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Abstract

In this thesis we focus our research on automatic recognition and localization of object
classes. The approach we have adopted employs the visual vocabulary framework, where a
visual vocabulary is derived by clustering over a set of filter responses. Image descriptors,
derived with use of a visual vocabulary, are used to generalize object classes and build
class models. Several appearance based object class models are learned from a set of
training images, which allow us to classify and localize objects from a number of object
classes.

We have experimented with various classification techniques as well as implemented two
localization algorithms. The most common approach to object localization, the tile-based
approach, and a novel localization algorithm are compared. The novel technique is based
on a histogram tracking approach. In contrast to the tile-based approach, where a set
of image patch are evaluated to determine if an object is present, the novel approach
optimizes a set of image regions, with respect to their shape, size and location. The aim
is to improve the efficiency as well as the performance of localization. Additionally, this
framework allows us to track and classify object simultaneously.

We show that a high classification accuracy can be obtained by using the visual vo-
cabulary. Furthermore, the comparison between the tile-based approach and the novel
approach to object localization, illustrates that the novel approach, based on histogram
tracking, shows a significant improvement of efficiency and in some cases also improves
localization performance.
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Chapter 1
Introduction

In the last decade we have witnessed a dramatic increase in the number of multimedia files
available on the internet. Websites such as youtube, myspace and flickr are flourishing
and consumers are rapidly adapting themselves to this digital revolution. They are taking
the opportunity to create, transmit and share an endless amount of multimedia files,
resulting in enormous collections of data items of different modalities (text, audio, images,
animations and video).

Largely, this increase is due to technological advances in consumer level products. Cam-
era’s and digital image recorders are becoming small and affordable. Most mobile phones
you can buy in stores at the moment, have a camera integrated, capable of capturing,
storing and presenting digital media. With the expansion of power of digital devices in
combination with a rapid drop in cost, the number and size of multimedia collections will
only increase.

With the increase of multimedia data collections, the need for effective retrieval and
management of data also increases, since the volume of data is considerably more then
a person can browse through in order to find desired data items. The area of research
concerning this problem is the area of multimedia information retrieval. Multimedia in-
formation retrieval is based on representational scheme’s of media content. In the case of
textual media, content can be described using the words used in the text. However, when
we are dealing with other types of media, such as images, the type of descriptors will be
totally different. Content descriptors for imagery include features such as color, shape,
texture, or spatial relationships of local descriptors.

The difference between human and machine interpretation of images, is that humans
represent image on a conceptual level, whereas machine can only represent images on a
statistical level. For this reason, the aim of image retrieval techniques is the integration of
low-level visual features, i.e. statistical information such as color, shape and texture, and
high-level semantic features, i.e. conceptual labels such as object information and scene
categorization. The problem of bridging the gap between visual features and semantic
features has been one of the biggest challenges within this field of research, also known as
the semantic gap [1].

In this thesis we have focussed our research on object recognition and localization.
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These areas of research can be seen as subfields of multimedia information retrieval and
aim to derive semantical information from images. Image recognition tries to determine
the type of object that is depicted inside an image and localization attempts to extract
information concerning the location of certain objects within an image. This semantical
information is extremely useful for efficient search and management of image collections,
as well as video collections. Furthermore, this information can be used in extraction of
higher-level semantical features, such as scene characteristics.

1.1. Object Recognition

Object recognition can be divided into two main research areas: object recognition and
object class recognition, also referred to as generic object recognition. These are two
different problems. Object recognition deals with the problem of identifying individual
objects. In other words, we need to separate one object from all other objects. Thus,
two objects of a similar class should be distinguished from each other. Object recognition
is a hard problem, because we need to account for various image variations. Variations
in viewpoint and illumination conditions, as well as scale and orientation, change the
appearance of objects. Other image conditions such as occlusion and truncation decrease
the viewable object surface, thus introducing noise into the object class models. Object
class recognition addresses the problem of discriminating between objects of one class and
those of other classes. In this case, an object class should be generalized to such a degree
that two objects of the same class are labeled similarly. The problem shifts from learning a
specific object model, to learning a generalized object class model. On top of the issues we
face with object recognition, the added challenge is to find class models that are invariant
to changes in appearance within a class, while being discriminative enough to distinguish
between objects from different classes.

A wide range of approaches to object class recognition exist in literature. Some recog-
nition approaches use the constellation of parts framework [2, 3, 4], where an object is
modeled by a arbitrary number of parts. The aim is to identify the part, which in turn
characterize an object. In addition to the object part representation, the spatial relation
between parts is modeled to assist in the recognition task. However, large variations in ge-
ometrical relation of parts make classification models diffuse. What is more, the approach
is computationally expensive.

Other approaches to object recognition adopt the bag of keypoints approach [5, 6, 7],
also referred to as the visual vocabulary framework. Here, all image features are combined
into one large set. So, in contrast to the former framework, all positional information
is dismissed. The image features are usually a set of gradient image filters. A visual
vocabulary is constructed to derive image descriptors in the form of a histogram. The
visual words are constructed using k-means clustering on a sample set of image features.
The image descriptors are mappings from these image features to the visual dictionary.
Originally, the approach was applied in texture classification [8, 9], where it was referred
to as textons1. However, later the same framework was adopted for object recognition
with promising results [7]. Some approaches make use of an interest point detector to

1The terms ‘codebooks’, ‘textons’, ‘keypoints’ and ‘visual words’ have been used in literature to describe
the same concept, that is to say clusters of image features. We will adopt the term ‘visual words’
throughout this thesis.
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determine regions that are likely to contain useful image information [5, 6].

1.2. Object Localization

The second problem, object localization, also known as object detection, is related to
object class recognition. It refers to the problem of deciding whether an image contains
an instance of one or more object classes. Additionally, regions in which objects are
present, need to be identified. In relation to object class recognition, this problem is
more difficult, since more information needs to be determined. Not only do we need to
discriminate between object classes, but also be able to determine which patches within an
image contain objects. In addition to the issues we need to address with object recognition,
such as image variations, we are faced with new issues. The most prominent of the issues
concerning object localization is the fact that localization tends to be very computationally
expensive. Often, localization algorithms use a classifier to evaluate several local image
patches. Due to the fact that there might be millions of possible regions, differing in
shape, size and position, the computational costs can be enormous. This means that a
new issue arises, namely the issue of determining appropriate image patches that need to
be evaluated. Then, there is the issue of combining overlapping image patches. If both
patches are likely to contain an object, do we combine them into one detection, or do we
decide that we have detected multiple objects?

The most common approach to object class detection is the tile-based approach [10, 11,
12, 13, 14]. Here, we slide a tile across the image and locally classify each of such patches
to determine if it belongs to one of the object classes or not. The classification of image
patches can be done in multiple ways. Some methods include contextual information, such
as estimated geometry and camera viewpoint, to discard several image patches beforehand
[10], and so to guide the detection task. Other methods have used the ada-boost algorithm
to combine a set of weak learners to speedup the localization process and effectively detect
objects within images [13, 10, 14].

The visual vocabulary framework has also been used for detection [7, 15]. In some cases
an interest point detector is used to determine local patches which contain useful infor-
mation [15]. Localization is performed by combining the framework with latent semantic
analysis, in order to find topics within the images. The topics correspond to the various
object categories. The keypoints corresponding to the topics, i.e. object classes, are used
to determine the local image patches that belong to instances of objects. By combining
the size and location of these image patches, object localization can be performed.

1.3. Project Goals

The approach to object class recognition we have adopted employs the visual vocabulary
framework, which was introduced in [7]. We will use the image descriptors, derived with
use of a visual vocabulary, to generalize object classes and build class models. These
allow us to classify and localize objects. In order to localize objects, we have implemented
two localization techniques. We have implemented the tile-based approach as well as
a novel localization technique. The novel technique is based on a histogram tracking
approach, were a target object model is used to guide the search for optimal image patches.
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Additionally, this framework allows us to track and classify object simultaneously.

We have chosen to adopt the visual vocabulary framework because it has been widely
applied for object classification and localization in the past, with remarkable results [5,
7, 6, 10, 15]. Furthermore, this approach naturally fits together with a novel localization
method we will introduce in this thesis, which makes use of histogram tracking. In contrast
to the tile-based approach, we do not evaluate random image patches, but optimize an
image patch with respect to the region size, shape, and location.

Our goal is to experiment with the different design choices related to the visual vo-
cabulary framework. For this purpose, several existing classification techniques will be
discussed and the results of classification will be compared. Furthermore, we aim to
improve on existing localization methods, with the introduction of a novel localization
algorithm. We believe that localization by means of histogram tracking will improve both
performance and efficiency.

1.4. Thesis Outline

In this thesis we will present several approaches to the problems of generic object recog-
nition and localization. Although these problems and the approaches to solving them are
highly related, we will discuss the methods that we applied separately. Chapter 2 intro-
duces the visual vocabulary framework, which we will use in both object classification
and localization. Object classification and some classification techniques are discussed
in chapter 3. Chapter 4 introduces two approaches to object localization, which we will
compare in the experiments. In chapter 5 we present the results of the classification and
localization experiments. In addition, we discuss some implementation details. Finally,
in chapter 6 we discuss the results and comment on the chosen approaches. Furthermore,
we make some suggestions about how to improve on the results in further research.
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Visual Vocabulary Framework

In this chapter we will introduce the framework which we apply in our research. The
visual vocabulary framework can be described in three parts. Initially, local descriptors
are extracted from the images of an image collection. These descriptors are collected and
used as input for a clustering algorithm. The clustering process, also known as visual
vocabulary construction, is used to identify a visual vocabulary. A new image can be
expressed as a histogram over this visual vocabulary: each of the images’ local descriptors
are assigned to the corresponding visual word using some distance metric. Finally, the
histogram created from an image is used as an image descriptor in order to make inference
for the content of the image.

Words from the visual vocabulary can be seen as specific microstructures defined by
the prototype responses to a set of image filters. The goal is to determine an appropriate
set of visual words that permit us to describe various images by its image content. The
visual vocabulary can be constructed by clustering the filter responses of all images into
a small set of prototypes. The process of vocabulary construction is discussed in section
2.3 in more detail.

Given that we have successfully learned a visual vocabulary, we can describe an image
by the frequency of visual words from the vocabulary. Initially, each pixel of an image
is transformed into a filter response vector. Thereafter, each of the response vectors is
assigned to a word from our visual vocabulary. At this point, an image can be described by
the distribution over the words of the visual vocabulary. The assumption is that different
object classes have distinct distributions, which will allow us to successfully a new image
based on its descriptor histogram.

The following sections will discuss the three parts of our framework in more detail.
Section 2.1 describes the extraction of local image features and section 2.2 discusses some
of the image filters that are commonly used. In section 2.3 the vocabulary construction
procedure is discussed. Finally, section 2.4 describes the extraction of image descriptors
from images.
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2.1. Feature Extraction

The representational scheme used to describe an image is one of the most important
aspects in object classification. Without meaningful image features it is hard to capture
the essence of an image. Thus, it would be hard to generalize object classes. Local
image features have proven to be well-suited for this purpose. Due to the locality of the
extraction, these features are robust to some image variations, such as partial observability
(occlusion or truncation). For example, if we would alter an image by introducing occlusion
of an object, not all of the local image features would change, just the ones in locality
of the occlusion. The invariance to image variations is an important aspect of image
features. Since we plan to generalize object classes, we would like that an object looks the
same under different scales, viewpoint, orientation, and illumination conditions. When we
change the scale of an object, or when we apply any Euclidean transformation for that
matter, the image features should remain the same.

We have adopted the use of gradient based image filters. These local descriptors ex-
tract gradient information of local image patches. So, the image is described by a set of
image filters, called a filter bank. The filter bank is applied to each pixel, forming an N
dimensional vector, where N stands for the amount of image filters. The set of response
vectors for an image, extracted by convolving the filter bank on an image, will consist of
a large number of unique vectors. Since the features are extracted locally, filter responses
that are extracted in close proximity to one another, will not differ significantly. Filter
responses throughout the image however, can differ rigorously. Thus, it is safe to assume
that numerous prototype response vectors exist, of which all other filter responses are
noisy variations. The prototype response vectors, the responses that are most frequent or
at least reside in similar regions of the filter space, are the visual words we wish to define.

2.2. Filter Banks

As was mentioned in the previous section, we will make use of a set of image filters,
commonly referred to as a filter bank. In principal we could use any combination of filters
to form a filter bank, but several standard filter banks exist in literature [7, 5, 8, 9, 16, 17].
Each filter bank has different characteristics due to the use of different filters. Some of the
filter banks have the property that they are invariant to specific image conditions, such as
scale or rotation. When a filter bank possess such a property, it implies that the responses
to the filters will, to some degree, be independent of these specific image conditions. For
example, when a filter bank is rotationally invariant, the value of the filter response will
not change when arbitrary rotations are applied to an image. In the following subsections,
we discuss some of these filter banks1.

1All of images of filter banks were generated using the software of [17], available on
http://www.robots.ox.ac.uk/˜vgg/research/texclass/filters.html
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2.2.1. The Schmid Filter Bank

The Schmid filter bank consists of 13 separate filters [16]. All the filters from the Schmid
filter bank are rotationally invariant. The set is composed of 13 isotropic filters, which
are shown in figure 2.1.

Figure 2.1.: The Schmid filter bank. As can be seen in the images, the Schmid filter
bank consists of filters that are all rotationally invariant.

2.2.2. The Winn-Criminisi-Minka Filter Bank

The Winn-Criminisi-Minka filter bank consists of 11 separate filters, but a total of 17
filter responses due to convolution of the filters on different colour channels of the L,a,b
colour model [7]. The filter bank is composed of 3 Gaussians (σ = 1, 2, 4), 4 Laplacian
of Gaussians (σ = 1, 2, 4, 8) and 4 first order derivatives of Gaussians (σx = 2, 4 and
σy = 2, 4). The 3 Gaussians are applied to all three channels of the L,a,b colour space.
The 4 Laplacian of Gaussians and 4 derivatives of Gaussians are applied to the L channel
only. The filters are shown in figure 2.2.

Figure 2.2.: The Winn-Criminisi-Minka filter bank. The filter bank consists of 7
isotropic filters, of which 3 Gaussians and 4 Laplacian of Gaussians, and 4 first order
derivatives of Gaussians.

2.2.3. The Leung-Malik Filter Bank

The Leung-Malik filter bank consists of 48 separate filters [8, 9]. The filter bank is com-
posed of first and second derivatives of Gaussians at 6 orientations and 3 scales. Further-
more there are 8 Laplacian of Gaussians and 4 Gaussians. The scale of the filters range
from σ = 1 to σ = 10 pixels. The filters are shown in figure 2.3.
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Figure 2.3.: The Leung-Malik filter bank. The filter bank consists of 48 filters,
2 anisotropic filters in 3 scale and 6 orientations, 8 Laplacian of Gaussians and 4
Gaussians.

2.2.4. The Maximum Response (MR8) Filter Bank

The MR8 filter bank consists of 38 filters, but only 8 filter responses [17]. The filter bank,
like the Leung-Malik filter bank, is composed of first and second derivatives of Gaussians
at six orientations and 3 scales, (σx, σy) = {(1, 3), (2, 6), (4, 12)} pixels. The isotropic
filters are a Gaussian and a Laplacian of Gaussian, both with σ = 10 pixels. The filter
bank is rotationally invariant due to the fact that only 8 out of 38 filter responses are
actually used. The 36 anisotropic filters are reduced to 6 by only using the maximum
responses across the different orientations, making them rotationally invariant. Adding
the 2 isotropic filters leaves 8 filter responses. The filters are shown in figure 2.4.

