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Abstract

In this thesis we will first describe the general problem of robot localization
and map building. Then we will describe some relevant solutions known in
literature. After this we build up to our solution, starting with data known
in a global reference frame, such that linear regression is sufficient. When
orientation is added, an iterative process is needed. Last of all links obtained
from omnidirectional camera images are used. These links are normalized,
so we need to obtain the scaling factors of these links as well.
Our solution uses Expectation Maximization. This is an iterative technique
based on maximum likelihood estimates which has given good results in nu-
merous areas already. It is also used on a dataset obtained by a real robot
to show its usefulness in practice.
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Notations

In every method discussed the measurements were taken in discrete intervals,
the interval between two adjacent sensor readings. Time i means the time
the i-th sensor reading was made, assuming that when a sensor reading was
made in the initial pose, its index is 0. Unless mentioned otherwise, a pose
xi consists of x- and y-coordinates and an orientation θ.

Ā The estimation of A, where A can be any quantity
C The complete covariance matrix of the estimation of D
Cij The covariance matrix of the estimation of dij
d The dimensionality of the data
dij The link from position xi to position xj
D The set of all links
Di The set of links from pose xi to (all) other poses
H The mapping between links and poses
i, j, k, l Indices
mi The i-th element in the map
M The complete map of the environment
Mi The map built from the first i elements, e.g. landmarks, features, . . .
N The total amount of measurements
P (A) The prior probability of A, where A can be any quantity
P (A|B) The probability of A given B, where A and B can be any quantity
re The scale of a local link estimate d̄ij
R(θ) The rotation matrix for a rotation of θ degrees
T (x) The translation matrix corresponding to the translation vector x
ui The i-th control vector
U The set of all control vectors, derived from the odometry
Ui The set of control vectors up to time i
W The Mahalanobis distance
x, y The coordinates of a point in space
xi, yi The coordinates of point i in space
xij, yij Parameters of a link dij
. . . . . .
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x0 The initial pose, which is also the origin of the global reference frame
xi The robot pose at time i
xik The k-th estimate of the robot pose at time i
Xi The set of robot poses up to time i
XN The set of all poses of the robot in the global reference frame
yi A feature vector determined from an image zi
Y The set of feature vectors determined from images Z
Yi The set of feature vectors determined from images Zi
zi The observation made at time i
zki The observation of an element (e.g. landmark, feature) at time i
Z The set of all observations
Zi The set of observations up to time i
α The matrix containing all scaling factors d times on its diagonal

in the order given by D
Γ The complete scaling matrix for D
Γi The scaling matrix for the matrix Di

Γij The scaling matrix for the link dij
γij The scaling factor for the translation parts of a link dij
Θ The set of all local orientations
θi The orientation at pose i
θij The orientation difference between pose i and pose j
σij The standard deviation of a covariance matrix
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Chapter 1

Introduction

A robot that wants to operate in the real world often needs information about
its location. This information needs to be as accurate as possible, using
minimal resources. It is not possible, however, to get the true position in the
real world, because every sensor has its own inherent error. The problem is
how to get the most accurate location estimation using the available sensor
data.
From a robot’s point of view, the sensors can be divided into three separate
categories, based on the characteristics of the data they produce.

1. An interoceptive sensor measures movement of a robot by registering
odometry (the movement of either the wheels or legs). This can be
done either by a piece of software that intercepts the commands sent
to the servo motors, or by a physical sensor that monitors the wheel
movement. From this information, it is possible to construct an esti-
mation of the complete path.
The error inherent in this odometry data is caused by slip, due to ef-
fects such as gravel on the road or uneven terrain, which adds a vertical
movement that can not be derived from observing rotation of the wheels
alone. These odometry errors are cumulative, so when a robot has to
operate by itself for a long time without any feedback regarding its
true position, the uncertainty will grow to the point where the current
location can be any location in the world.

2. To reduce the error in the odometry dataset, the robot needs to observe
the outside world. For this purpose an exteroceptive sensor, mounted
on the robot, is used. From the scans made by the robot, locations of
objects in the world with respect to the local robot reference frame are
derived. A wide range of exteroceptive sensors exist. Cameras, laser
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range sensors, and radars are the most common ones. Each type of
sensor measures a certain aspect of the environment and has its own
limitations. For example a laser range sensor can not monitor move-
ment of an object, but gives accurate information about the distance
to an object. In contrast to the error of the interoceptive sensor, in
an exteroceptive sensor all measurements are independent of one an-
other. As a result the errors are not cumulative but constant. They
only depend on the distance between the sensor and the object that is
scanned.
There are several approaches which use the information of exterocep-
tive sensors to estimate the position.

• In appearance-based models [5], feature vectors Yi = {y0 . . .yi},
and their corresponding positions {x0 . . .xi} serve as a map. The
feature vectors are derived from images Zi = {z0 . . . zi} using
dimensionality reduction, such as Principal Component Analy-
sis [4]. Furthermore the mapping M , that maps images to low-
dimensional feature vectors, is stored.
The mapping is then used to reduce any observation zk made by
the robot to a feature vector yk = M ·zk. A kernel density estima-
tion is then used to compute the pose which gives the maximum
likelihood for the feature vector given the map.

• It is also possible to store a complete map of the environment as
a geometric model [10]. When an observation is made, all the
straight edge segments are extracted. This representation of the
location is then matched against all known map edges. The region
of the map that gives the highest probability of being the correct
region is then selected. Since the location of the local map is now
fixed within the global map, the estimated location is the origin
of the local map.

• Another effective approach is to store a set of landmarks which
can be easily recognized [16]. The profile of the landmarks, in
this case a set of edges, is stored in a database along with the
absolute positions. The robot can then match his observations to
the database and estimate his position by e.g. triangulation.

• An occupancy grid is a nice alternative when you wish to use mul-
tiple sensors [13]. Here each sensor determines for itself whether
a location is occupied and therefore out of reach, after which it
is easy to integrate the data from several sensors. In this case it
is done using a simple lookup table that returns whether a grid
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point is occupied based on the different sensor results. The overall
results can then be compared to a map, where the most probable
location is chosen as the optimal estimate.

• In the case where no model of the world exists, a model can be
made based on the observations. Accuracy of that model increases
over time. This is because the same place is usually visited more
then once, which should result in a match between the two sensor
readings. Now the overall error can be reduced. This approach is
known as Simultaneous Localization And Mapping (SLAM). An
extensive report on SLAM is given in chapter 2.

3. The third option is to remove the exteroceptive sensor from the robot
and place it at some fixed position in the real world. Errors have
the same properties as with the exteroceptive sensors mounted on the
robot, except they have the benefit of operating in a limited area. When
the sensor detects the robot, its position can be determined either by
a single sensor or by multiple sensors using e.g. triangulation.

