π∗ia
1− δ when πia ≥ π∗ia

otherwise

after the update the strategy is normalized to form a proper probability dis-
tribution. The RedValer algorithm therefore needs both a precomputed Nash
equilibrium and needs the strategies of all the players to be observable.
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3.6 Summary

Multiagent learning is broad field in which many algorithms are proposed, each
having a slightly different goal then another. The focus in this thesis is on
applying multiagent learning in an offline fashion such that an agent learns
the policy with the highest expected reward in each game given the learning
algorithms of the other players. It is hard to evaluate this class of algorithms
since it is not clear what a reasonable set of opponents would be. There is
however general consensus in the literature that an important intermediate step
would be a multiagent learning algorithm which converges to a best response
when playing against stationary opponents and to a Nash equilibrium when
playing against itself. There are several algorithms proposed in the literature,
but none of them achieves these goal without needing a Nash equilibrium as
input, this is however an undesirable property. If the game is simple enough to
calculate the Nash equilibria, the question should be which Nash equilibria to
play and there is no need for a multiagent learner. A MAL algorithm fulfilling
the two minimal requirements and not needing a Nash equilibrium as input
would therefore take science a step further to the goal of finding good MAL-
algorithms.

A multiagent learning algorithm that is able to converge to a Nash equi-
librium in self play and does not need a Nash equilibrium as input could also
be used for an other goal: the computation of Nash equilibria. The current
algorithms for finding Nash equilibria are very complex, while the multiagent
learning algorithms are generally simple to understand. A multiagent approach
to finding Nash equilibria would therefore work as a simple to implement, but
slower alternative to the classic methods. If this is the goal then any learning
algorithm which needs a Nash equilibrium as input is off course unsatisfactory.



4. WOLF-GRADIENT

In this chapter a new algorithm will be proposed for offline multiagent learning.
The goal for such an algorithm is to maximize the expected reward in each game
given the learning algorithms of the other agents. As discussed in the previous
chapter the minimum requirements for such an algorithm are that it converges
to a Nash equilibrium in selfplay and to a best response when playing against
a stationary agent. Since there are no algorithms proposed yet that fulfill these
requirements without needing a Nash equilibrium as input, this will be the focus
of the proposed algorithm.

The algorithm is build around the Gain of each player (Gi). This quantifies
how much the utility of an agent would improve if it would switch from its
current strategy to a strategy which is a best response against the strategies of
the other agents:

Gi(π) = max
a

uia(π)− Ui(π) (4.1)

A related quantity is called maxGain, which is defined as the maximum Gain
of all the agents:

G(π) = max
i

Gi(π) (4.2)

The maxGain is closely related to the (ε)-Nash equilibrium. If the maxGain of
a joint strategy is zero then it is a Nash equilibrium:

∀i∀a : Ui(π) ≥ uia(π)⇔ max
i

max
a

uia(π)− Ui(π) = 0 (4.3)

and if it is smaller then ε then it is an ε-Nash equilibrium:

∀i∀a : Ui(π) + ε ≥ uia(π)⇔ max
i

max
a

uia(π)− Ui(π) ≤ ε (4.4)

Since it always holds that G(π) ≥ 0, a Nash equilibrium, corresponds with
a global minimum of the maxGain. A multiagent learning algorithm which in
self play minimizes the gain and does not get stuck in a local optimum would
therefore converge to a Nash equilibrium. This is exactly how the proposed
algorithm is constructed.

The structure of the rest of this chapter is as follows: First it is demonstrated
that if all agents use the gradient of their utility with respect to their strategy to
update their strategy, the joint strategy does not converge to a Nash equilibrium.
The method is then combined with the Wolf principle, the resulting method
converges for some simple games, but in more complex games it could start to
oscillate. In the last addition to the algorithm the step size of each player is
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limited, this results in a method that is converging to a Nash equilibrium in all
games in our testset.

4.1 Pure gradient

Rational agents are only interested in maximizing their expected utility. This
is convenient because an agent which is maximizing its utility is minimizing its
gain under the assumption that the strategies of the other agents are stationary.

Proof. According to equation 2.2 uia(π) does not change if the strategies of the
other agents are stationary. If uia(π) is constant it follows from equation 4.1
that maximizing Ui(π) is equal to minimizing Gi(π). Q.E.D.

It is therefore natural to let every agent maximize its utility after each game.
A standard approach to maximizing a quantity is to update the variables, in
this case the strategy of an individual agent, into the direction of the partial
derivative, in this case: ∂Ui

∂πi
=

[
∂Ui

∂πi1
. . . ∂Ui

∂πiMi

]
= [ui1 . . . uiMi ]. The update rule

would then be:

πi = πi + α
∂Ui

∂πi
=


πi1 + α ∗ ui1

.

