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Abstract

This thesis describes an approach that uses reinforcement learning together with dis-

tributed perception network fusion systems in order to perform mobile sensor control.

A case study of such mobile sensors is the chemical leak detection problem. The pro-

posed solution deals with partial observability of the true state and makes use of linear

function approximation to learn a value function that maps belief-action pairs into values,

distributed perception networks to create a correct, robust and computationally efficient

system for the inference of gas leak given sensor observations, and bayesian inference to

estimate the leak location. Results show that by keeping a continuous belief represented

through entropies and representing information about both single cell and aggregation of

cells, the system can learn successfully; furthermore, studies about the influence that the

distributed perception networks give to the whole system are done. Discussions and future

developments are also provided.
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1 Introduction

Mobile sensor control is a problem in which autonomous agents, by efficiently moving around and
using sensors, try to reduce uncertainty about some phenomenon.

A real life example of such a problem used to validate the thesis’ achievements is the chemical
leak detection problem. In a typical scenario, a highly industrialized area composed of many chemical
processing factories, chemical waste depots, etc. is located next to a high density urban one. If a
leak occurs, it is desirable to detect it as fast as possible, in order to stop it and minimize chemical
contamination, which is manifested in the form of chemical gas that diffuses in the air. Three issues
are present:

1. it is not known where the leak is,

2. the leak must be found in the shortest time possible, and

3. it must be found without error.

To cope with such a hazardous situation, some monitoring should be performed. Sensors can be
placed in the environment and, from their readings, inference about the leak location can be done.
Unfortunately, centalised control of this process cannot be done: apart from the fact that the com-
putational load grows significantly with respect to the complexity of the scenario (size of the area
monitored, volume of readings that need to be processed per time, etc), the fact that centralized
control must have a full and exact knowledge about every sensor makes this approach infeasible.

A solution is the organization of such sensors in distributed networks that independently process
raw sensor data and then share (fuse) their results. The process of combining distributed sensors can
be achieved through the use of distributed perception networks (DPNs), a technology that is based
on causal models and, through the fusion of distributed sensor perceptions into a unique network,
generates high level inference about some phenomenon. Causal models can successfully represent
the relationship between causes and effects: in the chemical leak problem, for example, sensors can
perceive variations of ionization of the air (effects) which is caused by the gas contamination (cause).
The causality is represented in a DPN in terms of causal Bayesian networks, where the belief of
the root node, which represents the gas belief, is inferred from observation of the leaf nodes, that
is, the sensor readings. Through the highest level of reasoning about gas contamination, then, it is
possible to find the leak location. The distributed network organization and the fusion process pro-
vides a level of abstraction that makes DPNs robust with respect to sudden changes in composition of
the network of sensors, that is, sensors can be added to the network or removed from it without hassle.

In real life, however, it is not possible to install every kind of sensor for all kind of chemical that are
used and stored in all the factories: this requires huge resources, and every time a factory decides to
change its production, to use some new chemical, it will require the installation of new sensors specific
to that kind of new chemical. A solution to this problem is the use of more general purpose sensors,
able to deal with effects that are generated by different causes. For example, different chemical leaks
might produce a similar variation in ionization of the air. Unfortunately, the more general a sensor is,
the more faulty it becomes. A tradeoff is given by a combined use of more general sensors placed in
the environment (called fixed sensors) with more specific ones, which can be moved and take part it
the fusion into distributed network of sensors present in the environment, exploiting in this way the
capabilities of DPNs to be robust with respect to the composition of the network of sensors. Unfortu-
nately, a DPN is just a fusion system that can efficiently infer about hidden events given evidence. It
cannot decide where and when to move the mobile sensors. How, where and when the sensor should
be moved represents a sequential decision problem.

Sequential decision problems can be successfully solved using reinforcement learning (RL), an ar-
tificial intelligence technique that has its roots in the study of animal trial-and-error behaviour under
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the influence of external stimuli. By using a helicopter agent equipped with sensors and giving it
rewards according to the actions it performs, it is possible for the agent to learn a control policy, that
is, a mapping from states into actions. Intuitively, the policy sought is the one that maximises the
discounted cumulative reward.

Markov decision processes (MDPs) are the simplest type of RL problems for which the transition
function of the states of the environment and the reward function are dependent only on the current
state. One way to solve MDP problems is by finding an optimal value function that maps states into
values. The result is a policy function which maps states to actions.

In a simple MDP the agent has perfect knowledge about the current state of the environment and
performs actions conditioned to it. The chemical leak detection task, unfortunately, is not a simple
MDP. The biggest obstacle to the agent is represented by its partial observability about the leak
position: the agent does not know the state, and once it performs an action, the environment returns
only an observation about the next state. Instead of dealing with states of the environment, the agent
has to deal with a belief state, that is, a probability distribution over states; the task of the agent,
now becomes to find a policy which maps belief states to actions. Problems of this kind are called
partially observable Markov decision processes (POMDPs). In this thesis’ scenario, the belief state is
represented by the possible leak positions. By its integration with DPNs, however, the helicopter can
keep a reliable belief and update it every time the DPNs perform inference.

Typically, POMDP problems are solved via planning, that is, an offline computation of the value
function for all possible belief configurations; this is based on the assumption that the agent has a
perfect knowledge of the model of the environment. In the chemical leak detection problem, the heli-
copter can have a perfect knowledge of the environment, hence planning seems to be applicable.

The problem with planning, however, is that it becomes intractable for large problems, and the
chemical leak detection is one of them; the only way the helicopter can learn how to find the leak is by
using a model-free approach, that is, by performing actions and directly interact with the environment.

Model free approaches are not usually applied to POMDP problems; however, when they are, they
are usually based on techniques that consider the belief as a secondary characteristic of the problem:
heuristics that aim to approximate the state. That is, they do not maintain the belief anymore. In
the chemical leak task, instead, the uncertainty is central to the problem and cannot be considered
secondary.

In the chemical leak detection problem, instead, since the helicopter can have a perfect knowledge
of the environment, it can maintain beliefs; this turns the problem into a continuous space MDP,
which allows the application of model-free methods and hence it can be solved.

Given that the helicopter must keep a belief about the leak location, the issue, now, is about its
representation. Two approaches are possible: first, the belief can be discretized in order to make the
belief space finite. Second, a continuous representation can be maintained. Moreover, different ways
to represent the continuous belief are defined and compared to each other.

The next issue is the choice of a value function representation. Since a model-free approach is used,
the value function will be based on q-values of belief-action pairs. Two methods for q-value learning
are studied: one is based on the storage of discretized belief and action pairs in a table together with
their value functions; the second one, instead, makes use of the continuous belief representation and
action pairs and assumes a linear mapping to value functions.

It will be shown that the table-based approach with discretized belief is infeasible, since the size of
the table grows exponentially with respect to the environment size; the linear function approximation
approach can perform well and is robust with respect to the increase of size of the environment but
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is dependent on the continuous belief state representation used.

Other issues related to the leak belief inference arise: the agent must perform actions based on
its belief about the leak location; it seems intuitive that, the more reliable the inference about the
leak location is, the better the control policy. The same problem about centralized control discussed
previously arises: the helicopter cannot know everything about the sensor models. The need for DPN
integration becomes essential: this allows the helicopter not to know anything about the fixed sensors,
from their models to their position in the environment; it just performs actions according to its own
belief which is updated given the results of the inference of the DPNs. Experiments aiming to analyze
the level of depencency between control policy and DPNs are also done.

The thesis is organized as follows: Chapters 2, 3 and 4 provide the basic backgrounds about
Bayesian reasoning methods, distributed perception networks and reinforcement learning techniques
needed to understand the work done later on. Chapter 5 analyzes the centralized approach for the
chemical leak problem and ends with the definition of the DPN model structure which will the used in
Chapter 6, when the integration of DPNs and RL is described. Experimental results which investigate
different value function and belief representations, level of dependency between mobile agent (RL) and
DPNs, robustness with respect to large environments are shown in Chapter 7. In Chapter 8 a brief
description about the software integration between the helicopter agent (RL) and the DPN Toolkit,
a fusion system based on DPNs developed by Universiteit van Amsterdam, is provided. Chapter 9
provides valuable discussions about the thesis work and achievements, together with related works
and paths for future developments. Chapter 10 concludes.
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2 Background: Bayesian Reasoning

This chapter provides the backgrounds about Bayesian reasoning concepts that are used in the rest
of the thesis. Basic knowledge of probability theory and statistics are assumed.

The main problem that agents face during their execution task is given by the fact that they almost
never have a complete view of the environment and hence the complete knowledge of the state they
are in. This means that the agents have to deal with the problem of reasoning with uncertainty and
knowledge representation. However the agent, through sensors, can gather data (perceptions) of the
environment and use it in order to update (infer) its hypothesis. The hypothesis represent the belief
of the agent.

Bayesian reasoning is a probabilistic approach to inference. It is based on the assumption that
the quantities of interest are governed by probability distributions and that optimal decisions can be
made by reasoning about these probabilities together with observed data. It provides a quantitative
approach to weighing the evidence supporting alternative hypotheses [9].

Before defining Bayes theorem and Bayesian networks, few notions of probability theory and
statistics are provided.

2.1 Few Notions of Probability Theory and Statistics

In statistics, given a sample space Ω of a probability space (Ω,F , P ), where F is an algebra over Ω
and P : F → [0, 1] is a probability function, a random variable X is a function from the sample space
to a real value: X : Ω→ R. Random variables can be of two kinds: continuous or discrete. A random
variable is said to be continuous if its possible values extend over a continuum; it is said to be discrete
if its possible values are partitioned into intervals. A boolean random variable, in the end, is a special
case of discrete random variable and can assume only two values, true or false. The domain DX of a
random variable X is the set of possible values it can have; the domain of a boolean random variable
hence is represented by DX = {x, x}.

The notation P (X = x1) indicates the prior probability that the random variable X has value
x1; P (X) denotes the prior probability distribution of the variables X according to the values of its
domain. Given n random variables X1, . . . Xn, the joint probability distribution P (X1, . . . Xn) assigns
probabilities to all possible configurations of the domain of all possible variables; the joint probability
P (x1, . . . xn) is computed by using the chain rule

P (x1, . . . xn) = P (x1)P (x2|x1) . . . P (xn|x1, . . . xn−1) (1)

The notion P (x|y) indicates the conditional probability that x is manifested given that y holds.

From this, the conditional independence is defined: two random variables X and Y are condition-
ally independent given a randon variable Z if and only if

P (X|Y,Z) = P (X|Z) (2)

and, analogously, P (Y |X,Z) = P (Y |Z).

2.2 Bayes Theorem

The idea, as said previously, is to update the probability of hypothesis given observed data. Some
notation is given. h is used to represent a possible hypothesis, where H is used to represent the
hypothesis space, that is, the set of all the hypothesis that form the belief. Intuitively, the hypothesis
space H is composed of n mutually exclusive hypothesis hi, i = 1, . . . , n, that is, the occurrence of any
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one of them precludes any of the others1.

D represents the set of all data that can be observed. Before receiving d ∈ D, which is a configu-
ration of observations for different variables, d = {d1, d2, . . . , dn}, the agent has already some degree
of knowledge of its belief: for all hi ∈ H, i = 1, . . . , n, the prior probability P (hi) is defined; this
represents the chance that hypothesis hi holds. P (H) is the probability distribution of the hypothesis
space. Similarly, P (D) is the prior probability distribution of all the data, and P (d) is the prior
probability of the single observation d.

The expression P (hi, d) represents the joint probability that both propositions hi and d are oc-
curring at the same time; analoguosly, P (H,D) represents the joint probability distribution over the
spaces H and D. The joint probability can be calculated through the chain rule (1) and is defined as
follows:

P (hi, d) = P (d|hi)P (hi) ∀i = 1, . . . n (3)

where P (d|hi) represents the conditional probability that d is manifested given that the hypothesis
hi holds. Analogously

P (hi, d) = P (hi|d)P (d) ∀i = 1, . . . n

therefore

P (hi|d)P (d) = P (d|hi)P (hi) ∀i = 1, . . . n

If P (d) > 0,∀d ∈ D, the formula

P (hi|d) =
P (d|hi)P (hi)

P (d)
∀i = 1, . . . , n, P (d) > 0 (4)

is obtained. This formula is also called Bayes rule [2]. Since the hypothesis space H is composed
of n mutually exclusive hypothesis hi, i = 1, . . . , n, the prior P (d) can also be expressed through the
total probability theorem

P (d) =
∑
H

P (d|H)P (H) =
n∑
i=1

P (d|hi)P (hi) (5)

leading to the marginalized version of Bayes theorem:

P (hi|d) =
P (d|hi)P (hi)∑n
j=1 P (d|hj)P (hj)

(6)

To conclude, given (4) and (6), it is possible to perform inference about the hypothesis space given
observations.

2.3 Bayesian Networks

Bayesian networks (BNs) are a graphical structure for statistical inference on random variables; their
computational power is given by the fact that BNs highlight the essential relationships among random
variables, that is, their conditional dependence and independence.

Definition: a Bayesian network (BN) is a graph in which the following holds:

1This assumption of mutually exclusiveness can be clearly seen in the chemical leak problem of this thesis: the
helicopter keeps hypothesis of possible leak locations and it is assumed that only one leak is occurring; this means that
the hypothesis “the leak is in location A” and “the leak is in location B” are mutually exclusive.
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1. A set of random variables makes up the nodes of the network;

2. A set of directed links or arrows connects pairs of nodes. The intuitive meaning of an arrow
from node X to node Y is that X has a direct influence on Y ;

3. Each node has a conditional probability table that quantifies the effects that the parents have
on the node. The parents of a node are all those nodes that have arrows pointing to it;

4. The graph has no directed cycles (hence is a directed, acyclic graph, or DAG) [8].

An example of BN is given in Figure 1. Five nodes are present: X1, X2, X3, X4 and X5. X1

represents the root node, X5 the leaf node, whilst X2, X3 and X4 are the intermediate nodes of the
network. Furthermore, X1 is the parent node of X2 and X3, which are, at the same time, parent nodes
of X4. Analogously, X4 is parent of X5. More generally, the parent node of a node Xi is represented
by parent(Xi).

Figure 1: An example of BN with five nodes.