This thesis focuses on SLAM for a mobile robot, equipped with an omni-
directional vision sensor. This sensor has the property that, when two im-
ages taken at two different poses contain enough corresponding features, the
relative pose for one location as observed from the other location (a link) can
be derived.
In chapter 2, an overview of the work related to SLAM is given. Chapter
3 will show a solution to the problem of location estimation in a simulated
environment. First we will show how to estimate locations in the case that
the orientation is fixed. This means that the sensors provide relative transla-
tions between the poses. The problem is then extended to a world where the
orientation for each pose is variable. In this case the sensor provides both
the translation and the relative orientation between the poses. Two methods
are provided for this set, one that divides the data in subparts and one that
uses an iterative approach.
These methods assume that the links are already given. In chapter 4 it is
shown how the links can be computed in the case that an omnidirectional
camera is used as an exteroceptive sensor. Following in chapter 5 is a method
that uses Expectation Maximization (EM) to get the global positions using
both the links from odometry and the links that were estimated using an
omnidirectional camera.
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Chapter 2

Simultaneous Localization And
Mapping

To be truly autonomous, a vehicle has to be able to start at an unknown
location in an unknown environment, and then to incrementally build a map
of this environment, while simultaneously using this map to compute vehicle
location [9].
There exists an extensive amount of literature on this subject, which can
be divided in two categories. The techniques in the first category build an
explicit, global map of the environment based on the sensor readings. This
requires the recognition of landmarks from the sensor readings. Each time a
new sensor reading is recieved, both the map and the robot path are updated.
In the second category feature vectors derived from each sensor reading are
stored along with the locations xi where these sensor readings were made.
When there is sufficient overlap between two feature vectors, a link is estab-
lished and the geometric difference is derived. The combination of odometry
data and the links will then form an overfitted network from which all poses
xi can be calculated.
Even though in most cases sufficient data is available to derive a global map,
the data is used only to get the links between poses locally. The representa-
tion of the map is a set of local maps for each pose xi in the path, where the
local map is the feature vector derived from the scan zi.

2.1 SLAM using Global Map Building

Localization, Mapping and the Simultaneous Localization and Mapping (SLAM)
Problem
Durrant-Whyte [9] describes the process of SLAM as localization of the robot
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based on the landmarks, and mapping based on the poses of the robot. A
landmark is an object that can be distinguished from (most) other objects
in the environment.
Localization is done by fixing the map, which is a set of landmarks here, and
derive the location of the robot based on the observation of the landmarks ob-
served in that position. Mapping is done by assuming the current estimates
of the robot poses are correct and deriving the map from the observations
of the landmarks made by the robot. When both the map and locations are
unknown, localization and mapping have to be done simultaneously.
The dataset consists of two sets, the generic observations Z = z1, z2, . . . , zN
and the control vectors Uk = u1,u2, . . . ,uN . These are used to compute the
robot poses X = x0,x1, . . . ,xN and the set of all landmarks, which is the
map M = m1,m2, . . . ,mM .
The sensors are modeled as the likelihood P (zk|xk,M), meaning the proba-
bility of making the observation when the true state is {xk,M}.
The platform motion is modeled in terms of the conditional probability
P (xk|xk−1,uk), i.e. the probability that xk is reached when uk is the control
vector starting at location xk−1.
The joint posterior probability of both the map and the locations can be es-
timated recursively as P (xk,M |Zk, Uk,x0), or the probability that the map
and location given the complete sets of measurements and control vectors up
to time k are correct, when x0 is the origin. The observation update step
can be derived using Bayes theorem.
When the platform motion model is assumed Markovian, the probability of
the location estimates that has to be maximized can be calculated recursively
as

P (xk,M |Zk, Uk,x0) = KP (zk|xk,M)
∫
P (xk|xk−1,uk)

P (xk−1,M |Zk−1, Uk−1,x0)dxk−1
(2.1)

where K is the ratio between the error in a single control vector and a single
observation, and is (approximately) constant.

Vision-based Mobile Robot Localization And Mapping using Scale-Invariant
Features
In this method [14] scale invariant image features, derived from the images

of a trinocular stereo camera system, are used as landmarks. The benefit of
SIFT (Scale Invariant Feature Transform) features is that they are invariant
to image translation, scaling, rotation and partially invariant to illumination
changes and affine or 3D projection. These characteristics make them useful
for robust SLAM.
The SIFT features are selected at maxima and minima of difference in a
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Figure 2.1: SIFT features found, with scale and orientation indicated by the
size and orientation of the squares. (a) Top image. (b) Left image. (c) Right
image.

gaussian function applied in scale space [17]. Since three cameras are used,
the real world coordinates relative to the robot can be computed. The SIFT
features can then serve as landmarks for map building and tracking.
For each stereo matched SIFT feature the coordinates [r, c, s, o, d, x, y, z] are
stored, where (r, c) are the image coordinates in the reference camera, (s, o, d)
are scale, orientation and disparity and (x, y, z) are the coordinates in the
real world relative to the reference camera.
To build the map the features are tracked over successive frames, where the
odometry is used to compute a rough estimate of the next occurrence of the
feature. Once SIFT features are matched, least squares is used to estimate
the path, and the real world coordinates of the SIFT features are adjusted.
Each feature is stored in a database for future reference when they don’t
match any previous features as (x, y, z, s, o, l), where l is a count to indicate
how many consecutive frames this landmark has been missed. This may
happen because of occlusion. When a landmark has been missed for L con-
secutive frames while it should remain in the field of vision, it is removed
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from the database, because it probably belongs to a dynamic object. There
are four types of features to consider:

Type 1 This landmark is not expected to be within view in the next frame.
It is not matched and its miss count l remains unchanged.

Type 2 This landmark is expected to be within view, but no matches can
be found in the next frame. Its miss count is incremented by 1.

Type 3 This landmark is within view and a match is found. Its miss count
is reset to 0.

Type 4 This is a new landmark which does not match any existing landmark
in the database. It is added to the database.

Incremental Mapping of Large Cyclic Environments
Gutmann and Konolige [12] compare the local map built from the last K
poses to all regions in the current global map to detect if a region has been
visited before. They assume that the map M created up to pose xN−1 is
correct when a new pose xN is added. This map consists of a set of local
scans, but the overlapping poses are deleted by this technique, so it represents
one single global map.
The technique from Lu and Milios [3] described below is used to create a
local map from the laser range scans of the last K poses. This local map
is compared to the global map using the prior probability for each pose and
the sensor response function, over all poses in the map. The sensor response
function is approximated by a correlation operator between the two maps,
and generates a probability distribution over the map.
For the detection of false positives, since they are extremely hazardous for the
estimation process(once the map is adjusted it is extremely hard to recover),
three filters are used:

High match score The unnormalized match score should be high.

Low ambiguity The peaks of clusters with high probability are compared.
The ratio of the highest peak to the next highest peak should be large.