.
πiMi + α ∗ uiMi


Where α is the stepsize which is typically� 1. After this update it is not guar-
anteed that the resulting strategy is a valid strategy. In most other algorithms
this is solved by an operation which first guarantees that all elements are greater
than zero and then normalizes the strategy vector. These procedures cause ∂Ui

∂πia

to be discontinuous and can therefore not be used to update the strategies in all
cases. In the proposed algorithm the strategy of agent i is therefore represented
by an unconstrained vector σi, which is converted to a strategy by applying the
softmax rule[7]:

πia =
eσia∑Mi

a′=1 eσia′
(4.5)

The advantage of representing the strategies in this space is that the derivative
with respect to the expected utility, ∂Ui

σπi
, still exists:
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∂πia

∂σib
=


0

∑Mi
a′=1

eσ
ia′−eσib eσia

(
∑Mi

c=1 eσic )2
b 6= a

eσia
∑Mi

a′=1
eσ

ia′−eσib eσia

(
∑Mi

c=1 eσic )2
b = a

=


−eσia eσib

(
∑Mi

c=1 eσic )2
b 6= a

eσia
∑Mi

a′=1
eσ

ia′

(
∑Mi

c=1 eσic )2
− eσib eσia

(
∑Mi

c=1 eσic )2
b = a

=


−eσia

(
∑Mi

c=1 eσic )

eσib

(
∑Mi

c=1 eσic )
b 6= a

πia − πiaπib b = a

=
{

−πiaπib b 6= a
πia(1− πib) b = a

= δabπia − πiaπib

(4.6)

Where δabis one if a = b and zero elsewhere, the complete derivative is:

∂Ui

∂σia
=

∑Mi

b=1 uib
∂πib

∂σia

=
∑Mi

b=1(uibδabπib)−
∑Mi

b=1(πiaπibuib)

= πiauia − πia

∑Mi

b=1(πibuib)

= πia(uia − Ui)

(4.7)

Which gives us an intuitive appealing format: reduce the probability of actions
for which the expected payoff is lower then that of the current strategy and
increase the probability of actions for which it is higher.

If all agents implement this learning rule, the assumption that π 6=i is station-
ary is off course violated. Learning according to this algorithm is therefore not
guaranteed to converge to a Nash equilibrium. If two agents use this update rule
in self-play this leads to circular behaviour in for example the game matching
pennies (see figure 4.1 for an explanation of the game). In figure 4.2 the joint
strategy of two agents updating their strategy according to ∂Ui

σia
is visualized by

letting one axe denote the probability that agent one selects head and the other
axe that agent two selects head. In this two dimensional plain the direction of
the update of the joint strategy is always perpendicular to the Nash equilibrium
which is in the center. The joint strategy should therefore make a perfect circle,
the update steps are however not infinite small and the joint strategy therefore
spirals outwards, away from the Nash equilibrium.
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Head Tails
Paper (1,−1) (−1, 1)
Rock (−1, 1) (1,−1)

Fig. 4.1: The reward tensors (matrices) for the game of matching pennies. Two
players show a side of a coin, if both players show the same sign they player one
wins, otherwise player two wins.
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Fig. 4.2: The horizontal/vertical axe gives the probability that resp. player
two/one select Heads. The players all update their strategy according to the
pure gradient. The joint gradient is always perpendicular to the Nash equilib-
rium, but since the updates are performed in finite steps the strategies circle
outwards instead of making a perfect circle around the Nash equilibrium

4.2 Wolf principle

If the agents all update their strategies according to the derivative, the policies
do not converge in even the simplest game. The update rule is therefore adjusted
such that only the agent with the biggest gain updates its policy, the policies of



4. Wolf-Gradient 33

the others are unchanged. This is motivated by two observations:

• The goal is to minimize the maxGain, the increase of the utility of the
player with the highest gain will reduce this quantity (as long as the gain
of the other players does not increase to a level which is higher then the
current maximum gain).

• This update rule is an extension to the Wolf principle, a winning player is
a player that is already playing the best response against its opponents,
this is equal to having a low gain. The player with the highest gain is
therefore the losing player and should make the biggest move.

The proposed update equation is therefore:

σia ⇐
{

σia + απia(uia − Ui) if i = argmaxi Gi

σia otherwise

For this algorithm to work the reward matrices have to be normalized before
the algorithm is ran (just as with ε-nash equilibria), otherwise the gains of the
different agents are incomparable. Suppose that one of the matching pennies
players receives its reward in roubles, its reward matrix is effectively multiplied
by 1000 and its gain will therefore always be bigger then that of an agent playing
in dollars. If the two reward matrices are normalized before the algorithm is
ran, this is no longer a problem.