Figure 2.4.: The MR8 filter bank. The filter bank consists of 2 anisotropic filters in 3
scale and 6 orientations, a Laplacian of Gaussian and a Gaussian filter. Only 8 filters
are used, by combining the 2 isotropic filters with the maximum response filters across
all orientations.
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2.3. Vocabulary Construction

The vocabulary construction procedure uses the filter response vectors that were obtained
in an earlier stage, where filter banks were convolved with the images in a collection.
Based on the assumption that numerous prototype filter responses exist, of which all
others are noisy variations, we can construct a visual vocabulary by clustering all the
filter responses. Eventually the visual vocabulary will consist of all the acquired cluster
centers, which correspond to the prototype image features.

The vocabulary construction process contains a lot of parameters that can be applied
differently, such as size of the vocabulary, clustering methods, dimensionality of descrip-
tors, late- or early-fusion of filter responses, and descriptor-to-visual-word correspondence.
In the following sections we discuss some of the choices that can be made throughout the
process of vocabulary construction.

2.3.1. Fusion of Filter Responses

One of the distinctions in the vocabulary building process, is the fashion by which the
filter responses are fused. One possibility would be to construct a single vocabulary using
the response vectors of all images in the dataset together, without making a distinction
between object classes. In this case we simply construct vocabulary T with size T in a
straightforward manner. Clustering is performed on the response vectors of all images in
the dataset. We will refer to this as early fusion. Early fusion is illustrated in figure 2.5.

Another possibility is to construct multiple vocabularies, one for each class, using the
response vectors of each separate object class. In this case we construct multiple vocab-
ularies T1, · · · , Tn with size T

n and conjoin them to form T . We will refer to this as late
fusion. Late fusion is illustrated in figure 2.6.

The difference between early fusion, illustrated in figure 2.5 and late fusion, illustrated
in figure 2.6, is twofold. The first difference between early and late fusion is the position
of the fusion within the vocabulary construction process. Early fusion is applied before
clustering is performed, while late fusion is applied afterwards.

Aside for the difference in position, early and late fusion differ in the type of information
that is fused. Early fusion concatenates low level information, that is to say the filter
responses. Late fusion concatenates higher level information, namely the visual class
vocabularies that are a results of clustering the response vectors of each class separately.

Needless the say, we expect the classification results for both types of fusion to be
different. It is to be expected that the late fusion approach will perform the best. The
reason that we expect late fusion to outperform early fusion, is that late fusion will find
specific visual words, for each of the various classes. This can be compared to describing
images of different object classes in a distinct jargon. Early fusion however, will just result
in a visual vocabulary that aggregates across all object categories. The images can only
be distinguished by the co-occurrence or frequency of specific words. On the other hand,
since the late fusion approach construct severals vocabularies independently, there is a risk
of finding redundant words, i.e. finding similar words in each of the class vocabularies.
This would limit the expressiveness of the resulting visual vocabulary.
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Figure 2.5.: Early fusion of filter responses. First response vectors are extracted
using a filter bank. Subsequently, filer responses are concatenated before clustering is
performed. The position in the process where fusion is applied, is indicated by a dotted
line.

2.3.2. Clustering

The vocabulary construction process basically boils down to clustering. In our case, we
will be clustering the response vectors produced by convolving a set of images with a
filter bank. By clustering these response vectors, we determine the appropriate prototype
response vectors that make up the visual vocabulary.

The aim of each clustering algorithm is to partition some dataset into several subsets
that share a common trade. In most cases the similarity between instances of a particular
dataset is measured by proximity according to a distance measure. There are many dif-
ferent clustering methods, which can be supervised or unsupervised, hierarchical or non
hierarchical, optimal or semi-optimal. In this case we will focus on non hierarchical unsu-
pervised clustering, since we are not interested in creating a hierarchy within visual words,
nor do we posses labels that would be useful in the vocabulary building process2. There
are several clustering algorithms that satisfy our requirements, such as EM-clustering k-
means and x-means. We will adopt the use of k-means [18], which is commonly used for
vocabulary building [7, 5, 8, 9, 17].

2The late fusion approach could be viewed as semi-supervised clustering, because we use the class labels
to partition the dataset beforehand. However, the actual clustering process does not make use of labels.
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Figure 2.6.: Late fusion visual class vocabularies. First response vectors are extracted
using a filter bank. Subsequently, clustering is performed on the responses vectors of
each separate class, constructing a vocabulary for all the various classes. Finally, the
vocabularies are concatenated, thus creating a single vocabulary. The position in the
process where fusion is applied, is indicated by a dotted line.

K-Means Clustering

K-means clustering is a clustering algorithm where the aim is to partition the datapoints,
in our case response vectors, into k clusters. The partitioning is based on minimizing the
total within-group sum of squares distance, which is similar to minimizing equation (2.1).

k∑

i=1

∑

xj∈Si

|xj − µi|2 , with µi mean of cluster Si (2.1)

K-means clustering finds clusters in a greedy manner, by starting with an initial par-
tition and iteratively updating the partition until convergence is met. This means that
it is not guaranteed to return the global optimum, but will most likely result in a local
maximum. The quality of the resulting centers is dependent on several things, such as
the initialization and the natural clustering of the dataset. We are looking for exactly
k clusters, so the resulting cluster centers may look strange if the dataset is poorly, or
highly clustered.
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2.4. Image Descriptors

Once a visual vocabulary is constructed, it is possible to determine the image descriptors.
This is done by mapping the filter responses onto the visual dictionary. Mapping the filter
responses onto the visual dictionary simply means assigning the corresponding visual word
for each response vector, i.e. finding the visual word that minimizes some distant metric.

In line with the bag of keypoints approach, we unite all image descriptors of an image
into one large group. By counting the number of times each visual word occurs within the
image, we can construct a frequency vector. Usually this frequency vector is referred to
as a descriptor histogram, as it can be visualized by a histogram. In figure 2.7 an example
of such a histogram is shown.

For each image the descriptor histogram will be different, but the assumption is that
throughout the image categories, these histograms show similar patterns for images of the
same class, and dissimilar patterns for images of different classes.

Figure 2.7.: Example of a descriptor histogram.

Due to the large difference in the number of response vectors for each image, we need
to normalize the descriptor histograms. This is necessary to insure that the descriptor
histograms are within the same spatial domain. Normalization is performed by dividing
each of the histogram bin entries by the total amount of histogram bin entries, using
equation (2.2). As a result the total sum over the histogram bins will be 1, and each
histogram bin will have a value between 0 and 1.

Hj =
Hj∑T
i=1 Hi

(2.2)

where Hi and Hj are the ith and jth bin of the descriptor histogram and T is the dictionary
size.



Chapter 3
Object Classification

Object classification addresses the problem of discriminating between object classes. Im-
ages should be labeled according to their corresponding class. Formally, we could say that
given an image I, a set of object categories Ω, the goal is to find the object category ω ∈ Ω
that corresponds to the object depicted in I.

However, classification, also know as statistical pattern recognition, does not limit itself
to object classification alone, and is a very active area of research. Statistical pattern
recognition aims to classify datapoints based on either prior knowledge of the classifica-
tion problem or on statistical information extracted from the dataset. The points to be
classified, are usually groups of measurements or observations, defined in some multidi-
mensional space. In our case the datapoints are the image descriptor defined in the former
chapter.

Formally, classification of data can be described as follows. Given a dataset D and a
collection of classes Ω, the aim is produce a classifier h : x → ω, which maps each instance
x ∈ D, to the correct class ω ∈ Ω.

In general, there are two main approaches to classification. We could either define a
generative model, in which case we model a class by a distribution over its descriptors,
or learn a discriminative model for the data, in which case we try to estimate a decision
boundary. In both cases we assume that the distribution of various classes are sufficiently
different, to make accurate classification possible.

Generative classification methods, rather than producing a label directly, estimate the
conditional class probability p(x|ω). In combination with the prior probability of a par-
ticular class p(ω) the classifier h can be constructed. The decision boundary can be
determined using Bayes rule for minimum error, defined by equation (3.1).

∀j, k p(x|ωj)p(ωj) > p(x|ωk)p(ωk) ωk ∈ Ω and k 6= j (3.1)

Several methods can be applied to produce an estimate for p(x|ω), of which some will
be discussed in this chapter.

In this chapter several well known classification methods are described, as well as some
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Figure 3.1.: Example of a linear separable dataset and multiple decision boundaries.
The figure on the left has a superior decision boundary to the figure on the right,
because the margin are greater. In fact, the figure on the left shows the optimal
decision boundary, where the distances between the decision boundary and the closest
points are maximized.

methods that are less conventional. The methods that will be discussed in the following
subsections are support vector machines (SVMs), naive Bayes, and a simplified version of
the naive Bayes model (Bhattacharyya distance).

3.1. Support Vector Machines

Support vector machines (SVMs) where first introduced by Vladimir Vapnik in 1995 [19],
and it remains a widely applied classification technique today. One major advantage of
SVMs is the fact that it performs very well with high dimensional data, as well as data
that is sparse. The vocabulary size we will be using is in the order of thousands, and the
number of training samples in the order of several hundreds, so the dataset is both sparse
and highly dimensional. Thus, SVMs would be an appropriate classification method in
this case

In contrast to the other methods in this section, SVMs do not estimate the class con-
ditionals. Instead of using the Bayes rule of minimum error to determine a decision
boundary, the aim of SVMs is to determine the decision boundary directly. In addition
to finding a decision boundary that partitions the data correctly (there might be many
solutions), we are interested to find the boundary that achieves maximum separation be-
tween data of different classes. The vectors that lie closest to the decision boundary are
called support vectors.

Before considering N -dimensional hyperplanes, let’s look at the simple 2-dimensional
problem shown in figure 3.1. The aim is to find a linear discriminant that will partition
data. In this case the data is linearly separable, meaning that all the vectors labeled with
+ are situated at one side of the line and the vectors labeled with - on the other side.
There are an infinite number of possible lines that separate the two classes, so the optimal
solution will be the line that maximizes the margins between the decision boundary and
the support vectors.
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For data that is not linearly separable, we will make use of the ‘kernel trick’. The
original data is mapped to another space, the feature space F , applying a Mercer kernel
operator K. Where normally the hyperplane would be described by

f(x) = ax + b (3.2)

now we can write

f(x) =
n∑

i=1

aiK(xi) + b (3.3)

With use of the kernel we can map the data to feature space F and the support vectors
now correspond to the hyperplane, that separates the data with maximal margins in
this feature space. Through use of a kernel we can define more complex boundaries than
ordinary linear boundaries. For data which is N -dimensional the same trick can be applied.

Any kernel can be applied, but only a few are frequently used. Among the most frequent
are the linear kernel, the polynomial kernel, the sigmoid kernel and the radial basis function
(RBF) kernel. Each of the kernels have their own set of parameters, and naturally these
have to be optimized for maximal classification results.

A drawback of SVMs is that they are only capable of binary classification. This implies
that an SVM can only discriminate between two classes. In most cases an SVM is used as a
classifier for just one class, by classifying whether or not an instance is part of a particular
class. To adapt SVMs to handle multiclass problems there are several options, of which I
will only mention a few. The first option is multiclass ranking SVMs, in which one SVM
decision function attempts to classify all classes. The aim is to find a single mathematical
function that separates all classes. In most multiclass problems this approach is unreliable,
since a mathematical function that separates all classes does not exist. A second option
is pairwise classification, in which there is one binary SVM for each pair of classes to
separate members of one class from members of the other class. It is expected that this
approach will be slower than other approaches, since the number of SVMs that need to
be learned will be greater. Yet another approach is one-against-all classification, in which
there is one binary SVM for each class to separate members of that class from members of
all other classes. This means that a single SVM is learned for each of the various classes.
In most cases, as well as in our situation, the last approach is preferred.
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3.1.1. RBF Kernel

One of the kernels we will apply in this project is the RBF kernel, defined by equation (3.4).
It maps data to the feature space with use of multiple radial basis functions. You could
say that the decision boundary is constructed by placing radial basis functions over the
support vectors within the normal space.

K(u, v) = exp
(
−γ ∗ |u− v|2

)
(3.4)

where γ determines the RBF width.

3.1.2. Probabilistic Outputs

SVMs do not provide a probability output, but provide the classifier h directly. If we
want to classify instances in a similar manner as all the other methods, we need to map
the SVM outputs to probabilities. John Platt [20] showed that we can do just this, by
training an sigmoid using the SVM outputs, which provides us with probabilities. The
sigmoid function is shown in equation (3.5).

P (y = 1|f) =
1

1 + exp (Af + B)
(3.5)

where A and B are the sigmoid parameters that need to be fitted and f is the output of
the trained SVM.

3.2. Naive Bayes

An object model that was used by Winn [7] was specifically designed for the purpose of
object classification using a visual vocabulary and descriptor histograms. The set of de-
scriptor histograms for each class are modelled through the use of a Gaussian distribution
with mean H̄ω and diagonal covariance whose diagonal entries form the vector βω. Due
to the utilization of just the diagonal of the covariance matrix, all histogram bins are
considered independent. This assumption is typical for naive Bayesian models.

The probabilistic relationship for a class with parameters θ = (H̄, β) is defined as
follows.

p(H|θ) =
T∏

i=1

N (H
1
2
i , H̄

1
2
i , βi) (3.6)

where Hi is the ith bin of the descriptor histogram and T is the dictionary size. The value
of each bin is raised to the power of a halve, effectively making the variance constant,
rather then linearly dependent on the mean H̄ [21].

One of the key assumptions of this method is that when an object of class ω appears in
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the image, the corresponding histogram H of the region in which the object lies, is close
to the class histogram H̄ω in terms of Mahalanobis distance given by βω.

If we take a closer look at the logarithm of P (H, θ) we can see the resemblance of this
approach to the Bhattacharyya distance.

log [P (H|θ)] = (3.7)

log

[
T∏

i=1
N (H

1
2
i , H̄

1
2
i , βi)

]
= (3.8)

T∑
i=1

log

[
N (H

1
2
i , H̄

1
2
i , βi)

]
= (3.9)

T∑
i=1

log


 1√

βi

√
2π

exp
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2βi


 = (3.10)

T∑
i=1

log
[
(2πβi)−
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If we remove the constants and work out further we get.

T∑
i=1

−1
2 log [βi]− 1

2

√
Hi

2

βi
− 1

2

√
H̄i

2

βi
+
√

HiH̄i

βi
= (3.14)

T∑
i=1

−1
2 log [βi]− 1

2
|Hi|
βi
− 1

2
|H̄i|
βi

+
√

HiH̄i

βi
(3.15)

When β is assumed to be constant, and the histograms are normalized, equation 3.15
reduces to the Battacharyya coefficient (equation 3.16), due to the fact that all other parts
of the equation become constant. When β is not constant, this method differs from the
Bhattacharyya distance, because it normalizes all vector space axes using variance.

3.3. Bhattacharyya Coefficient

The Battacharyya coefficient is not a method for classification, but rather a similarity
measure, which measures the similarity of two discrete probability distributions. It is
widely applied in the field of histogram tracking, where it is used to calculate the similarity
between two histograms [22]. However, it can also be applied for classification, where it
boils down to a simplified version of the formally introduced generative model.