Low variance The best cluster should be sharply peaked.

When there is a match, the technique from Lu and Milios is used again on
the entire set of poses to get the globally consistent pose estimation for the
entire path, which is also the pose estimation for the local maps.
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2.2 SLAM using Link Estimation from Local

Maps

Globally Consistent Range Scan Alignment for Environment Mapping
Lu and Milios [3] use a set of links d̄ij that is obtained from odometry as
well as from the matching of range scans. Each link d̄ij is a measurement of
link dij, which represents pose xj in the local reference frame of xi.
If the links would have been in the global reference frame, the relation be-
tween all links and all poses could have been put in matrix form as D = HX,
where D = [d01d02 . . .dN−1,N ]T is a concatenation of all dij in a single vector,
X = [x0x1 . . .xN ]T is a vector concatenating all xi, and H is the mapping
from poses to links, consisting of identity matrices such that dij = xj − xi.
The optimal estimation for the positions would have been achieved by mini-
mizing the Mahalanobis distance W

W = (D̄ −HX)tC−1(D̄ −HX) (2.2)

where C is the covariance matrix of D. This is done by solving the vector X
using least squares as

X = (H tC−1H)−1H tC−1D̄ (2.3)

However, all links are in a local reference frame. The global poses are con-
structed from the local estimates by a ’pose compounding relation’ xj =
xi ⊕ dij, where the coordinates are related by

xj = xi + xij cos θi − yij sin θi
yj = yi + xij sin θi + yij cos θi
θj = θi + θij

(2.4)

Since the pose compounding relation is not linear, Lu and Milios make a
linear approximation of the model to get the links in the global reference
frame first.
In the case of matching range scans, when there is sufficient overlap between
two range scans, the link is calculated globally for each matched feature,
using the poses and the feature observation. The error in the link estimates
is then minimized by least squares, resulting in a global link estimate. The
odometry links are estimated as the difference between two successive poses.
Now the complete set of links is known, so the Mahalanobis distance is min-
imized to get the best estimate for X. The map is then constructed as a set
of range scans with their global poses X, which are the poses along the robot
path where the scans have been made.
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Sonar-Based Mapping With Mobile Robots Using EM
In this technique [6] the complete dataset is the set of range scans with the
corresponding odometry data. A map is an assignment of features to each
location on the robot path, so a local map is composed for each pose. Each
local map is a likelihood field, that has a likelihood of occupancy for each
pixel in the local map. The method uses three probabilistic models as its
basis in the estimation process.
The motion model P (x′i|ui,xi−1) describes the probability that the robot’s
pose is x′i, given that ui is performed at location xi−1. The perception model
P (zi|M,xi) models the likelihood of observing zi, where the map M and the
pose xi are known. The inverse perception model P (M |Z,X) represents the
likelihood of each local map in the world given the sonar scans and the pose.
Expectation Maximization (EM) is a hill-climbing procedure which alter-
nates between an expectation step that computes the probability that the
path is correct, and a maximization step that computes the best possible
estimation of the path given the data.
Here the E-step computes P (xi|M,D) = αiβi, where αi computes the prob-
ability of the pose recursively, starting from pose x0, and βi computes the
probability of the pose backwards from pose xN . Usually the initial values
are given by α1 = P (x1|z1,M) and βN is uniformly distributed.
The M-step calculates the most likely poses of the local maps. It generates a
distribution µ over the poses, such that x∗i is chosen as the maximum value
for P (xi|M,D).
When the P (xi|M,D) reaches a maximum, the most likely path is found. A
post-processing step calculates the global map by integrating the local maps
mi over their final poses x∗i .

Towards global consistent pose estimation from images
This method [1] has the same foundation as Lu and Milios [3], i.e. D = HX is
the relation between the links and the poses, and the Mahalanobis distance
has to be minimized. The difference here is that no linear approximation

is made. The dataset is split into a displacement vector d̄
l
d,ij in the local

reference frame, and an orientation difference between two poses θ̄ij. Since
omnidirectional camera images are used to compute the links, the estimated
displacement vector is normalized. A reference trajectory, consisting of drd,ij
and θrij, is used to obtain the scale and global orientation of d̄

l
d,ij. Estimat-

ing the links from omnidirectional camera images is described extensively in
chapter 4.
For the reference trajectory the odometry is reshaped using the link between
begin- and end pose [11]. The scale re of this link is unknown, so it is initial-
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ized with an arbitrary value. First the orientations θrij are computed. The
spatial displacement r∗e is computed as

r∗e = argmin
re

∑
ij

‖∆dre,ij‖2 (2.5)

The lengths of the links in the reference trajectory drd,ij are now used to scale

the vectors dld,ij. The reference trajectory also contains the orientation θri
of each pose, expressed in the global reference frame. Now the link in the
global reference frame can be computed by derotating each vector with the
estimated orientation difference θrij. These links are then used to minimize
the Mahalanobis distance through least squares.

2.3 Conclusion

In this chapter a variety of methods were discussed. Our data consists of
relative pose estimates, derived from sets of omnidirectional camera images.
We chose an approach based on the globally consistent range scan align-
ment [3], because Lu and Milios work with a similar dataset, i.e. a set of
relative pose measurements. However, our dataset represents the relative
orientations along with the normalized translations, whereas Lu and Milios
also have the length of the translation vector.
In the next chapter we work with simulated data. We first assume a linear
measurement equation D = HX, to test the performance of Lu and Milios’
approach. After this the orientation is varied, resulting in a nonlinear mea-
surement equation. We try to split the dataset to solve each subpart linearly.
Finally the same nonlinear measument equation is assumed, But this time an
iterative approach is used to maximize the likelihood of the poses given the
set of relative pose estimates. This is the basis for our solution as described
in chapter 5.
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Chapter 3

Estimation of Positions based
on Relative Measurements

In this chapter we present three methods for location estimation. The first
method provides an algorithm in the case that the poses have a fixed orien-
tation. Now the links, or the relative pose estimates, are the same both in
the global- and local reference frame.
The second method provides an extension for the case when the links are
usually only known in the local reference frames. This happens when ori-
entation is also variable. In this extension the set of links is divided in two
subsets, one containing the orientations and one containing the translations.
The third method implements an iterative solution to improve the accuracy
of the second method.
The datasets contain the relative link estimates d̄ij, defined as an estimate
of the pose xj observed from pose xi. These links can be estimated from the
odometry and/or the scans made by a mounted sensor, such as a laser range
scanner. However, we use a simulated dataset here.