A learning algorithm using this update rule converges to a Nash equilibrium
in self-play in for example the two player matching pennies game. In games
with more then two players the joint policy no longer converges. As an example
the algorithm has been ran on a N -player extension of the matching pennies
game. This game uses the following rule set is used:

• There is an uneven number of agents which are ordered in a circle.

• All agents show either head or tail at the same time.

• If an agent shows the same sign as the agent next to it, it gets a negative
reward, otherwise it gets a positive reward.

There is only one Nash equilibrium which is when all agents select one the
actions with chance 1

2 . In figure 4.3 it is shown that in this three player game
the maxGain moves to an asymptote. This is caused by the phenomenon that
the gain of another agent rises more then the gain of the previous maxGain
agent drops.

4.3 Stepsize

Although an adoption of the strategy of the maxGain player will decrease the
gain of this player, it might increase the gain of another agent causing the
maxGain to rize instead of decrease. The step taken by the agent with the
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Fig. 4.3: Three agents are playing matching pennies, the horizontal axe gives
the learning iteration, the vertical axe represents the Gain of each player and
probability that each player selects head. Although the agent with the maximum
gain reduces its gain, the gain of the agent which is previous in line causes the
maximum gain to rise instead of drop.
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biggest gain therefore has to be limited to reduce the maxGain. Instead of using
a fixed α, the agent uses the line search depicted in algorithm [22] to find the
biggest α that decreases the maxGain with at least δGmin

percent. To guarantee
that the algorithm finishes there is minimum value defined for alpha αmin, if no
satisfactory alpha is found which is bigger then this value the algorithm is stuck
in a local minima, in algorithm 1 the complete search algorithm is defined. It
uses the update function which is defined in algorithm 2.

Algorithm 1 LineSearch(σ,i)
1: α = αstart

2: while α > αmin do
3: σ′ =update(σ, i, α)
4: if G(σ′i) < (1.0− δGmin)G(σi) then
5: return σ′

6: end if
7: α = α/2
8: end while
9: return None

Algorithm 2 update(σ,i,α)

1: return ∀j : σ′j =

{
σj + α

∂Uj

∂σj
i = j

σj otherwise

The proposed line search algorithm can fail if it is impossible for the player
with the maximum gain to move and decrease the maximum gain with a minimal
amount. In this situation it could be possible that one of the other agents can
make a move which would decrease the maximum gain. If none of the players
can make a move the algorithm is stuck in a local optimum, to get out of this
optimum the player with the biggest gain takes a considerable step to increase
its expected utility. The pseudocode for this search algorithm is implemented
in algorithm 3.

Algorithm 3 in not yet a learning algorithm, it describes how the joint policy
should be updated, while a learning algorithm should be run by each individual
agent updating only the policy of that agent. To turn this algorithm into a
proper leaning algorithm the algorithm is ran in parallel in each agent, where
each agent updates their strategy to that in the new joint policy.

To guarantee that the algorithm converges to a best response in case one
of the agents is playing a stationary strategy, every agents checks whether all
agents that should have changed their strategy did so. If an agent did not
change its strategy when it should have, it is considered a stationary agent. A
stationary is seen as a part of the environment, it is removed from the list of
players and the agents update their rewards tensors as if this agent will always
be playing this strategy.
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Algorithm 3 FindPlayerToMove(σ)
1: sortedListOfPlayers = sortOnGain(σ)
2: while not Empty(sortedListOfPlayers) do
3: i = pop(sortedListOfPlayers)
4: updatedJointStrategy = LineSearch(σ,i)
5: if updatedJointStrategy 6= None then
6: return updatedJointStrategy
7: end if
8: end while
9: i = argmaxi Gi

10: σ′ =update(σ, i, αstuck)
11: return σ′

These two steps are incorporated in algorithm 4 which is the final algorithm
proposed in this thesis.

Algorithm 4 learnStep(σ,i)
Require: δGmin

, αstart, αstuck, normalized(ri), noDominatedStrategies(ri)
1: Remove stationary players from the analysis
2: σ′ = FindPlayerToMove(σ)
3: return σ′i

4.4 Summary

In this chapter a new MAL-learning algorithm has been introduced. In main
focus is to converge to a Nash equilibrium in self-play. The basis of the algorithm
is formed by a quantity called gain, which quantifies how much an agent would
profit if it would switch to the best response against the current strategies of
the other agents.

The basic outline of the algorithms is as follows: an agent only adopts its
strategy if it has the highest gain of all agents. If this is the case it updates its
strategy in the direction of the gradient of its current strategy with the biggest
stepsize such that the maxGain will decrease with a minimum percentage. If
this is not possible one of the other agents will try to make such a move. If
none of the agents can make such a move the agent with the highest gain will
make a move in the direction of its gradient with a predefined stepsize. Before
an agent starts to adjust its strategy it checks whether all agents have adopted
their strategy like they should have in the previous round. If this is not the case
the agent is considered to be stable and the agent is ignored, this is implemented
by updating the reward tensors such that they reflect the rewards the agents
will receive if this agent never changes its strategy and ignoring the strategy of
that agent from now on.
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The convergence properties of this algorithm are discussed in the next chap-
ter.



