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The story of Pandora

Zeus had Pandora created out of clay. He breathed life into her and demanded

that the gods graced her with attractiveness but a deceitful nature. She was given to

Epimetheus, brother of Prometheus, whom had stolen fire from Zeus for the benefit of

mankind. Epimetheus accepted, oblivious of Prometheus’ warning not to accept gifts from

Zeus. A boxa was given as a wedding present, filled with malevolence Zeus had ordered the

gods to include. When Pandora opened the box, all contained evils spread into the world.

Only expectation, a realistic awareness of the current and probable future situation, was left

in the box, which would otherwise have ended all hope in the evil-struck worldb.

a A less common but more correct translation would be ‘jar’.
b Our synopsis is based on Gantz’ interpretation of Hesiod (Gantz, 1993).
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Abstract

In this thesis, we will present a method for automated extraction of multivariate, multi-term
power functions from large, real data sets. We propose several modifications for the hybrid rule
extraction/equation discovery system RF5 to make it applicable for large problems, and present
a pruning algorithm to strongly increase the comprehensibility of the found formulas.
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1. INTRODUCTION

Natural systems often present major challenges to modelers. They often contain complex interac-
tions between the various parameters of the system. Also, non-linear relationships are often found
and make matters even more difficult.

Neural networks have a reputation for quickly learning models emulating such systems. Un-
fortunately, as renowned as standard neural networks (Multi-Layer Perceptrons or MLPs) are for
their learning skills, as notorious they are for the difficulty of extracting meaningful relationships
between their inputs and outputs. Quoting Mozer and Smolensky (Mozer and Smolensky, 1989),

One thing that connectionist networks have in common with brains is that if you open
them up and peer inside, all you can see is a big pile of goo.

This research was performed as my graduate project at Witteveen+Bos, consulting engineers
active in the fields of water, infrastructure, environment and construction. Their advanced statis-
tics group uses conventional and multiple regression for modelling complex hydrological systems.
These systems often show strong non-linear behavior, and the measurements from which models
should be derived usually contain a non-trivial amount of noise.

The company has turned to the use of neural networks for such problems due to their excellent
ability to learn complex models. But although the learned networks performed well for many
tasks, some clients indicated they would appreciate more insight in the relationships between the
inputs and outputs of the network.

1.1 Research question and overview

Is it possible to automatically extract humanly understandable relations between features in large
real data sets for which successful neural models were obtained?

The method should be capable of handling data sets with at least about a dozen noisy, mostly
real-valued features, optionally including some boolean inputs.

We start by surveying different existing machine learning methods for obtaining insight in
relationships directly from data or from fully trained networks. An overview of existing techniques
is presented in chapter 2. In chapter 3 we describe the RF5 system, which can extract multivariate
power functions and seems a promising solution to our question. Improvements we have developed
to solve limitations of the system are presented in chapter 4. Our pruning approach which strongly
increases the comprehensibility of the found relationships will be introduced in chapter 5. We
combine RF5, the improvements and the pruning algorithm into one automatic procedure in
chapter 6 and apply it to a real dataset. We conclude in chapter 7 that our approach works
consistently and is capable of automatically providing new insights into feature relationships.
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2. BACKGROUND

2.1 Knowledge Discovery in Databases

2.1.1 Overview

Obtaining insight in the relationships embedded in large data sets is a very common problem.
Warehouses are looking for hidden patterns of consumer behavior, brokers for future stock prices
and climatological researchers for tomorrow’s weather.

As such, knowledge discovery in databases has become a booming research subject, defined
as “the non-trivial process of identifying valid, potentially useful and ultimately understandable
patterns in data” (Fayyad et al., 1996). It can be divided in the following nine steps (Brachman
and Anand, 1996):

1. Developing an understanding of the application domain, the relevant knowledge and the
knowledge discovery goal.

2. Creating a target data set in which the new knowledge should be discovered.

3. Data cleaning and preprocessing.

4. Data reduction and projection.

5. Matching the discovery goal to a particular data mining method.

6. Exploratory analysis and model and hypothesis selection.

7. Data mining.

8. Interpreting mined patterns.

9. Acting on the discovered knowledge

Different KDD projects require different distributions of time required for each step. Also,
chances are that during the process steps back will need to be taken when the current data set
proves inadequate for discovering the needed knowledge.