3.1 Estimating Locations from translation data

This first approach was designed to test the operability of Lu and Milios’
method [3], when the measurement equation has the linear form dij = xj−xi.
Here xi = [xi, yi] is pose i expressed in the global reference frame, using only
position coordinates xi and yi. The orientation is fixed. dij = [xij, yij] con-
sists of the translation needed to get from pose xi to pose xj, so it contains
only an x- and y-direction as well.
All links are concatenated into a single vector according to the notation of
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Lu and Milios in section 2.2. The same goes for the poses. The measure-
ment equation can then be put in matrix form as D = HX, where H is the
incidence matrix, also defined by Lu and Milios. Its properties are defined
in appendix A.
However, all that is available is the estimation D̄ of the links, where D̄ =
HX+∆D. The criterion for optimal estimation is the weighted sum of ∆d̄ij.
This can be expressed as the mahalanobis distance, which is the weighted
summed squared distance between the true relative positions dij and their
measurements d̄ij

W = (∆D)tC−1(∆D) = (D̄ −HX)tC−1(D̄ −HX) (3.1)

Here C is the covariance of D̄, which represent the weights. The inverse co-
variance matrix gives high weights to links that have low variability to express
their importance.Since error in a single link does not affect any other link
estimated from camera images (i.e. they are uncorrelated), it is a diagonal
matrix with submatrices Cij, where

Cij =

(
(∆xij)

2 0
0 (∆yij)

2

)

The minimum Mahalanobis distance is determined by the least squares so-
lution for the poses as

X = (H tC−1H)−1H tC−1D̄ (3.2)

Experiments

We want to study what effect increasing the covariance of each link has on
the accuracy of the optimal estimate. For this the path is initialized as a
random, universally distributed network of 40 positions xi, as can be seen
in picture 3.1. The actual links are calculated according to D = HX. A
dataset D̄ of link estimates is then generated, using the actual set of links D.
Each link d̄ij is normally distributed with mean dij, and standard deviation
σij increasing from 1 to 30. It is estimated as d̄ij = dij + dijN(0, Cij).
The Mahalanobis distance is used to calculate the remaining error in the pose
estimates. Before the method is used, the Mahalanobis distance between the
link estimates in the dataset D̄ and the ’true’ set D = HX gives the initial
error. After the method was used, the optimal estimate X ′ is used to create
D′ = HX ′. The Mahalanobis distance between D and D′ is then calculated
to get the remaining error in the network. Figure 3.2(a) shows a graph where
the Mahalanobis distance is plotted against σij. Figure 3.2(b) gives the error
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Figure 3.1: initialization of a universally distributed network of 40 positions.
Displayed are the nodes of the network, which are the positions. All nodes
are connected in this experiment.

in the pose estimates as
∑

i(x
′
i − xi)

t(x′i − xi).

As can be seen in figure 3.2(a), least squares is an effective method when
the links are in the global reference frame. As can be expected the pose
difference increases when the amount of noise is too great. However, the Ma-
halanobis distance remains the same. This is because the covariance matrix
is known in advance. When it is determined using the estimated links, the
estimation quickly diverges to a random matrix. These runs demonstrate
that least squares is sufficient when the covariance is known in advance and
the links are known in the global reference frame.
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3.2 Extension to a Nonlinear Measurement

Equation

In this section we want to see how least squares works when the measurement
equation is no longer linear, meaning that the relation between links d̄ij in
the local reference frame and in the global reference frame is no longer fixed.
To ensure this, the poses from the previous section will now include orienta-
tion, which is the direction in which the robot is headed in the current pose.
In other words, xi = [xi, yi, θi]. The local link dij = [xij, yij, θij] between two
poses xi and xj can now be defined as the pose compounding relation from
Lu and Milios [3]

xj = xi ⊕ dij (3.3)

These vectors are related as

xj = xi + xij cos θi − yij sin θi
yj = yi + xij sin θi + yij cos θi
θj = θi + θij

xj = xi +R(−θi)dij (3.4)

Similar to the previous section, all poses can be concatenated into a single
vector. The same goes for the link estimates d̄ij. We define a rotation matrix
R(−Θ) as a diagonal matrix with submatrices Rij = R(θi), which are in the
same order as d̄ij in D. Now the pose compounding relation can be put in
matrix form as D̄ = R(−Θ)HX + ∆D, which now represents the nonlinear
measurement equation from appendix A.
The rotation matrix R(−Θ) contains free variables θi, which stand for the
orientation of the local reference frame xi (the direction of the robot). To
remove these free variables, Lu and Milios [3] make a linear approximation of
the global links by assuming that the pose errors ∆xk are small. Therefore
it can also be observed that the orientations approximately form a linear
subpart [1].
Our approach is to separate the orientations from the dataset, and make an
estimate on the 1-dimensional dataset as described in the previous section,
3.1. This results in a set containing the optimal estimates of all θi. By
substituting all θi in R(−Θ) by these estimates, the rotation matrix is now
fixed. This means the measurement equation is linear, so least squares can
be applied as in section 3.1.

Experiments

Once again the goal of this experiment is to determine what effect increasing
the error in the dataset has on the performance of the system. The error
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is calculated using the Mahalanobis distance. In the plot the difference is
shown between the Euclidian distance using raw data and the Euclidian
distance after using least squares. The remaining error is expected to be
higher, because the orientations used to determine R(−Θ) are not the true
orientations, so the rotation matrix is not completely accurate.
The dataset is generated by first generating a random network of 40 positions
xi. The true links are calculated according to dij = R(θi)(xj − xi). Now
random covariances are generated for each link with standard deviation σij
a fixed number, d̄ij = dij + dijN(0, Cij).
To get the results the method is tried on different datasets with σij = 1 . . . 25.
Shown in figure 3.3(a) is a graph where σij is plotted against the Mahalanobis
distance. The solid line is the initial error, the dashed line the error after
least squares was applied.

It shows that the estimation quickly diverges. This is because we assumed
that the dataset could be split into a linear- and a nonlinear part, but this
is not true. The minimum mahalanobis distance of a subpart does not guar-
antee a minimum distance on the complete estimate. In the next section we
will show an iterative approach, which analyses the dataset as a whole.

3.3 An Iterative Approach

Next we will present an iterative method in an attempt to improve the results.
It requires two components as input:

• The dataset. This is the set of link estimates D̄, identical to the set in
the previous method.

• The Model. In this case the model is the path that has to be estimated,
which is represented by a set of poses Xn. We will initialize it with
the set of poses X0 as they are estimated by odometry, because it is
already a reasonable estimate. Since this is a hill-climbing approach,
there is always the issue of whether the maximum likelihood is a local or
a global likelihood. In this way, the probability that a local maximum
will be reached is minimized.

Each iteration n = {1 . . . N} we determine a set of estimates xnik for each pose
xni that has to be determined in this iteration. For this the pose compounding
relation from equation 3.3 is used.

xnik = xn−1
j ⊕ d̄ij (3.5)
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The new pose xni is the mean value of all pose estimates xnik

xni =

∑
k xnik

# estimates
(3.6)

Each step n = 1 . . . N the estimated model Xn is derived in such a way that
the likelihood P (Xn|D,Xn−1) is maximized. As soon as this likelihood no
longer increases, the model is considered an optimal fit to the dataset.