In text categorization applications, a similar measure is used to classify text, the cosine
similarity [23, 24]. In this case, the bag of words framework is applied, and documents
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are represented by frequency vectors, which indicate the number of times certain terms
are used in a document. Given a set of documents D and their corresponding vector
representations, the centroid is determined by averaging over the vectors in D. Once
a centroid is determined for each category, the similarity between a new document and
a category can be used to determine whether or not a document belongs to a certain
category.

In previous sections we discussed that images can be represented by descriptor his-
tograms. We can measure the similarity of two descriptor histograms using Bhattacharrya
distance. Similar to text categorization, we can try to classify images using the centroid, or
mean, to classify new instances. Given the mean histogram of a class H̄ω, and a particular
instance H, the Bhattachayya distance can be determined as follows.

B(H, H̄ω) =
T∑

i=1

√
HiH̄ω,i (3.16)

where Hi is the ith bin of the descriptor histogram.

When the histograms are normalized, the values for the Bhattacharyya distance will
always range between 0 and 1. For this reason we can apply the Bayes rule for minimum
error for classification, defined by equation (3.1) in the beginning of this chapter.



Chapter 4
Object Localization

The last chapter discussed only one part of this project, object classification. This chap-
ter will focus on the second part of the project, object localization. Currently a lot of
researchers are interested in this problem [15, 10, 4, 13, 14, 11, 25]. In this chapter two ap-
proaches to object localization will be discussed. First we discuss the most commonly used
approach, the tile-based approach. Furthermore a second, more sophisticated method, will
be discussed, that will be compared to the tile-based approach.

Object localization can be formally described as follows. Given an image I, and a set
of object classes Ω, the goal is to localize all objects depicted in I that belong to either
of the object classes ω ∈ Ω. A localization algorithm should give a set of labeled regions,
given an input image. If none of the object classes are present in the image, the algorithm
should return an empty set.

4.1. Tile-Based Approach

The tile-based approach is one of the most common approaches to object localization.
Basically, the procedure consists of three steps. First, we select a collection of local
image patches, by sliding a prototype image patch (tile) across the image. Subsequently,
every image patch is evaluated using the same classifiers we learned in the classification
procedure. The classifiers provide us with the class conditional probabilities of every
image patch, which in turn are used to select the final detections. Figure 4.1 shows an
illustration of the tile-based approach.

The selection process has many variants. We could use a single tile, multiple tiles at
different scales, or use random tiles. Furthermore, we can evaluate at each location, eval-
uate at random positions, or evaluate on a predefined grid. Some variants use contextual
information to select certain image patches [10]. Another option would be to evaluate
every possible local image patch, however this is very impractical, since the increase of
patches will lead to an increase of computational complexity.

One of the disadvantages of the tile-based approach is that the image patches are selected
arbitrarily, and the final detection is either one of these arbitrary image patches, or a
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Figure 4.1.: Overview of the baseline method for object localization.

combination of image patches. As a result, the probability that the final detection will
be a perfect boundingbox around an object is small, and we are likely to end up with
detections that contain only a partial object, as in figure 4.2(a). On the other hand,
the opposite could also happen. We could also end up with an object region with the
whole object including a lot of background pixels, shown in figure 4.2(b). Other problems
will arise when evaluation regions are labeled incorrectly. When parts of some object
classes resemble parts of other classes, misclassification could be a possibility. Examples
are shown in figure 4.2(c) and 4.2(d). The figures show what can happen when some
of the evaluation regions are misclassified. One of the possible outcomes is depicted in
figure 4.2(c), where only the rear of the airplane is classified correctly, resulting in a poor
segmentation. Another outcome is shown in figure 4.2(d), where multiple object regions
are detected.

4.2. Localization by Region Optimization

The procedure for object localization by region optimization is as follows. We start by
segmenting the target image into several equally sized regions. However, in contrast to the
former approach, these regions do not act as building blocks for the final detections. In
stead, we use these regions as starting points for further investigation. Each of the regions
acts as a seed for the optimization algorithm and we will try to optimize the similarity
of a region with respect to the learned object class models. The aim of the optimization
process is to maximize the similarity of a region given an object class model, with respect
to the region size, shape, and location.
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(a) Under segmentation (b) Over segmentation

(c) Partial detection (d) Detection of multiple instances

Figure 4.2.: Examples of bad segmentation. In figure (a) an example of under seg-
mentation is shown. The object region contains only part of the total object. Figure
(b) shows an example of over segmentation. Here, the object region contains the total
object. However, a lot of background pixels are also present. Figure (c) shows an
example where only halve of the object is detected. In figure (d) multiple instances are
detected incorrectly.

As was described in chapter 2, we have adopted a visual vocabulary framework. Within
this framework, image regions are defined by words from a visual vocabulary. Each pixel
within an image can be mapped to exactly one visual word. This means that each region
will have its own set of visual words and will, to some degree, differ from other regions.
An image patch is described by a descriptor histogram, which is determined from its set
of visual words. In a descriptor histogram each histogram bin corresponds to a specific
word from the visual vocabulary. For an image region, the descriptor histogram is a
distribution of visual words present in the region. Given the fact that each pixel of an image
corresponds to exactly one visual word, we are able to apply histogram tracking methods
to update certain starting regions in order to find regions with maximum potential.

Histogram tracking is normally applied for tracking of objects, nonetheless we will use
histogram tracking for object localization. Object localization is not that different from
object tracking, since in both cases we are trying to localize certain object within an
image, given a target description. In histogram tracking applications, regions are updated
by maximizing a particular similarity measure. The similarity measure determines the
similarity between target model and a candidate model. In this case the target model will
consist of a learned object class model and the candidate model will consist of a descriptor
histogram extracted from an image patch. Not all object class models can be applied so
we will only use the simplified naive Bayes model discussed in section 3.3.
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Figure 4.3.: Overview of the localization procedure using histogram tracking.

Localization of objects using histogram tracking will consist of iteratively updating
particular regions by increasing the similarity measure with respect to their size, shape
and location. Figure 4.3 illustrates the localization procedure using histogram tracking.
In the next sections we will explain histogram tracking in detail.

The histogram tracking approach to object localization tries to deal with the problems
of the tile-based approach. Where the problem of an imperfect fit is inherent to the tile-
based approach, it is not inherent to the following approach. The reason being that we do
not use arbitrary regions as building blocks for object regions, but rather try to optimize
certain regions by changing their position shape and scale. Thus the regions in the tile-
based approach are static, where the regions in this approach are dynamic. Object regions
are determined by optimizing certain starting regions. The starting regions are optimized
with respect to shape, size and location using histogram tracking.

4.3. Histogram Tracking

Histogram tracking is a widely applied method for object tracking. It was first introduced
in [22] and remains the preferred method for tracking objects today due to the fact that
it has low computational costs, so real-time applications are possible.

The first step needed for histogram tracking is to describe our target model. This model
defines the characteristics of the object that we are looking for in the images and is defined
by a probability density function (pdf) in the feature space. In previous sections we already
discussed that images are characterized by their visual words, which can be represented by
a descriptor histogram. For simplicity we will go into object class characterization later.
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For now we will focus on histogram tracking of specific objects through successive frames
of video.

We can characterize the target model q in the first frame by its pdf in feature space. In
our case, the feature space will be the filter response space, and the pdf will be represented
by a descriptor histogram, which in turn is a mapping from the feature space to a discrete
distribution within the feature space. We also define the location of the target model,
which is set to 0. In the next frame a target candidate is defined at location y, and
characterized by the pdf p(y). In our case this pdf will be the descriptor histogram of the
region defined by the location y and its surrounding pixels.

To compare the target model with the target candidate, we need a similarity function,
which is defined by

ρ(y) ≡ ρ[p(y),q] (4.1)

The similarity function ρ(y) is the function that needs to be maximized, and its max-
imum indicates objects in the second frame that have similar representation to q which
was defined in the first frame. Due to the fact that we are using histograms as a repre-
sentational model, all spatial information is lost. Spatial information is crucial if we want
to determine in what direction we should focus our search. To regain some spatial infor-
mation, an isotropic kernel in the spatial domain is used as a mask over the target object.
By using a kernel, the function ρ(y) becomes a smooth function in y, which enables us to
perform gradient based optimization methods.

Let us redefine a target model, where the kernel is taken into account. All targets
are normalized to a unit circle, to eliminate target dimensions, by rescaling the row and
column dimensions.

The normalized pixel locations in the region of the target model are described by
{x∗i }i=1···n. The region is centered at 0 in the first frame.

The function b : R2 → {1 · · ·T} is a mapping from the pixel on location x∗i to the index
b(x∗i ) of its histogram bin, i.e. the corresponding visual word. The probability that a
visual word u = 1 · · ·T will be present in the target model can now be written as

qu = C
n∑

i=1

k
(
||x∗i ||2

)
δ [b(x∗i )− u] (4.2)

where δ is the Kronecker delta function. C is a normalization constant, which is define by

C =
1∑n

i=1 k (||x∗i ||2)
(4.3)

The kernel can be incorporated into the target candidate as follows. Let {xi}i=1···nh
be

the normalized pixel locations of the target candidate. The region is centered at y in the
second frame. A similar kernel is used in the second frame, only a bandwidth parameter h
is introduced. The probability that a visual word u = 1 · · ·T will be present in the target
candidate is given by
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pu(y) = Ch

nh∑

i=1

k

(∥∥∥∥
y − xi

h

∥∥∥∥
2
)

δ [b(xi)− u] (4.4)

where the constant Ch in defined by

Ch =
1

∑nh
i=1 k

(∥∥∥y−xi
h

∥∥∥
2
) (4.5)

4.3.1. Target Candidate Localization

Locating the target object in the second frame is equal to maximizing the similarity
function ρ [p(y),q] with respect to y. To locate the target candidate, we start from the
position of the target model in the previous frame y0 and search in its vicinity. As was
mentioned earlier, the use of a kernel smoothens the pdf p(y) in y, which enables us to
perform gradient based optimization methods. We will apply the mean shift procedure
[26] for this purpose.

In section 3.3 we used the Bhattacharyya coefficient to classify object. Here we will use
the Bhattacharyya coefficient for the similarity function ρ [p(y),q]. The Bhattacharyya
coefficient is given by

ρ [p(y),q] =
T∑

i=1

√
pu(y)qu (4.6)

We can approximate the Bhattacharyya coefficient by using Taylor expansion around
y0. The linear approximation of the Bhattacharyya coefficient is

ρ [p(y),q] ≈ 1
2

T∑

u=1

√
pu(y0)qu +

1
2

T∑

u=1

pu(y)
√

qu

pu(y0)
(4.7)

An approximation will suffice when the target candidate pu(y) is not rigorously different
from pu(y0). For successive frames in a video stream this is not an unrealistic assumption.
If we look at equation 4.4, the equation above can be reduced to

ρ [p(y),q] ≈ 1
2

T∑

u=1

√
pu(y0)qu +

Ch

2

nh∑

i=1

wik

(∥∥∥∥
y − xi

h

∥∥∥∥
2
)

(4.8)

with

wi =
m∑

u=1

√
qu

pu(y0)
δ [b(xi)− u] (4.9)

Finally, to maximize the similarity ρ [p(y),q] we should maximize equation 4.8 with
respect to y. In order to do so, we only need to maximize the second part of the equation,
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because the first part is independent of y.

We can employ the mean shift procedure to produce the sought location [26]. It finds
the new location by moving along the gradient of the density estimate. It recursively
updates the current location y0 to a new location y1 through use of

y1 =

∑nh
i=1 xiwig

(∥∥∥y0−xi
h

∥∥∥
2
)

∑nh
i=1 wig

(∥∥∥y0−xi
h

∥∥∥
2
) (4.10)

where g(x) = −k(x).

4.3.2. Practical Algorithm for Localization

In contrast to object tracking, we are not dealing with images that change through time
and are not interested tracking object within a changing environment. Instead we are
interested in locating objects within static images. However, histogram tracking can be
applied, since it is nothing more than maximizing some pdf with respect to location, which
is exactly what we are trying to do.

The same way we used the Bhattacharyya coefficient for classification purposes in section
3.3, we can use it to localize objects. The target model will be the centroid or mean of
an object category. The target candidate will be the descriptor histogram of an image
region. The starting image region will be selected through use of the procedure in section
4.2. The pdf will be maximized through multiple position updates, until convergence is
met. Pseudo code for the procedure is given in algorithm (1).

Algorithm 1: Mean shift procedure for object tracking. Steps four through six are
to compensate for the linear approximation of the Battacharyya coefficient, using
Taylor expansion.

Input: Target model q = {qu}u=1···T , and its location y0

Output: New location y1

initialize the location of the target in the current frame with y0, compute1

{pu(y0)}u=1···T and evaluate ρ [p(y0),q]
determine {wi}i=1···nh

according to (4.9)2

determine location y1 according to (4.10)3

while ρ [p(y1),q] < ρ [p(y0),q] do /* compensation */4

y1 ← 1
2(y0 + y1)5

end6

if ‖y1 − y0‖ < ε then7

return y18

else9

y0 ← y110

go to line 211

end12
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4.4. EM-Shift

The mean shift procedure that was discussed in the previous section, is a procedure which
updates the location of a target region. However, we are not only interested in the location
of an object, but also in the size and shape of the target region. The mean shift procedure
is not designed to include these parameters. A simple solution would be to adapt the
target region with multiple scales. Subsequently the scale that resulted in the highest
similarity score would be selected. However, Kröse and Zivkovic introduced a new form of
tracking, EM shift [27], which estimates the size and shape of the ellipse directly. In this
work not only the position of the candidate region is approximated, but the covariance
matrix of the candidate region is approximated as well.

The approach to EM shift is based on an extreme outlier model [28]. Here we define
a set of N independent data samples by X = {~xi, · · · ~xN}. We assume that the pdf p(~x)
can be modelled by a normal distribution, so

p(~x|θ) = N (~x|θ) (4.11)

where θ = {~µ,Σ}. The Likelihood function, which can be used to estimate the mean
vector ~µ and covariance matrix Σ, is denoted by

p(X|θ) =
N∏

i=1

p(~xi|θ) (4.12)

Some prefer to use

p(X|θ) ≈
N∑

i=1

p(~xi|θ) (4.13)

which can only be used in a very extreme case of outliers [28].

Outliers can be modelled by a uniform distribution 1/A, where A is the area of the
domain of ~x. If e represents the probability that a data sample is an outlier, a generative
model can be written as follows

p′(~xi|θ) = e/A + (1− e)p(~xi|θ) (4.14)

The Likelihood function becomes
∏N

i=1 p′(~xi|θ). In this case the approximation of the
Likelihood function using Taylor expansion in (1− e) is given by

(e/A)N + (e/A)N−1(1− e)
N∑

i=1

p(~xi|θ) + O((1− e)2) (4.15)

If we consider the extreme outlier model, where lots of outliers are present (e is very
close to 1), only the first two terms matter, and maximizing (4.15) over θ is equivalent to
maximizing (4.13). Mean shift can be used to accurately estimate ~µ, which we will discuss
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in section 4.4.1. The extreme outlier model can also be used to estimate Σ, which we will
describe in section 4.4.2.