2.1.2 Data mining

We will assume all the preparatory work on the data has been done, a data set exists which we
believe has the potential of providing us with the required knowledge. In this thesis, we will focus
on step 7, providing a method for extracting knowledge from this ready-made data set which we
would like to learn more about. The analysis of the found results is also beyond the scope of this
thesis.

Step 5, data mining, can again be classified in the following way:

Classification The automated grouping of data in predefined classes such as {yes, no} or {red,
green, blue}. (Example: using the Boosting algorithm (Schapire, 1990) to sort iris species
based on their characteristics such as sepal length)



4 2. Background

Regression The automated learning of a function describing data with a continuous output range
like a confidence interval [0–1] or color intensity percentage [0–100].(Example: using neural
networks1 for predicting house prices given characteristics such as the area crime rate)

Clustering Grouping objects which characteristics the network considers closely related, without
predefined classes (So-called unsupervised instead of the previous, supervised learning meth-
ods; example: using the K-means (MacQueen, 1967) search algorithm for clustering different
groups of food based on their nutrients).

Summarization The process of finding a brief, understandable description of the data. This can
vary from very simple tables listing the mean and variation to algorithms extracting if-then-
else rules (example: using the C4.5 (Quinlan, 1993) decision tree builder for classification)
or formulas (example: using the Bacon (Langley, 1977) equation discovery system for re-
gression) describing the data dynamics. Here, understandability of the model is paramount,
while for classification and regression the main focus is accuracy.

Dependency modelling Finding dependencies between features; ‘this item has a high chance of
increasing when this other item increases’. (Example: using Bayesian networks (Pearl,
1988) to determine the dependencies between sales of different supermarket products).

Change and deviation analysis Finding trend changes in a database, by analyzing a time series of
measurements (Example: using the Box-Jenkins method (Box and Jenkins, 1970) to analyze
climatological changes).

As we have outlined in chapter 1, we are interested in why an observed system behaves the
way it does, and thus use summarization with the goal of obtaining a comprehensible model of the
system. Summarization is again a very broad category describing any kind of analysis describing
the data in a brief fashion, whether it is a list of statistical measures or an equation describing
dynamics in the data. First, we will turn to equation discovery, the most obvious choice for the
task at hand.

2.2 Equation discovery

2.2.1 Overview

Equation discovery, the extraction of formulas describing a data set, was pioneered by Bacon

(Langley, 1977). It has spawned a large group of algorithms related to it. Bacon is a generate-
and-test algorithm; it iteratively generates equations, tests how well these perform and uses this
knowledge to direct the generation of new conjectures. It requires an interactive test setup; Bacon

does not rely on a static set of test data but needs to be able to obtain test results for setups
it needs to know more about. The modelled system is supposed to be describable using a single
equation.

It has had various incarnations, mainly varying in complexity of formulas (ranging from linear
relationships in the first version to the additional use of nominal attributes and consideration of
intrinsic properties of the modelled system).

Derived algorithms such as Abacus (Falkenhainer and Michalski, 1986), Coper (Kokar, 1986)
and the Ef equation discovery subsystem of Fahrenheit (Zembowicz and Żytkow, 1992) take the
unit dimensions of the data into account to generate strictly physically sensible formulas. This of
course implies that the units for all features need to be known.

Ef augmented Bacon by providing the user with a scope of applicability of the found laws in
the form of the attributes’ upper and lower limits. An important improvement is also the ability
to work using a static data set (i.e., the algorithm is not interactive). It can only find bivariate
formulas. It iteratively builds regression models without the use of domain knowledge, but is
better at handling noise.

1 Described in chapter 2.3.
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Sds (Washio and Motoda, 1997) is relatively new algorithm in some ways similar to Bacon.
It also assumes that a single bivariate formula can describe the system as a whole. The original
version also required interaction with the studied system, but this limitation has since been re-
moved (Washio et al., 2000). It uses the scale type of each feature to restrict the search space to
sensible solutions.