It is usually easy for a domain expert to decide what direct conditional dependence relationships
hold in the domain. Once the topology of the belief network is specified, the conditional probabilities
for the nodes that participate in direct dependencies are specified and used to compute any other
probability values [8]. Mostly, BNs describe causal relationships among variables: from an initial
cause, represented as the BN root node, a chain of random variables representing dependent events
are defined, until the leaf nodes. This is due to the fact that humans tend to reason about events in
terms of causes-effects. From now on, the attention is focused on causal Bayesian networks.

D-separation is a graphical notion that is used to represent conditional independence between
random variables; this is a powerful property that gives the possibility to define independence of
nodes given their parents and thus to efficiently represent the joint probability distribution between
variables. The question now is whether it is possible to define independence of a set of nodes X from
a set of nodes Y given a set of evidence nodes E.

A set of nodes E d-separates two sets of nodes X and Y if every undirected path from a node in
X to a node in Y is blocked given E. A path is blocked given a set of nodes E if there is a node Z
on the path for which one of three conditions holds:

(D1) Z is in E and Z has one arrow on the path leading in and one arrow out;

(D2) Z is in E and Z has both path arrows leading out;

(D3) Neither Z nor any descendant of Z is in E, and both path arrows lead in to Z [8].
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If every undirected path from a node in X to a node in Y is d-separated by E, then X and Y are
conditionally independent given E. A graphical explanation of d-separation is given in Figure 2.

Figure 2: Three cases that define d-separation. The original image can be found
in [8].

It is now possible to define the joint probability distribution of n random variables X1, . . . Xn of a
BN. Thanks to d-separation and the consequent conditional independence of nodes given by (2), some
variables can be ruled out. The final joint probability distribution is reduced to

P (x1, . . . xn) =
n∏
i=1

P (xi|parent(xi)) (7)

Through Bayes rules (4) and (6) and the joint probability equation (7), it is now possible to per-
form inference on BNs. Given some evidence, that is, observations of the values that some random
variables have, it is possible through Bayes rule to infer about the probability that other nodes assume
values in their domain.
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3 Background: Distributed Perception Networks

Causal Bayesian networks are a powerful tool to describe causal relationships among variables and
infer about hidden variables given observation of some other variables; for example, given evidence of
leaf nodes, through inference, it is possible to calculate the probability distribution of values defined
by the hidden root node. A causal BN can be used to describe the effects generated by a chemical
leak: the cause, that is the chemical leak, represents the root node of the network, and the sensor
readings, that is the effects, represent the leaf nodes of the network. Between these two type of nodes,
hidden variables representing the gas spread and sensor models are present.

A problem with using centralized inference, that is a monolithic BN that processes the whole
information of the environment, is that it is highly dependent on the problem complexity. In real
life, the sensors can be replaced, moved, modified, and so on; the monolithic BN must be updated
everytime these events occur, otherwise it will represent an incorrect model and thus the inference
will be wrong. Furthermore, if the Bayesian network used to represent the whole history of sensor
readings is a quasi-static one2, that is, all new sensor readings are represented as new instantiated leaf
nodes of the network, the monolithic BN will be constantly modified. This makes centralized inference
impractical. Decentralized inference provides a more flexible solution to cope with a possibly constant
need to change the network structure.

D-separation described in Section 2.3 plays an important role: by identifying nodes that d-separate
various nodes in a BN, it is possible to create partitions and distribute the control to them: ability to
reorganize the local network by adding leaf nodes and to perform local inference about the partition’s
root given observations about partition’s leaves. Then, by sharing (fusing) only the result of the local
inference, the system becomes robust to changes. Clearly, different level of abstractions are present.
The approach just illustrated is performed by distributed perception networks, a fusion system defined
as follows:

Definition: Distributed perception networks (DPNs) are a multi-agent based approach to robust
and efficient fusion of heterogeneous data and information that avoids centralized fusion systems. Its
approach features simple building blocks implemented through agents of different types, which can
dynamically be organized into fusion systems that can cope with partially unpredictable aspects of
the real world [4].

In a DPN, two kinds of cooperative agents are present: at the lowest level, sensor agents process
raw sensory data and perform a so called low level inference. At higher levels, fusion agents perform
inference using the information provided by sensor agents or other fusion agents and pass their result
to higher levels, up to the highest fusion agent.

Both sensor and fusion agents can perform their inference through arbitrary complex local BNs
that represent basic world modeling building blocks [4]; the only constraint of DPNs, however, is given
by the fact that each agent’s local BN has only one service root node. The agent’s service root node
is the concept the agent provides to other agents. In a DPN, all the agents are organized as nodes of
a simple tree; furthermore, each agent can have at most one agent-node as parent.

The inference performed in the agent’s local BN is done according to the equations (4), (6) and
(7) described in Sections 2.2 and 2.3, having the initial probability distribution on the local BN’s root
node set to uniform. If the priors about the local BN’s root node are set to uniform, then the fusion
system will compute exactly the same inference of the corresponding monolithic BN [5].

2The definition of quasi-static BNs goes beyond the scope of this thesis; more information about quasi-static Bayesian
networks can be found in [5], [16], [17] and [18].
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The fusion process of two agents A and B works as follows: let LB be the leaf nodes or input
concepts of the agent B’s local BN; let RA be the root node or service concept of agent A’s local BN.
Agents A and B can integrate their local networks if the service concept RA of A is identical to an
input concept of B:

{RA} ∩ LB 6= ∅ (8)

If this condition holds, then the estimated inferred distribution over the service variable RA per-
formed by A can be used as input for agent B.

An example of a DPN created from a quasi-static monolithic BN is given in Figure 3; the nodes
ECi and EDi are dynamic nodes, that is, they are instantiated and added during time. The DPN is
organized in four agents, two of them are sensor agents (those which deal with the dynamic nodes)
and the other two are fusion agents. Thanks to the distribution of the control, the sensor agents will
be the only ones that will modify their local BN structure. Further information is thoroughly provided
in [5].

Figure 3: (a) Quasi-static monolithic Bayesian network with instantiated dynamic
nodes ECi and EDi . (b) Correspondent DPN fusion system. Image taken from [5].

9



4 Background: Reinforcement Learning

Reinforcement Learning (RL) addresses the question of how an autonomous agent that senses and
acts in its environment can learn to choose optimal actions to achieve its goals [9]. This method has
its roots in the study of animal trial-and-error behaviour under the influence of external stimuli [19].
RL provides a successful approach to sequential decision making problems.

The task of the agent is to perform a sequence of actions that would lead it to a goal state. In
other words, the task is to learn a control policy

π : S → A (9)

Where S is the set of states of the environment and A the set of actions available to the agent. In
order to learn a control policy, the agent receives from the environment a reward, that is quantitative
information about the action just performed. Some other information about the current state of the
environment, furthermore, can be received, as it will be explained later in this chapter. However,
intuitively, the policy learnt should be the optimal one, that is, a policy π∗ that maximizes the cumu-
lative discounted reward received by performing actions from the initial state to the goal state.

The agent learns by directly interacting with the environment and this interaction is the result of
the agent’s actions performed in particular states; this means that the agent influences the distribu-
tion of states that are visited. Ideally, the agent should explore in an exhaustive way all the states of
the environment; on the other hand, the agent should visit more those states that are “better” than
others, that is, that let it reach the goal state in an optimal way. In other words, the agent must face
the problem of exploitation of known states versus the exploration of the environment.

4.1 Markov Decision Processes

It is now investigated the simplest type of RL scenario, the Markov decision process (MDP), and its
elementary solution method, the dynamic programming method’s value iteration, is provided.

An MDP is defined by a tuple (S,A,∆,R) where:

• S represents the state space of the environment; s ∈ S is the single state representation;

• A represents the finite set of actions of the agent; a ∈ A is the representation of a single action;

• ∆ is the state transition function, that is, a mapping between state-action pairs to a probability
distribution over the state space: ∆ : S ×A → Π (S); δ(s, a, s′) = P (s′|s, a) represents the state
transition function related to a single state-action pair;

• R : S ×A× S → R is a real valued function over state-action-state triplets; the function

r(s, a) =
∑
s′∈S

δ(s, a, s′)R(s, a, s′) (10)

is the expected immediate reward for a given state-action pair.

In a Markov Decision Process, the functions δ and r depend only on the current state and action,
and not on the earlier states and actions [9].

The MDP scenario is the following: at each discretized timestep t the agent, being in current state
st, chooses an action at and performs it. The environment responds at timestep t + 1 by producing
the succeeding state st+1 and by giving the agent a reward rt+1 = r(st, at). A representation of this
scenario is given in Figure 4.
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Figure 4: MDP scenario.

Almost all reinforcement learning algorithms are based on estimating value functions (also called
functions of states or state values) that estimate how good it is for the agent to be in a given state
[11]. It represents the expected discounted cumulative value achieved by following an arbitrary policy
π from an arbitrary initial state st. It is defined as follows [9]:

V π(s) = Eπ
[
rt+1 + γrt+2 + γ2rt+3 + . . . |st = s

]
=

= Eπ
[∑∞

i=0 γ
irt+i+1|st = s

] (11)

where E [.] denotes the expected value given that the agent follows policy π, γ ∈ [0, 1) is a discount
rate that ensures that even with infinite sequences the sum is finite [19], and t is any timestep. A
fundamental property of value functions used throughout reinforcement learning and dynamic pro-
gramming is that they satisfy particular recursive relationships. For any policy π and any state s, the
following consistency condition holds between the value of s and the value of its possible successor
states:

V π(s) = Eπ
[∑∞

i=0 γ
irt+i+1|st = s

]
=

= Eπ
[
rt+1 + γ

∑∞
i=0 γ

irt+i+2|st = s
]

=

=
∑
s′ δ(s, π(s), s′)

[
R(s, π(s), s′) + γEπ

[∑∞
i=0 γ

irt+i+2|st+1 = s′
]]

=

=
∑
s′ δ(s, π(s), s′) [R(s, π(s), s′) + γV π(s′)]

(12)

where s′ ∈ S are the next states. Equation (12) is the Bellman equation for V π [9].

Value functions define a partial ordering over policies. A policy π is defined to be better than or
equal to a policy π′ if its expected return is greater than or equal to that of for all states. In other
words, π > π′ if and only if V (π) > V (π′) for all s ∈ S. There is always at least one policy that is
better than or equal to all other policies. This is an optimal policy and it is denoted by π∗. There can
exist more than one optimal policy, nonetheless, they all share the same state-value function, called
the optimal state-value function, denoted V ∗, and defined as:

V ∗ = max
π

V π(s) (13)

for all s ∈ S. The policy that selects actions in order to maximise the value function for the current
state is called greedy policy and it is an optimal policy [19]. The greedy policy is then defined as:

π∗(s) = arg max
a∈A

V ∗(s) (14)

for all s ∈ S. If the agent has an exact knowledge of the model of the environment, that is δ and
r, and S is finite, then dynamic programming method’s value iteration can be used to compute (13).
Value iteration operates by using the greedy policy π∗ in (12) and changing it into an update rule;
the algorithm becomes the following:
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V̂ (s) ← maxaE
[
rt+1 + γV̂ (st+1)|st = s, at = a

]
=

= maxa
∑
s′ δ(s, a, s

′)
[
R(s, a, s′) + γV̂ (s′)

] (15)

where V̂ represents the current estimates for V ∗. For arbitrary initialization of the value functions,
it can be shown that V̂ converges to V ∗ under the same conditions that guarantee the existence of
V ∗.

4.2 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process (POMDP) is a generalization of a Markov Decision
Process [10]. A POMDP models a decision process in which it is assumed that the system dynamics
are determined by an MDP, but the agent cannot directly observe the underlying state. Instead, it
must infer a distribution over the state based on a model of the world and some local observations.

A POMDP, hence, is defined by the tuple (S,A,Z,∆,R,O) where, in addition to the elements of
the original MDP definition, a finite set of observations Z and the observation function O : S ×A →
Π (Z) are added. The observation function maps the state action pairs to a probability distribution
of Z. o(s, a, z) = P (z|s, a) is the individual probability distribution of the observation given state s
and action a.

Given the partial observability, the control policy (9) and the value iteration algorithm for policy
learning (15) defined in the previous paragraph become infeasible. Since the state is not known, the
complete history of observations should be kept and the optimal policy should be based on that,
making the problem not Markovian anymore.

A solution is to keep a belief state, that is, a summary statistic of the entire process. Unlike
the entire history, the belief state is of fixed dimension; nonetheless, it is a sufficient statistic for the
history, which means that optimal behaviour can be achieved using the belief state in place of the
history [10]. The belief state b represents a probability distribution over the set of states S where b(s)
represents the probability of being in state s. Furthermore, B is the probability space over the beliefs
b. The task now is to learn a control policy

π : B → A

The scenario, at this point, is the following: after having performed action at at time t, the agent
receives, at time t+ 1, an observation zt+1, together with the reward rt+1 = r(st, at). The represen-
tation of this scenario is given in Figure 5.

Figure 5: POMDP scenario.

At timestep t + 1, the agent must update its belief state bt; it turns out that Bayes rule, defined
in (4) and (6), can successfully compute
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baz(s′) = P (s′|b, a, z)

where s′ are the next states; the notions at, zt and bt are represented without the underscript t for
a better interpretation of the formula just provided.

Through the use of the belief state, the POMDP can be treated as a continuous space MDP [10],
where the continuous state space is represented by B and the action set still remains A. Since A and
Z are finite, the number of successor belief states are finite.