Experiments

We will analyse the influence of error on the performance of our iterative
method. The Mahalanobis distance is used to express the total amount of
error in the pose estimates, given the set of observed links. Two plots are
shown in figure 3.4, One that shows the Mahalanobis distance and one that
shows the difference between the estimated- and real poses

∑
i(x
′
i−xi)

t(x′i−
xi). It is expected to give better performance then our previous approach,
since an iterative technique has no linearity constraint on the measurement
equation, as opposed to least squares.
We generate the links from odometry readings and the links from sensor
readings separately, but both in the same way as the previous method, i.e.
the true links are calculated according to dij = Rij(xj − xi). Then random
covariances are generated for each link with standard deviation σij a fixed
number, after which both sets are calculated as d̄ij = dij +Cijdij. Odometry
is used to obtain a set of links D between successive poses d̄i,i+1, determined
from the wheel rotations.
We increase σ to get results for increasing error once again, σ = 1 . . . 30. The
results are more promising then with a least squares approach. According
to figure 3.4(a) about 75% of the total error is removed, even with large
error. However, figure 3.4(b) shows that some poses still contain significant
error. Obviously there is much uncertainty in some of the poses in this set.
Unfortunately, we did not find the exact cause for this due to a time restraint.

3.4 Conclusion

First least squares was used on a dataset containing only location informa-
tion. Because of the linear properties of these links, this produced very good
results.
However, when the orientation of the local reference frames is varied, it causes
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the measurement equation to become nonlinear. Even though these orien-
tations could be estimated effectively, the result still contained substantial
error. Therefore the rotation matrix used to estimate the positions was not
completely accurate, and least squares was insufficient for the estimation of
the complete poses when the standard deviation grew. We tried an iterative
process which had to solve the problem of nonlinearity. The results were not
as good as we expected, especially when we looked at the difference between
the estimated- and the real poses.
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(a) The solid line represents the Mahalanobis distance before
least squares is used. The dashed line is the Mahalanobis dis-
tance after least squares.

(b) The difference between the estimated coordinates and the
true ones, as

∑
i(x
′
i − xi)t(x′i − xi).

Figure 3.2: Results from least squares, when the measurement equation is
linear. 21



(a) The solid line represents the Mahalanobis distance before
linear regression is used. The dashed line is the same Maha-
lanobis distance after linear regression. This result is from 30
nodes and the orientation estimation that came from the least
squares on the entire dataset is used.

(b) The difference between the estimated coordinates and the
true ones, as

∑
i(x
′
i − xi)t(x′i − xi).

Figure 3.3: Results from least squares when the measurement equation is
nonlinear.
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(a) We plotted the Mahalanobis distance against the standard
deviation σ and the threshold. The solid line is the initial error,
the dashed line shows the error after our method was used.

(b) This is the squared distance between the estimated- and the
real poses after using our iterative method.

Figure 3.4: Results from our iterative technique.
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Chapter 4

The Omnidirectional Camera
as Sensor

In the previous chapter we described three algorithms that use the links
between poses directly to estimate the path of the robot. The method de-
scribed in the next chapter uses links estimated from omnidirectional camera
images. The resulting set of links d̄ij consists of the orientation difference
between two poses and a normalized vector in the direction of pose xj, ob-
served from pose xi. The scale is not known, since a camera can not see
depth, and therefore only the direction of the features that are matched are
known. This dataset was used earlier [1], and was created based on a method
from R. Bunschoten [7]. In all cases the same robot and camera were used.
This chapter describes how the links were derived from the set of camera
images [7] [1].

4.1 Omnidirectional Camera Images: A De-

scription

The images were created using a camera that observes the world via a
parabolic mirror, in such a way that all rays that pass through the focal
point of the mirror are reflected into the focal point of the camera, and
it is possible to observe α degrees from a horizontal line, as shown in fig-
ure 4.1. A point in 3 − D space is given in homogeneous coordinates as
X = [x4x1, x4x2, x4x3, x4]T . A transformation between coordinate systems
is M = TR, where T and R are the 3x3 translation and rotation matrices
between homogeneous coordinates respectively. Any point in the real world
can be mapped to pixel coordinates uC by mapping to the mirror frame,
projecting to the plane z = 1 from the mirror perspective, then transform to
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Figure 4.1: The hyperboloid and its parameters. In order to obtain a single
effective viewpoint, the distance between the focal point F inside the mirror
and the focal point F ′ of the camera should equal a constant value 2e (where e
is the eccentricity that follows from the mirror shape parameters). The finite
height h limits the maximum vertical viewing angle α that can be obtained.

the camera frame and finally to project the points to the plane z = 1 from
the camera perspective. This just leaves a calibration to pixel coordinates to
get the values, and the raw real world view is formed as in figure 4.2.
This image is then resampled to get a cylindrical view of the room by trans-

Figure 4.2: A direct perception of the environment by the omnidirectional
camera. It gives a complete 360 ◦ view of the room.
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forming the cylindrical pixels through the mirror frame back to the camera,
after which another calibration takes place. To get the in-between pixel val-
ues, Bilinear interpolation is used. The result is shown in figure 4.3.

Figure 4.3: The derived 360 ◦ cylindrical view of the room. squares indicate
features, which are derived in section 4.2

4.2 Transformation of Pairwise Omnidirectio-

nal Camera Images to Links

From a pair of cylindrical images, taken at any two poses xi and xj, the link
d̄ij has to be derived. A Kanade-Lucas-Tomasi feature tracker [2] is first used
to compute the important features in both images. The selected features are
the ones that are easy to track, such as corners(see figure 4.3). Assumed is
that, when a feature is considered important at a certain location, it is also
considered important in the vicinity of that location (i.e. corners are still the
corners in the vicinity of an image1). These are then compared by taking the
summed squared difference over pixel values in a window around the features
in both images. Pairs of features that have a summed squared difference over
all pixels in the window below a threshold are kept as corresponding features.
When there is a sufficient match between two images, a link exists. The
relation between two features in two different feature vectors zi is ideally
zkjEzki = 0, where E = RT is the essential matrix. This 3x3 matrix can be
rewritten in vector notation such that e is a 1x9 vector that represents the
essential matrix and Dk is the design vector created from a match for the
k-th feature (which should be the same feature in both images).
The optimal e in De = 0 subject to ‖e‖ = 1 can be found by the 8-point
algorithm. Here the eigenvector of M = DTD associated with the smallest
eigenvalue that can be found by a Singular Value Decomposition (SVD) of
M , gives the minimum for e.