5. EXPERIMENTAL RESULTS

In the previous chapter a multiagent learning algorithm called Wolf-Gradient
is proposed. The goal of this algorithm is to learn an optimal strategy against
other (learning) agents. The learning takes place in an offline simulation, the
strategies are therefore visible and the simulation can be restarted. After several
restarts the best joint strategy is selected to play in an online environment.
There are two main demands for an algorithm with this goal:

• When playing against stationary agents it should converge to a best re-
sponse

• In self play it should converge to a Nash equilibrium.

Since the first demand is always satisfied by the design of the algorithm, the
main point of this chapter is to compare the convergence properties of the Wolf-
Gradient algorithm empirically with that of algorithms previously proposed in
the literature.

For every game tested the algorithms are ran 9 times after which the joint
strategy with the smallest maxGain is selected, these random restarts help al-
gorithms which get stuck in local optima. The games are generated using game
generators. These generators are usually defined for a variable number of agents
and actions per agent (the size of a game) and use some sort of random process
to generate different instances of a game with the same size. To get a good
impression of the performance of every algorithm for different sizes of games, a
test set has been composed of several game generators and for each generator
several sizes have been selected. Not all sizes are valid for all generators and
the sizes used therefore differ per generator. For each combination of genera-
tor and game size ten game instantiations are generated. On each of these ten
instances every algorithm is run 9 times for 25000 iterations. Each run of an
algorithm gives a certain joint policy with a certain maxGain, after nine restarts
the joint strategy is selected with smallest maxGain. This gives a maxGain for
each algorithm for each instance of a game, to compare the performance of the
algorithm for this particular combination of size and generator, the maximum
of these maxGains is taken for each algorithm. This gives an indication of the
worst case performance of the algorithm. If this maximum over the maxGains is
zero, an algorithm always converges to a perfect Nash equilibrium for this type
of game. In figure 5.1 there is a schematic representation of the construction of
the testset.
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Test set

Covariance Games Random Games

Random Games
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Strategies

RoShamBoMatching Pennies
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Game 1 Game 2 Game ... Game 10

Run 2 Run ..Run 1 Run 9
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Maximum maxGain

Run 2 Run ..Run 1 Run 9

Minimum maxGain

Run ..
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Fig. 5.1: Schematic overview of the testset. For each game generator there are 10
different examples generated, each algorithm is ran nine times on each example
for 25000 runs. From the nine generated strategy the one with the smallest
maxGain is selected. To quantify the performance of an algorithm the worst
case is considered, from the 10 maxGains of these final strategies the maximum
is taken. The algorithm which scores the lowest on this quantity is considered
to have the best convergence properties of all algorithms for this class of games.
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5.1 The algorithms and the parameters

The algorithms to which the Wolf-Gradient algorithm is compared should not
need a Nash equilibrium as input, since this is the major achievement of this
algorithm. For each of these algorithms there is a paragraph in which we discuss
the used parameters. There are three algorithms which fulfill this requirement:

Wolf-PHC The Wolf-PHC algorithm needs two parameters, after some exper-
imentation the following settings seem to give the best performance:

• δl = 0.001

• δw = 0.0003

Wolf-PHC-Gain this is identical to the Wolf-PHC algorithm except that the
losing agent is picked by determining the agents with the largest gain. This
algorithm is introduced to test the performance of the losing agent selection
separately of the other ideas introduced in this thesis. The parameters used are
the same as in the Wolf-PHC algorithm.

Regret-minimization which has no free parameters.

Wolf-Gradient The parameters for the Wolf-Gradient algorithm are:

• αstart = 30

• αstuck = 3

• αmin = 0.3

• δGmin = 0.01

5.2 Test games

In this section the choice of game generators is explained and the details of each
generator discussed. For each generator plots are included which compare the
performance of the algorithms.

The most common test set used in literature to empirically test algorithms
for normal form games is the Gamut test set [26]. This test set contains a huge
collection of games collected from the last fifty years of research. Most games
in this test set contain pure Nash equilibria and can therefore be solved easily
by enumerating all possible pure joint strategies. Once the Nash equilibria are
known only the selection problem remains. These games are therefore not very
interesting for our algorithms and are therefore not considered1. To compare
the learning algorithms a selection has been made from the games available from

1 The proposed algorithm has been tested on games with pure strategies informally and
converged in all cases.
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Fig. 5.2: Histogram of the maxGain after 90 simulations of 25000 rounds in
two player matching pennies. Wolf-Gradient and Regret minimization always
converge to a perfect Nash equilibrium. To give a better insight in the maxGains
of the found joint strategies, the maxGains of all the strategies found after each
restart are used for this histogram.

the Gamut set and several other games have been added to give a more balanced
view. The games in the test set are discussed in the separate subsections together
with the performance of each algorithm.