Lagrange (Džeroski and Todorovski, 1994) was the first equation discovery system for or-
dinary differential equations (ODEs) besides algebraic equations. For ODEs, it used numerical
differentiation and was unfortunately relatively sensitive to noise. Goldhorn (Križman et al.,
1999) improved it by using numerical integration and noise filters to obtain a more stable result.
Lagramge (Todorovski and Džeroski, 1997) included further quality improvements and the ad-
dition of context-free grammar for generation of the possible equations. A second version further
improved Lagramge and added context-dependent grammar. Unfortunately, it is still limited to
small data sets and generates relatively many spurious or hard-to-interpret formulas on real data
sets (Džeroski et al., 1999). Finally, a new technique called Padles is being developed (Todor-
ovski et al., 2000), which is based on Lagramge and generates partial differential equation (PDE)
model structures which may suit the data.

Pret (Bradley et al., 2001) is another generate-and-test algorithm, meant for solving ordinary
differential equations. It uses a user-defined domain theory to generate plausible functions. Like
Bacon, Pret requires direct interaction with the studied system to generate new samples.

Arc (Moulet, 1994) is an combination of Abacus and Bacon (version 3), improving the
handling of uncertainties and limiting the search space. Kepler (Wu and Wang, 1991) and E*
(Schaffer, 1993) use a fixed list of possible models to be fitted. Ids (Nordhausen and Langley,
1990) splits up the inputdata space in sections, each having its own equation.

While each of the mentioned algorithms deserves a much longer discussion about its relative
merits, an essential limitation of these algorithms for our purposes is that they are all meant for
relatively small-scale problems.

2.2.2 Summary

The studied equation discovery algorithms show promise for understanding data sets but are not
ideal. Their strengths are

- Direct modelling from the data.

- Different kinds of formula structure possible.

- Continuous models possible, ideal for regression problems.

- Generated models are usually very understandable.

Unfortunately, the studied generate-and-test equation discovery algorithms do not appear to
be able to handle data sets as complex as those set out to study. They are not suitable for our
problems, due to the following serious limitations:

- Only a very small number of variables allowed (usually 2).

- They are quite sensitive to noise.

We will now turn to neural networks, which have successfully been used to create good pre-
dictors for complex tasks. In combination with rule extraction algorithms we will discuss in
section 2.5, they are an alternative to equation discovery to gain insight into relationships in data.

2.3 Neural networks

Following is a brief history of neural networks and the used methodologies as far as they are
relevant to this thesis. Interested readers who after reading this section wish to learn more are
referred to books with more extensive coverage of these subjects (Bishop, 1995; Ripley, 1996;
Kröse and van der Smagt, 1996).
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Fig. 2.1: Natural neuron

2.3.1 Introduction

The inspiration for neural networks originates from research on the brain. Describing the whole
history is beyond the scope of this thesis, but good overviews have been written on its roots in a
wide variety of doctrines including medicine, psychology, behaviorism and associationism (Medler,
1998; Walker, 1992).

At first, the main focus was on gaining insight in the working of the brain by discussing ma-
thematical models believed to represent brain functions. When these models showed promise as
practical tools for numerical analysis, the research focus shifted from biological plausibility to
mathematical optimality.

Figure 2.1 shows a natural neuron, after which the nodes, the main building blocks of neural
networks, have been modelled. It receives electrical pulses from its dendrites, which accumulate
in the cell body. If the combined pulses have a certain strength, it sends pulses through the axon
to its output synapses, which pass them on to the dendrites of other neurons. The network uses a
set of inputs which receive data from independent variables (features) used by the model to create
a value called output .

The foundation of artificial neural networks (hereafter simply called neural networks) were laid
in 1943 (McCullogh and Pitts, 1943), with the proposal to emulate natural neurons using the
formula

y = σ

(

B +

nx
∑

u=1

wuxu

)

(2.1)

in which ~x is the vector containing all incoming connections to the neuron. σ is here a so-called
transfer function, explained below. Here, the Heaviside function was used which outputs 1 if its
input is above a certain threshold, and -1 if not.

The Perceptron (Rosenblatt, 1958), invented by Rosenblatt in 1958, was the first neural model
made to solve real-world tasks (in this case, character recognition). Rosenblatt built a working
neural computer based on the Perceptron, called Mark I, which he finished in 1960.