Before approaching the new value function and its related value iteration algorithm, new com-
ponents must be defined. The state transition function, now, defines the probability of a particular
successor belief state, given an initial belief state and action. Since each observation can yield a
different succeeding belief state, the belief state transition is defined as following:

ψ(b, a, b′) =
∑
z∈Z

P (z|b, a)I(b′, baz) (16)

where

I(x, y) =
{

1 ifx = y
0 else

(17)

that is, the sum of the probabilities of all the observations that would lead to this belief state [10].
The set of possible successor belief states is represented by

B′(b, a) = {baz} ⊂ B

and the reward function is now defined as

ω(b, a) =
∑
s∈S

b(s)r(s, a) (18)

which simply uses the belief state in an expectation over all states [10]. By replacing s with b,
δ(s, a) with ψ(b, a, b′) and r(s, a) with ω(b, a) in (12), the value function equation for POMDP is
obtained:

V π(b) = ω(b, π(b)) + γ
∑

b′∈B′(b,π(b))

ψ(b, π(b), b′)V π(b′) (19)

and its related value iteration update is defined as follows [10]:

V̂ (b)← max
a

ω(b, a) + γ
∑

b′∈B′(b,a)

ψ(b, a, b′)V̂ (b′)

 (20)

4.3 TD-Methods

The value iteration approaches defined in Sections 4.1 and 4.2 are based on the assumption that the
agent has an exact knowledge of the model of the environment. When the state transition is unknown,
value iteration cannot be applied; moreover, even if it can be applied to continuous state spaces, for
example in a POMDP, the exact solution is generated only in special cases [21]. Temporal difference
(TD) methods are a class of algorithms that can learn directly from raw experience without a model
of the environment’s dynamics [11] by reducing discrepancies between estimates made by the agent
at different times [9]. The formulas provided in this paragraph are based on MDP problems.
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Before introducing Q-learning, a TD method for control policy learning, the Q-function is intro-
duced. This function can be used, unlike V , when the environment’s dynamics, that is the state
transition function and the reward function, are not known to the agent.

Similarly to (11), the q-value of taking action a in state s under a policy π, denoted Qπ(s, a), is
the expected return starting from s, taking the action a, and thereafter following policy π:

Qπ(s, a) = Eπ

[ ∞∑
i=0

γirt+i+1|st = s, at = a

]
(21)

hence the optimal action-value function denoted by Q∗ is defined as

Q∗(s, a) = max
π

Qπ(s, a) (22)

for all s ∈ S, a ∈ A. For the state-action pair (s, a), this function gives the expected return for
taking action a in state s and thereafter following an optimal policy. The greedy policy, now, is the
policy that selects the action that maximises the q-value for the current state:

π∗(s) = arg max
a

Q∗(s, a) (23)

By skipping the intermediate steps, which can be found in [11], the Bellman optimality equation
for Q∗ is:

Q∗(s, a) = E [rt+1 + γmaxa′ Q∗(st+1, a
′)|st = s, at = a] =

=
∑
s′ δ(s, a, s

′) [R(s, a, s′) + γmaxa′ Q∗(s′, a′)]
(24)

Q-learning is the rule that updates the current q-values as follows:

Q̂(st, at)← Q̂(st, at) + α
[
rt+1 + γmax

a
Q̂(st+1, a)− Q̂(st, at)

]
(25)

where α is a constant step-size parameter and the notation Q̂ indicates the estimates of the optimal
Q-function Q∗.

If all states are visited infinitely often and α decreases slowly with time, Q-learning can be shown
to converge to the optimal Q∗(s, a) [19]. This brings back to the issue of exploration vs exploitation
described at the beginning of this chapter. The approach used in this thesis is the so called ε-greedy
exploration: the agent performs a random action with probability ε, where ε is a small number, in
order to explore the state space of the environment; with probability 1 − ε, instead, the agent will
perform action a = arg maxa′ Q̂(s, a′), in order to exploit the states it has already visited. In case of
ties, one of the actions that leads to the highest q-value is selected randomly.

4.4 Function Approximation

Q-learning defined in (25) can be successfully used when both the state space and action space are
finite. If so, then, the q-values can be stored in a table, where at each state-action entry, the correspon-
dent q-value is given. In this way, all the current estimates are kept and updated. Unfortunately, the
representation of state-action pairs in table entries is limited to tasks with small tables. The problem
is not just the memory needed for large tables, but the time and data needed to fill them accurately.
In other words, the key issue is that of generalization. The question is: how can experience with a
limited subset of the state space be usefully generalized to produce a good approximation over a much
larger subset?

Generalization from examples has already been extensively and successfully studied, so it is pos-
sible to combine reinforcement learning methods with existing generalization methods. The kind of
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generalization required is often called function approximation because it takes examples from a desired
function (e.g., a value function) and attempts to generalize from them to construct an approximation
of the entire function [21].

Analogously to what is presented in other sections, the attention is first given to the study of the
value function V . The approximate value function at time t, V̂ (st), is no longer represented as a table
but as a parameterized function with parameter vector −→θ . This means that the value function V̂ (st)
depends totally on −→θ , varying from timestep to timestep only as −→θ varies [21].

Typically, the number of parameters (the number of components of −→θ ) is much less than the
number of states in S, and changing one parameter of −→θ changes the estimated value of many states.
Consequently, when a single state is used to update the value function, the change generalizes from
that state to affect the values of many other states [21].

Due to generalization, however, it might happen that the value function for some states is no longer
optimal. Some error between the approximated value function V̂ and the true value function V π is
introduced. What is aimed, at this point, is the minimization of such error. Since the distribution of
states visited P influences the learning process, then, the idea is to find a parameter vector −→θ that
minimises the squared error

MSE(−→θ ) =
∑
s∈S

P (s)
(
V π(s)− V̂ (s)

)2

(26)

Because of that, instead of a global optimum, a local optimum parameter −→θ
∗
, which MSE(−→θ

∗
) ≤

MSE(−→θ ) for all −→θ in some neighborhood of −→θ
∗

is sought [21].

4.4.1 Gradient Descent Method

Gradient descent is one of the most widely used function approximation techniques in reinforcement
learning. The parameter vector is a column vector with a fixed number of real valued components

−→
θ =


θ(1)
θ(2)

...
θ(n)


and V̂ (st) is a smoothed differentiable function of −→θ for all s ∈ S [21].

The value function V̂ that is estimated during learning, intuitively, should be the closest possible
to the real one, V π for all states; furthermore, it is assumed that the states are visited according to
the probability distribution P . The task is the minimisation of (26). A good strategy in this case is
to try to minimise error on the observed states. Gradient-descent methods do this by adjusting the
parameter vector after each example by a small amount in the direction that would most reduce the
error on that example:

−→
θ ← −→θ − 1

2α∇−→θ (V π(st)− V̂ (st))2 =

= −→θ + α(V π(st)− V̂ (st))∇−→θ V̂ (st)
(27)

where α is a positive step-size parameter, and ∇−→
θ
f(−→θ ), for any function f , denotes the vector of

partial derivatives
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∇−→
θ
f(−→θ ) =



∂f(
−→
θ )

∂θ(1)

∂f(
−→
θ )

∂θ(2)

...
∂f(
−→
θ )

∂θ(n)


This derivative vector is the gradient of f with respect to −→θ . This kind of method is called gra-

dient descent because the overall step in −→θ is proportional to the negative gradient of the example’s
squared error. This is the direction in which the error falls most rapidly [21].

Usually, the true value function V π is unknown, therefore, the update formula (27) cannot be used
anymore. However, it is possible to approximate it by substituting vt in place of V π(st). This yields
the general gradient-descent method for state-value prediction:

−→
θ ← −→θ + α(vt − V̂ (st))∇−→θ V̂ (st) (28)

If vt is an unbiased estimate, that is, if E[vt] = V π(st), for each t, then −→θt is guaranteed to converge
to a local optimum under the usual stochastic approximation conditions for decreasing the step-size
parameter α [21].

4.4.2 Control with Function Approximation

It is now sought a method that aims to learn to approximate, instead of the value function V π, the
q-value function Qπ, for the same reasons that were illustrated in Section 4.3. The Q-function, clearly,
is represented as a functional form of state-action pairs with parameter vector −→θ . From such function,
then, a control policy can be defined.

The parameter vector −→θ is then built in a similar way of equation (28):

−→
θ ← −→θ + α(vt − Q̂(st, at))∇−→θ Q̂(st, at) (29)

where

vt = rt+1 + γmax
a′

Q̂(st+1, a
′) (30)

where Q̂ denotes the current estimate of the action-value function. By using this method, then, the
agent can learn an approximate function for state action pairs that minimizes the true action-value
function. Furthermore, this method is model-free, in accordance with what said in Section 4.3.
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5 Method: DPNs for Chemical Leak Detection

This chapter analyses the chemical leak detection problem by defining causal relationships between
leak and sensor readings; from this, it defines the DPN model that will be used in the rest of the thesis.

It is important that, when a chemical leak occurs in some factory, depot, etc. it is detected quickly,
in order to avoid massive contamination of the environment. Several sensors can be placed next to
factories in industrialized areas, and through their readings, some reasoning about the chemical leak
can be done.

A chemical leak generates toxic gas which typically spreads in the environment; the consequence
of diffusion and air flow makes this event perceived even far away from the leak location. The pres-
ence of gas generates effects that are perceived by sensors. For example, they can be specialized into
the detection of different phenomena, such as variation of the ionization or condensation of the air,
etc. The sensors perform physical readings which are then compared to a set of thresholds which
represent the sensor calibration. In this thesis’s simple case, one threshold and two discrete intervals
are assumed. Two boolean values can represent the intervals: true if the physical reading has a value
equal or greater than the threshold, false otherwise.

The area where a chemical leak might occur is usually large; for example industrialised areas or
harbours are usually composed of many factories. If the area is partitioned into m clusters, then, in
order to have an optimal monitoring, each type of sensors should be placed in each cluster.

In real life, the sensors are faulty: the result of the inference, hence, can lead to false positives
(the leak is detected in a location where it is not occurring) or false negatives (the leak is not de-
tected where it is occurring). This is due to the fact that the phenomenon the sensors detect can be
generated by other causes, such as natural events or they can be the result of some non dangerous
chemical transformation; another reason could be the fact that the concentration of gas spread is very
high because the leak is in a neighboring cluster. In order to have a robust monitoring system, many
readings should be performed and processed all together.

A causal model for the chemical leak is shown in Figure 6; it is based on m clusters and n types
of sensors; each type of sensor is present in each cluster. The root node represents the leak location;
its domain is composed of the possible m locations where it can occur. According to a conditional
probability distribution, which describes the physical laws of chemical contamination in the environ-
ment, Gas in different clusters can be present. For each cluster, n types of sensors are modeled; the
leaf nodes represent the k + 1 instantiated sensor readings; new instantiated leaves are added each
time new readings occur. The temporal property of the readings makes the network a quasi-static one.

The goal is to perform inference about leak position given sensor readings. Clearly, the load of
work done when using the monolithic BN is huge, especially if n,m and k grow. Distributed inference
is advised. In order to define the DPNs, a top down view of the causal process, that is, from the root
to the leaf nodes, is adopted.

If a leak occurs, then, the node leak position of the BN is instantiated; according to property (D2)
defined in Section 2.3, the node d-separates the Gas-es; the result is a partition into m sub-networks,
as shown in Figure 7.

Through this separation, a distribution into clusters is achieved: all the sensor readings for all
the sensors of each cluster can be considered in the inference about the Gas presence in that cluster,
independently on the result of the other cluster models.

It has been said that when the leak occurs, a toxic gas spreads in the environment. This corre-
sponds to the instantiation of the m Gas nodes in the BN. In the same cluster, then, Gas d-separates
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Figure 6: Quasi-static causal Bayesian network for the leak detection problem.

Figure 7: The leak position root node d-separates the Gas nodes.

the n sensor models, still according to property (D2). This is shown in Figure 8.

All these d-separated parts of the true monolithic network can be represented by independent
inference modules using partial BNs; these models are organized into DPNs, one for each m possible
cluster. Each DPN is composed of n sensor agents, and each agent deals with its own readings. The
agent organization is given in Figure 9.

This distribution of the inference is such that only the sensor agents will deal with a change of
their network topology. The inference of Gas given sensor readings is performed according to what
said is in Sections 2 and 3.

The global inference of leak position given Gas is not present in any of the DPNs; as it will be
shown in the next chapter, this inference will be performed by the helicopter to update its leak belief.
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Figure 8: The Gas in position “i” node d-separates the n possible sensor type
nodes.

Figure 9: DPN’s agent organization.
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6 Method: Integrating RL with DPNs

This chapter investigates methods that aim to obtain mobile sensor control though the integration of
RL techniques described in Chapter 4 and DPN systems presented in Chapter 3. The case scenario is
the chemical leak detection problem introduced in Chapter 5: several DPN systems are present in the
environment and, according to sensor readings, perform inference about Gas presence; the integration
between the two systems is represented by the RL interpretation of the DPN inferences as observations
that are sent to the helicopter agent, which performs a higher inference about leak location.

Before going any further, an ambiguity should be clarified: all the RL techniques described in
Chapter 4 consider the single agent case; on the other side, it has been said in Chapter 3 that a
DPN system is a multi-agent approach for inference. Under the RL perspective, the ambiguity is
solved by the fact that the observation z the helicopter receives is the result of the causal inference
performed by the fusion system, that is, the most abstract level of information possible. This means
that the helicopter does not have to communicate with all the other agents, hence it can ignore their
existence. On the other perspective, the fusion system treats the helicopter agent as a sensor agent,
that is, it considers it as part of its multi-agent system. Thanks to the fact that the DPN system
does not perform any control on the sensors, and the fact that is robust with respect to the agent net-
work composition, it can treat the mobile sensor as a sensor that “sometimes” it fuses into the system.

It is now provided the formal description of the problem. The point of view chosen is the helicopter’s
one, hence, the DPN systems will be described as a component of the environment. The setting
adopted is episodic: the helicopter agent starts an episode at timestep 0 and performs actions until it
reaches a goal state. Then, the episode ends and a new one starts. In these episodes, the agent learns
the control policy. The following assumptions are defined and hold for each separate episode:

(A1) Only one leak is occurring and in a random position of the environment;

(A2) The leak is never changing its position;

(A3) The leak is not changing its contamination area;

(A4) There is one DPN for each of the n ·m cells of the environment.

The meaning of these assumptions will become clear through the rest of the chapter.

Environment Organization

The environment is represented as two dimensional grid of squared cells (also called clusters) divided
into n rows and m columns. Each cell is univocally identified by its (y, x) coordinates according to
the y and x cartesian axis of the grid. The coordinates assume positive integer values, with the origin
situated on the top left corner of the grid. The top-down point of view of the helicopter is taken.
The environment has boundaries, corresponding to the four sides of the grid: the helicopter cannot
leave the environment (this is also called border condition). The coordinate system of the grid is
used to determine the coordinates of the leak, the helicopter and the DPNs. The helicopter knows
its own position3 but does not know where the leak is. The task of the helicopter is to determine the
coordinates of the leak. At timestep 0 of each episode, the helicopter is placed randomly at one of the
four corners of the grid4. An example of the episode at timestep 0 is given in Figure 10.