4.4.1. Estimating ~µ in an EM-like Manner

A more general version of (4.13), where each data sample is weighted by weight wi is given
by

f(~µ,Σ) =
N∑

i=1

wiN (~xi|~µ,Σ) (4.16)

The aim is to find the optimal parameters for f(~µ,Σ), thus maximizing the value of
function (4.16). This is done by EM-like iterations, where each iteration the value of (4.16)
is increased. The E and M steps can be found using Jensen’s inequality [27]

log f(~µ,Σ) ≥ G(~µ,Σ, q1, · · · , qN ) =
N∑

i=1

log
[
wiN (~xi|~µ,Σ)

qi

]qi

(4.17)

where qi-s are constants with the following properties

N∑

i=1

qi = 1 and qi ≥ 0 (4.18)

The E step can be found by maximizing G with respect to {q1, · · · qN}, while keeping ~µ
and Σ fixed. The maximum is achieved by the following equation for qi

qi =
wiN (~xi|~µ,Σ)∑N

i=1 wiN (~xi|~µ, Σ)
(4.19)

The M step is found by maximizing G with respect to ~µ and Σ, while keeping {q1, · · · qN}
constant. This means we need to optimize over the part of the function G that is dependent
on the parameters

g(~µ,Σ) =
N∑

i=1

qiN (~xi|~µ,Σ) (4.20)

Maximizing g with respect to ~µ gives

~µ =
N∑

i=1

qi~xi =
∑N

i=1 ~xiwiN (~xi|~µ,Σ)∑N
i=1 wiN (~xi|~µ,Σ)

(4.21)
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4.4.2. Estimating Σ

If we would like to know what the expected value for (4.13) is, we need to define the true
distribution p∗(~x). The expectation for (4.13) becomes

E[f(~µ,Σ)] =
∫

~x
p∗(~x)N (~xi|~µ,Σ) (4.22)

Due to the approximated Gaussian distribution, equation (4.22) can be seen as a smoothed
version of the true distribution p∗(~x). If we assume that p∗(~x) locally can be described
by a Gaussian N (~xi|~µ∗, Σ∗ + Σ), the expected maximum can be found for ~µ = ~µ∗ and
unfortunately Σ = 0. For this reason the density estimate (4.16) is multiplied by |Σ|γ/2,
thus creating a ‘γ-normalized’ function

fγ(~µ,Σ) = |Σ|γ/2f(~µ, Σ) (4.23)

Under the assumption that locally the real distribution p∗(~x) can be described by a Gaus-
sian, the maximum with respect to Σ is at

∂

∂Σ
|Σ|γ/2

|Σ∗ + Σ|1/2
= 0 (4.24)

And because ∂
∂Σ = |Σ| [2Σ−1 − diag(Σ−1)

]
we get

γ|Σ|γ [
2Σ−1 − diag(Σ−1)

] |Σ∗ + Σ|
−|Σ|γ |Σ∗ + Σ| [2(Σ∗ + Σ)−1 − diag((Σ∗ + Σ)−1)

]
= 0 (4.25)

Which means that γ|Σ|−1 = (Σ∗ + Σ)−1 so Σ = γ
1−γ Σ∗. A desirable property of the

γ-normalised solution is that the solution is not biased.

The EM-like update steps for the γ-normalized function are similar to the update steps
given in the previous section, with one exception. Function (4.20) becomes

g(~µ,Σ) =
N∑

i=1

qi log
[
|Σ|γ/2

]
N (~xi|~µ,Σ) (4.26)

When we look at ∂
∂Σg(~µ,Σ) = 0 the update step for Σ becomes

Σk+1 = β
N∑

i=1

qi(~xi − ~µk)(~xi − ~µk)T (4.27)

where β = 1/(1− γ).
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Calculating the weights

As with the approach to histogram tracking described in section 4.3, we are interested
in finding the new region in which the object lies that we are trying to track. One
of the differences in the former approach and this approach is in the description of the
candidate region. The former approach assumed a a circular region, described by a normal
distribution with diagonal covariance matrix. In this approach the target and candidate
regions are defined by an ellipsoid, where the parameter ~µ denotes the location of the
ellipsoid and the parameter Σ its shape.

As with the former approach, the function b : R2 → {1 · · ·T} is a mapping from the
pixel on location ~xi to the index b(~xi) of its histogram bin. However, we do not normalize
the pixel locations by rescaling the row and column dimensions. Again, the histogram are
made up of T bins, one bin for each word in our visual vocabulary. The probability of
visual word u = 1 · · ·T in the target model is the same as in (4.2), when using a Gaussian
kernel

ou =
N∑

i=1

N (~xi|~µ0,Σ0)δ [b(~xi)− u] (4.28)

The candidate model is described in a similar manner

ru(~µ,Σ) =
N∑

i=1

N (~xi|~µ,Σ)δ [b(~xi)− u] (4.29)

Once more the Battacharyya coefficient is used to measure the similarity between the two
models and again we will use the first order Taylor expansion around the current estimate
to approximate the Battacharyya coefficient

ρ [ru(~µ,Σ), ou] ≈ c1 + c2

N∑

i=1

wiN (~xi|~µ, Σ) (4.30)

where c1 and c2 are some constants and wi is defined by

wi =
T∑

i=1

√
ou

ru(~µ, Σ)
δ [b(~xi)− u] (4.31)

Notice the last term of (4.30), which is in the same form as (4.16). This implies that we
can use the EM-like algorithm discussed in this section to search for the local maximum
of (4.30).

4.4.3. Practical Algorithm

A practical algorithm for applying the EM-like algorithm for histogram tracking is pre-
sented in algorithm 2. For each frame the procedure is repeated, and each time the updated
location and shape of the ellipsoid of the current frame is used as starting parameters for
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the next frame.

The same algorithm can be used for localization in a similar manner. Only this time
the input will be a ‘seed’ region and an object class model (see section 4.2) and the output
the optimized region. In all likelihood, some of the seed regions will end up converging to
image regions in which the sought for objects are located.

Algorithm 2: EM shift procedure for object tracking. Optimization of a region is
performed by following the EM shift procedure. The procedure is applied until the
similarity score stops increasing, at which point the new region is returned. Line six
indicates the cutoff criteria, where ε represents a small positive number.

Input: Target model ou, its location ~µ0 and shape Σ0

Output: New location ~µ1 and shape Σ1

initialize the location and shape of the target in the current frame with ~µ0 and Σ0,1

compute ru using (4.29) and evaluate ρ [ru(~µ,Σ), ou]
determine {wi}i=1···nh

according to (4.31)2

calculate qi-s using (4.19)3

determine location ~µ1 according to (4.21)4

determine shape Σ1 according to (4.27)5

if ρ [ru(~µ1,Σ1), ou]− ρ [ru(~µ0, Σ0), ou] < ε then6

return ~µ1 and Σ17

else8

~µ0 ← ~µ19

Σ0 ← Σ110

go to line 211

end12



Chapter 5
Results

The experiments that were conducted, which evaluate the implementation of the methods
discussed in chapters 3 and 4, are discussed in this chapter. First we discuss the dataset
that are used throughout the experiments in section 5.1. Section 5.2 goes into some data
preprocessing steps that were used. Section 5.3 discusses the vocabulary construction
process. In section 5.4 we discuss the classification results and section 5.5 shows the
results for the localization experiments.

5.1. Caltech4 Dataset

Throughout this project we conducted experiments using a single dataset, the Caltech4
dataset. The Caltech4 dataset was first introduced in [4]. The dataset consists of 2876
images, that are divided into 4 different object classes. The classes are airplanes, cars,
faces and motorbikes. The images are of different quality, which is due to differences in
size. No standardized train- and test- sets are provided. Figure 5.1 shows some typical
image examples. Among the datasets that are available for computer vision and image
processing research, the Caltech4 dataset is not considered to be the most challenging.
Nonetheless, the Caltech4 dataset is frequently used by researchers and plays a key role
in this area of research.

The reason that this dataset is considered to be less challenging than some of the
others, is due to the range of image variability, which is somewhat limited. Even though
the appearance of instances within each class does vary, specific image conditions tend
to be fairly similar. For instance, the viewpoint and orientation of instances are similar
throughout the whole dataset. If we look at figure 5.1, we can see that the images within
each class have similar orientation and viewpoint. All cars are photographed from the
rear, the airplanes and motorbikes from the side, and the image of faces are all frontal
headshots. Another similarity between all the images of the dataset is the size of the
objects. In most images the objects take up most of the image and are positioned in
the center of the image. Other image conditions, such as occlusion, or truncation of
objects, hardly occur. Furthermore, only one object is present in most of the pictures,
with exception of the cars class. To illustrate the limited image variability in the Caltech4
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Figure 5.1.: Example images of the Caltech4 dataset.

dataset, we have constructed an average image for each of the object classes. Figure 5.2
shows images of all the classes of the Caltech4 dataset, when we average the pixel values
over all the images of each separate class. We can still clearly recognize most of the four
object classes. Especially the faces, motorbikes and cars classes are easily recognizable.
The airplanes class is the vaguest of the four and could be mistaken for another object
class, such as a boat.

The dataset is labeled using bounding boxes. The bounding boxes separate the pixels
belonging to the objects from the pixels that belong to the background. Each of the
bounding boxes are decoded by the coordinates of the corners of the box. Figure 5.3
shows some example images from the Caltech4 dataset, as well as examples of bounding
boxes surrounding objects.

5.2. Preprocessing

In chapter 2 we introduced the visual vocabulary framework. The framework has several
issues that need to be considered. In this section we will present these issues and we will
discuss some of the possible solutions.

One of the disadvantages concerning the chosen approach is computational costs. Dur-
ing the descriptor histogram extraction procedure, several computational expensive pro-
cesses are executed. First, we need to convolve a filter bank with each of the images. This
means, that at each pixel location, several image filters need to be applied. Subsequently,
the response vectors extracted by the convolution process, are compared to a collection of
other vectors (the visual vocabulary), in order to assign each response vector to a visual
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(a) airplanes (b) cars

(c) motorbikes (d) faces

Figure 5.2.: Examples of the average image for each of the classes of the Caltech4
dataset.

Figure 5.3.: Examples of annotated images from the Caltech4 dataset.

word. So, even for a small collection of pixels, the extraction of descriptor histograms is
a computationally expensive job.

Another issue of the visual vocabulary framework, is the fact that images have different
dimensions, thus a variable amount of response vectors per object. While small variations
in the number of response vectors can be overcome through normalization of the descriptor
histogram, very large variations can not be accounted for. Besides the fact that large
variations in image dimensions contribute to noise, images which have high dimensions
contribute to computational effort.

5.2.1. Computation Reduction through Grid Sampling

One way to reduce the computational effort is to limit the amount of image descriptors
we use by utilizing only a subset of the image descriptors of an image. Where we would
normally determine the response vectors of all pixels within the region of an object, now
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we only sample within a certain grid, thus reducing the amount of convolution operations
that are needed. A reduced amount of response vectors would in turn reduce the amount
of vectors that need to be mapped to an image descriptor with use of the visual vocabulary.
Using grid sampling would be a theoretically sound solution, due to the fact that we do
not expect the response vectors to differ rigorously within a local region. To some extend
the histogram bins of the descriptor histogram will be proportionally reduced when using
grid sampling.

5.2.2. Efficient Nearest Neighbour Search Using KD-trees

The assignment of response vectors to visual words is done by nearest neighbour search.
A straight forward method for this assignment is exhaustive search. The distance of
a response vector to all the vectors within the visual vocabulary is calculated and we
assign a response vector to the visual word that lies closest. The complexity for this
exhaustive search, given a visual vocabulary of n words, is O(n). Considering we need
to find the nearest neighbour for all response vectors, the complexity becomes O(rn),
given a collection of r response vectors. The complexity of exhaustive search confirms the
computational effort of the visual vocabulary framework. However, more efficient manners
in finding the nearest neighbour exist, which could improve the efficiency of our approach.

The k-dimensional binary search tree, or kd-tree for short, is a data structure that is
really efficient for calculating the nearest neighbour [29, 30]. It is a space partitioning
data structure that can organizes points in an k dimensional space, by using hyperplanes
placed perpendicular to the coordinate axes. The partitions are arranged in a hierarchical
manner to form a tree.

A kd-tree is formed as follows. First one of the points in your dataset (in this case our
visual vocabulary) is chosen as the root node. Usually this is done by selecting a coordinate
axis and choosing the median point to be our root node. The root node is used to form the
first splitting hyperplane, by placing a plane perpendicular to the currently selected axis.
Points are added by placing them in either of the two child nodes, depending on which side
of the hyperplane passing through the root node they are situated. Subsequently, another
axis is selected to act as the next splitting axis, after which a new median point is selected
and the whole procedure is repeated. This process is recursively applied on the left and
right children, until a small number of points remain. As a result of the hierarchical
separation by hyperplanes, the space is partitioned into several hyper-rectangular regions
called buckets, each containing several points.

The kd-tree can be searched for nearest neighbours by following a simple procedure.
The coordinates of a new point are used to descend the tree and find the bucket that
contains it, after which exhaustive search is performed to determine the closest point
within that bucket. Since the exhaustive search is applied on only a very small number
of points, and traversing the tree requires only a small number of operations, this is a
significant improvement to the exhaustive search approach.

The speedup is also illustrated by the complexity of the kd-tree approach. Given a
visual vocabulary of n words, the construction of a kd-tree has a theoretical complexity of
O(n log2 n). The expected complexity of a nearest neighbour search, given a collection of
r response vectors, is O(r log2 n), with a worst case complexity of O(rn). Theoretically,
the use of kd-trees will improve the overall efficiency of the visual vocabulary framework.
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5.2.3. Reduction of Image Dimensions

The reduction of image dimensions will reduce the amount of pixels contained by the
bounding boxes of each object. If we normalize the dimensions so that we decrease the
overall dimensions of the images, we decrease the overall amount of pixels. By decreasing
the amount of pixels, we will decrease the amount of computational effort, due to less
convolution and mapping operations, so it could be used to improve efficiency.

However, if we use normalization of image dimensions to reduce the image dimensions,
we are dealing with lossy compression. This implies that we are reducing the amount of
information about an object. Some information is lost, so we can expect that this will
lead to an overall performance loss. On the other hand, normalizing image dimensions will
also normalize the dimensions of depicted objects, thus reduce the variability throughout
the objects of each category. This will lead to an overall increase of performance.

5.3. Vocabulary Construction

In this section we will discuss the details concerning the vocabulary construction process.
As was mentioned in section 2.3, several implementation choices have to be made. These
design choices include properties such as size of the vocabulary, clustering methods, and
early or late fusion of filter responses.

The clustering method that we applied is an implementation of the k-means clustering
algorithm by D. Pelleg and A. More [31]. As was stated before, the results of k-means
clustering depend heavily on the initialization. It is not guaranteed that k-means clustering
will locate the optimal clustering, i.e. the clustering that minimizes the total within-
group sum of squares distance (equation (2.1)). For this reason clustering was performed
multiple times with different initializations. Each clustering experiment was repeated 5
times for 200 iterations, where each repetition made use of a different random initialization.
Subsequently, the partitioning with the lowest total within-group sum of squares distance
was selected.

We experimented with two different approaches in the vocabulary building process, early
and late fusion of filter responses. Early fusion performs a single clustering to partition
the data. Late fusion however, performs multiple clustering processes on subsets of the
data, which are then fused. The number of clustering processes that late fusion performs is
equal to the amount of classes of the dataset, because for each class a separate vocabulary
is constructed. In order to be able to compare early and late fusion experiments, the final
vocabulary sizes for both fusion approach should be equal.
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The parameters used for the experiments are presented below.

fusion method : early
number of vocabularies : 1

vocabulary sizes : {100, 250, 500, 1000, 1500, 2000, 2500, 3000}

fusion method : late
number of vocabularies : 4

vocabulary sizes : {25, 65, 125, 250, 375, 500, 625, 750}

In the case of late fusion, the final vocabulary size is determined by the product of the
number of vocabularies that will be fused and the size of the individual vocabularies. So,
all vocabulary sizes should be multiplied by 4.