1This is only partly true, because corners that are detected my also be two crossing
objects with different depth.
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Unfortunately the properties of the essential matrix, i.e. that it has rank 2
and has two equal eigenvalues, are not enforced by the 8-point algorithm.
Now let Ē = UΣV T be the estimated matrix and its SVD, where Σ =
diag(σ1, σ2, σ3). The true essential matrix is calculated as E = UΣ′V T ,
where Σ′ = diag((σ1 + σ2)/2, (σ1 + σ2)/2, 0).

4.3 Issues in Combining Camera Images

First of all, there are 4 possible combinations of R and T that are compatible
with an essential matrix. To get the correct combination, all 4 combinations
are used to compute the depth of each feature from both images. This has
to be positive. In practice, however, the correspondences are noisy and the
essential matrix is not completely accurate. Because of this, the combination
of R and T that yields the most positive results in zkjEzki is selected.
False correspondences between features are also a source of errors. E is esti-
mated using an m-estimator, which is a weighted least squares solution, which
evaluates the equation zkjEzki = 0. Using this E the features that cause the
most residue are deleted. Then E is estimated using the m-estimator once
more. This results in a better fit.
As an extra precaution the rotation matrix R is compared to the rotation
around the z-axis Rz, and the translation T to the translation in the hori-
zontal plane Tx + Ty, because the robot always moves in a 2D plane. When
there is a high residue, the robot must have moved up or down (or rotated
up or down), which is not possible, so it indicates false correspondences or
wrong selections.

4.4 Conclusion

A method has been defined to estimate the link between two poses from the
omnidirectional camera images made in both poses. First the coordinates
are transformed to a plane with coordinates on a cylinder around the omni-
directional camera, and then the most important features are extracted using
existing software. Rotation and normalized translation are computed from
the essential matrix, and some outliers are removed. The problems with this
dataset are, however, that there are still some major outliers present and the
error is no longer normally distributed. Also, the links that were estimated
are normalized, so only the relative orientation between the poses are known.
The disadvantage of having only normalized vectors is that, without know-
ing the scale of these normalized links, there is insufficient information to get
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globally consistent pose estimates.
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Chapter 5

Location Estimation from
Pairwise Image Links

Section 3.3 describes an iterative approach to location estimation given a set
of links, which contain both relative orientation and translation. Since our
Nomad Scout robot uses an omnidirectional camera, the these links can be
determined, byt the translation is normalized. Therefore, each link repre-
sents a line on which the pose estimate lies.
In this chapter we will describe how we derived the scaling factors for the
translation of the links. These scaling factors are needed to determine the
location of the pose estimation on the line given by the link. Then we will
show how to adapt the iterative approach to include the estimation of scal-
ing factors. Also we will add an algorithm to effectively delete the outliers
discussed in section 4.3.
We will describe the experiments performed both on an automatically gen-
erated test set and finally on a real world dataset, made by a Nomad Scout
robot.

5.1 The Dataset

The odometry is represented by a set of poses X, known in the global ref-
erence frame, of which pose x0 is the origin. Each pose xi consists of a
location and an orientation of the local reference frame at that pose, i.e.
xi = [xi, yi, θi].
In the previous chapter the omnidirectional camera images were transformed
to a set of links D̄. Each link d̄ij contains a normalized translation and a
rotation between pose xi and pose xj , i.e. d̄ij = [x̄ij, x̄ij θ̄ij]. This link is in
the local reference frame of pose xi. This is demonstrated in figure 5.1.
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Figure 5.1: Observation of pose xj from pose xi

Since the links are normalized, scaling factors γij have to be determined
to scale the links as

Γijd̄ij =

 γij 0 0
0 γij 0
0 0 1

 d̄ij (5.1)

These scaling factors are unknown, so they have to be estimated using the
available datasets X and/or D̄.

5.2 Estimating the Scaling Factors

We wish to retrieve the scaling factor γij for all links d̄ij , so we can use our
iterative approach from section 3.3 once again.
To retrieve the scaling factors for the links, we look at two possible meth-
ods. We can use only one of these methods, so we will choose one for our
experiments.

Intersection This is based on vanishing points [15]. In this method, as well
as with closest point estimations, we assume that all data is known in
the global reference frame. Therefore we drop the orientations for now.
Let us look at two lines. Their respective origins are {xi,xj}, which
contain x- and y-location. Also given is a set of two links {dik,djk},
which give the direction of the lines. The intersection point is called
xk. This is demonstrated in figure 5.2.

Now let γik be the scaling factor for dik and γjk for djk. We need to
solve the scaling factor γik or γjk to obtain the estimate for the location
of the intersection point xk.
Observe that there exists a triangle with vertices {xi,xj,xk} and edges
{Γikdik,Γjkdjk,xj −xi}. The surface of this triangle is half the surface
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Figure 5.2: Visualization of the intersection of two lines, and the three par-
allellograms that can be made when both lines are known.

of the parallellogram spanned by two of its edges (figure 5.2). The
surface of this parallellogram is computed by the determinant of the
matrix containing these two edges.

surface =
| det

(
xj − xi γjkdjk

)
|

2

=
| det

(
xj − xi γikdik

)
|

2

=
| det

(
γikdik γjkdjk

)
|

2

(5.2)

To get the scaling factors, we observe that they can be placed outside
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the determinant, and the division by 2 can be removed.

surface = γjk| det
(

xj − xi djk
)
|

= γik| det
(

xj − xi dik
)
|

= γikγjk| det
(

dik djk
)
|

(5.3)

The scaling factors can be placed outside of the determinant, because a
parallellogram that is spanned by two vectors {adik, bdjk} has surface
1
ab

times the surface of the parallellogram spanned by vectors {dik,djk}.
solving the scaling factors in equation 5.2 results in

γik =
| det

(
xj − xi djk

)
|

| det
(

dik djk
)
|

γjk =
| det

(
xj − xi dik

)
|

| det
(

dik djk
)
|

(5.4)

The intersection point is now calculated as

xk = xi + γikdik = xj + γjkdjk (5.5)

Closest Point Estimate Here we look at a single line, with its origin at
xi and its direction given by dik,. The closest point x∗k to the point xk
on this line can be calculated by projecting xk on the line xi + γikdik.
This is done by

x∗k = xi + γ∗ikdik γ∗ik =
(xk − xi) · dik

dik · dik
(5.6)

xi•

x∗k•

xk
•

dik•22eeee
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Figure 5.3: Visualization of the closest point estimate, by projecting the pose
xk on the line.
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5.3 Removal of wrong correspondences

Another issue with estimating links from camera images is that there are
wrong correspondences. Even though a lot of these were removed in the
previous chapter, there are still some of these outliers left in the set of links.
Assumed here is that the links D̄ are known in the global reference frame,
and the scaling factor matrix Γ has also been determined. For each pose xi
we can determine a subset D̄i, which is the subset of D that contains all the
links are connected to pose xi. Observe here that dij = 0	 dji, where 	 is
the inverse pose compounding defined by Lu and Milios [3]. Let Γi be the
matrix containing submatrices Γij on its diagonal, in the order given by D̄i.
A set of pose estimates for xi can now be created as ΓiD̄i.
Assuming normal distribution of the pose estimates, we can compute the
probability that each estimate is correct. This is done by first computing the
covariance matrix Ci given the entire set of pose estimates ΓiD̄i and then
determining the vector P (ΓiD̄i|N(xi, Ci)). We remove a pose estimate (a
link d̄ij and its corresponding Γij) when this probability is below a certain
threshold. The optimal threshold is determined empirically.