3It can be assumed that the helicopter through GPS retrieves its World’s coordinates and maps them in the envi-
ronment.

4This is done in order to simulate the fact that the helicopter can be kept in a hangar far away from the monitored
area: during the time the helicopter takes to get there, an initial contamination occurs.
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Figure 10: An example of a 7× 7 celled environment at timestep 0: the leak L is
randomly spawn in position (2, 4), the helicopter H is randomly placed at one of
the four corners, (6, 0).

State Space

As said before, the helicopter does not know anything about the fixed sensors and the DPN systems.
Due to that, and assumption (A4), the full state space FS is defined as followings:

FS = {[(yh, xh), (yl, xl)] ,∀yh, yl = 0, . . . n− 1, xh, xl = 0, . . .m− 1} (31)

Where (yh, xh) represents the helicopter position and (yl, xl) represents the leak position. fs ∈ FS
represents a single full state. Alternative ways of representations are also Hy,x and Ly,x, hence
fs = (Hy,x, Ly′,x′) or simply fs = (H,L); they will be interchanged during the thesis in order to
avoid confusions in formulas.

The full state space is composed of all the possible combinations of helicopter position and leak
position. However, given (A1), in each episode, the full state space is reduced to the true state space

S = {[(yh, xh), (yl, xl)] ,∀yh = 0, . . . n− 1, xh = 0, . . .m− 1} ⊂ FS (32)

with (yl, xl) fixed at the beginning of the episode. In such way, n ·m partitions of FS are defined.
s ∈ S represents a single true state.

Action Space

The helicopter can perform three kind of actions: it can move, it can activate its sensor (it will be
said that the helicopter senses or performs sensing action) and it report a leak location (alternatively
said that it performs report action, or simply reports). The state space, therefore, is the following:

A = {n, s, e, w, l, r} (33)

where a ∈ A represents a single generic action of the action space. l represents sensing action and
r represents report action. The moving actions are four and are relative to the direction the helicopter
takes according to the environment axis: the helicopter can move north, south, east and west, and
are represented by n, s, e, w. Only these four actions perform a state transition: they can change the
helicopter’s position, according to the border condition. The sensing action does not generate any
state transition; as it will be shown later on, it implies the fusion of the helicopter sensor model to
the DPN located in the same cell of the helicopter; this has as result a sharper inference about the
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gas presence in that cell. The report action, finally, is the only one that let the helicopter reach a goal
state and terminate the episode. When the helicopter performs a report action, it will also declare a
leak position (Ldy, Ldx) based on its belief.

State Transition Function

The state transition δ is assumed to be deterministic and is the following:

δ ([Hy,x, Ly′,x′ ] , n) =
{

[Hy−1,x, Ly′,x′ ] if Hy > 0
[Hy,x, Ly′,x′ ] if Hy = 0

δ ([Hy,x, Ly′,x′ ] , s) =
{

[Hy+1,x, Ly′,x′ ] if Hy < n− 1
[Hy,x, Ly′,x′ ] if Hy = n− 1

δ ([Hy,x, Ly′,x′ ] , e) =
{

[Hy,x+1, Ly′,x′ ] if Hx < m− 1
[Hy,x, Ly′,x′ ] if Hx = m− 1

δ ([Hy,x, Ly′,x′ ] , w) =
{

[Hy,x−1, Ly′,x′ ] if Hx > 0
[Hy,x, Ly′,x′ ] if Hx = 0

δ ([Hy,x, Ly′,x′ ] , l) = [Hy,x, Ly′,x′ ]

δ ([Hy,x, Ly′,x′ ] , r) = episode ends.

(34)

Clearly, the boundary conditions are defined.

Reward Function

The reward function must be defined such that the helicopter will report and terminate the episode
the fastest possible but, at the same time, the location declared must be correct. It is defined as
follows:

r(s, {n, e, s, w, l}) = −1

r(s, r) =
{

0 if Ld = L
−1000 else

(35)

where Ld = L means that the two coordinates are the same along both axis: Ldy = Ly, Ldx = Lx.
With such definition the helicopter must learn when it is better to move or to perform sensing action,
since they return the same reward; it also has to learn how to determine Ld in order to have the
highest reward.

Belief State

The belief state, as said in Section 4.2, represents the probability distribution over the state space.
Due to the assumption (A2), during an episode, the sequence of true states visited will be

s0 = (H0, L) , s1 = (H1, L) , . . . st = (Ht, L) , . . . , sT = (HT , L)

where the underscript represents the timestep and at timestep T the helicopter performs report
action. The only difference between true states in an episode is given by the helicopter position, but
this is known to itself. This means that the probability distribution of the belief state must deal with
the probability distribution about the leak location only. Because of assumptions (A1) and (A2), the
true probability distribution PL of the leak position during an episode where the leak is in occurring
in (ly′ , lx′) is the following:
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PL(ly, lx|ly′,x′) =
{

1 if ly = ly′ , lx = lx′

0 else
(36)

for all y = 0, . . . n − 1, x = 0, . . .m − 1. The helicopter, therefore, keeps a belief as a probability
distribution with the same dimension as the number of cells of the environment:

b = [P (L0,0), P (L0,1), . . . P (L1,0), . . . P (Ln−1,m−1)] (37)

where each possible location is represented through a boolean random variable. b will, form now
on, be called the leak belief. The belief state, then, is defined as follows:

B = (Hy,x, b) (38)

During an episode, according to what said in Section 4.2, the belief state will be updated according
to a belief transition function. This update generates, at each timestep, the following sequence of belief
states:

B0, B1, . . . , BT

Where the underscript represents the timestep and T . The same sequence can be expressed for
the leak belief:

b0, b1, . . . , bT

The initialization of the leak belief is set to uniform:

b = b0 =
[
P0(Lx,y) =

1
n ·m

]
(39)

for all y = 0, . . . n−1, x = 0, . . .m−1. This initialization represents the highest level of uncertainty
about the leak position. The task of the helicopter, now, can be seen as the one that aims to reduce
the uncertainty about the leak location, that is, from the leak belief (39) it must converge to the true
probability distribution (36).

At this point, Ld can be formally defined. It has been said that the helicopter, when performs
report action, declares a leak location. Since the task is to reduce the uncertainty about the leak
position, the leak position declared Ld should be the location with highest probability according to b:

Ldy,x = arg max
(y′,x′)

(b = bT ) = arg max
(y′,x′)

PT (Ly′,x′) (40)

In case of locations with same highest probability, a random one is used in order to break ties.

The observation function and the belief transition function constitute the integration between RL
and DPNs; because of that, now, the DPN organization and the sensor reading sampling method are
defined.

DPN Organization

The DPN organization follows the intuitions of Chapter 5. Three kinds of sensors are present: two
of them are fixed in the environment, the other one is installed in the helicopter. The two fixed
sensors are more general purpose and have a lower performance than the mobile sensor equipped in
the helicopter; moreover, the two fixed sensors have different performance. The performance of a
sensor is the measure of how well it can detect the phenomenon it is specialised on. The two fixed
sensors are able to detect condensation and ionization of the air and are called Cond and Ion; Ion
has the lowest performance. The mobile sensor is of a new type and is called MEMS5. By calling P
the performance, the following assumption is done:

5MEMS is a technology and not specific sensor. Nonetheless, it can be considered as the technology used to perceive
a special phenomenon ?. For more information about MEMS technology, check [14].
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(A4.1) P(Ion) < P(Cond) < P(MEMS)

There is one DPN per cell of the environment; each DPN is composed at least of one fusion agent
and the two sensor agents for the two sensors Cond and Ion. Eventually, if the helicopter performs
sensing action, its sensor model will be fused in the DPN of its current cell. The sensor models are
defined by means of a quasi-static BN: at each sampling, a new instantiated leaf node is added. The
agent organization for the DPN in Figure 11. The CPTs will be defined in Chapter 7, when experi-
mental results are compared.

Figure 11: DPN organization. The local BN with Gasyx root is kept by a fusion
agent, the other three local BNs are kept by sensor agents.

In each DPN, the inference about Gas given observation on the leaf nodes, that is, the sensor
readings, is performed. It is assumed that Ion generates 5 samples per timestep, Cond generates 3
samples per timestep, and MEMS, when sensing, generates only one sample.

Mother Nature

Mother Nature is a monolithic BN which is assumed to simulate exactly the physical characteristic of
the World and the sensors and it is shown in Figure 12. In accordance with what said for the DPN
organization, the CPTs for Mother Nature are described in Chapter 7.

According to assumption (A3), only at the beginning of each episode and for each DPN in the
environment, the root node Gas is instantiated. Then, at each timestep, 5 readings for Ion and 3
readings for Cond are generated for all the n ·m DPNs present in the environment; in case of sensing
action, one reading for MEMS is generated for the DPN located in the same cell of the helicopter.
These readings are then passed to the DPNs which will perform inference.

The way Gas is istantiated is now described. Saying that the leak has already contaminated some
areas means that the probability of having Gas = true, for cells that do not correspond to the leak
position, is greater than zero. This chance is described by the probability distribution

P (Gasy,x|Ly′,x′)

for all y = 0, . . . n − 1, x = 0, . . .m − 1 and Ly′,x′ fixed at the beginning of the episode. The
distribution should follow the laws of physics of fluid dynamics, gas dynamics and so on. Nonetheless,
the intuitive idea is that the closer the DPN in cell (y, x) is to (ly′ , lx′), the higher the chance of having
Gas. In other words, P (Gasx,y|Ly′,x′) is inversely proportional to d ((y, x), (y′, x′)), where d is the
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Figure 12: Causal BN model for the sensor reading sampling.

distance defined in some metric space. The distance that is used in this thesis is is the Manhattan
distance dM 6 defined as follows:

dM ((yp, xp), (yq, xq)) = |xq − xp|+ |yq − yp| (41)

By fixing the probability of having Gas at the leak location at p, the conditional probability
distribution is defined as follows:

P (Gasy,x|Ly′,x′) = p · ρdM (Gasy,x,Ly′,x′ ) (42)

where 0 ≤ ρ ≤ 1 is a smoothing factor. When ρ = 0 and p = 1 then the probability distribution
is deterministic; when ρ = 1 then the contamination is present in the whole environment with same
probability p.

Observation Set and Observation Function

The DPNs perform inference about Gas given sensor readings. Let ξy,x be the set of all observations
for the DPN in cell (y, x), that is, all the sensor readings from timestep 0 to the current timestep and
for all the three sensors; ξy,x is called hard evidence. The DPN, hence, computes

P (Gasy,x|ξy,x)

The fusion process in the DPN is done according to Chapter 3, that is, the priors about the root
node are kept uniform. The important consequence is the following:

P (ξy,x|Gasy,x) ∝ P (Gasy,x|ξy,x) (43)

The beliefs about Gas for all cells are called soft evidence and represent the observations that are
delivered to the helicopter at each timestep:

z = {P (Gas0,0|ξ0,0), P (Gas0,1|ξ0,1), . . . , P (Gasn−1,m−1|ξn−1,m−1)} (44)

The observation set Z, therefore, is the probability space of all the probability distributions of
the soft evidence P (Gas|ξ). The observation function O, intuitively, is defined as the whole sam-
pling/fusion process of Mother Nature and the DPNs.

6Intuitively, the laws of physics that regulate the chemical contamination are not dependent on such distance; it
is used only for simplicity: the pourpose of the distance is to define a probability distribution, and given that the
environment is divided in discrete cells, Manhattan distance represents the easiest choice.
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Leak Belief Update

Now that Z and O are described, it is possible to specify the leak belief update that leads to the belief
transition function B. The target is the computation of

P (Ly,x|ξ) ∀y = 0, . . . n, x = 0, . . .m

where ξ = {ξ0,0, ξ0,1, . . . , ξn−1,m−1} is the set of the set of all the sensor readings for all sensors in
all clusters of the environment. By using (3):

P (Ly,x|ξ) =
P (L, ξ)
P (ξ)

, P (ξ) > 0 (45)

for all y = 0, . . . n and x = 0, . . .m. The joint probability distribution P (L, ξ) can be computed
through chain rule (1):

P (Ly,x, ξ) = P (Ly,x)P (ξ0,0|Ly,x), . . . , P (ξn−1,m−1|Ly,x, ξ0,0, . . . ξn−1,m−2

for all y = 0, . . . n and x = 0, . . .m. Because of conditional independence, this is reduced to the
following:

P (Ly,x, ξ) = P (Ly,x)
∏

(y′,x′)

P (ξy′,x′ |Ly,x) (46)

for all y, y′ = 0, . . . n and x, x′ = 0, . . .m. By explicating P (ξy′,x′ |Ly,x) in (46) the result is:

P (Ly,x, ξ) = P (Ly,x)
∏

(y′,x′)

∑
Gasy′,x′

P (Gasy′,x′ |Ly,x)P (ξy′,x′ |Gasy′,x′) (47)

and, because of (43), this can be written as follows:

P (Ly,x, ξ) = P (Ly,x)
∏
y′,x′

 ∑
Gasy′,x′

P (Gasy′,x′ |Ly,x)P (Gasy′,x′ |ξy′,x′)k

 (48)

where P (Gasy′,x′ |ξy′,x′), for all y′ = 0, . . . n and x′ = 0, . . .m, is supplied by the DPN in (y′, x′) and
represents the observation z defined in (44), P (Gasy′,x′ |Ly,x) is the probability distribution defined
in (42) and k is a constant valid for all cells and states of Gasy′,x′ . It is reasonable to assume that
the helicopter knows (42), since it is based on physical laws which are independent on the chemical
leak detection problem.

At this point, the leak belief update defined in (45) can be replaced with the following:

P (Ly,x|ξ) = kn·mP (Ly,x,ξ)
kn·m ∑

y′,x′ P (Ly′,x′ ,ξ)
=

= P (Ly,x,ξ)∑
y′,x′ P (Ly′,x′ ,ξ)

(49)

for all y, y′ = 0, . . . n and x, x′ = 0, . . .m.