To sum up, a total of 16 vocabularies were constructed. In the case of early fusion,
the experiments were repeated 5 times for each of the vocabulary sizes, giving a total of
40 experiments. With late fusion, the experiments were repeated 5 times for each of the
sub-vocabularies and for each of the vocabulary sizes, giving a total of 160 experiments.
Overall, a total of 200 experiments were conducted to construct 16 distinct vocabularies.

5.3.1. Filter Banks

Due to the extreme computational effort of the experiments we decided that we would
only use one filter bank. The only filter bank we used in the experiments is the Winn-
Criminisi-Minka filter bank [7], introduced in section 2.2, because it was the only filter
bank that was specifically optimized and tested on object classification. All other filter
banks discussed in section this were designed for texture classification, thus probably less
suitable for object classification.
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5.4. Classification Results

The following sections present the classification results. Some general evaluation ap-
proaches are addressed, and the final results of the various classification methods are
discussed.

5.4.1. SVM Parameter Search

One of the disadvantages of the SVM classification approach is that SVM requires some
input parameters. For each parameter setting the classification results will be distinct,
and can differ considerably in performance. Beforehand it is not known which parameters
are best suited for the classification problem. For this reason we need to find a way to
determine the parameters for the SVM that result in the highest performance. Since no
efficient approach to parameter search exists for SVM, the only way to determine the
correct parameter settings is by grid search. With grid search multiple parameter setting
are evaluated, using a grid of different parameter values.

Since we only used the RBF kernel in our experiments, we will only discuss the different
parameters that can be applied on this kernel. For the RBF kernel only two parameters
are needed, the parameter C, and the γ in equation 5.1. The parameter C specifies the
cost of a misclassification within the training data, thus describes the trade-off between
training error and margin. The parameter γ is used in the kernel and determines the RBF
radius.

K(u, v) = exp
(
−γ ∗ |u− v|2

)
(5.1)

Several parameter values for the C and γ parameters of the RBF kernel were applied.
For both the parameters of the RBF kernel 11 parameter values are applied, thus creating
121 different pairs of parameters. For each of the 121 distinct parameter settings exper-
iments were conducted to evaluate the performance. The parameter values that we used
in the experiments are the following.

C : {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}
γ : {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}

The evaluation of the parameter settings is based on 5-fold cross validation to prevent
overfitting. Overfitting can occur when the performance evaluation is solely based on the
training error. This can cause the learned classifier to conform to the training data, the
risk being that the classifier is too specific. The classifier might be perfect for the training
set, while on new instances the model performs poorly. Using cross validation, we can
prevent overfitting.

When applying cross validation, we use the test error to evaluate the parameters. The
data is first divided into 5 equally sized subsets. Subsequently, each set is tested using the
classifier trained using the remaining subsets. So, for each parameter setting 5 separate
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evaluations are performed, which are combined to form the full evaluation.

5.4.2. SVM Results

The SVMs are evaluated for each of the different parameter settings mentioned in the
previous section. We evaluate the SVM classifiers by the overall accuracy of classification.
This means that for each of the parameter settings, an individual object class model is
learned, and evaluated in combination with the other object class models. In a sense
we measure the combined accuracy of the object class models. The optimal accuracy
for the two different fusion approaches, and the various vocabulary sizes are shown in
figure 5.4. Appendix A shows the grid results for each of the parameter settings, the
different vocabulary sizes, and the various fusion approaches.

Figure 5.4.: Classification accuracy for the SVM classifiers. For each vocabulary size,
only the optimal classification accuracy is plotted.

The figure shows that most of the different classifiers perform equally well. The general
classification accuracy is between 88% and 89%. Furthermore, it seems that vocabularies
constructed by late fusion generally have a higher accuracy than those constructed by early
fusion. What is more, an increasing vocabulary size appears to have a slight negative effect
on the classification accuracy. This could be an effect of data sparseness, which increases
when we increase the vocabulary size due to the fact that we have an equal amount of
response vectors, but a larger amount of histogram bins.

5.4.3. Naive Bayes Results

As with the SVM classification results, the evaluation for both the naive Bayes and the
simplified naive Bayes model is based on 5-fold cross validation. The total dataset is
divided into 5 subsets, of which 4 are used for training and 1 is used for validation. In the



5.4 Classification Results 51

case of the naive Bayes model, we determine both mean and variance from the training
set. For the simplified version, only the mean of each histogram bin is determined, and we
assume a constant variance. Experiments were performed for both early and late fusion
with 8 different vocabulary sizes. Figure 5.5 shows the results for the different Bayesian
models.

Figure 5.5.: Classification accuracy for both naive Bayes classifiers.

Looking at the overall performance of the Bayesian models, it is evident that all models
profit from larger vocabularies. Especially within the segment with smaller vocabulary
sizes, the differences are significant. Between the performances of the larger vocabulary
sizes, the differences are less prominent. However, in general we observe an increase in
accuracy with an increase of vocabulary size.

Furthermore, if we look at the difference between the simplified and naive Bayes model,
we can see that the naive Bayes model always outperforms the simplified model. Addi-
tionally, it is save to say that the models based on the vocabularies constructed by late
fusion have a higher accuracy than those based on the early fusion approach. This is
particularly illustrated by the fact that the simplified naive Bayes model based on late
fusion has a similar performance as the naive Bayes model based on late fusion.

If we compare these results to the results of the SVM classifiers in figure 5.4, we notice
that the SVMs have a significantly higher accuracy than the naive Bayes classifiers. The
difference between the SVM classifiers and the naive Bayes classifiers is around 7% on
average.
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5.5. Localization Results

The performance of the localization task is evaluated by comparing the predicted region
Bp, detected by the localization algorithm, with the true region Bt, provided by manual
annotation. We calculate precision-recall curves as described in the Pascal VOC chal-
lenge1. First we determine the area of overlap by:

a =
area (Bp

⋂
Bt)

area (Bp
⋃

Bt)
(5.2)

If a > 0.5, Bp is considered a correct prediction, otherwise it is considered a false predic-
tion. The confidence scores corresponding to the predicted regions, which are returned by
the localization algorithm, are used to compute the precision-recall curves. By applying
a set of thresholds to the confidence output that corresponds to the various detections,
we can plot a precision-recall curve. Recall is the proportion of the object instances in
the dataset that has been detected, and precision is the percentage of detections that are
correct. More formally, recall is defined by TP/nP and precision by TP/(TP+FP), where
TP are the number of true positives, FP the number of false positives, and nP the total
number of object instances in the complete dataset.

Another measure which we will use to compare different localization algorithms, is the
average precision. Basically, average precision is the area under the precision-recall curve,
and indicates the average performance of the localization algorithms. Average precision is
used in order to quickly compare different localization algorithms. However, the precision-
recall curve can show particular results, that can not be summarized by a single value,
and this is why we use both precision-recall curves, and average precision.

5.6. Tile-Based Approach

As was discussed in section 4.1, the tile-based approach to object localization is related to
the classification task. The classifiers that are learned during the classification task, can
be directly applied in the detection task, using the tile-based approach. Throughout the
experiments, the classifier are used to evaluate several selected regions, giving each region
a confidence score (the class conditional probability), indicating the probability that an
object is present within the evaluated region.

Since it is impractical to evaluate each possible region within an image (there might be
millions), a simple solution is applied. The selection procedure for the ‘to-be-evaluated’
regions is as follows. For each object class, the average width and height of the object
region is determined, as well as the standard deviation. The size and shape of the ‘tile’ is
determined by the average and standard deviation. Five different scales of the mean object
region are used to evaluate an image on various positions. The scales are determined by
the standard deviation. In other words, five different tiles are used.

Each of the classification methods that were applied in the recognition experiments
are reused for object detection. In the case of the SVM classifier, only one parameter

1http://www.pascal-network.org/challenges/VOC/
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setting is used. The parameter setting is selected by looking at the optimal classification
performance.

5.6.1. Simplified Naive Bayes Results

Figures 5.6 through 5.9 illustrate the results of the simplified naive Bayes method for all
the different object classes using both early and late fusion. Tables 5.1 through 5.4 contain
the average precision for the different localization experiments using the simplified naive
Bayes method. For each class there is a separate figure and corresponding table.

(a) early fusion (b) late fusion

Figure 5.6.: Localization results of the cars class, using the simplified naive Bayes
model.

Average Precision
Model early late
simplified naive Bayes: voc size 100 0.018 0.035
simplified naive Bayes: voc size 250 0.024 0.034
simplified naive Bayes: voc size 500 0.021 0.034
simplified naive Bayes: voc size 1000 0.021 0.036
simplified naive Bayes: voc size 1500 0.028 0.044
simplified naive Bayes: voc size 2000 0.030 0.049*
simplified naive Bayes: voc size 2500 0.030** 0.047
simplified naive Bayes: voc size 3000 0.029 0.048

Table 5.1.: Average precision of the cars class, using the simplified naive Bayes model.

The performance of the simplified naive Bayes model for the cars class, illustrated in
figure 5.6 and table 5.1, show very poor results. For each of the vocabulary sizes, the
average precision is around 3% for early fusion and around 5% at best for late fusion.
This indicates that on average only 3-5 out of a hundred detections is correct. What is
more, the optimal recall value is around 3.8%, which tells us that very few objects in the
dataset are actually detected. Moreover, the shape of the precision-recall curve is not
what we would expect. When the confidence threshold is lowered, in order to construct
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the precision-recall curve, we notice an increase of precision as well as an increase in recall.
This implies that the detections with the highest confidence are incorrect. Furthermore,
for both fusion approaches it is clear that larger vocabularies result in higher average
precision.

(a) early fusion (b) late fusion

Figure 5.7.: Localization results of the airplanes class, using the simplified naive
Bayes model.

Average Precision
Model early late
simplified naive Bayes: voc size 100 0.165 0.150
simplified naive Bayes: voc size 250 0.174 0.169
simplified naive Bayes: voc size 500 0.189 0.173
simplified naive Bayes: voc size 1000 0.190 0.188
simplified naive Bayes: voc size 1500 0.195 0.191
simplified naive Bayes: voc size 2000 0.195 0.195
simplified naive Bayes: voc size 2500 0.198** 0.193
simplified naive Bayes: voc size 3000 0.196 0.197*

Table 5.2.: Average precision of the airplanes class, using the simplified naive Bayes
model.

The performance of the simplified naive Bayes model for the airplanes class, illustrated
in figure 5.7 and table 5.2, is reasonable. For each of the vocabulary sizes, the optimal
average precision is around 20% for both fusion approaches. Actually, the early fusion
approach performs a bit better than the late fusion approach. However, this appears to
be consequence of the relatively high precision at the beginning of the precision-recall
curve. The illustrations also show that the optimal recall value is 77%, indicating that
almost 4 out of 5 objects are detected. Like with the cars class, the shape of the precision-
recall curve is not what we would expect, since the slope of the curve is positive. We notice
an increase of precision, when the confidence threshold is lowered. This implies that the
detections with the highest confidence are incorrect. Furthermore, larger vocabularies
result in higher average precision.
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(a) early fusion (b) late fusion

Figure 5.8.: Localization results of the motorbikes class, using the simplified naive
Bayes model.

Average Precision
Model early late
simplified naive Bayes: voc size 100 0.548 0.482
simplified naive Bayes: voc size 250 0.614 0.495
simplified naive Bayes: voc size 500 0.637 0.517
simplified naive Bayes: voc size 1000 0.654 0.536
simplified naive Bayes: voc size 1500 0.666 0.544
simplified naive Bayes: voc size 2000 0.687 0.551
simplified naive Bayes: voc size 2500 0.675 0.550
simplified naive Bayes: voc size 3000 0.700** 0.554*

Table 5.3.: Average precision of the motorbikes class, using the simplified naive Bayes
model.

Figure 5.8 and table 5.3, illustrate the performance of the simplified naive Bayes model
for the motorbikes class. The optimal average precision is 70% for the early fusion ap-
proach, and around 55% for late fusion. This means that early fusion outperforms the late
fusion approach. The precision-recall curves are like we would expect and a recall value of
around 98% shows that nearly every object is detected. Again, larger vocabularies result
in higher average precision.
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(a) early fusion (b) late fusion

Figure 5.9.: Localization results of the faces class, using the simplified naive Bayes
model.

Average Precision
Model early late
simplified naive Bayes: voc size 100 0.053 0.054
simplified naive Bayes: voc size 250 0.058 0.058
simplified naive Bayes: voc size 500 0.078 0.071
simplified naive Bayes: voc size 1000 0.084 0.083
simplified naive Bayes: voc size 1500 0.097 0.095
simplified naive Bayes: voc size 2000 0.099 0.099
simplified naive Bayes: voc size 2500 0.100 0.099
simplified naive Bayes: voc size 3000 0.102** 0.109*

Table 5.4.: Average precision of the faces class, using the simplified naive Bayes
model.

The performance of the simplified naive Bayes models for the faces class, illustrated in
figure 5.9 and table 5.4, is poor. For each of the vocabulary sizes, the optimal average
precision is around 11%. However, the optimal recall value shows that around 70% of
the objects are detected. The results for the different fusion approaches are very similar.
Like with the cars and the airplane class, we see an increase of precision, when the confi-
dence threshold is lowered. This implies that the detections with the highest confidence
are incorrect. Once more, a higher average precision is obtained with the use of larger
vocabularies.
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5.6.2. Naive Bayes Results

Figures 5.10 through 5.13 illustrate the results of the tile-based approach using the naive
Bayes model. Tables 5.5 through 5.8 contain the corresponding average precision for the
different localization experiments using the naive Bayes model. For each class and fusion
approach there is a separate figure and corresponding table.

(a) early fusion (b) late fusion

Figure 5.10.: Localization results of the cars class, using the naive Bayes model.

Average Precision
Model early late
naive Bayes: voc size 100 0.214 0.370*
naive Bayes: voc size 250 0.214 0.319
naive Bayes: voc size 500 0.300 0.370*
naive Bayes: voc size 1000 0.309** 0.266
naive Bayes: voc size 1500 0.286 0.305
naive Bayes: voc size 2000 0.259 0.261
naive Bayes: voc size 2500 0.192 0.305
naive Bayes: voc size 3000 0.191 0.263

Table 5.5.: Average precision of the cars class, using the naive Bayes model.

Figure 5.10 and table 5.5 show the results for the cars class using the naive Bayes
model. We can see that the model using late fusion performs a slightly better. Also, the
shape of the precision-recall curve is like we expected. In contrast with to the simplified
naive Bayes model, it seems that smaller dictionaries perform better than larger ones.
Although the smaller vocabularies do not seem to have the highest precision, the increased
recall of the smaller vocabularies makes all the difference. This could indicate that a
higher expressiveness is, to some degree, beneficial for the accuracy of the detection, while
being less good in detecting every single object. Furthermore, we can see a significant
improvement with respect to the simplified naive Bayes model.
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(a) early fusion (b) late fusion

Figure 5.11.: Localization results of the airplanes class, using the naive Bayes model.

Average Precision
Model early late
naive Bayes: voc size 100 0.132** 0.127
naive Bayes: voc size 250 0.104 0.142*
naive Bayes: voc size 500 0.093 0.101
naive Bayes: voc size 1000 0.094 0.070
naive Bayes: voc size 1500 0.069 0.049
naive Bayes: voc size 2000 0.036 0.037
naive Bayes: voc size 2500 0.024 0.027
naive Bayes: voc size 3000 0.031 0.019

Table 5.6.: Average precision of the airplanes class, using the naive Bayes model.