The next important discovery was the 1960 Adaline (Widrow and Hoff, 1960), by Widrow and
Hoff. It was similar in design to the Perceptron, but the breakthrough was the use of the delta
rule, described shortly.

Interest in neural networks declined around 1969. This is commonly attributed to Minsky and
Papert’s book Perceptrons (Minsky and Papert, 1969), but is likely also due to the then spreading
fear of ‘smart’ machines popularized by Clarke and Kubrick’s joint project 2001: A Space Odyssey
(Clarke, 1968).
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Input 1 Input 2 Target
False False False
False True True
True False True
True True False

Tab. 2.1: XOR function

Minsky and Papert proved that single-layer Perceptrons were unable to learn any non-linearly
seperable function, like the xor function shown in table 2.1. In their book, which contained valid
critique for single-layer perceptrons, they also stated that according to their intuitions, multi-layer
perceptrons would not solve this important limitation.

Most researchers lost their interest and funding for these techniques became about non-existent.
Some researchers continued their research though; an important but not at that time widely rec-
ognized breakthrough was the development of the backpropagation algorithm by Werbos (Werbos,
1974), which provided an efficient way to modify the network weights for network with multiple
layers, which did not exist until then.

As we now know, Minsky and Papert’s intuitions were incorrect. If we use two layers of
Perceptrons on top of each other, non-linear transfer functions (as described below) and a sufficient
number of weights (parameters), these Multi-Layer Perceptrons (MLPs) can approximate any
function (Hornik et al., 1989). Note that for some problems more layers can still give a practical
advantage, sometimes learning faster and requiring less total weights than a two-layer network
(Chester, 1990).

Slowly interest emerged again, not only in academic and military institutions but also gain-
ing popularity for civil use. The big breakthrough came through Rumelhart and McClelland’s
book Parallel Distributed Processing (Rumelhart et al., 1986), which popularized the notion of
backpropagation and multi-layer perceptrons.

2.3.2 Transfer functions

The transfer function can be any function, but as explained below, for most practical uses of neural
networks it is important to have a continuous, completely differentiable function. Over the years,
many transfer functions have been proposed (Duch and Jankowski, 1999), but the most prominent
ones for neural networks are the

- Linear transfer function which uses the sum of all inputs as output.

- Step functions return constant values per input interval. Most common are Heaviside (also
called the threshold function) and signum (also called sign). They return 1 if the summed
input exceeds a certain threshold, and 0 (Heaviside) or -1 (signum) if this is not the case.

- Sigmoidal transfer functions which can be seen as linear transfer functions which ends have
been bent to obtain asymptotical minimal and maximal values. The ones used most often
are the logarithmic sigmoid, y = 1/(exp(−x) + 1), and the hyperbolic tangent sigmoid,
y = (2/(exp(−2x) + 1)) − 1.

These functions are illustrated in figure 2.2. The attentive reader may have noticed that the step
functions are continuous nor differentiable; it works for training the original Perceptron but cannot
be used for backpropagation learning.

2.3.3 Multi-Layer Perceptrons (MLPs)

The artificial neurons as described in equation 2.1 can be combined to form a network, in which
the output of the neuron may be connected to several other neurons, or act as outputs of the
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Fig. 2.2: Transfer functions

network. When the connections are strictly hierarchical (moving from node to node following the
weights from input to output, there is no possibility of returning to a previously visited node),
such a network is called feed-forward neural network or multi-layer perceptron (MLP).

To obtain the output values for nodes (here called top nodes) one layer higher than the input
nodes,

1. Each top node receives the values of the input nodes multiplied with the weight (parameter)
value of the connection between that input and top node.

2. The nodes’ activation function combines all received values into one value. The summation
function is usually applied, and to avoid making this discription more complex than necessary
we will limit ourselves to this choice for the moment.

3. Its transfer function possibly modifies this value, resulting in its output value.

after which this output may again be used as input for the next, higher layer, if available, in which
case we return to the first step.

2.3.4 Supervised learning

If besides having the input samples in the data set, one knows the values one wishes the network
to return (called targets), one can use supervised learning which presents both inputs and targets
to the network. Alternatively one can use unsupervised learning, where the network is not told
what it should output but uses heuristics to find (hopefully interesting) patterns in the data.