A final consideration about the integration between the helicopter and the MDPs is done. The
helicopter is at the same time the bottom and the top of the global fusion process: it is the bottom
when it decides to sense, which makes it fuse with the DPN present in the same location as the
helicopter; the helicopter is the top of the global fusion process every time it updates its leak belief
through (49), which corresponds to the final global leak position root node described in Chapter 5.
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Learning Technique

Now that the problem has been defined, a discussion about how the value function should be repre-
sented and how it should be calculated must be done. The chemical leak detection task is an atypical
POMDP problem, for many reasons that are now illustrated.

POMDP are usually solved through planning, for example, by using value iteration, meaning that
the agent has perfect knowledge of the model of the environment. The helicopter has indeed a perfect
knowledge of the model of the environment: the leak is never changing its position according to as-
sumption (A2), so the agent can know the state transition function, since it performs only a change of
the helicopter’s coordinates; the helicopter can also know the reward function, given its characteristic
of being constant for all actions apart from the report one; it can also “know” the belief transition
function, since it is aware of the existence of the DPNs and it can query them anytime it wants. At
first, planning seems to be applicable.

However, planning in POMDPs is intractable for large problems; unfortunately the chemical leak
detection is one of them, since the solution sought is supposed to be scalable to large grids. Since
planning is not feasible, the only way the helicopter can learn how to find the leak is given by learning
through interaction with the environment, in other words, a model-free approach should be used.

Model-free approaches are not usually applicable on the POMDP; when they are, model-free
approaches for POMDPs are based on heuristics that aim to give a secondary importance to the
uncertainty: for example, [10] describes most likely state (MLS), a heuristic which assumes as current
state the one with highest probability in the belief state; it also describes dual control, which is based
on two tasks: the first one that focuses its attention on uncertainty reduction, and the second one
which is based on performing actions that generate the highest reward. These heuristics are applicable
for POMDP problems where the partial observability is only an obstacle the agent faces when tries to
solve another task; a typical POMDP problem is robot motion, where the robot’s task is to move in
an environment and its partial observability is given by the noise introduced via sensor observations,
such as images of the environment acquired through cameras.

In the chemical leak detection task, instead, the uncertainty is central to the task that must be
solved; this means that heuristic approaches that do not fully condition actions on belief cannot be
used: the policy sought must reason about the uncertainty and not just cope with it. However, given
that the helicopter has perfect knowledge of the model of the environment, the helicopter can maintain
the beliefs and update them; this turns the problem into a continuous space MDP, where the state
space is represented by the belief state; this means that mode-free methods are applicable and hence
the problem can be solved: the use of belief state-action pairs leads the helicopter to plan conditioned
on the variations of the belief state, which changes over time.

As it will be shown in the following section, the belief state representation can be kept continuous
or can be discretized; for this last case, a tabular approach for Q-learning is used. If the belief is
kept continuous, instead, other techniques should be used; function approximation provides a way
for generalizing among states, and this is very useful, since the behaviour the helicopter should have,
ideally, is the same in case of similar leak beliefs/level of uncertainty about the leak presence. Gradient
descent, a function approximation technique, furthermore, is an incremental step technique, where the
parameters of the approximated value function are adjusted of small quantities, as it was shown in
Section 4.4.

6.1 Belief State Representations

It is now investigated a set of possible representations for the belief state B defined in (38). Two al-
ternatives are possible: the belief state can be discretized or kept continuous. If it is kept continuous,
then, different ways of representing it are possible. In this thesis, four of them are investigated.
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In the rest of the section, a squared environment of n2 cells is assumed in order to have simpler
representations of the relationship between environment and belief state size.

6.1.1 Discretized Belief Representation

This representation aims to partition the probability space that defines the leak belief b in order to
obtain discrete intervals in accordance with the discrete representation of the helicopter position. The
idea is to split the probability interval [0, 1] into k partitions of equal size and to assign a reference
probability value to each of them; all the probabilities of b will then be represented by the reference
probability value of the bin where they fall. Formally, the interval defined by a bini, i = 0 . . . k − 1 is
the interval

bini =


[
i
k ,

i+1
k

)
if i < k − 1[

i
k ,

i+1
k

]
if i = k − 1

(50)

where the k-th bin is closed at the right in order to include the certain probability. The reference
probability value can be any of the values within the bin; the value

refi =
i+ 1

2

k

for the i-th bin is considered. All the probability values P (Ly,x) of b are then represented with the
reference value of the bin in which the probability falls:

db =
[
refargi(P (L0,0)∈bini), . . . , refargi(P (Ln−1,n−1)∈bini)

]
(51)

The discretized belief state, then, is represented by

Bd = [(Hy, Hx), db] (52)

and, with respect to the grid size, it grows proportional to O(2 + n2) = O(n2), that is, linear with
respect to the grid size.

6.1.2 Continuous Belief Representations

This paragraph explores different ways to represent the belief state B by keeping the leak belief b
composed of continuous probability values.

Representation 1: Vector of Bits and Probabilities

The first representation considers the leak belief as it is defined in (37). Due to this, hence, the belief
state space becomes infinite. Some method for generalization over similar states must be found in the
value function definition. This approach is shown in Section 6.2.2 and makes use of linear function
approximation techniques to learn value functions.

Although the leak belief does not represent a problem anymore to the value function represen-
tation, a new issue seems to arise: the representation of the helicopter position with (Hy,x) seems
no longer feasible: the value function is considered linear with respect to the state space, and since
the helicopter coordinates are all expressed by positive integer values, it might be possible that the
helicopter will not learn the boundary conditions.

An example is the following: at timestep 0 the helicopter is placed in (0, 0). Its leak belief is
set to uniform, that is, its values greater than zero. At this point, according to the current greedy
policy, it performs action e, which leads it to location (0, 1); b remains unchanged. It will be shown, in
Section 6.2.2, that the function approximation structure aimed to be learnt is such that the gradient
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is composed of the belief state B only. Because of that, since the helicopter coordinates are (0, 0),
the only weights that are updated are those for b. At timestep 1 the greedy policy, since it is still at
an early stage, is such that the report action is performed, and the leak declared is the correct one.
The gradient of B this time considers also the feature for Hx, but since the reward is 0, no weight
update is provided for any of the weights. Now a new episode starts, and the helicopter is spawn in
(1, 1). Because of what happened in the previous episode, the action with highest q-value will still be
e, making the helicopter hitting the environment boundaries.

Instead of using the coordinates (Hy,x), the visible part of the true state is now represented by a
binary vector −→H of n2 cells, one per each cell of the environment, where the entry i is filled as follows:

H[i] =
{

1 if i = n · yh + xh
0 else

(53)

The belief state becomes

BIc =
[−→
H, b

]
(54)

that is, a vector of two vectors of n2 elements. This means that the belief state is growing
O(2 · n2) = O(n2), linearly with respect to the grid size.

Representation 2: Vector of Bits and Entropies

The task of the helicopter is to reduce its uncertainty about the leak location. Its policy should let
it go in cells where the uncertainty is high and reduce it by sensing action: when the uncertainty
is low, instead, it should not investigate it any further, but focus on other cells of the environment.
No reference to the probabilities are mentioned. This suggests the representation of the leak belief
through another indicator of uncertainty; the information entropy is used.

In information theory, the Shannon entropy or information entropy is a measure of the uncertainty
associated with a random variable. The information entropy of a boolean random variable X is

H(X) = − [P (x) logP (x) + P (x) logP (x)] (55)

where, of course, P (x) = 1 − P (x). Figure 13 shows the relationship between probabilities and
entropy for a boolean random variable X.

Figure 13: The entropy function relative to a boolean variable X as the value for
P (x) varies between 0 and 1.

Since the entropy is a measure which is linear with respect to the uncertainty, the hypothesis now
is that, through this representation of the leak belief, linear function approximation might perform
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better. This hypothesis will be validated in Chapter 7. The entropies are computed for all the n2

entries of the leak belief; the belief state then becomes

BIIc =
[−→
H,H(b)

]
(56)

where −→H is the binary vector representing the helicopter position defined in (53) and H(b) repre-
sents the vector of entropies obtained from b.

Such representation does not change the belief state size, which remains linearly dependent to the
grid size: O(n2). However, the leak belief b is not thrown away: it is still needed in order to define
the leak position declared when report action is performed, as defined in (40).

Representation 3: Egocentric View

So far, the discretized and the two continuous belief state representations considered the leak belief as
a vector of beliefs (either probabilities or entropies) ordered according to their position with respect
to the environment origin: the first entry is the belief of cell (0, 0), the second one is the belief of cell
(0, 1) and so on, until the last entry, the belief of cell (n− 1, n− 1).

This third new representation, instead, orders the belief entries according to the helicopter posi-
tion, that is, represents the belief according to the egocentric view of the helicopter. The hypothesis
arguing this representation is the following: with the non egocentric representations, the entry of the
leak belief which corresponds to the helicopter’s position changes according to the helicopter’s move-
ments: the connection between cells of the grid and helicopter position is not represented; with the
egocentric representation, instead, the belief/entropy is ordered in order to have the belief/entropy
about the current position and its neighboring cells stored always in the same position. In this way the
helicopter can know what the uncertainty about that particular far away cell is and decide, according
to its policy, whether it is better to move there or maybe perform other actions.

The cells are sorted by increasing Manhattan distance, from distance 0, that is the helicopter’s cur-
rent cell, until the maximum Manhattan distance possible in the environment, that is, (n−1)+(n−1) =
2n− 2. At a given radius-distance r, all the cells with that distance from the helicopter’s position are
sorted starting from the cell at the north of the helicopter (that is, in position (yh − r, hx)) following
a clockwise direction. An example of how the cells are sorted is given in Figure 14.

Figure 14: Example of egocentric view ordering of cells when max distance = 2.

The belief state is defined as follows:

BIIIc =
[−→
H,H(be)

]
(57)

Where −→H is the binary vector that represents the helicopter position defined in (53), be is the leak
belief ordered according to the egocentric view, and H(be) is the correspondent vector of entropies
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ordered according to the egocentric view.

In order to have an extensive coverage of the environment, as said, the maximum distance is 2n−2
in all four direction; the leak belief then becomes a rhombus of (4n−3)2−1

2 +1 entries as shown in Figure
15.

Figure 15: Helicopter’s view for a 3×3 grid. The maximum distance is 2n−2 = 4;
the rhombus can be encompassed by a square with side equal to the diagonal of
the rhombus, that is (2n−2)+(2n−2)+1 = 4n−3 = 9 cells; the square, (4n−3)2,
is twice as big as the rhombus; because of the discretised environment, the −1
and +1 in the formula are required in order to have a formula which returns a
discretised number of cells. The result is 41 cells.

The belief state size is O(n2 + (4n−3)2−1
2 + 1) = O

(
n2
)
, still, linear with respect to the grid size.

Representation 4: Reduced Egocentric View

This representation performs aggregations of the two state features defined in (57) in order to shorten
the belief state size.

The boundary condition is such that the helicopter cannot leave the environment, as defined in the
state transition (34). This means that the helicopter, at the grid boundaries, should not perform some
of the four moving actions. According to the available moving actions per each cell of the environment,
nine different partitions are defined (sensing and report actions do not affect the helicopter position:
for them, the boundary condition does not apply): four of them corresponding to the grid’s corners,
four of them corresponding to the grid’s sides, and finally the central area, where no boundaries are
present. An example of this partition is given in Figure 16. The helicopter position feature of the
belief state, then, can be represented by a binary vector of eight entries only, with value 1 for the
partition of the grid where the helicopter is, and 0 for the others.

The aggregation technique can be done for the leak belief too. Firstly, by analyzing Figure 15, it
comes to the attention that many of the cells of the rhombus are always out of the environment, as
shown in Figure 17. Given a grid of n2 cells, A square of (2n− 1)2 cells is sufficient to represent all
the cells of the environment according to the helicopter’s egocentric view.

Now, a second aggregation is defined. The idea is based on the behaviour the helicopter should
intuitively have when the environment becomes very big. Let assume the helicopter is at the centre
of a large grid at some timestep t. The helicopter is pretty sure about the leak position: it reduced
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Figure 16: A 4 × 4 grid partitioned according to the boundary conditions. The
cells with same lines belong to the same partition.

its uncertainty to two locations: the first one, called A, located near the top left corner, and the
second one, called B, located near the bottom right corner; they also have the same level of entropy.
Furthermore, the cells neighboring with A have a higher uncertainty than the neighboring cells of B.
The helicopter must decide what to do, but time is running, and cannot go in both areas: it must
chose one. If the information about the neighboring cells of A and B could be grouped together with
the informations of cells A and B, then, the helicopter would see that general higher uncertainty is
present in the area around A and then it should go there to further investigate.

This aggregation is performed by dividing the egocentric view of the helicopter into 9 areas, eight
of them representing the 8 far away areas (called suburbs), and 1 representing the central cells (called
centre). The areas are defined according to the so called reduced view of the helicopter. A reduced
view v defines the centre area as a square of (2v+ 1)2 cells with center cell the helicopter; all the cells
of the centre are represented as separated cells according to the egocentric representation described
previously; all the cells outside the centre, instead, will be grouped with the other cells of the same
suburb and their mean will be used for the leak representation. An example of how the reduced view
is build is given in Figure 18.

The belief state is then defined as follows:

BIVc =
[−→
Hr,H(ber)

]
(58)

where −→Hr represents the reduced binary vector of 8 partitions of the grid, ber the reduced ego-
centric leak belief, and H(ber) the vector of entropies of the reduced egocentric leak belief. The
state belief, now becomes dependent on the reduced view that defines the size of the centre area:
O
(
8 + (2v + 1)2 + 8

)
= O

(
v2
)
. If v = 0, that is if the centre area is composed of the helicopter

position only, the belief state becomes a vector of 18 features only, making it independent of the grid
size: O(1).

6.2 Value Function Representations

The value function aimed to be learned is the one that considers belief state-action pairs, that is,
learns q-values. Two techniques are investigated: the first one uses the discretized belief represen-
tation defined in Section 6.1.1 and learns q-values through the use of a table as defined in Section
4.3; the second one uses the continuous belief representations defined in 6.1.2 and considers the value
function as a linear mapping of belief state-action pairs into values; gradient descent method defined
in Section 4.4.2 is used in order to learn the weights of such mapping.

Analogously to what said in Section 6.1, a squared environment of n2 cells is assumed in the rest
of the section and subsections.
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Figure 17: A complete view for the helicopter in a 3× 3 grid; the dashed cells are
those that will never represent cells of the environment. (2n− 1)2 = 25 cells are
sufficient to represent all the cells of the environment according to the helicopter’s
egocentric view.