5.2.1 Matching pennies

The matching pennies game has been introduced in section 4.1. The two player
version is part of the Gamut suite and the N -player version has been introduced
by the author. The game has only one Nash equilibrium and that is when all
agents select head with probability 1

2 . Since the game is very simple and only
two versions are computational tractable this game can be analysed in more
detail. For both the two and three player game a histogram of the normalized
gains observed at the end of every simulation is displayed in resp. figure 5.2 and
figure 5.3. Note that for these histograms the nine restarts performed on each
game are not combined by taking the minimum, but are all included individually.

In the two player case the Wolf-Gradient method is the only algorithm which
converges to a true Nash equilibrium, all other algorithms converge to ε-Nash
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Fig. 5.3: Histogram of the found maxgains in three player matching pennies.
Again the maxGains after each random restart are used. Except for some out-
liers the Wolf-Gradient algorithm has the best convergence properties of all
algorithms discussed.
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Fig. 5.4: This plot shows, for the matching pennies game, the maximum max-
Gain of all joint strategies generated by letting every algorithm learn 25000
iteration after each of the nine random restarts and selecting the joint strategy
with the smallest maxGain. The labels of the x-axe denote the size of the games,
3p2a denotes 2 players 2 actions.

equilibria. Despite the fact the Wolf-PHC algorithm is proven to converge in all
2-player, 2-actions games, it does not converge in this simulation. This anomaly
is caused by the fact that the proof is based on infinitely small steps, while in
practise the steps taken are finite.

In three player matching pennies all other algorithms again converge asymp-
totically to a Nash equilibrium, but never reach it. In this game the wolf-
gradient method also does not converge to a perfect Nash equilibrium in all
runs. The convergence is however much better then that of the other algo-
rithms, except for some outliers. The outliers appear when one of the agents at
some point in time selects an almost pure strategy, the derivative of the soft-
Max then becomes infinitely small and the strategy of this agent therefore does
not change for many iterations. While this agent is stuck in a pure strategy,
the other agents adopt their strategy to a best response which is also a pure
strategy. Once all agents are selecting pure strategies they start oscillating in
turn changing from one pure strategy to another, this stops the algorithm from
converging. This is fixed by restarting the algorithm.

If the best joint strategy is selected after the nine random restarts the max-
Gain of the worst joint strategy is still not zero, but it is significant smaller then
that of the other algorithms see figure 5.4. With such a small maxGain it is
save to assume that the algorithm converged in all cases.
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Fig. 5.5: Trace of the maxGains in a typical convergence of two player matching
pennies. The speed of convergence of Wolf-Gradient is much higher then of the
other algorithms. It can also be seen that the other algorithms do not truly
converge to Nash but to some ε-Nash equilibrium

When the speed of convergence is compared, the Wolf-Gradient algorithm
converges always much faster then the other algorithms. See figure 5.5 for a
typical trace of the maxGains of all algorithms during the learning phase. In
this plot it is also visualized that the other algorithms do not truly converge to
Nash but get stuck at an ε-Nash equilibrium.

5.2.2 RoShamBo

RoShamBo, also known as Paper Rock scissor, is a well known game often
played by humans. Although most people see the game as simple and the
optimal strategy is known (play completely random), there exists official world
championships for humans2 and computers. In the human league the reward
for the best player is $10.000 and the game is therefore taken more serious by
some people then one might expect.

The rules of the game are simple, both agents select, at the same time, one
of three symbols: Paper, rock or scissor. If both select the same it is a draw,
otherwise: rock beat scissor, paper beats rock and scissor beats paper. The Nash
equilibrium is for both players to play each of the three actions with probability
1
3 .

2 http://www.worldrps.com/
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Fig. 5.6: Histogram of the found maxgains in RoShamBo after each random
restart. The Wolf-Gradient algorithm converges perfect in half the cases and to
some quite big value in the other cases. If a results from the random restarts
are however combined, it converges always perfectly.