For supervised learning, the network is trained using an error measure E derived from the
difference between target and actual output of the network. By far the most commonly used error
function used for neural networks is the mean square error , defined as

E = MSE =

∑nm

i=1(Ti − yi)
2

nm

which we will adapt in this thesis.
Supervised learning by minimizing MSE can be seen as a descent on a landscape with the

dimensionality of the number of weights, and height level of the network error on that position.
To determine how to update the weights, it is useful to determine how the error of the output(s)

changes in relation to the weights of the network. The matrix describing this, containing the
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derivatives of each output error in relation to each sample is called the Jacobian matrix. To ease
the understanding, in the following discussion we will use a network of just two weights, to be able
to visualize the task in 3D. We begin by defining the landscape:

- the north-south direction being the range of possible values for weight w1 (north being
higher),

- the west-east direction as the range of w2 (east being higher)

- the height as the error of the function (which we try to minimize)

Training begins on a spot in this landscape which is chosen either at random, or, if feasible,
chosen as likely being near the best (lowest) position. Unfortunately we can’t see the ground due
to a thick fog, but are able to find out the height of the landscape at other locations by doing
a high, careful jump and landing there. Using our altimeter we can determine the height of the
landscape (the error of the function), which we try to minimize.

First, we choose a direction to try. If we would randomly pick one and descent if the direction
is downhill (like random search) it might take a very long time. Smarter algorithms use heuristics;
the basic heuristic, steepest descent, as the name implies always selects the direction with steepest
slope. This is equivalent to the negated gradient.

The gradient of the error, denoted ∇E, is the vector of the average of the derivatives of the
error for all weights wi. We will later describe how to calculate the gradient. For two weights, the
gradient is

∇Em =

[(

∂Em

∂w1

)

,

(

∂Em

∂w2

)]

while when using the Mean Square Error (MSE) error function, the average gradient g over all
samples is used; g = ∇Em for all m.

The gradient is simply the direction of the steepest slope of the landscape at the selected
position. As north meant higher values for w1, a positive partial gradient ∂g/∂w1 means that if
we would replace w1 with a slightly higher value, we would go uphill (the network error would
become higher), while directly south of the current point the error would become lower. In west-
east direction, the same is true for w2.

As such, unless we have more information available which would make us choose otherwise, it is
always best to move directly against the gradient as that is the direction where the steepest error
decrease on a small scale can be found. This method is known as steepest descent. Mathematically,
it is

~wi+1 = ~wi − λg (2.2)

An example is shown in figure 2.3.
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2.3.5 Backpropagation

To understand backpropagation, a clear notion of the processing of the network’s inputs is vital.
Per node connected to the input, the input x is multiplied with the weight w between the input
and the node, resulting in node inputs I. These values are combined (we here assume they are
summed) to form one value C. This is in turn processed by the transfer function σ resulting in
value O. This can in turn be used as input to next layers. In short,

x
×w−→ I

∑

−→ C
σ−→ O

Werbos proposed correcting the weights in neural networks by using the chain rule to determine
the derivative of the error in relation to the individual weights. If we define the derivative of transfer

function σ
(t)
i (x) at the kth layer and ith node to be ς

(k)
i (x) and each output node’s target value

Ti, backpropagation can be described as follows.

1. Set current layer k to the total number of layers, making it point to the highest (output)

layer. Compute initial network error measure ε
(k)
i = ς

(k)
i

(

C
(k)
i

)

(Ti −O
(k)
i ) for i = 1 . . . n

(k)
y .

2. Change the weights connected from layer k to the previous layer. Loop for all nodes con-

nected to current layer k, j = 1..n
(k−1)
y ,

- Calculate gradient element ∂E
wij

= ε
(k)
i O

(k−1)
j .

- Correct current weight wij by adding ∆wij = λ ∂E
wij

.

- Calculate new error measure ε
(k−1)
j = ς

(k−1)
j

(

C
(k−1)
j

)

∑n(k)
y

i=1 wijε
(k)
i

3. Decrease the current layer number; k = k − 1. If k > 0, return to step 2.

The algorithm thus efficiently calculates the gradient element by element, according to the
chain rule, by exploiting the network structure. It updates the weights using a factor λ of the
gradient for that element.