5.4 EM on Normalized Links

Expectation Maximization (EM) is an iterative technique to classify data
into an arbitrary number of clusters. This is done in an iterative manner,
where the loglikelihood of the data given the distribution of the clusters is
maximized. In this context each pose in the robot path is a cluster mean.
What has to be done in each iteration is to get the best estimate of each pose
given the set of links and the previous estimates of the poses. The algorithm
for EM is described in Statistical Pattern Recognition by A.R. Webb [4].

5.4.1 EM in Location Estimation incorporating Omni-
directional Camera Datasets

In EM, there are 4 important parts.

Initialization We need an initial estimate of the model, X0. We will use
the odometry set X for this. In this way we hope to stay away from
any local maxima in the likelihood.
The dataset is our set of links D̄. This set is fixed, the model needs to
find an optimal fit to this dataset.
The covariance matrix is initialized in the first iteration, where each
submatrix Cij = Ci, as shown in section 5.3.
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The likelihood function The Mahalanobis distance is a good measure of
how much error is left in the estimate. Since the likelihood increases
when the Mahalanobis distance decreases, it can be used effectively as
a measurement of when a global (or local) maximum is reached. The
Mahalanobis distance is defined as

W = (ΓD̄ −R(Θ)HX)TC−1(ΓD̄ −R(Θ)HX) (5.7)

Here R(Θ) is the rotation matrix as defined in section 3.2. Γ is a matrix
containing the scaling matrices Γij on its diagonal, to scale D̄. This is
described in section 5.2.

The E-step Given the current best guess of the poses, Xn, the links are
transformed to the global reference frame. This is done by derotating
each vector d̄ij by the current estimate of pose xi, which is xn−1

i . The
result is a set D̄′. When we determine the scaling factors we drop the
rotations, so the links consist only of translations. This can be done,
because all links are known in the global reference frame and the scal-
ing factor for the rotations is 1.
Now the set of estimates has to be created, so the scaling factors γij
have to be determined. This has been described in section 5.2.
In the case of intersections, each possible pair of links {d̄′ik, d̄

′
jk} and

their origins, which are the poses {xn−1
i ,xn−1

j }, are used to create a
pose estimate xnkl.
When the closest point estimates are made, each link d̄

′
ik is handled

separately. It is passed along with the two poses xn−1
i and xn−1

k to
create a new pose estimate xnkl.
We now have a set of estimates for each pose. Assuming normal distri-
bution for this set of estimates, the probability for each estimate can
be determined so that outliers can be removed. This is described in
section 5.3.

The M-step Each pose now has a set of 0 or more estimates. Given this
set we determine the mean by

xn+1
i =

∑
k xn+1

ik

# estimates
(5.8)

When the number of estimates is 0, no new estimate can be made, so

xn+1
i = xni (5.9)

34



(a) Shown in this figure is the pro-
cess of getting the estimates of a pose
given a set of links by intersection.
All poses xi are black dots. Pose xj
is shown as a square. Its estimates
xjl are the triangles. The links d̄ij
are all lines.

(b) Shown in this figure is the pro-
cess of getting the estimates of a pose
given a set of links by a closest point
estimate. All poses xn−1

i are dots.
Pose xnj is shown as a square. Its
estimates xnjl are the triangles. The
links d̄ij are all lines.

Figure 5.4: The results for computing pose estimates given a set of links that
represent the direction in which the pose is observed.

5.5 Experiments

First we did some experiments on an automatically generated test set. This
test set consists of an initial representation of the path, X0, and a set of
normalized links observed from the local reference frames, D̄. This set is
generated similar to the set in section 3.3, except here the links d̄ij are nor-
malized after the errors are added. Since this is an automatically generated
test set, there are no outliers present. Therefore we set the threshold to be
0.
We chose to use closest point estimates for determining the scaling factors.
This is because they don’t have the disadvantage that the estimation diverges
to an extreme value and therefore becomes useless, which does happen when
intersections are used.
The ground truth for X is once again initialized randomly, with uniform dis-
tribution. It consists of 40 poses.
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The odometry set X0 is initialized by first calculating di,i+1 = xj 	 xi and
adding noise to these links. We assume normal distribution, with mean
di,i+1 and standard deviation σij a fixed number increasing from 1 to 30,
such thatd̄i,i+1 = di,i+1 +di,i+1N(0, Ci,i+1). Now xni+1 = xni oplus

¯textbfdi,i+1

and x0 = 0.
The set of links D̄ is generated exactly the same way, but this time it contains
d̄ij for all i and j.
Plotted in figure 5.5 are the results from our tests. Next we used a dataset
created in the real world, using the Nomad scout robot. It consists of 93
poses in X0 and 1520 links in D̄. They are calculated using the method from
chapter 4. Figure 5.6 shows the results for using EM on this dataset. Since
the Mahalanobis distance is zero when all scaling factors are zero, the esti-
mated set of poses converges to a single pose. Since we had no bias regarding
the exact location of the poses, we had to delete the outliers to prevent this
effect. It seems that the threshold plays an important part in the estimation.
Even though our dataset contained a lot of noise/outliers, EM still resulted
in a reasonable estimate of the underlying poses. The most important part
now is to get a better estimate of the links from the images, so that our
method can effectively decrease the error in the poses as they are obtained
from odometry.
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(a) Plotted here is the Mahalanobis distance before and
after using our method. The solid line is before, and the
dashed line after using EM.

(b) Plotted here is the difference between the true- and
estimated poses, as Σi(x′i − i)t(x′i − i).

Figure 5.5: Results from our iterative technique on automatically generated
links.
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(a) The error before and after using our method is shown
for increasing thresholds. The blue line is the initial error,
green shows the remaining error after using EM.

(b) This is the corresponding path at threshold 0.02. Dots
show the nodes as estimated by the odometry, and the blue
line is estimated by our method using the links from camera
images.