6.2.1 Tabular Representation

At a glance, the use of the discretized belief state defined in (52) seems to be a successful representa-
tion for tabular Q-learning, thanks to the fact that an infinite space is converted into a discrete one.
The issue, however, is the number of entries needed in order to represent the state space.

The helicopter can be in one of the possible n2 cells, and its leak belief can have an infinite com-
bination of probabilities; however, since they are discretized in k intervals, then there will be O(kn·n)
possible probability combinations. Some of those combinations will never exist, given that the sum of
the continuous probabilities of b must sum up to one7. The upper bound of number of entries, for a
n2 sized grid, and k probability intervals is n2 · kn·n · 6 = O(kn·n), where 6 is the number of possible
actions of the state space.

This formula clearly shows that if the environment is too big and/or the number of bins is too
high, then the number of entries needed will be enormous. This goes in contrast with the need of
having a precise representation of the leak belief: the higher the number of bins, the closer to the
continuous representation, the more precise the true state is approximated. Another problem with
the table approach is exploration: the helicopter should visit the entries often enough in order to learn
the correct q-values; if the entry are too many, then this will not happen.

6.2.2 Linear Function Approximation

When the belief state B is infinite, that is the leak belief keeps real values, the table approach is
no longer applicable. Function approximation works instead. In order to keep the problem solution
the simplest possible, it has been assumed that the value function is a linear mapping of the belief

7This property, not explicitly stated previously in the thesis, is trivially derived from the marginalized Bayes rule
defined in (6).
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Figure 18: (a) A 7 × 7 grid divided into 8 suburbs and 1 centre area with v = 1
and the helicopter position defined by H. (b) Leak belief representation according
to the reduced egocentric view.

space-action pairs.

The first question is: how many vectors −→θ should be created? This can be answered by analyzing
the action space. Each action has not much to do with the other ones, the effects of their application
lead to belief states that are different from the others; not even the movement actions can be grouped
together. It has been chosen to use six different vector of weights, one per action; hence, six different
functions are defined.

The second question is: how many features should the vectors −→θ have? The answer is trivial: as
many as the number of features of the belief state B used, where B can be one of those defined in
(54), (56), (57) and (58).

To conclude, the formula for the vector of weights −→θ update is provided. The gradient descent
formula defined in (29) is used. The only component that must be defined, at this point, is the
gradient of the Q-function, ∇−→

θ
Q̂(B, a). Fortunately, since the value function is linear with respect to

belief state-action pairs, and since there is one value function per action, the gradient of the q-value
function of belief state-action pairs is reduced to the gradient of the function with belief state state
as unique variable. Thus, the gradient is defined as:

∆−→
θ
Q̂(B, a) = B ∀a ∈ A (59)

The number of weights of −→θ are the same as the number of features of B; the total number of
features is O (6 + size(B)) = O (size(B)); this means that the features can be linear with respect to
the grid size in case the belief state B defined in (54), (56) or in (57); it can be a linear function with
respect to the reduced view v if B is defined as (58), with the minimum number of features equal to
6 · 18 = 108 if the reduced view v = 0, making the number of features for the leak detection task
independent of the grid size.
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7 Results

In order to investigate which belief state representation and related value function leads to the best
policy, three sets of experiments are done.

In the first one, A, the best belief state and value function representation is investigated; this
means comparing various level of discretizations and tabular approach for value function representa-
tion described in Sections 6.1.1 and 6.2.1 with the various continuous belief representations and linear
value function approximation method described in Sections 6.1.2 and 6.2.2. The results of various
discretisations are presented in Section 7.1; then, the best discretised representations are compared
with the four possible continuous representations in Section 7.2. The goal of this set of experiments
is to perform an initial selection of best representations; these will then be further investigated in the
second set of experiments.

The second set of experiments, B, presented in Section 7.3, investigates the robustness of the best
methods found in A with respect to the integration with the DPNs; the goal is to determine if the heli-
copter needs the DPNs and what is the influence that incorrect sensor models have on the policy learnt.

The third set, C, presented in Section 7.4, aims to investigate the robustness of the best methods
defined in B with respect to larger grids.

In order to have comparable results, the experiments of the same set have the same parameters.
Experiments of A are based on a 2× 2 and 3× 3 grid size, experiments of B are based on a 5× 5 one;
experiments of C are based on a 10 × 10 one. All the experiments are composed of two alternating
phases: in the first one, the helicopter uses the ε-greedy exploration to learn q-values and explore the
belief space; at fixed intervals, the greedy policy learned that far is tested: no exploration is present,
and no q-value updates are performed. A special action is introduced for the testing phase: it is an
abort action that terminates the episode when the number of timesteps reaches a certain defined limit;
this is done because it might happen, especially at early stages of the experiments, that the helicopter
does not learn when to report, hence, it never reaches a goal state that terminates the episode. The
abort action generates a large negative reward; however, since at testing phase no q-value update is
performed, all the rewards are used only for statistical purposes. The reward given when the abort
action occurs, for all the experiments, is −2, 000; the maximum number of actions allowed is 1, 000
for experiments of A and B; it is set to 2, 500 for C. For A and B, 50, 000 learning episodes are
performed, with 100 testing episodes performed every 5, 000 learning episodes; the experiments of C,
instead, are composed of 100, 000 learning episodes, with 100 testing episodes performed every 10, 000
learning ones. The total number of testing episodes for the three sets, hence, is 1, 000. For all the
experiments, ε = 0.05, γ = 0.99 and α = 0.01.

10 runs for each experiment were made; the average over these 10 runs was then showed through
an averaged window of 100 testing episodes.

Mother Nature, the monolithic BN used to generate the sensor readings, is the same for all exper-
iments and is one shown in Figure 19. Each timestep, for all the DPNs in the environment, 5 samples
for Ion and 3 samples for Cond are generated. If the helicopter performs a sensing action, then, one
sample for MEMS is generated. The CPTs are defined in Tables 1, 2, 3 and 4. The CPT definitions
satisfy assumption (A4.1) of Chapter 6 and the sampling frequency makes the problem even harder.

The experiments of A and C are mainly focused on belief and value function representation. There-
fore they adopt perfect sensor modelling, that is, the local BNs of the fusion system have the same
CPTs and topology as Mother Nature (see again Tables 1, 2, 3, 4); the agent organization for correct
fusion models is shown in Figure 11 and is again given in Figure 20. Experiments of B, instead,
investigate the performance when imperfect models are used, and so they define specific CPTs and
topologies, described in the related section.
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Figure 19: Monolithic BN used to generate sensor readings.

Gas
true false

Ion,Cond,MEMS true 0.8 0.4
false 0.2 0.6

Table 1: CPTs of Mother Nature describing P (Cond|Gas), P (Ion|Gas) and
P (MEMS|Gas).

Figure 20: Agent organization for correct sensor models.

The conditional probability P (Gas|L), used to instantiate the Gas node of Mother Nature, defined
in (42), is set with p = 1 and ρ = 0.2.

7.1 Set A: Comparing Belief Discretizations

This set of tests aims to analyze the effect that the discretized beliefs have on the control policy. Due
to the fact that the table size is exponentially proportional to the grid size, in order to have them fit
in memory, the experiments could consider only small environments, specifically 2× 2 and 3× 3. 10
runs of the same experiments were done.
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Ion
true false

S1 true 0.6 0.4
false 0.4 0.6

Table 2: CPT of Mother Nature describing P (S1|Ion).

Cond
true false

S2 true 0.75 0.25
false 0.25 0.75

Table 3: CPT of Mother Nature describing P (S2|Cond).

2× 2 Grid Size Results

Five different discretisations were investigated: the leak belief (51) was discretised with 2, 3, 4, 5 and
10 bins. Figure 21 shows the result obtained representig them through an averaged window of 100
episodes.

None of the five different discretisations learned well. It seems clear that the more the bins used
to represent the leak belief, the better the performance. This is also seen by analyzing the policy
the helicopter has learnt at the end of the experiment: all the representations learn to perform many
sensing actions at first; and if they have the luck to be located at the same position as the leak,
then they report correctly; it is just a matter of time to reach the threshold according to which the
uncertainty about the leak position is low enough, and this is dependent on the level of discretisation.
If the helicopter is not spawn at the same location as the leak, instead, most of the time the helicopter
keeps performing the same movement action until abort occurs.

Nonetheless, the performance of all the representations is improving slowly; this is due to the large
size of the table which must be explored and exploited; Table 5 provides the number of entries needed
for each type of discretisation used.

3× 3 Grid Size Results

It has been tested the performance about different discretisations also for a 3 × 3 grid. Because of
the number of entries of the table, which grew consistently, due to the same need to fit them in the
memory, it has been possible to test only two kinds of discretisation: 2 and 3 bins, and their results,
averaged with a window of 100 episodes, are shown in Figure 22.

This should be enough to conclude that the discretised representation and the tabular approach
are not scalable. This conclusion gets even empowered by comparing the performance of the same
discretisations with respect to the grid size: both of them perform worse in the 3 × 3 case. The 3
bin representation is improving slowly and, apart from the initial performance level, the 2 bin case is
slowly improving too.

The policy they both learn at the end of the episode is the same: most of the time, the first two
actions are such that the helicopter moves to the centre of the environment; in other rare cases the
helicopter keeps hitting the boundaries until abort action occurs. Once the helicopter reaches the
centre of the environment, it keeps performing sensing action; if the leak is present at the centre of
the environment, then, the helicopter reports it correctly, and as well as what said for the 2× 2 case,
it is just a matter of time to reach the threshold according to which the uncertainty is low enough.
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MEMS
true false

S3 true 0.9 0.1
false 0.1 0.9

Table 4: CPT of Mother Nature describing P (S3|MEMS)

bins entries
2 384
3 1,944
4 6,144
5 15,000
10 240,000

Table 5: Number of entries per different number of bins for a 2× 2 grid.

Unfortunately, if the leak is not located at the centre, the helicopter keeps performing sensing action
until abort action occurs.

With a higher level of discretisation, the performance would be surely better, but the number of
entries of the table would become too big and this would create, besides the problem to fit in memory,
the exploration problem. Table 6 shows the number of entries the different discretisations of the 2× 2
case would require for the 3× 3 case.

The final conclusion, clearly is that the discretised representation is not scalable.

7.2 Set A: Comparing Value Function Representations

In this section, the two best discretized representations of Section 7.1 are compared with the four
continuous belief representations (54), (56), (57) and (58) for the 2× 2 and 3× 3 case.

2× 2 Grid Size Results

The first scenario considered is based on a 2 × 2 grid; the results, averaged over a window of 100
episodes, are shown in Figure 23. 10 bins represents the discretized belief representation, prob is
the continuous belief representation (54), entropy is the representation defined in (56), ego full is the
egocentric representation defined in (57); ego 0 is the reduced-egocentric representation defined in
(58) with v = 0.

What is clearly seen is the fact that the continuous representation prob (54), which is the closest
representation to the discretized one (10 bins), is the worst. This is due to the fact that the proba-
bilities are not linear with respect to the level of uncertainty, and the uncertainty is what is meant to

bins entries
2 27,648
3 1,062,882
4 14,155,776
5 105,468,750
10 54,000,000,000

Table 6: Number of entries per different number of bins for a 3× 3 grid.
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Figure 21: Discretized belief comparisons for a 2× 2 averaged through a window
of 100 episodes.

be reduced by learning a linear value function; this means that the probabilities are not linear with
respect to the value function aimed to be learnt.

The belief representation defined in (56), represented in the plot by entropy, seems to be a very
good one. However, the behaviour is completely passive: the helicopter does not do anything but just
move between cells, many times it performs the same movement action and hits repetitively the bound-
aries, and then reports the correct leak location. The helicopter learns only when to report. This is
due to the fact that the connection between the two components of the belief state is not possible with
this representation: every time the helicopter moves the entropy related to the current cell changes,
and the weights for that feature should be able to provide a value which should suggest at the same
time what to do when the entropy is at the helicopter’s position and when it is not. Since the policy
learned tells only when to report, this makes the value function completely influenced by the fixed
sensors: if in a learning set they perform on average well, then the threshold learnt will be very low,
and the helicopter will report soon. If the fixed sensors perform on average bad, instead, the threshold
will be very high, and since the policy is passive, either many abort actions or wrong reports will occur.

By using the egocentric representations defined in (57) and (58), instead, the helicopter performs
sensing actions as expected. ego 0 performs more constantly than ego full, and its optimal performance
is reached soon. The two representations are more or less the same, they differ only by four features
about the leak belief, that is, the features that will never represent cells of the environment. The policy
learnt has an initial behaviour similar to what said for entropy, that is, the helicopter learns only when

39



Figure 22: Discretized belief comparisions for a 3× 3 environment.

to report; then, in the rest of the experiments, the best policy is learnt. The fact that in both cases
the performance goes very low, between -500 and -600, is given by the fact that there are few runs, out
of 10, in which the policy is not learnt and many abort actions, together with wrong reports, occur.
Considering that the reward for abort action is -3,000 and there are 10 runs, the averaged reward of
-500 over 10 runs for example is reached with one abortion, two wrong reports and seven good policies.

The final conclusion is that the egocentric representation seems to be the only one that can learn
a good control policy, but the grid is too small to determine which egocentric representation is best.

3× 3 Grid Size Results

The results for a 3× 3 grid, averaged over a window of 100 episodes, are shown in Figure 24. 3 bins
represents the performance of the best discretized belief representation; prob represents the continuous
belief representation defined in (54); entropy is the trend of the continuos belief representation with
entropies defined in (56); ego full is the egocentric full representation defined in (57) and, finally, ego 0
and ego 1 are two reduced egocentric belief representation defined in (58) with respectively reduced
view 0 and 1.

The intuitions about the 2 × 2 case can be extended to this case: the discretised belief is unfea-
sible, especially if compared with the continuous belief representations. prob has a representation of
uncertainty which is not linear with respect to the value function aimed to be learnt, entropy still
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Figure 23: Discretized and continuous belief representation comparisons for a 2×2
grid size.

does not learn to perform sensing action, making its policy wrong.

Further consideration, instead, should be done about the three different egocentric representations.
A magnification of their performance is provided in Figure 25.