2.4 Training of neural networks

2.4.1 Training functions

Newton’s Method

Steepest descent suffers from the narrow valley effect; when it encounters a narrow valley, the
algorithm steps past the minimum, roughly rotates its step direction repeats this mistake, taking
a very long time to converge at the bottom. Also, when the network gets nearer to a minimum,
the gradient gets smaller, resulting in smaller steps because these are proportional to the gradient.

More advanced, quadratic numerical optimization methods are based on Newton’s method,
which assumes the error surface to be quadratic (thus, that the path from the current point to the
minimum can be described with a parabola). Under this assumption, the minimum can be found
instantly by using the gradient g (vector with first-order derivatives) and the Hessian H (matrix
with second-order derivatives), using step

s = −H−1g

In reality, this assumption generally only holds close to minima, but works very well there, while
steepest descent often has serious difficulties reaching the minimum. Several problems prevent this
algorithm from being commonly used for neural network training though:

- The algorithm only works when the eigenvalues of H are positive definite (resulting in a
continuously decreasing slope towards the minimum).
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- For every iteration, both the analytical gradient g and the Hessian H need to be calculated.

- The calculation costs of the matrix inversion of H at every iteration are relatively high.

Thus, in itself the Newton method is not useful as a neural network optimization technique.
To avoid the severe limitations of this technique, a group of algorithms called quasi-Newton have
been developed.

Quasi-Newton

As a viable alternative to the Newton algorithm, a group called quasi-Newton algorithms has been
developed. Instead of calculating the Hessian H at every iteration, the quasi-Newton algorithms
build an approximation Ĥ by progressively incorporating the information from the gradient at
different iterations.

They start off using steepest descent, gradually building the approximated Hessian Ĥ and
behaving more like the Newton method. It takes nw steps to create a full approximation, after
which the approximation is reset to the Identity matrix I making the algorithm once again behave
like steepest descent. The basic algorithm is displayed here.

1. Initialize counter i = 1, weights Φi and the Hessian approximation Ĥi = I (Identity matrix).

2. Calculate step direction di = −Ĥ−1
i gi.

3. Terminate if stopping criterium is satisfied.

4. Calculate step length λi.

5. Update weights Φi+1 = Φi + λidi.

6. If i mod 0 ≡ 0 then Ĥi+1 = I else update Ĥi+1.

As you can see, steps 4 and 6 are open for interpretation. The most popular choice for step 6
is the so-called BFGS-method.

Using current step s = Φi+1 − Φi and gradient change c = gi+1 − gi, the BFGS update is

Ĥi+1 = Ĥi +
ccT

cTs
− Ĥiss

TĤi

sTĤis

Using this update would imply that Ĥ would need to be inverted at every step, which is compu-
tationally very expensive. We can also directly update Ĥ in inverted form, using

Ĥ′
i+1 = Ĥ′

i +

(

1 +
cTĤ′

ic

sTc

)

ssT

sTc
− scTĤ′

i + Ĥ′
ics

T

sTc

Limited memory Quasi-Newton

For networks with a very large numbers of weights, the memory cost of this method, O(nw), may
become prohibitive. This is why variants using less memory were developed. The most extreme
form is the ‘Memoryless’ Quasi-Newton method, in which calculation of the Hessian approximation
is being skipped and the search direction is calculated using

di+1 = −gi+1 −
sTgi+1

sTc

(

1 +
cTc

sTc

)

s +
csTgi+1 + scTgi+1

sTc

(with the first search direction being d0 = −g0).
Other methods build up only a partial Hessian. An overview of quasi-Newton related al-

gorithms including limited-memory ones has been written by Luenberger (Luenberger, 1984).
Limited-memory algorithms do not store the complete Hessian but data of smaller size such as the
history of previously taken optimization steps and the gradient change between these steps. From
these data an approximation can be constructed. More recently a survey focusing on limited-
memory algorithms including recently developed ones has appeared (Nocedal, 1997).
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Levenberg-Marquardt

Levenberg-Marquardt (Marquardt, 1963; Moré, 1977; Shepherd, 1997) is a (pseudo-) second or-
der algorithm which has become the algorithm of choice for small to medium-scale non-linear
optimization. Here, we will describe its specifics compared to other second-order algorithms.