How can the game be interesting to play if the optimal solution is known?
Suppose that a tournament is played between three agents, every agent plays a
number of head to head games against all other agents, the agent which wins
the most games wins. Suppose one agent is playing the Nash equilibrium, and
the other two are trying to exploit the strategy of their opponent and therefore
play a non-Nash strategy. In this competition the Nash equilibrium player will
win exactly half of the games played. The other agent will also win half the
games played against the Nash equilibrium player, but in the games played
against each other one will win more games and the other will lose more then
half the games. The Nash equilibrium player will therefore always end in the
middle of the ranking and the other two will end first or last. It is therefore
never interesting to play Nash and such a competition will therefore be an
interesting setting for MAL-algorithms 3. In figure 5.6 the results are shown in
the same histogram as for the matching pennies game. Again it is shown that
the Wolf-Gradient method converges to a perfect Nash equilibrium and the other
algorithms do not. In the cases where the Wolf-Gradient does not converge to
a Nash-equilibrium it oscillates between pure strategies. If the algorithms are
however restarted several times the Wolf-Gradient method is again the only
algorithm which converges to perfect Nash equilibrium see figure 5.7.

3 The computer programs which are currently employed at these kind of competitions are
handcrafted for this specific problem and not based on general multi-agent learning algorithms
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Fig. 5.7: Overview of the maximum maxgains found in RoShamBo, when all
algorithms are restarted nine times. In this case the Wolf-Gradient algorithm
always converges almost perfectly, ε < 10−4, while none of the other algorithms
does.

5.2.3 Random games

Random games are created by generating reward tensors for each agent using an
uniform random number generator, this type of games is a standard part of the
Gamut testsuit and it is one of the most popular games to test algorithms on.
Random games are not without controversy, at first look they might look like
the most fair games to test algorithms on, but a common argument against this
is that interesting games encountered in real life form a very specific distribution
and performance on uniform distributed games is therefore not representative
for the performance in reallife games. Despite this controversy random games
are still often used to test algorithms on.

We have selected several computational tractable size of random games to
form our testset. The size of the games might look small, but one has to
remember that a three player four action game is represented by 3 × 43 = 192
numbers for which in each round the utilities have to be calculated which denotes
3 × 192 = 576 operations, to perform the linesearch this has to be repeated
several times per round. Repeating these calculations for 25000 rounds gives an
operation which takes about a hour per game. In figure 5.8 an overview is given
of the maximum maxGain of the found joint strategy for every game size. Some
interesting observations can be made, first of all the Wolf-Gradient algorithm
finds a Nash equilibrium in all cases except the two player four action case,
while the other algorithms only converge in the two player three action games.
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Fig. 5.8: An overview of the maximum maxGain of the joint strategy each
algorithm came up with for different sizes of random games. After nine random
restarts and 25000 iterations after each restart.

That all algorithms converge in the two player four action case is caused by
coincidence, all games generated contain only one pure Nash equilibrium which
can be found by deletion of dominated strategies. Since all dominated strategies
are removed in the normalization process, these games contain only one action
for each agent. In the two player four action case the Wolf-Gradient does not
converge in the worst case because in two games out of the 10 generated, it gets
stuck in a pure policy after each restart.

5.2.4 Random games without dominated strategies

Many games generated using an uniform distribution contain dominated strate-
gies and often even contain a pure Nash equilibrium, properties we wanted to
avoid in our test set. In the this section a new type of game is introduced which
we think is a better alternative to the completely random games and should be
used instead. This generator generates a game using the same uniform distri-
bution as the uniform random generator, but rejects any tensor that contains a
dominated strategy. This process is continued until a reward tensor is generated
for each agent which contains no dominated strategies. The algorithm is tested
using the same method as the Random games, the results are displayed in figure
5.9. Again the Wolf-Gradient algorithm converges in almost all games, the big
exception is the two player four action game. Again a more detailed look at
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Fig. 5.9: An overview of the worst joint strategy each algorithm came up with
for different sizes of random games without dominated strategies.

the two player four action case shows that the algorithm converges in almost all
games generated except one, where it gets stuck in a pure strategy after each
restart.

5.2.5 Covariance games

In a covariance game the payoff tensors of each player are generated using a
normal distribution with the restriction that the covariance between the rewards
of two players given the joint action has a fixed value. A positive covariance
indicates that if one agent gets a relatively big reward for a certain joint action,
the chance that the other agents get a relatively big reward for the same joint
action increases. A negative covariance indicates that a bigger reward for one
agent indicates a smaller reward for the other agent. This gives a sliding scale
between a fully cooperative game, covariance = 1, and a game in which the
rewards are maximal opposite, covariance = −1

N−1 . In this test set the covariance
is set to −1

N−1 since the goal is to find a learning algorithm for the non-cooperative
case. Again the Wolf-Gradient algorithm converges in all games except for the
two player four action case and again the Wolf-Gradient algorithm converges
in all games generated excepts one. In the game instance in which it does not
converge at least one agent gets stuck in a pure strategy after each initialization.
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Fig. 5.10: An overview of the maxGain of the worst joint strategy each algorithm
came up with for the ten games covariance games of different sizes, after nine
restarts and 25000 rounds after each restart.