Figure 5.11 and table 5.6 show the results for the airplanes class using the naive Bayes
model. Again, the smaller vocabularies result in a higher average precision than the larger
vocabularies. However, when we look at the precision of the vocabularies, the early fusion
approach in particular, we notice that some larger vocabularies perform better, although
the recall is lower. This is exactly the same observation that we made with the previous
object class. Furthermore, consistent with all the previous results, the late fusion approach
has a higher average precision.
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(a) early fusion (b) late fusion

Figure 5.12.: Localization results of the motorbikes class, using the naive Bayes
model.

Average Precision
Model early late
naive Bayes: voc size 100 0.701** 0.714*
naive Bayes: voc size 250 0.693 0.659
naive Bayes: voc size 500 0.692 0.666
naive Bayes: voc size 1000 0.679 0.679
naive Bayes: voc size 1500 0.661 0.696
naive Bayes: voc size 2000 0.647 0.699
naive Bayes: voc size 2500 0.643 0.712
naive Bayes: voc size 3000 0.631 0.705

Table 5.7.: Average precision of the motorbikes class, using the naive Bayes model.

Figure 5.12 and table 5.7 show the results for the motorbikes class using the naive
Bayes model. Once more, smaller vocabularies have a higher average precision than the
larger vocabularies. However, as we saw earlier, if we look at the precision recall curves of
the various vocabulary sizes, we see that the larger vocabularies have a higher precision,
while the smaller ones have a higher average precision. Once more, the results show that
late fusion has a higher performance. Also, we see an improvement of performance with
respect to the simplified naive Bayes model.
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(a) early fusion (b) late fusion

Figure 5.13.: Localization results of the faces class, using the naive Bayes model.

Average Precision
Model early late
naive Bayes: voc size 100 0.493 0.637
naive Bayes: voc size 250 0.554 0.682
naive Bayes: voc size 500 0.642** 0.699*
naive Bayes: voc size 1000 0.620 0.662
naive Bayes: voc size 1500 0.605 0.626
naive Bayes: voc size 2000 0.566 0.593
naive Bayes: voc size 2500 0.547 0.555
naive Bayes: voc size 3000 0.532 0.537

Table 5.8.: Average precision of the faces class, using the naive Bayes model.

Figure 5.13 and table 5.8 show the results for the faces class using the naive Bayes
model. Once more, smaller vocabularies have a higher average precision than the larger
vocabularies. Additionally, a similar trend as we noticed earlier is visible in the precision-
recall curves. Larger vocabularies have a higher precision, and a lower recall and average
precision. Again, the late fusion approach has a higher performance than the early fusion
approach.
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5.6.3. SVM Results

Figures 5.14 through 5.17 illustrate the results of the tile-based approach in combination
with the SVM classifiers. Tables 5.9 through 5.12 contain the corresponding average
precision for the different localization experiments. For each class and fusion approach
there is a separate figure and corresponding table.

(a) early fusion (b) late fusion

Figure 5.14.: Localization results of the cars class, using the SVM classifiers.

Average Precision
Model early late
SVM: voc size 100 0.650** 0.387*
SVM: voc size 250 0.282 0.227
SVM: voc size 500 0.186 0.285
SVM: voc size 1000 0.310 0.103
SVM: voc size 1500 0.248 0.225
SVM: voc size 2000 0.461 0.219
SVM: voc size 2500 0.220 0.259
SVM: voc size 3000 0.147 0.295

Table 5.9.: Average precision of the cars class, using the SVM classifiers.

Figure 5.14 and table 5.9 show the results for the cars class using the tile-based approach
and the SVM classifiers. For both fusion methods, the smallest vocabulary shows the
optimal results. However, it seems that the performance is not dependent on vocabulary
size. For both fusion approaches, the two highest scoring vocabularies are either very
small or very large. Furthermore, it is hard to say whether the early fusion or late fusion
approach has a higher overall performance, but obviously the optimal performance is
achieved by early fusion.
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(a) early fusion (b) late fusion

Figure 5.15.: Localization results of the airplanes class, using the SVM classifiers.

Average Precision
Model early late
SVM: voc size 100 0.438 0.275
SVM: voc size 250 0.386 0.411
SVM: voc size 500 0.442 0.472
SVM: voc size 1000 0.000 0.416
SVM: voc size 1500 0.515** 0.648
SVM: voc size 2000 0.505 0.412
SVM: voc size 2500 0.468 0.650*
SVM: voc size 3000 0.472 0.425

Table 5.10.: Average precision of the airplanes class, using the SVM classifiers.

Figure 5.15 and table 5.10 show the results for the airplanes class using the tile-based
approach and the SVM classifiers. The precision-recall curves of the early fusion experi-
ments show similar results for each vocabulary size. Only the two smallest vocabularies
vary from the main trend. The results of the late fusion experiments also seem fairly sim-
ilar, except for a vocabulary size of 1500 or 2500. Furthermore, the late fusion approach
performs better than the early fusion approach.
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(a) early fusion (b) late fusion

Figure 5.16.: Localization results of the motorbikes class, using the SVM classifiers.

Average Precision
Model early late
SVM: voc size 100 0.900 0.872
SVM: voc size 250 0.899 0.642
SVM: voc size 500 0.915** 0.887
SVM: voc size 1000 0.904 0.851
SVM: voc size 1500 0.915** 0.812
SVM: voc size 2000 0.906 0.865
SVM: voc size 2500 0.879 0.899
SVM: voc size 3000 0.912 0.902*

Table 5.11.: Average precision of the motorbikes class, using the SVM classifiers.

Figure 5.16 and table 5.11 show the results for the motorbikes class using the tile-based
approach and the SVM classifiers. The results are significantly better than those of the
generative models. The results show that on average the early fusion approach performs
better than the late fusion approach. The vocabulary size does not seem to have an affect
on the performance of the localization algorithms.



64 Results

(a) early fusion (b) late fusion

Figure 5.17.: Localization results of the faces class, using the SVM classifiers.

Average Precision
Model early late
SVM: voc size 100 0.760 0.715
SVM: voc size 250 0.863 0.696
SVM: voc size 500 0.878 0.824
SVM: voc size 1000 0.835 0.796
SVM: voc size 1500 0.880 0.851
SVM: voc size 2000 0.941** 0.855
SVM: voc size 2500 0.938 0.935*
SVM: voc size 3000 0.941** 0.819

Table 5.12.: Average precision of the faces class, using the SVM classifiers.

Figure 5.17 and table 5.12 show the results for the faces class using the tile-based
approach and the SVM classifiers. In comparison to the generative models, the SVM
classifiers have significantly higher performance. Furthermore, larger vocabularies result
in a higher average precision. Also, the early fusion approach has a higher performance
than the late fusion approach.

5.7. Histogram Tracking Approach

In this section we will present the results of the histogram tracking approach, discussed
in section 4.2. As was mentioned, the histogram tracking approach is based region opti-
mization using an adapted form of mean shift. In order to optimize regions with respect
to their position and size, we need to use a reference object model. The simplified naive
Bayes model is used as reference model.

The histogram tracking approach uses a number of starting regions, which are later
optimized. This means that we need to specify the number shape and size of the starting
regions. We have experimented with several numbers and sizes of starting regions. Fig-
ure 5.18 and 5.19 show some examples of localization using histogram tracking. In figure
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5.18 we used a single starting regions, which spans the entire image. Figure 5.19 shows
an example were we used 25 starting regions as input for the optimization algorithm.

Figure 5.18.: Examples of localization using the histogram tracking approach with a
single starting region. The green ellipse represents the starting region, the black ellipses
the intermediate update steps, and the blue ellipse the final detection.

Figure 5.19.: Example of localization using the histogram tracking approach with 25
starting regions. The green ellipses represents the starting regions, the black ellipses
the intermediate update steps, and the blue ellipses the final optimized region.

We have conducted several experiments with use of the histogram tracking approach.
Again, we have tested the approach with several vocabularies, varying in size and fu-
sion method. The same vocabularies that were used in the experiments of the tile-based
approach, are applied in these experiments. In total we conducted localization experi-
ments for 16 different vocabularies. The results shown in the next sections are based on
localization using a single starting region, since it yielded in the highest performance.
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5.7.1. Histogram Tracking Results

Figures 5.20 through 5.23 illustrate the results of the histogram tracking approach. Tables
5.13 through 5.16 contain the average precision for the different localization experiments
using histogram tracking. For each class there is a separate figure and corresponding table.

(a) early fusion (b) late fusion

Figure 5.20.: Localization results of the cars class, using the histogram tracking
approach.

Average Precision
Model early late
hisgtoram tracking: voc size 100 0.104 0.140*
hisgtoram tracking: voc size 250 0.097 0.127
hisgtoram tracking: voc size 500 0.106 0.087
hisgtoram tracking: voc size 1000 0.090 0.100
hisgtoram tracking: voc size 1500 0.099 0.104
hisgtoram tracking: voc size 2000 0.105 0.107
hisgtoram tracking: voc size 2500 0.121** 0.095
hisgtoram tracking: voc size 3000 0.119 0.101

Table 5.13.: Average precision of the cars class, using the histogram tracking ap-
proach.

The results of localization using the histogram tracking approach for the cars class is
illustrated in figure 5.20 and table 5.13. The differences between the various vocabulary
sizes are very insignificant and it is not clear whether small or large vocabularies are
preferred. If we compare the results of this approach with the results of the tile-based
approach in combination with the simplified naive Bayes model, we notice a significant
increase of performance. However, when we compare it to the tile-based approach in
combination with the other object models, the histogram tracking approach has a lower
performance. Additionally, the recall of the histogram tracking approach is lower, which
indicates that less objects are detected. Furthermore, the results show that late fusion
tends to achieve a higher average precision than early fusion.
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(a) early fusion (b) late fusion

Figure 5.21.: Localization results of the airplanes class, using the histogram tracking
approach.

Average Precision
Model early late
hisgtoram tracking: voc size 100 0.193 0.175
hisgtoram tracking: voc size 250 0.198 0.201
hisgtoram tracking: voc size 500 0.194 0.200
hisgtoram tracking: voc size 1000 0.197 0.200
hisgtoram tracking: voc size 1500 0.225 0.201
hisgtoram tracking: voc size 2000 0.226** 0.209
hisgtoram tracking: voc size 2500 0.220 0.232*
hisgtoram tracking: voc size 3000 0.226** 0.226

Table 5.14.: Average precision of the airplanes class, using the histogram tracking
approach.

Figure 5.21 and table 5.14 show the results for the airplanes class using the histogram
tracking approach. The results for the various vocabulary sizes are very much alike.
However, in contrast with the results of the tile-based approach, the results show that
larger vocabularies perform better. Overall, the histogram tracking approach has a higher
performance than the tile-based approach using both naive Bayes models. The SVM
classifiers again, are superior to the histogram tracking approach. Once more, the late
fusion approach yields higher average precision than the early fusion approach.
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(a) early fusion (b) late fusion

Figure 5.22.: Localization results of the motorbikes class, using the histogram track-
ing approach.

Average Precision
Model early late
hisgtoram tracking: voc size 100 0.487 0.491
hisgtoram tracking: voc size 250 0.509 0.518
hisgtoram tracking: voc size 500 0.531 0.545
hisgtoram tracking: voc size 1000 0.551 0.572
hisgtoram tracking: voc size 1500 0.577 0.598
hisgtoram tracking: voc size 2000 0.581 0.597
hisgtoram tracking: voc size 2500 0.592 0.612
hisgtoram tracking: voc size 3000 0.599** 0.631*

Table 5.15.: Average precision of the motorbikes class, using the histogram tracking
approach.

Figure 5.22 and table 5.15 show the results for the motorbikes class using the histogram
tracking approach. Equivalent to the previous object class, larger vocabularies results in
higher precision and recall scores. If we compare the results to the tile-based approach in
combination with the simplified naive Bayes model, we see a significant increase in perfor-
mance. If we compare the results to the tile-based approach in combination with the other
two object models, we see that the SVM model has a significantly higher performance,
while the naive Bayes model shows similar results. Finally, the late fusion approach has
a higher performance than the early fusion approach.
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(a) early fusion (b) late fusion

Figure 5.23.: Localization results of the faces class, using the histogram tracking
approach.

Average Precision
Model early late
hisgtoram tracking: voc size 100 0.518 0.512
hisgtoram tracking: voc size 250 0.529** 0.513*
hisgtoram tracking: voc size 500 0.506 0.503
hisgtoram tracking: voc size 1000 0.498 0.496
hisgtoram tracking: voc size 1500 0.494 0.493
hisgtoram tracking: voc size 2000 0.481 0.487
hisgtoram tracking: voc size 2500 0.481 0.446
hisgtoram tracking: voc size 3000 0.475 0.471

Table 5.16.: Average precision of the faces class, using the histogram tracking ap-
proach.

Figure 5.23 and table 5.16 show the results for the faces class using the histogram
tracking approach. The differences between the various vocabulary sizes is small. However,
it seems that smaller vocabularies perform better than large vocabularies. Furthermore,
the early fusion performs slightly better. If we compare the results to the tile-based
approach, we see an increase of performance with respect to the simplified naive Bayes
model. However, the tile-based approach shows a higher performance for both other object
models.
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5.8. Timing Results

An import aspect of localization approaches is their computational complexity. Often,
this is a prominent drawback of many localization algorithms. We have timed the various
localization experiments and we present the results here. The localization process is
measured separately from the descriptor extraction process, so we only measure the time
that the classifiers take to evaluate each image. Tables 5.17 show the amount of time each
algorithm took to process the complete dataset.

Processing Time
sim. naive Bayes naive Bayes SVM hist. tracking

voc. size early late early late early late early late
100 2:58:21 3:22:08 2:52:26 2:49:32 12:41:49 7:23:36 3:11:50 3:07:44
250 3:25:18 3:35:21 3:10:31 3:12:29 25:36:47 14:19:38 3:13:38 3:04:13
500 3:42:27 3:43:57 3:35:14 3:35:44 16:21:28 17:16:18 2:54:10 2:58:47

1000 4:10:01 4:16:33 4:30:27 4:35:12 29:44:02 33:39:04 2:43:28 2:44:49
1500 4:30:18 4:35:49 5:06:12 5:07:51 42:15:08 39:21:22 3:05:00 2:49:45
2000 4:47:47 4:51:18 5:33:13 5:26:22 47:52:20 52:18:22 2:47:26 2:34:20
2500 4:52:41 5:11:52 6:12:23 5:58:30 70:18:28 85:48:18 2:47:30 2:44:56
3000 5:26:48 5:22:10 6:37:39 6:27:44 79:03:15 85:18:46 2:44:08 2:43:15

Table 5.17.: Timing results.

In general we found that the tile-based approach requires more processing time when
the vocabulary size is increased. Moreover, the SVM classifiers are by far the slowest, with
an maximum processing time of approximately 86 hours. If we compare this to the other
methods, which consume 6 hours and 37 minutes at most, it is a significant difference.
Furthermore, the histogram tracking approach does not seem to be effected by an increase
of the vocabulary size, and on average requires the least amount of time to process the
complete dataset.



Chapter 6
Conclusion

This chapter is divided into four parts. First, the conclusions related to object classification
are presented in section 6.1. Those associated with object localization are discussed in
section 6.2. Finally, section 6.3 presents conclusions concerning the visual vocabulary
framework. In addition to conclusions, some suggestions for future research, and ways to
possibly improve the presented algorithms, are made in section 6.4.