An efficient way to determine the approximate step length to take to minimize the error along
the current search direction, is to use second-order information, that is, the second derivative of
the function modelling the error surface. By assuming the error surface to be quadratic, we can
calculate the point along the search direction which should be the bottom of the valley.

To do so, we define a linear approximation of the (supposedly quadratic) function for a certain
weight vector ~w0:

f̂(~x, ~w) = f(~x, ~wi) + (~w − ~wi)
T∇f(~x, ~wi) (2.3)

Thus, the mean square error of this function in relation to the target value is

Ê(~w) = (f̂(~x, ~w) − T )2

and its gradient
∇Ê(~w) = 2(f̂(~x, ~w) − T )∇f̂(~x, ~w)

Writing out f̂ using formula (2.3) and the knowledge that ∇f̂(~x, ~w) = ∇f(~x, ~wi) (since f̂ is a
linear function of ~w) yields

∇Ê(~w) = 2(f(~x, ~wi) + (~w − ~wi)
T∇f(~x, ~wi) − T )∇f(~x, ~wi)

which should approximate the gradient of the real error function E near point ~wi.
Finally, we rewrite this equation using the average error gradient

g = (f(~x, ~wi) − T )∇f(~x, ~wi)

and an approximation of the Hessian, the matrix of second-order derivatives, by the average of
the outer products of the gradient;

H = ∇f(~x, ~wi)f(~x, ~wi)

Using these, we obtain
∇Ê(~w) = 2H(~w − ~wi) + 2g

which is 0 for minima (and maxima). This is the case for

~wi+1 = ~wi − H−1g (2.4)

when f(~x, ~w) ≈ f̂(~x, ~w), which is most likely near minima of E. If we are farther away from a
minimum, simple gradient descent is a better approach to take, as it is guaranteed to bring the
error down.

As such, Levenberg proposed to use a mixture of (2.4) and steepest descent:

~wi+1 = ~wi − (H + αI)−1g (2.5)

I being the identity matrix. Thus, a large α causes (2.5) to behave like gradient descent, while a
small α makes it behave like the quadratic approximation. α can be seen as a distrust factor of
the quadratic approximation.

When the error E goes up after having taken a step, this is caused by the quadratic approx-
imation not working well in this part of the error surface; the gradient descent factor of (2.5) is
guaranteed to decrease the error. On decrease, the gain can be attributed to either part.

As such, when the considered step proved counterproductive (E increased), the trust in the
quadratic approximation is weakened by increasing α by a factor, and the step is not taken.

When E decreased, the trust is strengthened by increasing α by the same factor, and the step
is taken.
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This gradient descent part of the algorithm of Levenberg was improved by Marquardt. He
realized that the rough estimate of the second derivative of the error function for each weight,
contained in the diagonal of the approximation of the Hessian H, can be used as an indication of
how far a step we should take for each weight w, by using the formula

~wi+1 = ~wi − (H + αH̃)−1g (2.6)

where H̃ is the diagonal of H.

2.4.2 Generalization and overfitting

After training, care should be taken to assure the model is not overfitting. Overfitting happens
when a model is more complex than the system being modelled. An extreme example of overfitting
for a system with one input and one output is shown in figure 2.4. Here, the circles denote training
samples, which are not completely on the target line due to noise in the data. Although the model
does a very good job of modelling the training samples, it is practically useless for predicting the
model for input values between those in the training set.

To put it formally, we are looking for models with low generalization error, defined as the
average error on an infinite number of cases not previously used for building the network:

lim
nm→∞

∑nm

m=1 E (Tm − ym)

nm

Thus, a model with small generalization error is not specific for modelling the training data but
able to handle the general system. Note that oversized networks may often not exhibit overfitting
but actually have superior generalization, which may be due to the decreased chance of getting
trapped in local minima (Lawrence et al., 1997).