The hypothesis is that it seems it exists a relationship between number of cells of the environment
and the number of features of the leak belief which leads to good policies. ego full keeps a leak belief
of 41 features, ego 1 keeps a leak belief of 17 features, and ego 0 uses only 9 features. This means
that for ego full, apart from 16 features that will never been used, at each timestep, 14 features out
of the remaining 25 will not represents cells of the environment; ego 1 will have either 10 or 8 unused
features, ego 0 from 4 to 0.

The representation for ego full is too extensive for a 3 × 3 grid, and it needs more time to learn
the weights for its leak belief features, since most of the time they do not represent cells of the en-
vironment; same thing but less strict applies for ego 1; ego 0, instead, since it keeps a very compact
representation, seems to have less problems. This is actually reflected in the plot: ego 0 keeps improv-
ing its performance which is almost always better than the other two; due to the sparse representation
of ego full and ego 1, instead, it happens that sometimes the policy learnt is very bad, which leads to
abort actions in few runs, as well as it was described for the 2× 2 case.

The policy learnt for ego 0 is such that the helicopter, at each episode, moves to the centre of
the grid in two actions, then performs sensing actions and then reports. ego 1 does the same thing,
but the tame it takes to reach the centre is longer: it tends more to switch among neighboring cells;

41



Figure 24: Discretized and continuous belief representation comparisons for a 3×3
sized grid.

sometimes it reaches the centre and, when it happens, it rarely senses; most of the time it reports
straight ahead. This is because during the time it switches among cells, the fixed sensors keep working
for him, and even if they have a lower performance, they are still better than random guessing; if the
result of the inference is such that the uncertainty gets very low, the helicopter will not perform any
sensing action and vice versa.

In conclusion, the egocentric representation is the best representation for the leak belief; the re-
duced view seems to be more flexible than the full representation, and seems to be able to let the
helicopter learn a good control policy. A relationship between number of cells of the environment and
number of features of the leak belief which leads to good control policy seems to exist.

7.3 Set B: Using Inaccurate Models

This set of experiments aim to determine how much the sensor model structure influences the policy
learnt by the helicopter. If a sensor model is inaccurate then its causal representation of gas presence-
sensor readings is misleading, that is, the result of its inference is more subject to false positives and
negatives. The inaccuracy can affect both the network topology and its CPTs. The set of experiments
proposed are based on five possible scenarios: two of them consider a correct network model but with
wrong CPTs, the other three consider the case in which the network model is wrong and the CPTs
vary according to the three possible CPTs used in the correct causal model scenario. The wrong
causal model structure is shown in Figure 26.
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Figure 25: Magnified comparison for ego full, ego 1 and ego 0 on a 3× 3 grid.

This wrong causal model scenario can be seen as the fact that the helicopter is not integrated
with the DPNs but instead has to perform inference by itself; it does not know the sensor causal
model structure, so the least dangerous assumption it can make is the direct dependency between gas
presence and sensor readings.

Before investigating the effects that inaccurate models have on the policy learnt, the reference
experiment that assumes perfect sensor models is done. It is based on a 5 × 5 grid, in order to have
a problem of increasing complexity. 10 runs of this experiments were done and the results, averaged
over a window of 100 episodes, are given in Figure 27. ego full represents the performance of the full
egocentric representation (145 features); ego 2, ego 1 and ego 0 are the reduced egocentric represen-
tation with reduced view 2 (33 features), 1 (17 features) and 0 (9 features).

Once again, the results validate the hypothesis that there might be a relationship between number
of features used to represent the leak belief and grid size which leads to better policies: ego 2 is the
best representation, ego 0 the worst. The policy learnt by ego 2 makes the helicopter move toward
the centre of the grid and performing sensing actions during its path; once the centre is reached,
the helicopter performs further sensing actions and then reports. With ego 1 the helicopter moves
toward the centre too but, as what seen for ego 1 in the 3 × 3 case, it performs many steps forward
and backward; it still reports correctly because during the time it takes to reach the centre the fixed
sensors keep working and the DPNs keep providing reliable soft evidence; approximately half of the
times the helicopter reports without performing any sensing action, making it more dependent on the
fixed sensors than ego 2. Other times, instead, it reaches the centre, performs many sensing actions
and then reports. The number of sensing actions it performs are bigger than those for ego 2, this is
due to the high level of generalisation it has for suburbs: they aggregate many cells, and before their
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Figure 26: Wrong model used to analyze the impact of inaccurate sensor models
have on the policy learning: it is assumed a direct dependency between sensor
readings and gas presence.

mean entropy is reduced, since the helicopter does not move from the centre, many timesteps must
pass. ego full, instead, learns almost the same policy that was learnt by entropy in the 2 × 2 and
3 × 3 case: it moves chaotically and few times it performs few sensing actions before reporting; this
behaviour can be justified by the fact that many of its features are usually not used, and it takes a
lot to learn the correct weights, leading to the high dependency on the sensor readings. In fact, the
policy learnt has no defined pattern as those for ego 2 and ego 1. ego 0, to conclude, is the worst
possible: most of its episodes are aborted, its level of generalization is very high and this does not let
it understand the global situation.

In conclusion, ego 2 and ego 1 are the representations which lead to the best policies; these are
more flexible than ego 0 and ego full, and let the helicopter either to rely on fixed sensors (more in case
of ego 1) and on its own independent behaviour of moving toward the centre of the grid and sense (in
case of ego 2). Their performance is now compared with the 5 different scenarios for inaccurate model.

Some notation is now given. The six scenarios (the five inaccurate ones and the perfect one) are
named using composites of two identifying feature: the first one represents the causal model type, the
second one the CTPs types. This means that the notations are corr corr for the perfect model (correct
causal model, correct CPTs), corr soft and corr hard for the two scenarios with correct causal models
but wrong CPTs, specifically softer (that is closer to the uniform distribution) and harder (closer to
the deterministic distribution); wrong corr is used to represent the incorrect causal model shown in
Figure 26 and with its CPTs that are computed from corr corr in order to have the same conditional
probability distributions P (sensor readings|Gas); analogously, wrong soft and wrong hard are based
on the wrong causal model structure and with CPTs that are calculated from the corresponding cor-
rect model - soft/hard CPTs in the same fashion as it is done for wrong corr. The CPTs used are
shown in Tables 7 and 8.

As it can be noticed, the CPTs for the helicopter sensor, MEMS, are not changed. This is based
on the assumption that the helicopter should know the sensor model it is carrying. The results about
the performance of ego 2 and ego 1, on a 5 × 5 grid, with respect to the five possible scenarios of
incorrect model and the perfect model are given in Figure 28 and 29.

The most striking result is given by the fact that with a wrong causal model, no matter what
the CPTs specify, the policy learnt is very bad. Most of the episodes are aborted, that is why the
performance is close to -3,000. This is due to the fact that the result of the inference in the wrong
model scenario is highly subject to false positives and negatives, and the threshold according to which
perform report action cannot be learnt correctly. Both ego 2 and ego 1 do not learn to perform sens-
ing action, they instead keep performing the same moving action or chaotically moving around until,
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Figure 27: Performance of ego full, ego 2, ego 1 and ego 0 in a 5 × 5 grid with
perfect sensor models.

eventually, report action is performed.

With correct causal model, instead, the situation gets better. As expected, the performance with
correct CPTs is never reached by soft and hard CPTs; ego 1 with soft CPTs has few episodes in
which the performance beats the correct CPT version, but whilst the performance for corr soft does
not improve anymore, the performance for corr corr keeps improving. The difference in performance
between correct CPTs and the other two is more marked for ego 2; this is due to the fact that with
ego 2 the helicopter performs a correct policy described previously, and since its own sensor model is
not changed, the difference is given by the number of wrong reports: in the soft and hard CPT versions
it has been noticed that when the helicopter reports a wrong leak position, the distance between the
actual and the declared one is usually in the order of 1 or 2 cells. With corr soft and corr hard, the
tradeoff between reporting fast and reporting correct is affecting the performance: in episodes with an
overall good inference the helicopter reports correct leak positions and as a consequence it learns to
report quickly; when the inference is overall bad, instead, the helicopter should perform more sensing
action, but since it learns to report quickly, wrong locations are declared.

Nonetheless, no matter what kind of sensor model is used, both representations have an increase
of their performance; it is very slow when wrong causal model is used, and it is very quick in case
of correct causal model. Again, the segmented trend is due to the fact that, among 10 runs, the
policy sometimes changes dramatically between intervals, leading to many abort actions resulting into
a reward which influences significantly the trend.

The results bring to the conclusion that the integration between DPN and helicopter (RL) is a
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probability corr corr corr soft corr hard
P (Cond|Gas) 0.8 0.8 0.8
P (Cond|Gas) 0.4 0.4 0.4
P (Ion|Gas) 0.8 0.8 0.8
P (Ion|Gas) 0.4 0.4 0.4

P (MEMS|Gas) 0.8 0.8 0.8
P (MEMS|Gas) 0.4 0.4 0.4

P (S1|Ion) 0.6 0.51 0.7
P (S1|Cond) 0.4 0.49 0.3
P (S2|Cond) 0.75 0.65 0.85
P (S2|Cond) 0.25 0.35 0.15
P (S3|MEMS) 0.9 0.9 0.9
P (S3|MEMS) 0.1 0.1 0.1

Table 7: CPTs for the DPNs with correct causal sensor models.

probability wrong corr wrong soft wrong hard
P (S1|Gas) 0.56 0.506 0.62
P (S1|Gas) 0.37 0.504 0.42
P (S2|Gas) 0.65 0.59 0.71
P (S2|Gas) 0.39 0.44 0.38
P (S3|Gas) 0.74 0.74 0.74
P (S3|Gas) 0.33 0.33 0.33

Table 8: CPTs for the DPNs with wrong causal sensor model.

necessary condition for good mobile sensor control learning.

7.4 Set C: Scaling to Large Grids

In this final scenario, only the perfect sensor model of the DPNs is considered and the environment is
increased to a 10×10 grid. The egocentric full representation is abandoned, given the bad policy learnt
in the 5×5 case, despite its acceptable performance. Here, only the egocentric representation with re-
duced view 5 (129 features to represent leak belief), 2 (33 features) and 1 (17 features) are investigated.
Again, 10 runs per experiment were done and their results, averaged over a window of 100 episodes,
are given in Figure 30. ego 5, ego 2 and ego 1 represent the corresponding reduced view performances.

Even if the performance is still bad, all the representations improve their averaged reward during
the experiment; this means that with appropriate parameters α, number of learning episodes and so
on, increase in performance can be easily achieved. The best performance is given by ego 5, which
leads to the final hypothesis that it is sufficient to have a number of features the closest possible to the
grid size to perform well: too many features are too sparse and make the policy too much dependent
on the sensor model; too few features perform a huge aggregation of cells especially in the suburbs
at the top-left, top-right, bottom-left and bottom-right: the information they carry is too vague. A
reason according to which the helicopter tends to move to the centre of the grid is given by the fact
that it is the best way to represent information about all cells of the environment; furthermore, from a
central position, the aggregation performed at the suburbs is balanced with the precise representation
of the centre area at best. Furthermore, even if the experiments shown an early stage of results, a
general pattern for control policy was noticed: the helicopter tends to move to the centre and perform
sensing actions; sometimes it also leaves the centre and moves toward the leak location; other times,
instead, the helicopter goes toward the leak location without reaching the centre. Intuitively, the
centre of the environment is a strategic place also for subsequent movement to cells far away from the
initial position of the helicopter at timestep 0.
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The final conclusion is that by keeping a leak belief representation with a number of features,
speed of improvement, robustness with respect to incorrect models and to grid sizes.
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Figure 28: Reduced egocentric representation performance with respect to differ-
ent sensor models in a 5× 5 grid and v = 2.
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Figure 29: Reduced egocentric representation performance with respect to differ-
ent sensor models in a 5× 5 grid and v = 1.
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Figure 30: Reduced egocentric representation comparisons in a 10× 10 grid.
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8 Validating Software Implementation

In order to gather results validating the theories developed in this thesis, an applicative simulation
of the environment and the helicopter agent were implemented in C/C++. The DPNs and Mother
Nature, which are part of the environment, represented a simulation of a bigger fusion system, the dis-
tributed perception network toolkit (DPNT), a Java-based software package developed by Universiteit
van Amsterdam which can be used to define a multi-agent Bayesian reasoning system for information
fusion based on the theory of distributed perception networks [22].

The simulation of the DPNs and Mother Nature had to be done because of technical programming
issues: the two applications, that is the RL and DPNT, were written with different codes, and the
fastest way to let them communicate was through a file messaging synchronization protocol. The
communication was done from the environment to the DPNT in order to perform sampling and in-
ference, and the result of it was passed back to the environment; then, the environment was passing
the inferences as observation to the helicopter as thoroughly explained previously. Furthermore, since
the DPNT is a multi-threaded application, some initial synchronization was needed. A schema repre-
senting the communication between helicopter, environment and DPNT is given in Figure 31.

Figure 31: Message passing protocol between helicopter, environment and DPNT.

Apart from the two initial and the last three synchronization messages, which were done just once
per experiment, the main bottleneck of this communication was given by the other messages. Mes-
sages 2 and 3 were sent at each episode (this means 51,000 times for experiments of set A and B and
101,000 for set C), messages from 4 to 7 were done in loop, for each timestep, and this represented
the biggest obstacle. After many tweaks in the DPNT code, the time elapsed from message 4 to the
next message 4 was still in the order of 6 seconds. Clearly, this time was not efficient at all.

The problem was given by the fact that the DPNT was created with the idea of having only fixed
sensor agents that only occasionally disappear from the network of agents; with the implementation
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of a mobile agent, instead, the fusion process and the removal of such sensor was occurring at each
timestep, in order to keep the system coherent. The tweaks were done ad-hoc for the purpose of
having an integrated system and this caused an increase of instability in the whole integration.

Because of the simulation of the DPNT was used, in order to make possible to have valuable
results, given the shortage of time left to the thesis, the simplistic assumption (A4), of having the
same DPN structure in each cell of the environment, had been done.

However, some very small experiments using the actual DPNT were performed, in order to validate
the possibility of having a working integrated system. These experiments were based on a 1× 2 grid,
and even if the tweaks made the whole integrated system very unstable and no experiments could
have been completed, the soft evidence computed by the DPNT could have been successfully used by
the helicopter to perform inference about leak location. Based on these results, the simulation of the
DPNT was built inside the C/C++, in order to have an exact representation of the DPNT.