5.3 Summary

The Wolf-Gradient method converges to a true Nash-equilibrium in a wide va-
riety of games, this is not achieved by any of the other algorithms proposed
in literature so far. The gradient of the softmax transformation becomes zero,
when one of the agents selects a pure strategy, this causes the algorithm to take
an infinite amount of time to move to move to a different strategy and the al-
gorithm therefore gets stuck in practise. This is the only cause of the algorithm
to fail.



6. CONCLUSION

In this thesis a new multiagent learning (MAL) algorithm is proposed, the main
goal of this algorithm is to converge to a Nash equilibrium in self-play without
needing a Nash equilibrium as input. Such a multiagent learning algorithm can
be used for two purposes:

• It can form the basis for problem specific algorithms.

• It forms an easy to implement alternative to the Nash equilibrium finders
such as the Govindan Wilson method.

In this thesis it has been shown that the proposed algorithm is the first
algorithm published to meet this goal. Other algorithms proposed either need a
Nash equilibrium as input or do not converge in self-play to a Nash equilibrium
in games with more then two players.

Compared to the exact Nash equilibrium finders this algorithm forms a good
alternative. Although it is much slower then the exact solvers and it is not
proven to converge. It is much easier to implement and does not need a deep
mathematical understanding of the subject. In practise its performance mea-
sured in the number of games solved is comparable to the exact solvers, the
exact solvers might be proven to be able to solve every game instance, but the
reference implementations available get stuck on many games used in this test
set and are therefore able to solve the same number of games as when our algo-
rithm is used in self-play. The only advantage of the exact solvers is that they
find all Nash equilibria and if they do not get stuck in an infinite loop or crash,
they find the answer much faster.

6.1 Further work

The work on this algorithm is not complete, there is much which can be done
to improve the algorithm. The extensions to this work can be put in three
major categories: improving the algorithm as a multi-agent learner, improving
its performance as a Nash-equilibrium finder and proving its claimed properties.

6.1.1 Optimal strategy finder

The current algorithm makes explicit use of the strategies of the other agents.
To be able to use the algorithm in an online manner this should be changed to
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using only the observed actions of the other agents. This would increase the
applicability of the algorithm.

It is well defined how the algorithm should handle when the other agent are
learning using the same algorithm or have a stationary policy, it would however
be very interesting if the algorithm was extended to give a good response against
other multiagent learners when confronted with them. This subject is however
hardly studied for any multiagent learning algorithm.

6.1.2 Nash equilibrium finder

For the algorithm to be used as an equilibrium finder its convergence properties
should be improved, it should converges in all cases. One improvement which
has been suggested already is to handle the situation in which one of the agents
plays an almost pure strategy, this case is not a problem in theory since the
algorithm does recover from it given enough iterations, but it is a problem in
practise. This could be solved in several ways:

• Only use initial strategies with a high entropy.

• Use an alternative for the softmax function.

• Instead of using a gradient, switch to using Newtons method [30]. This
will take the Hessian into account and will increase the steps at the edges
where the derivative is getting infinitely small.

The first suggestion will not help in all cases, since the algorithm sometimes
converges to a pure strategy if its initialized with a high entropy strategy, but it
will help in the cases where the algorithm gets stuck after being initialized with
a pure strategy. The second option could give a solution in all cases, it should
however be a procedure that is still differentiable. A solution could be to adopt
the softmax to make it less steeper in the middle and more steeper on the side.

The problem with the third suggestion is that the Hessian becomes almost
non-invertible in the boundary regions, which causes the inverted Hessian matrix
to be unstable.

The research on this algorithm can also be taken into a different direction.
If the focus of the algorithm is purely on finding Nash equilibria and not on
multiagent learning, a more global approach could be taken in which not every
agent updates its strategy according to its own derivative, but a global mini-
mization approach is taken. In such an approach the whole unconstrained vector
denoting the joint strategy, σ, is updated according to ∂G

∂σ . In order for G to be
differentiable it should be redefined in terms of the softmax, replacing equation
4.1 and 4.2 with:

Gi =
Mi∑
a=0

euia∑Mi

a′=0 euia′
(Ui − uia) (6.1)

G =
N∑

i=0

eGi∑N
j=0 eGi

Gi (6.2)
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If this definition is used ∂G
∂σ does exists and the joint strategy can be updated

using a gradient descent. This could give a method purely aimed at finding a
Nash equilibrium. It is however probable that the concept of Wolf has to be
incorporated in some way in this method.