6.1. Classification

We were able to use the visual vocabulary framework to successfully classify object classes.
We have shown that the SVM classifiers have the highest performance with a classification
accuracy of 89.1%, which is similar to that of state of the art techniques. The generative
model introduced in [7] showed a considerably lower accuracy of 83%. The simplified
version of the naive Bayes model resulted in the lowest performance, with an optimal
accuracy of 82.2%.

Furthermore, the experiments with the different fusion approaches show that late fusion
should be preferred above early fusion. In almost every experiment, we recorded a higher
classification accuracy using a vocabulary constructed with the late fusion approach. This
was to be expected, since the late fusion is able to create specific visual words for each of
the various classes. This could be viewed as describing objects in a separate jargon.

Another observation that can be made is the following. If we look at the naive Bayes
models, we can observe an increase of classification accuracy when the vocabulary size
is increased. However, the SVM models do not show the same increase, but actually
show a slight decrease of accuracy. The explanation of this phenomenon is overfitting.
The difference between SVM and the naive Bayes models is that SVM is a discriminative
model, while naive Bayes is a generative model. In other words, the SVM model will
find a hyperplane that stretches across every dimension (every visual word), even the
dimensions which contribute to noise. This implies that classification could well be based
on the dimension with the most noise, i.e. the weakest link. Thus, introducing more
dimensions can result in a decrease in performance. Generative models are less prone to
noise, especially the naive Bayes models, since the noise will be aggregated throughout
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all object models. In other words, a noisy dimension will just mean that the conditional
class probability will go down. However, since the probability is aggregated over all object
classes, the class conditional probability will go down for each of the object classes, so it will
not have great impact on the decision boundary. What is more, adding a discriminating
dimension increases the performance of the generative model, even if it is in combination
with noisy dimensions. However, this does not mean that we can indefinitely increase
the vocabulary size, since eventually the accuracy will go down due to sparseness in the
training data.

6.2. Localization

We have extended the visual vocabulary approach of J. Winn, A. Criminisi and T. Minka,
in order to localize instances of object classes. Additionally, we have introduced a novel
localization technique, were we optimize certain starting regions by applying histogram
tracking. Since histogram tracking uses spatial kernels, we have introduced a loose spatial
relation in the bag of keypoints approach and introduced a framework in which classifi-
cation, localization and tracking can be combined. Furthermore, we have compared this
novel approach to the most common approach for object localization, the tile-based ap-
proach. This approach uses the same classifiers as in the classification process, so we have
utilized all of the classification techniques discussed in chapter 3 for this purpose.

The localization results show that the tile-based approach yields the highest perfor-
mance, when it is applied in combination with the SVM classifiers. The SVM classifiers
excel in the localization of all object classes. With an average precision of 65% for the cars
class, 65% for the airplanes class, 91.5% for the motorbikes class and 94.1% for the faces
class, the performance is well above all other localization algorithms. The simplified naive
Bayes model showed the worst performance among the four localization methods. The
histogram tracking approach and the tile-based approach using the naive Bayes model
showed similar results. Furthermore, we have found that the late fusion approach has a
higher performance than the early fusion approach, which is in line with the classification
experiments.

Another important aspect of the localization approaches is their computational com-
plexity. For each localization algorithm we measured the time it took to process the
complete Caltech4 dataset. As was mentioned, the timing results are solely based on
the localization process, because we excluded the time it took to extract the descriptor
histograms. Although the tile-based approach has shown the best performance, it has
proven to be very inefficient. The tile-based approach in combination with the SVM clas-
sifiers can take up to 86 hours to run on the whole dataset. Although this is the worst
case scenario, using the largest vocabularies, it takes 7 hours at least, using the smallest
vocabularies. On top of that, the timing results are biased by the fact that we did not
evaluate every possible region and did not evaluate each tile on every pixel location. If we
were to increase the number of tiles or pixel locations in the evaluation process, the timing
results would increase rapidly. The histogram tracking approach might not have resulted
in the highest detection score, but was far less slow than the tile-based approach, taking
an average time of approximately 2 hours and 50 minutes to run on the complete dataset.
What is more, the vocabulary size does not affect the histogram tracking approach to the
same degree that it affects the tile-based approach.
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If we compare the results between the tile-based approach using the simplified naive
Bayes model and the histogram tracking approach, we can see that the novel approach
usually has a higher average precision. Since both methods use the same object model, it
implies that the use of dynamic regions, used in the histogram tracking approach, result
in a higher performance than the use of static regions, used in the tile-based approach.
The increase in performance can also be explained by the fact that the histogram tracking
approach smoothes the pdf, so it is less prone to be affected by irregular peaks in the pdf.
On the tile-based approach however, peaks in the pdf will play a crucial role. There might
be a risk that the tile-based approach will prefer parts of an object over the whole object,
when these parts are the most discriminating, i.e. represent peaks in the pdf. Another
drawback of the tile-based approach in respect to the histogram tracking approach, is the
selection of appropriate tiles. It is not clear how we should determine the optimal shapes,
scales and positions of the ‘to-be-evaluated’ regions. The selection procedure we applied,
which makes use of the mean and variance of the boundingboxes, seems to work. However,
it is not invariant to geometric transformations such as rotation.

Furthermore, the localization experiments show that for the generative object models,
large vocabularies do not always results in a higher average precision. Nevertheless, we saw
that larger vocabularies do indeed improve precision, but only in the segment of detections
with the highest confidence. This suggests that a higher expressiveness is, to some degree,
beneficial for the accuracy of the detection, while being less good in detecting every single
object. This conclusion is also supported by the classification results in section 5.4, where
we saw that the accuracy of classification also increased with a larger dictionary size.

If we compare the classification results with the localization results, we see some con-
tradictions. We found that the classification accuracy of the naive Bayes models goes
up when we increase the vocabulary size. However, the localization experiments shows
the opposite. In general, localization using smaller vocabularies result in a higher aver-
age precision. So, even though the object models learned with use of larger vocabularies
are more capable to distinguish one object class from other object classes, they are less
suited for localization of objects. Again, we are confronted with overfitting. It appears
that some models with high classification accuracy, do not generalize the appearance of
objects, because the detection performance is lower. We believe this is because the lo-
calization algorithm will focus on the most discriminating parts of an object, thus a risk
of miss detection exists. For example, if we assume that the most discriminating part of
a motorbike is the wheel, then there is a risk that the only region that will be detected
is the region containing the wheel, in stead of detecting the whole object. The general
consensus is that an increase of classification accuracy means that the object models have
a better generalization. However, we believe this is not true.

6.3. Visual Vocabulary Framework

We have used the visual vocabulary framework successfully for both object recognition
and localization. It is a very simple but effective framework for the extraction of image
statistics. Furthermore, this framework allows us to detect, classify and track object
classes using the same techniques. However, we have found that the visual vocabulary
framework is prone to overfitting and it is hard to say which visual vocabulary is best
suited for a given task. From the experiments we can not clearly infer a general rule of
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thumb for determining the optimal vocabulary size or fusion approach. We can say that
in most cases, the late fusion approach yields higher results. We can also comment on
the vocabulary size. Smaller vocabulary sizes will always decrease the complexity of the
descriptor extraction process, so smaller vocabularies should be preferred when it comes
to efficiency.

6.4. Future Work

We have found that the visual vocabulary framework can be applied in many different re-
search area’s. Further research in any of these area’s is possible, and it would be interesting
to investigate a possible integration of different applications. One of those integrations
would be that of tracking and classification. In the framework we have proposed, it is
possible to integrate the two tasks and there are many applications feasible that would
benefit from both tracking and object recognition.

Another interesting direction of research is the investigation of vocabulary pruning.
There might be a way to not only determine the appropriate vocabulary size, but also
determine the appropriate visual words. One could think of feature selection methods to
accomplish this goal. The use of vocabulary pruning would increase both performance
and efficiency. A performance increase would be visible due to a decrease the amount
of noise introduced in the framework. The benefit of vocabulary pruning to efficiency is
trivial, i.e. smaller vocabulary means less computational effort.

We saw that the use of dynamic regions is beneficial to performance, as well as the effi-
ciency. However, the novel localization algorithm does not yield results that can compete
with the tile-based approach. Maybe we could improve the histogram tracking approach
by using different similarity measures. The naive Bayes model introduced by Winn [7]
might be applicable in this case.

Additionally, we could think of using contextual information to guide the localization
task. In the approach we chosen, contextual information is ignored, with the risk of low
accuracy when local image information is insufficient (occlusion and truncation, small ob-
jects). It would be nice to see how contextual information would influence the localization
results.

Another ambitious future research project is the categorization of scenes. We can use
the information collected by our object detectors to build scene models, which enable us
to extract even higher level semantical information of images. It would bring us a step
further to reaching our goal, which is to bridge the semantic gap.



Appendix A
SVM Results

During the evaluation of the classification accuracy for SVM classifiers, we have tried
several parameter settings. Here, the results for all the different parameter settings are
presented. The parameters we have applied in our experiments were

C = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}
γ = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}

Tables A.1 through A.8 show the classification accuracy for the different parameter
settings using the early fusion, in a numerical manner. Similarly, tables A.9 through A.16
contain the results for late fusion.



76 SVM Results

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.439 0.553 0.800 0.813 0.828 0.825 0.825 0.825 0.825 0.830
0.005 0.435 0.800 0.789 0.824 0.819 0.825 0.825 0.827 0.825 0.832 0.842
0.01 0.584 0.810 0.806 0.824 0.824 0.824 0.825 0.825 0.830 0.842 0.848
0.05 0.806 0.826 0.825 0.826 0.824 0.827 0.825 0.834 0.842 0.865 0.870
0.1 0.814 0.823 0.826 0.825 0.825 0.825 0.832 0.843 0.849 0.870 0.878
0.5 0.823 0.828 0.828 0.829 0.828 0.839 0.843 0.866 0.873 0.888 0.890
1 0.828 0.831 0.832 0.831 0.834 0.842 0.853 0.874 0.883 0.891* 0.890
5 0.829 0.828 0.829 0.843 0.850 0.867 0.879 0.881 0.885 0.889 0.887
10 0.828 0.828 0.829 0.850 0.855 0.874 0.881 0.885 0.886 0.884 0.885
50 0.830 0.831 0.830 0.833 0.842 0.860 0.863 0.866 0.864 0.864 0.865
100 0.801 0.817 0.817 0.815 0.822 0.835 0.844 0.845 0.844 0.845 0.845

Table A.1.: Classification accuracy for the different parameter settings, using a vo-
cabulary size of 100 and early fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.376 0.461 0.806 0.826 0.829 0.831 0.832 0.832 0.834 0.836
0.005 0.374 0.729 0.806 0.813 0.823 0.832 0.833 0.833 0.833 0.842 0.844
0.01 0.447 0.803 0.822 0.825 0.829 0.831 0.832 0.833 0.835 0.844 0.849
0.05 0.813 0.822 0.825 0.832 0.833 0.833 0.834 0.842 0.843 0.861 0.868
0.1 0.815 0.828 0.831 0.833 0.834 0.834 0.836 0.844 0.851 0.868 0.876
0.5 0.828 0.837 0.837 0.837 0.836 0.846 0.849 0.861 0.866 0.883 0.886
1 0.836 0.839 0.840 0.841 0.840 0.853 0.855 0.865 0.875 0.887* 0.886
5 0.843 0.843 0.843 0.855 0.857 0.861 0.866 0.878 0.877 0.881 0.881
10 0.844 0.844 0.844 0.859 0.862 0.865 0.875 0.876 0.875 0.875 0.875
50 0.816 0.815 0.814 0.820 0.828 0.858 0.862 0.862 0.861 0.862 0.862
100 0.799 0.807 0.806 0.809 0.814 0.831 0.844 0.847 0.847 0.846 0.846

Table A.2.: Classification accuracy for the different parameter settings, using a vo-
cabulary size of 250 and early fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.392 0.716 0.815 0.819 0.825 0.839 0.840 0.840 0.844
0.005 0.373 0.595 0.716 0.814 0.825 0.840 0.838 0.839 0.841 0.842 0.842
0.01 0.393 0.723 0.800 0.812 0.822 0.840 0.840 0.841 0.844 0.842 0.845
0.05 0.706 0.815 0.817 0.838 0.839 0.840 0.842 0.842 0.842 0.855 0.860
0.1 0.814 0.818 0.836 0.841 0.841 0.842 0.844 0.842 0.847 0.862 0.871
0.5 0.820 0.839 0.842 0.845 0.847 0.846 0.847 0.858 0.863 0.882 0.890
1 0.834 0.846 0.847 0.849 0.848 0.847 0.850 0.862 0.869 0.890 0.885
5 0.848 0.851 0.850 0.852 0.852 0.860 0.863 0.889* 0.885 0.886 0.885
10 0.850 0.852 0.852 0.856 0.854 0.865 0.873 0.887 0.885 0.885 0.886
50 0.813 0.814 0.813 0.818 0.829 0.868 0.877 0.875 0.875 0.876 0.875
100 0.786 0.786 0.786 0.787 0.796 0.839 0.852 0.856 0.857 0.857 0.855

Table A.3.: Classification accuracy for the different parameter settings, using a vo-
cabulary size of 500 and early fusion.
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γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.373 0.641 0.720 0.818 0.812 0.851 0.853 0.855 0.855
0.005 0.373 0.474 0.666 0.818 0.819 0.850 0.851 0.854 0.854 0.860 0.857
0.01 0.373 0.637 0.736 0.827 0.830 0.851 0.855 0.854 0.856 0.857 0.855
0.05 0.638 0.822 0.828 0.851 0.852 0.854 0.855 0.859 0.857 0.858 0.862
0.1 0.731 0.821 0.822 0.853 0.854 0.855 0.856 0.857 0.855 0.863 0.866
0.5 0.808 0.852 0.857 0.857 0.857 0.862 0.860 0.860 0.864 0.876 0.879
1 0.840 0.858 0.859 0.860 0.860 0.860 0.857 0.863 0.869 0.881 0.880
5 0.856 0.861 0.860 0.862 0.861 0.861 0.862 0.876 0.881 0.882* 0.881
10 0.856 0.856 0.858 0.859 0.860 0.863 0.867 0.881 0.884 0.881 0.881
50 0.812 0.812 0.812 0.815 0.825 0.854 0.870 0.868 0.870 0.870 0.869
100 0.776 0.776 0.776 0.771 0.784 0.829 0.852 0.855 0.855 0.855 0.855

Table A.4.: Classification accuracy for the different parameter settings, using a vo-
cabulary size of 1000 and early fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.373 0.510 0.660 0.817 0.830 0.852 0.852 0.854 0.855
0.005 0.373 0.423 0.522 0.790 0.809 0.849 0.852 0.852 0.854 0.855 0.854
0.01 0.373 0.519 0.671 0.811 0.806 0.848 0.851 0.854 0.855 0.855 0.856
0.05 0.518 0.804 0.824 0.844 0.848 0.852 0.854 0.856 0.854 0.860 0.861
0.1 0.686 0.834 0.819 0.852 0.853 0.854 0.855 0.855 0.856 0.861 0.866
0.5 0.801 0.846 0.854 0.857 0.858 0.858 0.857 0.859 0.862 0.869 0.876
1 0.834 0.858 0.857 0.860 0.859 0.858 0.857 0.863 0.867 0.877 0.878
5 0.856 0.861 0.862 0.861 0.861 0.863 0.864 0.870 0.875 0.886 0.885
10 0.854 0.859 0.857 0.861 0.861 0.862 0.863 0.877 0.885 0.888* 0.887
50 0.811 0.811 0.810 0.815 0.824 0.848 0.860 0.870 0.871 0.871 0.870
100 0.778 0.775 0.775 0.773 0.783 0.826 0.848 0.852 0.853 0.853 0.853