Figure 5.6: These are the results from using EM when omnidirectional cam-
eras are used. 38



Chapter 6

Conclusions

The goal for this research was to test whether expectation maximization is an
effective method for SLAM, when omnidirectional camera images are used.
These have the additional problem that no depth information can be derived,
so only the orientation between poses is available. We gave an introduction
in the existing methods first. From this we concluded that it would be most
effective to give a method that would maximize loglikelihood by minimizing
the Mahalanobis distance, much like Lu and Milios [3].
We tried to use a simple least squares method, but due to the nonlinearity
of the measurement equation this seemed insufficient. Therefore an iterative
process was used, which gave better results.
Since all these methods used links with both orientation and translation, we
first described how our links were obtained and how they differ from the links
obtained from other exteroceptive sensors, such as laser range scanners. Since
we have only normalized links, we first defined how to get the scaling factors
for these links, after which weadapted the iterative method from section 3.3
to match these links. Also, we deleted the outliers so that a better estimate
could be made.
The results showed that, when a low threshold was used, over 80% of the
error in the original set is removed. It should be noticed, though, that the
minimum error occurs when all poses are on the same place. This means all
lengths of the links are estimated 0, so the error also goes to 0. This is why
we set the threshold to 0.02 for the optimal network.
This method is still an offline method. For future work one should look at
how to do this online, using the raw camera images as input. Also the bias
for estimating the scaling factors as 0 should be removed, so further research
is also needed here.

39



Appendix A

Given a set of links dij that represent the pose xj observed from the pose
xi, the matrix H defines the relation between them. The complete set
of links D is a vector in this case, which concatenates all links as D =
[d12d13 . . .dN−1,N ]T , and X is a vector that concatenates all poses. The re-
lation is defined as D = HX.

The Linear Measurement Equation

When the relation between two poses is linear, the matrix H can be used
to convert poses to links directly. The most generic case is when dij =
Aixi +Bjxj. In this case, and when only two nodes are used, H looks like(

Ai Bj

)
(A.1)

One of the simplest cases is when dij = xj −xi = −Ixi + Ixj, where I is the
identity matrix. This is the specific matrix used in section 3.1. When the
set of links and the set of poses have an arbitrary size, it looks like

I 0 0 . . . 0 0
0 I 0 . . . 0 0
...

...
...

. . .
...

...
−I I 0 . . . 0 0
−I 0 I . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −I I


(A.2)

Any method that assumes a linear relation can be used for estimating the
poses, such as for example least squares.
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The Nonlinear Measurement Equation

When the relation is nonlinear, the incidence matrix can not be used to
convert poses into links directly. This is because the links D = HX are still
in the global reference frame. However, e.g. in section 3.2, the poses also
contain an orientation component. Since the links are in the local reference
frames, a derotation is needed to get them in the global reference frame,
from where they can be added to the poses linearly. This is formalized as
dij = R(θi)(xj − xi) = −R(θi)xi +R(θi)xj. The incidence matrix still looks
the same, but now a rotation matrix R is added to transform the links to their
respective local reference frame, i.e. D = R(Θ)HX. The rotation matrix R
looks like

R =



R(θ1) 0 0 . . . 0 0
0 R(θ1) 0 . . . 0 0
...

...
...

. . .
...

...
0 . . . R(θi) 0 . . . 0
0 . . . 0 R(θj) . . . 0
...

...
...

. . .
...

...
0 0 0 . . . 0 R(θN)


where

R(θi) =

 cos θi sin θi 0
− sin θi cos θi 0

0 0 1


In other words, the rows and columns in the rotation matrix that map the
global link onto the link d̄ij, contain the rotation matrix R(θi).

Properties of the Incidence Matrix

One important issue that has to be dealt with before least squares can be
used is that H has to be overfitted. This means that there have to be more
difference vectors then positions. Lu and Milios [3] state that:

If the network is fully connected and the individual error covari-
ances are normally behaved, we believe it is possible to prove that
G is invertible.

They define G as G = H tC−1H. Since C−1 is already invertible (or has rank
equal to its dimension), H has to have rank equal to the dimension of the
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vector X. In a fully connected network this is obviously the case (with more
then 3 nodes), but what is the minimum amount of links that can be used to
get an estimate of the poses? We will derive this minimum by proving that
(Figure A.1)

If each point can be triangulated with at least two other points,
G is invertible.

x0• x1
•

x2•
x3
•

x4•

x5
•

x6
•
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•x8

•
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Figure A.1: The minimum amount of links needed to invert the incidence
matrix.

It has to be stated here that, even though G is invertible, it is only possible
to make a decent estimation if each point can be triangulated, directly or
indirectly, with each other point (which is not the case in figure A.1). Oth-
erwise the network can be separated into at least two smaller networks, say
N1 and N2, and one single node S that forms the link between them. Since
there is no triangulation between the three, i.e. there is no edge between
a node in N1 and a node in N2, only the odometry passes S. This means
that the error in S is the odometry error, so no minimization is made (the
resultant error equals the prior error).
It is also necessary that one single point is excluded from the estimation pro-
cess, since we need the absolute coordinates in the real world of the global
reference frame. If this is not done, the coordinates of the global reference
frame remain as a roaming variable in the estimation process. It is a matter
of custom to exclude x0, and thereby let it be the origin of the global refer-
ence system. If it is not the origin, an extra operation is needed to transform
each pose estimate in the network to the global reference frame.

Proof of minimal G

This proof uses induction. It is only done for the linear case, since the
rotation matrix is always invertible.
If we look at H, it seems it has a clearly defined structure. To see if G is
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invertible, we first look at the rank of H. This is because linear algebra tells
us that if a matrix has an inverse, the determinant is not 0. It is also true
that A = B · C ⇒ |A| = |B| · |C|. So the determinant of each matrix is
nonzero. In a broader context where B and C aren’t square, the minimum
demand is that the rank of a matrix is equal to the dimension in which it
operates. Intuitively this means that a matrix that operates in a subspace of
its own dimension mirrors data into its own subspace, and loses information.
This results in a singular matrix.
So now the thing to prove is that H has rank equal to dimension1. First we
delete as many rows as possible, until the network is reduced to its minimal
form: a triangle strip. This does not increase the rank, so it does not influence
our proof. It does prove that, if the minimal form is invertible, any form that
has more links is also invertible.
Now if we notice that a submatrix Hij of H, which is the link between a single
dij and two poses xi and xj, is nonsingular, we can reduce the problem to
1 dimensional points and say that this matrix has to have rank equal to
the dimension of this matrix. Now each triangle has in each dimension the
structure −1 1 0

−1 0 1
0 −1 1

 (A.3)

We assume that in computing the REF of the complete H the first column
was swept by the previous triangle, so the result is 0 1 0

0 0 1
0 −1 1

 (A.4)

This means that each triangle adds rank 2 per dimension of the data. This
is also required. The only remaining issue is the first triangle. This one does
not have a previous triangle, so the first column is not swept. Now the issue
of having x0 as a reference point comes into play, for it can not be included
in H. Observe that dij = xj − xi ⇒ x0 = 0⇒ d0j = xj. This means that if
we have a fixed reference point, G is invertible, and if the reference point is
included in the estimation process, we can solve the system up to a common
factor, it being the actual location of the global reference frame.

1assumed here is that the covariance matrix is not singular
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