6.2 Theoretical Work

The current method is purely based on empirical observations, currently there is
no proof that the method indeed converges to a Nash equilibrium in all settings,
the construction of such a proof would be a giant step for the multiagent field.
Smaller but still significant steps would be:

• An understanding of the Nash equilibrium the algorithm converges to, do
all Nash equilibria have the same chance of being picked?

• Is it possible to give a better classification of the games for which the
algorithm converges?

No attempt has been made during the research leading to this thesis to answer
these questions.

6.3 Summary

This thesis contains several new ideas and insights:

• The concept of gain to determine the agent which is losing.

• Updating the strategy such that the probability of actions of which the
expected reward is higher then the current expected are increased and
the probability of actions of which the expected reward is lower then that
of the current expected reward are decreased, is equal to updating all
strategies according to ∂Ui

σi
.

• Using the softmax rule to guarantee that all strategies are proper proba-
bility distributions.

• Solving the Nash equilibrium finding problem as a gain minimization prob-
lem.

These insights are combined into a working algorithm which has far better
convergence properties then any algorithm proposed in literature. In the few
cases that the algorithm does not converge the cause is well understood and
several solutions for these causes are proposed. Overall it can be stated that
the proposed algorithm takes the field a big step closer to the goal of building
MAL algorithms that learn an optimal strategy against opponents of which the
MAL-algorithm is known.



BIBLIOGRAPHY

[1] R. J. Aumann and M. Maschler. Game theoretic analysis of a bankruptcy
problem from the talmud. Journal of Economic Theory, 36(2):195–213,
1985.

[2] Bikramjit Banerjee and Jing Peng. Performance bounded reinforcement
learning in strategic interactions. In Proceedings of the 19th National Con-
ference on Artificial Intelligence.

[3] Avrim Blum and Yishay Mansour. Learning, Regret Minimization, and
Equilibria, chapter 4, pages 79–102. Cambridge University Press, 2007.

[4] H. Bosse, J. Byrka, and E. Markakis. New algorithms for approximate
nash equilibria. In 3rd International Workshop On Internet And Network
Economics, 2007.

[5] Michael Bowling and Manuela Veloso. Convergence of gradient dynamics
with a variable learning rate. In Proc. 18th International Conf. on Machine
Learning, pages 27–34. Morgan Kaufmann, San Francisco, CA, 2001.

[6] Michael H. Bowling and Manuela M. Veloso. Rational and convergent
learning in stochastic games. In IJCAI, pages 1021–1026, 2001.

[7] John S. Bridle. Training stochastic model recognition algorithms as net-
works can lead to maximum mutual information estimation of parameters.
pages 211–217, 1990.

[8] G. Brown. Iterative solution of games by fictitious play. Activity Analysis
of Production and Allocation, 1951.

[9] V. Conitzer and T. Sandholm. Awesome: A general multiagent learning
algorithm that converges in self-play and learns a best response against
stationary opponents, 2003.

[10] Peter Cramton, Yoav Shoham, and Richard Steinberg. Combinatorial Auc-
tions. The MIT Press, 2006.

[11] C. D’aspremont, Jaskold J. Gabszewicz, and J. F. Thisse. On hotelling’s
”stability in competition”. Econometrica, 47(5):1145–1150, 1979.

[12] Drew Fudenberg and David K. Levine. The Theory of Learning in Games.
MIT Press, 1998.



Bibliography 54

[13] S. Govindan and R Wilson. A global newton method to compute nash
equilibria. Journal of Economic Theory, pages 65–86, 2003.

[14] Peter Hammerstein and Reinhard Selten. Game theory and evolutionary
biology. In R.J. Aumann and S. Hart, editors, Handbook of Game Theory
with Economic Applications, volume 2, chapter 28, pages 929–993. Elsevier,
1994.

[15] Ehud Kalai and Ehud Lehrer. Rational learning leads to nash equilibrium.
Econometrica, 61(5):1019 – 1045, September 1993.

[16] Simon Kirby. Language Evolution (Studies in the Evolution of Language).
Oxford University Press, USA, October 2003.

[17] E. Kohlberg. Refinement of Nash Equilibrium: The Main Ideas. Harvard
Business School, 1989.

[18] H. W. Kuhn. Preface to waldegrave’s comments: Excerpt from montmort’s
letter to nicholas bernoulli. Precursors in Mathematical Economics: An
Anthology, pages 3–9, 1968.

[19] C. E. Lemke and Jr. J. T. Howson. Equilibrium points of bimatrix games.
Journal of the Society for Industrial and Applied Mathematics, 12(2):413–
423, june 1964.

[20] G. A. Malcolm. The Princely Court: Medieval Courts and Culture in North-
West Europe. Oxford University Press, 2003.

[21] Richard D. McKelvey, Andrew M., McLennan, and Theodore L. Turocy.
Gambit: Software tools for game theory, version 0.2007.01.30, 2007.
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