Studies for the application of DPNs through the use of the DPNT for crisis management have been
done, for example, in [23]; the fact that an intelligent and autonomous agent for mobile sensor control
can be successfully integrated to the DPNT, then, represents an improvement to the DPNT, which
becomes more flexible (the sensor agents can move independently) and can perform more powerful
inference.
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9 Discussion

This chapter brings valuable discussions about the results achieved. The main result is that mobile
sensor control can be successfully achieved by integrating RL techniques with DPN fusion systems,
under the necessary condition that the DPNs keep at least a correct causal model that represents the
sensor structures.

The chemical leak detection task is a large POMDP problem, and even if the helicopter has a
complete knowledge of the model of the environment, planning cannot be applied. However, due to
the fact that it knows the model of the environment, the helicopter can maintain its belief state and
consider the problem as a continuous space MDP. This is why model-free methods can be used. This
represents the most innovative contribution that this thesis provides to the techniques for POMDP
solving.

The first set of experiments were mainly focused on the definition of good belief state and related
value function representations. The results gathered lead to the following statements.

The use of discretised representation of the belief state and a tabular approach for q-value learning
is infeasible: the closer the discretisation is to the continuous representation, the better the perfor-
mance; however, the number of entries of the table are exponentially proportional to the environment
size and level of discretisation, and even if the performance is increasing, it remains very low, since
the problems related to the exploration and exploitation of the belief state space occur.

By representing the belief state in a continuous manner and learning a linear mapping between
belief state-action pairs into q-values, significant results can be achieved. The minimum requirement
is the representation of the leak belief through entropies and not probabilities: the probabilities rep-
resent the uncertainty in a non-linear way: the closer they are to 0 or 1, the lower the uncertainty
about the gas presence. Entropies, on the other hand, solve this issue.

The problem is not only how to represent the uncertainty in a linear way: the control policy learnt
should be such that the helicopter performs sensing actions because its own sensor is more reliable
than the fixed sensors in the environment; it is important that it knows which entropy is related to
which cell of the environment with respect to its point of view. This is why the representation of the
leak belief according to the global ordering in coordinates of the environment leads to wrong policies
where no sensing action is performed but instead the helicopter just waits for the right time to report.
The explanation is given by the fact that every time the helicopter changes its location, so does the
correspondent current cell’s entropy in the leak belief. This means that the linear mapping should be
able to represent at the same time the q-value when the entropy of a particular cell is the same as the
helicopter’s current cell and when it is not, and this is not possible.

Another important result achieved through this set of experiments was also the definition of the
hypothesis that there might be some relationship between the size of the leak belief and the envi-
ronment which can lead to good policies: with a full representation of the egocentric view, a lot
of redundancy is introduced: most of the features of the leak belief are used only in few occasions,
and this makes their parameter vector learning very slow. Furthermore, it has been noticed that
when the extensive representation is used, the policy learnt is mostly passive: the helicopter relies
almost completely on the sensor models and it only learns when to report. If the reduced view is too
small, instead, the aggregation performed at the suburbs is too big, and the mean entropy value is
no longer a good representation; the result is once again a policy highly dependent on fixed sensors.
The helicopter does nothing but move chaotically, when in the meantime the DPNs keep “working
for it”, and then it reports. Another problem with the high level of aggregation is the fact that the
policy learnt changes often during experiments, and many times it does not even learn when to report.

The best approach is in the middle: by keeping a leak belief with the closest size possible to the
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grid size, the policy learnt is the best. On a 2×2 grid, the best reduced view is the one that leads to a
leak belief of 9 features only; the same number of features were required for the best policy found on
a 3× 3 grid. For a 5× 5 grid, instead, the reduced view equal to 2 (33 features) gives the best results.
A reduced view equal to 5 (129 features), instead, leads to the best representation for a 10× 10 grid.

Over all the experiments, from those based on 3× 3 up to 10× 10 grid sizes, a common behaviour
among best policies/reduced view representations was found: the helicopter tends to move to the
centre of the environment, in order to have a complete reduced egocentric representation of the en-
vironment’s uncertainty; with a leak belief of the same size as the environment, furthermore, only a
few of the features will not represent cells of the environment.

Apart from a good belief state representation, the need for good sensor models is required. Ex-
periments focused on the effect that different sensor models have on the control policy, leading to the
conclusion that a good causal model for the sensors is necessary for good policy learning, since their
inference results are less subject to false positives and negatives.

The need for a good inference model can be seen by the small example shown in Figures 32 and
33. They correspond to the models introduced in Section 7.3. The first one represents the perfect
causal sensor model, the second one represents the wrong causal sensor model and its CPTs were
defined such that they could generate the same probability of having sensor readings given Gas. In
this example, at timestep 0, the helicopter performs a sensing action. Let assume that 5 readings
for Ion are true, the 3 readings for Cond are false, and the reading for MEMS is true. For these
observations inference in the two models will produce very different results: the correct model version
has a belief about Gas of 53.17%, whilst the wrong version has a belief about Gas of 49.53%. Even
if the beliefs are still very uncertain, and according to the best policy learnt it would lead to further
sensing actions, the result of the inference of the wrong result will for sure influence the policy learnt.
The importance of having good structure more than having good CPTs is throroughly discussed in
[2], and the results of this thesis go accordingly.

Figure 32: Results of the inference about Gas for the integrated correct model
representation

The final conclusion, hence, is that under the necessary condition of correct causal sensor models,
a reduced view representation of the leak belief using entropies can lead to good policies which are
scalable to large grids and that lead to a general behaviour of moving to the centre of the environment
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Figure 33: Results of the inference about Gas for the non integrated version

in order to have a complete view of the uncertainty about the leak position, perform sensing actions
in appropriate cells and then report a correct leak position the quickest possible.

9.1 Related Work

Most of the work on mobile sensor control is based on multi-agent systems organized in communicative
networks. [24] describes an event-based motion control for mobile sensor networks; the sensors are in
communication with each other and all moves according to the presence of an event, such as a chemical
spill. [25] presents a stable control strategy for groups of vehicles to move and reconfigure cooperatively
in response to a sensed, distributed environment. Each vehicle in the group serves as a mobile sensor
and the vehicle network as a mobile and reconfigurable sensor array. Their paper is focused on
gradient climbing missions in which the mobile sensor network seeks out local maxima or minima
in order to optimize detection and measurement of features of a particular field. The network can
adapt its configuration in response to the sensed environment in order to optimize its gradient climb.
[26], instead, describes a swarm-based fuzzy logic control (FLC) mobile sensor network approach for
collaboratively locating the hazardous contaminants in an unknown large-scale area. The mobile
sensor network is composed of a collection of distributed robots, each of which has limited sensing,
intelligence and communication capabilities. By gathering other nodes locations and measurement
data, each nodes FLC can independently determine its next optimal deployment location. [27] adopts
a filtering approach to fusing local sensor data into a global model of the environment. Their approach
is based on the use of a communication network in which each mobile sensor diffuses its information.
Their network of sensors has characteristics similar to the DPN: it is scalable and fully decentralized
and allows changing network topologies and anonymous agents to be added and subtracted at any
time. However, centralised control is done.

9.2 Future Work

The first ideas for future works come from the weakening of the assumptions made in Chapter 6 and,
from the approaches defined in this thesis, bring modifications in order to have an initial starting
research point.

The helicopter moves toward the centre of the environment for two reasons: from there it has the
best representation of the overall uncertainty of the true state and from there it can move to other
locations with the minimum number of actions. This was due to the belief representation and the fact
that there is only only leak in the environment. The sensing actions performed by the helicopter aim
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to remove the false positives and negatives resulting from the inference obtained from less performing
fixed sensors; by doing that, the leak can is found. Another way of seeing the path the helicopter
performs is the following: it is dependent on the probability distribution P (Gas|L): the false positives
are more likely to happen next to the leak, this is why the helicopter moves along the direction which
lead it toward the leak. The DPNs are reliable enough to keep the uncertainty for cells far from the
leak low, and this is another reason why the reduced view is very effective: areas with low uncertainty
are grouped together and the helicopter does not have to care about them. The path the helicopter
does can be seen as a hill climbing, where the height is represented by the values of its leak belief.

In case of more than one leak, more hills must be climbed. The ideal behaviour does not change:
the helicopter still has to remove the false positives and negatives; the only difference is that an
episode should not end after one report. A new and unique action that terminates the episode should
be introduced. Once the helicopter reports a leak, it will recieve a reward according to its correct
declaration, then it will update its belief (after recieving the reward it can exactly know if the leak
was there or not) and then either look after the next leak (in case of correct report) or focusing again
on the old one (otherwise). If the number of leaks are not fixed then the problem becomes more
complex, and the helicopter must know exactly when to end an episode. However, nothing forbids to
start approaching this new problem from the results and theories of this thesis.

The thesis’ scenario is based on the following assumption: the time needed to end an episode is
such that the chemical gas contamination does not change. In case the leak changes its contamina-
tion area, for example because of diffusion and air flow, then the approach of this thesis should be
improved, since in this thesis the main idea is that the leak is present somewhere in the contaminated
area. Some few changes can be made in order to adapt the thesis achievements to this new scenario:
since that the helicopter knows P (Gas|Ly,x), the physical laws that define the chemical spread in the
environment, it is possible to assume that the helicopter has knowledge about the effects that the
wind has on a chemical cloud and its diffusion properties. Then, the helicopter can “rewind the tape”,
that is, can more or less retrieve the original situation present at the moment where the it was still
in the hangar, that is, no alarm was switched on. In order to “rewind the tape” it might be needed
to add a history that builds the trail of sensor readings and this can be achieved with minor work,
given the quasi-static behaviour of the sensor agents of the DPNs which keep the complete history of
all sensor readings.

In the experimental setups made, the DPNT was simulated in the C/C++ code of the environ-
ment, and the simplistic assumption that there was only one type of DPN, composed of the same fixed
sensor models was made. Future works can be focused on the definition of more complex scenarios,
such as the definition of different DPN models, coexistence of both wrong and correct sensor models
in the environment, not uniform distribution of DPNs in each cell of the environment and so on.
Furthermore, with further work on the software integration between the DPNT and the RL part, even
more complex scenarios can be formulated.

Studies about the relationship between the leak belief obtained from a certain reduced view and
environment size could be done, in order to validate the hypothesis of this thesis, that is, that the
sizes of those components should be similar. Other studies aiming to find different ways of defining
suburban areas could be done.

The thesis was based on the assumption that the helicopter was always able to perform sensing
actions; in real life it might happen that good sensors need time to be cleaned and reset; studies in
which for some timesteps the sensing action is not available could be done, in order to see how the
helicopter behaves when it cannot sense; for example, while the sensing action is disabled, it could
decide to move somewhere else, it could find more convenient to stand still and wait for the sensor to
be ready, and so on.

The true state transition function used in this thesis is deterministic; the next step can be its
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transformation into a stochastic one; further studies in which the time to travel from a location to
another could be done; this would likely make the problem semi-Markovian as for example in [20],
but it would be for sure a more realistic scenario.

The studies could move to a multi-agent scenario with more than one helicopter solving the leak
detection task, by allowing cooperation between the agents (for example they can communicate about
their inference, they can share rewards etc.); it could be interesting to see the combination of this
scenario with the one that assumes more than one chemical leak.

The very final work, clearly, remains the realization of a real-world implementation of the theories
of this thesis: fixed sensors can be organised in DPNs, an intelligent and autonomous helicopter based
on the control policy found through the use of the theories of this thesis can be realized, controlled
tests about chemical leak detection can be performed, in order to lead to a final robust and reliable
installation of the system into real industrialised areas.
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10 Conclusions

The chemical leak detection task performed by an autonomous and intelligent helicopter was the case
study for the theories of this thesis. The fact that the helicopter has a partial view of the true state,
that is it does not know where the leak is occurring, makes this problem a partially observable Markov
decision process (POMDPs). It is actually a particular POMDP problem, for which the uncertainty
that must be solved is the task to be done and not some kind of noise in the observation of the true
state. The problem is a large one, since the helicopter must detect the leak even in large grids; this
makes the usual planning approach for POMDP problems unfeasible. However, it turns out that the
helicopter can have a perfect knowledge of the model of the environment: this let the reduction of
the POMDP problem into a continuous space Markov decision process (MDP) one, where the state
space is represented by the belief state space. The belief transition function is known, so model-free
methods can be used in order to solve the problem.

According to how the belief state was representing the uncertainty about the leak position, two ap-
proaches were defined. The first one considered a discretised belief state representation and through
a tabular approach the helicopter could learn belief-action values. The second approach, instead,
maintains the continuous belief state and assumes a linear mapping of belief-actions into values; lin-
ear function approximation method’s gradient descent was used in order to learn the weights of such
linear mapping.

Results showed that the discretised belief representation is unfeasible: the number of entries of the
table are exponentially proportional with respect to the environment size and the level of discretisation
of the leak belief. The main conclusion obtained was that the more defined the discretisation is, the
better the performance. A drawback was given by the size of the table, that could not been explored
properly.

The continuous belief representation and the related linear function approximation was inves-
tigated. Four different types of state belief representation were defined. The results showed that
probabilities represent the uncertainty in a way which is not linear with respect to the function aimed
to be learned; a significant improvement is achieved by representing the uncertainty through informa-
tion entropy of the leak beliefs: the entropy is a linear measure for uncertainty, hence, it is perfect for
the linear function sought. It has also been noticed that by organizing the beliefs according to the he-
licopter’s egocentric view, the results is the definition of correct policies; furthermore, by representing
the belief through both aggregation of cells and precise representation of single cells, the system be-
come very flexible with respect to the changes of its belief and the sensor models: the helicopter tends
to move to the centre of the environment and perform sensing actions, then report the correct leak
location. Different scenarios in which imperfect sensor model were also investigated; this led to the
conclusion that correct causal sensor models are a necessary condition for good control policy learning.

The final result of the thesis, hence, is the proof that RL is an effective tool for doing mobile sensor
control under the necessary condition that the sensor causal model are correct, so the integration of
those with the mobile sensor into DPNs can lead to policies which are robust against false positives,
false negatives and also with respect to large environments.
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