Table A.5.: Classification accuracy for the different parameter settings, using a vo-
cabulary size of 1500 and early fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.373 0.509 0.656 0.809 0.798 0.851 0.852 0.854 0.852
0.005 0.373 0.384 0.482 0.779 0.798 0.839 0.850 0.852 0.853 0.856 0.856
0.01 0.373 0.490 0.671 0.818 0.830 0.848 0.853 0.853 0.853 0.856 0.856
0.05 0.514 0.768 0.804 0.842 0.851 0.853 0.853 0.856 0.857 0.855 0.859
0.1 0.669 0.798 0.812 0.852 0.853 0.854 0.854 0.856 0.856 0.858 0.861
0.5 0.779 0.835 0.852 0.855 0.856 0.857 0.856 0.855 0.860 0.866 0.870
1 0.799 0.851 0.855 0.857 0.856 0.859 0.856 0.859 0.864 0.870 0.879
5 0.855 0.860 0.860 0.857 0.860 0.857 0.858 0.867 0.872 0.880 0.885*
10 0.858 0.861 0.861 0.860 0.857 0.858 0.862 0.873 0.880 0.885* 0.884
50 0.813 0.814 0.813 0.817 0.825 0.848 0.854 0.869 0.866 0.866 0.868
100 0.781 0.780 0.780 0.781 0.788 0.828 0.843 0.850 0.849 0.850 0.851

Table A.6.: Classification accuracy for the different parameter settings, using a vo-
cabulary size of 2000 and early fusion.
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γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.373 0.501 0.578 0.796 0.776 0.849 0.850 0.850 0.851
0.005 0.373 0.388 0.467 0.732 0.807 0.831 0.852 0.850 0.850 0.852 0.853
0.01 0.373 0.484 0.600 0.810 0.815 0.845 0.850 0.850 0.852 0.853 0.851
0.05 0.498 0.725 0.807 0.822 0.850 0.850 0.849 0.852 0.853 0.853 0.855
0.1 0.596 0.797 0.805 0.845 0.851 0.850 0.851 0.854 0.853 0.855 0.862
0.5 0.764 0.823 0.850 0.854 0.854 0.854 0.857 0.854 0.858 0.863 0.867
1 0.784 0.849 0.854 0.857 0.857 0.858 0.855 0.858 0.860 0.869 0.878
5 0.846 0.860 0.859 0.858 0.857 0.857 0.859 0.866 0.870 0.881* 0.878
10 0.855 0.858 0.860 0.858 0.857 0.861 0.860 0.866 0.875 0.879 0.876
50 0.815 0.816 0.816 0.819 0.825 0.848 0.861 0.876 0.876 0.876 0.876
100 0.783 0.782 0.781 0.783 0.789 0.822 0.837 0.851 0.850 0.851 0.850

Table A.7.: Classification accuracy for the different parameter settings, using a vo-
cabulary size of 2500 and early fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.373 0.465 0.535 0.784 0.751 0.852 0.857 0.857 0.858
0.005 0.373 0.388 0.446 0.704 0.773 0.831 0.852 0.856 0.858 0.859 0.858
0.01 0.373 0.471 0.550 0.787 0.804 0.850 0.857 0.858 0.858 0.857 0.856
0.05 0.473 0.688 0.774 0.842 0.851 0.857 0.857 0.859 0.857 0.854 0.860
0.1 0.556 0.790 0.801 0.855 0.857 0.857 0.859 0.858 0.857 0.860 0.860
0.5 0.759 0.825 0.854 0.858 0.858 0.858 0.859 0.855 0.858 0.862 0.861
1 0.778 0.844 0.855 0.857 0.860 0.860 0.857 0.859 0.857 0.859 0.869
5 0.841 0.859 0.858 0.860 0.859 0.855 0.860 0.862 0.865 0.873 0.876
10 0.856 0.857 0.859 0.858 0.856 0.857 0.860 0.861 0.869 0.877* 0.873
50 0.822 0.822 0.822 0.825 0.828 0.851 0.855 0.871 0.869 0.869 0.869
100 0.787 0.785 0.785 0.789 0.796 0.825 0.840 0.851 0.850 0.852 0.851

Table A.8.: Classification accuracy for the different parameter settings, using a vo-
cabulary size of 3000 and early fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.448 0.511 0.811 0.829 0.830 0.831 0.827 0.828 0.831 0.841
0.005 0.438 0.806 0.807 0.816 0.829 0.827 0.827 0.828 0.832 0.841 0.851
0.01 0.519 0.807 0.824 0.827 0.830 0.828 0.828 0.832 0.840 0.851 0.859
0.05 0.816 0.820 0.828 0.829 0.829 0.829 0.833 0.841 0.852 0.866 0.872
0.1 0.821 0.829 0.830 0.828 0.829 0.833 0.841 0.852 0.858 0.874 0.876
0.5 0.831 0.833 0.833 0.833 0.836 0.843 0.855 0.869 0.881 0.884 0.888
1 0.836 0.836 0.836 0.839 0.845 0.854 0.861 0.881 0.884 0.890* 0.889
5 0.837 0.837 0.838 0.852 0.858 0.873 0.882 0.888 0.888 0.886 0.886
10 0.842 0.842 0.842 0.856 0.863 0.885 0.882 0.888 0.887 0.884 0.884
50 0.837 0.837 0.837 0.837 0.842 0.866 0.877 0.879 0.879 0.879 0.879
100 0.809 0.821 0.822 0.822 0.825 0.844 0.862 0.862 0.859 0.861 0.862

Table A.9.: Classification accuracy for the different parameter settings, using a vo-
cabulary size of 100 and late fusion.
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γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.444 0.776 0.813 0.836 0.833 0.840 0.840 0.840 0.840
0.005 0.373 0.703 0.784 0.822 0.817 0.838 0.840 0.840 0.840 0.846 0.848
0.01 0.459 0.767 0.814 0.826 0.838 0.840 0.840 0.839 0.840 0.848 0.850
0.05 0.777 0.829 0.830 0.840 0.841 0.841 0.840 0.846 0.849 0.854 0.863
0.1 0.817 0.821 0.834 0.841 0.841 0.840 0.840 0.850 0.851 0.865 0.877
0.5 0.826 0.841 0.843 0.842 0.842 0.845 0.850 0.858 0.867 0.880 0.884
1 0.838 0.845 0.845 0.845 0.844 0.853 0.855 0.869 0.879 0.886 0.891*
5 0.837 0.839 0.840 0.851 0.858 0.861 0.865 0.878 0.883 0.884 0.886
10 0.838 0.838 0.838 0.859 0.859 0.863 0.874 0.880 0.882 0.882 0.883
50 0.830 0.832 0.832 0.826 0.829 0.865 0.866 0.870 0.868 0.869 0.870
100 0.799 0.804 0.805 0.804 0.805 0.839 0.850 0.854 0.852 0.852 0.853

Table A.10.: Classification accuracy for the different parameter settings, using a
vocabulary size of 250 and late fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.410 0.722 0.795 0.828 0.830 0.842 0.841 0.843 0.844
0.005 0.373 0.533 0.710 0.828 0.812 0.839 0.842 0.841 0.842 0.848 0.852
0.01 0.400 0.712 0.800 0.823 0.840 0.840 0.840 0.841 0.843 0.852 0.852
0.05 0.728 0.824 0.828 0.836 0.841 0.841 0.842 0.848 0.852 0.858 0.863
0.1 0.798 0.821 0.832 0.839 0.841 0.842 0.844 0.852 0.854 0.864 0.870
0.5 0.817 0.839 0.841 0.843 0.842 0.847 0.853 0.857 0.866 0.880 0.878
1 0.833 0.846 0.846 0.846 0.845 0.855 0.858 0.865 0.871 0.879 0.879
5 0.848 0.852 0.850 0.853 0.861 0.862 0.866 0.879 0.879 0.881 0.881
10 0.850 0.852 0.850 0.862 0.865 0.868 0.871 0.880 0.882* 0.882* 0.884
50 0.825 0.826 0.825 0.832 0.837 0.868 0.873 0.875 0.873 0.873 0.874
100 0.805 0.804 0.803 0.804 0.809 0.847 0.860 0.858 0.857 0.858 0.858

Table A.11.: Classification accuracy for the different parameter settings, using a
vocabulary size of 500 and late fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.376 0.603 0.755 0.826 0.824 0.844 0.844 0.847 0.847
0.005 0.373 0.464 0.560 0.818 0.816 0.838 0.844 0.845 0.846 0.853 0.853
0.01 0.374 0.579 0.737 0.825 0.834 0.840 0.844 0.845 0.847 0.854 0.855
0.05 0.606 0.804 0.817 0.839 0.844 0.845 0.845 0.852 0.854 0.857 0.862
0.1 0.745 0.809 0.825 0.842 0.845 0.846 0.847 0.854 0.857 0.862 0.869
0.5 0.803 0.838 0.846 0.847 0.849 0.851 0.855 0.860 0.866 0.883 0.885
1 0.823 0.846 0.849 0.850 0.851 0.857 0.858 0.867 0.871 0.886 0.885
5 0.848 0.850 0.850 0.856 0.860 0.866 0.865 0.882 0.887 0.886 0.886
10 0.853 0.854 0.854 0.858 0.862 0.865 0.869 0.889* 0.884 0.885 0.884
50 0.829 0.828 0.829 0.832 0.836 0.862 0.880 0.882 0.882 0.882 0.882
100 0.795 0.796 0.796 0.792 0.800 0.842 0.862 0.864 0.864 0.865 0.864

Table A.12.: Classification accuracy for the different parameter settings, using a
vocabulary size of 1000 and late fusion.
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γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.373 0.513 0.670 0.819 0.815 0.848 0.845 0.847 0.847
0.005 0.373 0.437 0.487 0.812 0.801 0.841 0.846 0.846 0.847 0.852 0.852
0.01 0.373 0.497 0.682 0.818 0.840 0.846 0.848 0.848 0.848 0.852 0.849
0.05 0.515 0.793 0.810 0.836 0.845 0.847 0.846 0.852 0.852 0.856 0.859
0.1 0.691 0.798 0.824 0.849 0.847 0.848 0.849 0.853 0.849 0.859 0.868
0.5 0.788 0.831 0.851 0.852 0.852 0.852 0.853 0.855 0.859 0.873 0.883
1 0.811 0.848 0.850 0.854 0.853 0.852 0.855 0.859 0.868 0.885 0.885
5 0.844 0.853 0.854 0.858 0.860 0.860 0.860 0.873 0.882 0.887* 0.887*
10 0.853 0.854 0.854 0.857 0.862 0.863 0.865 0.880 0.885 0.885 0.884
50 0.829 0.830 0.830 0.834 0.839 0.858 0.871 0.878 0.876 0.876 0.877
100 0.797 0.799 0.798 0.795 0.807 0.838 0.860 0.867 0.866 0.866 0.866

Table A.13.: Classification accuracy for the different parameter settings, using a
vocabulary size of 1500 and late fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.373 0.484 0.635 0.821 0.817 0.849 0.847 0.848 0.848
0.005 0.373 0.395 0.483 0.751 0.831 0.831 0.849 0.847 0.847 0.849 0.851
0.01 0.373 0.470 0.623 0.830 0.814 0.848 0.846 0.845 0.848 0.852 0.850
0.05 0.488 0.766 0.812 0.833 0.848 0.849 0.849 0.849 0.852 0.853 0.857
0.1 0.634 0.815 0.814 0.844 0.846 0.847 0.850 0.854 0.852 0.858 0.861
0.5 0.793 0.843 0.846 0.852 0.854 0.852 0.853 0.855 0.859 0.870 0.880
1 0.799 0.849 0.851 0.854 0.855 0.854 0.850 0.858 0.863 0.878 0.880
5 0.843 0.855 0.854 0.857 0.860 0.857 0.861 0.870 0.880 0.883 0.883
10 0.850 0.854 0.854 0.859 0.861 0.860 0.862 0.879 0.884 0.884* 0.881
50 0.829 0.832 0.832 0.836 0.839 0.855 0.868 0.876 0.877 0.876 0.875
100 0.804 0.804 0.804 0.800 0.805 0.836 0.853 0.859 0.858 0.858 0.861

Table A.14.: Classification accuracy for the different parameter settings, using a
vocabulary size of 2000 and late fusion.

γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.373 0.460 0.559 0.804 0.807 0.848 0.844 0.846 0.847
0.005 0.373 0.389 0.467 0.731 0.818 0.838 0.847 0.847 0.846 0.847 0.850
0.01 0.373 0.447 0.551 0.815 0.815 0.848 0.845 0.846 0.846 0.850 0.850
0.05 0.475 0.757 0.808 0.839 0.847 0.846 0.846 0.847 0.850 0.856 0.859
0.1 0.589 0.810 0.809 0.845 0.845 0.847 0.847 0.849 0.852 0.858 0.862
0.5 0.780 0.825 0.839 0.848 0.850 0.849 0.850 0.856 0.860 0.871 0.876
1 0.799 0.831 0.855 0.850 0.857 0.853 0.853 0.860 0.865 0.876 0.882
5 0.846 0.857 0.858 0.859 0.860 0.858 0.861 0.872 0.877 0.884 0.881
10 0.852 0.855 0.856 0.858 0.862 0.866 0.867 0.881 0.882 0.886* 0.885
50 0.833 0.834 0.835 0.838 0.835 0.853 0.863 0.874 0.874 0.873 0.873
100 0.800 0.805 0.804 0.803 0.812 0.836 0.854 0.863 0.863 0.864 0.864

Table A.15.: Classification accuracy for the different parameter settings, using a
vocabulary size of 2500 and late fusion.
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γ
costs 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100
0.001 0.373 0.373 0.373 0.463 0.526 0.783 0.748 0.846 0.847 0.848 0.847
0.005 0.373 0.385 0.447 0.760 0.781 0.828 0.848 0.847 0.849 0.853 0.856
0.01 0.373 0.475 0.524 0.799 0.785 0.846 0.846 0.849 0.850 0.855 0.854
0.05 0.471 0.737 0.777 0.829 0.842 0.849 0.850 0.853 0.856 0.854 0.861
0.1 0.543 0.786 0.806 0.847 0.849 0.848 0.851 0.856 0.854 0.862 0.864
0.5 0.742 0.826 0.846 0.852 0.854 0.854 0.855 0.856 0.861 0.871 0.874
1 0.764 0.846 0.854 0.857 0.857 0.856 0.858 0.861 0.866 0.873 0.876
5 0.837 0.858 0.858 0.858 0.861 0.860 0.861 0.873 0.875 0.880 0.880
10 0.849 0.856 0.855 0.858 0.860 0.861 0.866 0.878 0.880 0.880 0.882*
50 0.829 0.831 0.831 0.840 0.840 0.860 0.866 0.882* 0.880 0.879 0.880
100 0.799 0.798 0.798 0.803 0.805 0.834 0.850 0.861 0.861 0.861 0.860

Table A.16.: Classification accuracy for the different parameter settings, using a
vocabulary size of 3000 and late fusion.
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