2.4.3 Model selection

The behavior of networks of a different structure (for example number of hidden nodes or choice
of inputs) can vary a lot. Even identical network structures initialized with different weights can
quite possibly produce very different results, due to the training ending in different minima.
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The error of a model can be separated in the factors bias and variance. Bias is a systematic
departure from the true answer, while variance is a random fluctuation from it. A perfect fit (no
error) will of course have no bias or variance, but perfect models are about non-existent in the real
world. Too small models have a relatively large bias due to their inability to capture the complete
model, while too big models will have a relatively large variance due to overfitting of the model
by also modelling the noise present in the training data.

As such, after a training round it is necessary to compare the quality of the found models. To
do so, different model selection methods have been devised.

Hold-out validation

For hold-out validation, the available data are separated in a training set which the network is
trained on, and a randomly selected test set of cases not used for training. The error of the network
prediction for this test set is used as a measure for the generalization error. It is not possible to
define a constant percentage guaranteed to be enough to reliably measure the generalization error.
Work has been done to address this issue (Larsen and Goutte, 1999).

If rare but interesting patterns exist in the data (such as sudden peaks), stratified sampling
can be used, which divides the data into categories with different properties, after which each
category is divided with equal split ratio.

Provided sufficient samples are put in the test set, it gives an unbiased (that is, close to the
true value) estimate of the generalization error. Note that if the network structure (i.e., number
of hidden nodes and inputs) is also determined with the test set, there is a possibility that there
is some overfitting towards the test set. To prevent this, it is best to confirm the generalization
by using a third data set called validation set (Bishop, 1995).

Cross-Validation

In linear regression, cross-validation is often applied for data sets with a small number of examples.
It is similar to hold-out validation, but repeats the training of the model a number of times,
each time taking out a different part of the data set and with new random parameter (weight)
initialization, after which the generalization error is the average of the resulting errors.

The most extreme form is leave-one-out (LOO) cross validation, which takes out one single
sample every time. As the experiment needs to be repeated nm times, this is computationally very
expensive. To prevent such extreme training costs, a popular choice is ten-fold cross-validation
(10CV) which as the name suggests splits the total data in ten folds (parts), thus requiring only
ten training rounds.

For non-linear regression, the situation is more complicated. Because of the likelihood of local
minima, new training rounds can obtain distinctively different models, making cross-validation
strongly less sensible. As such, the non-linear cross validation technique has been proposed
(Moody, 1994). To limit the irregularity, here the generalization error is estimated by first training
the network on the complete data set, after which cross-validation is used starting retraining from
this trained network instead of using new random weights. A more extreme proposal (Kwok and
Yeung, 1995) fixes all weights except for the upper layer. We consider it likely that these options,
and particularly the latter, underestimate the generalization error, as the network is likely to
‘remember’ the testset data.

Penalty-based model selection

Penalty-based algorithms are used to approximate the generalization performance of a model,
when it is not possible to determine it more reliably (i.e., there are not enough data to form a
reliable test/validation set for hold-out validation). Classical examples of these algorithms are AIC
(Akaike, 1978), BIC (Schwarz, 1978), MML (Wallace and Boulton, 1968) and MDL (Rissanen,
1983).

They rate models based on their characteristics, typically their training error (MSE) and
complexity (i.e., number of weights). They vary in their bias-variance tradeoff, and thus the
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relative importance ascribed to the model characteristics. Each algorithm has a different definition
of what is ‘best’, making different assumptions about what the user is looking for and about the
characteristics of the data.

MDL has gained a particularly strong following in the machine learning community. It is often
named a formalization of Occam’s Razor. Like MML, it has an information theory background.
The definition of ‘best’ neural network model is here the one which would require the least bits
to encode it and its residual error. In this context, it is again formalized in the same manner as
other penalty-based network selection algorithms, using a formula with the parameters training
error and number of weights.

Early stopping

During training a technique called early stopping can be used, aimed at avoiding overfitting, and
determining whether sufficient hidden nodes have been added. Here, part of the data is removed
from the training data to form a so-called validation set. The network is then trained as usual on
the remaining data, while at each iteration the error is also being calculated for the validation set.

The idea is that the validation error will decrease as long as the network is mainly in the
process of learning the target function, and that it will increase when it has learned the function
and is now only learning to model the noise. This would lead to a U-shaped graph of validation
error per iteration, where it would be best to stop at the bottom; thus, as soon as an increasing
generalization error is detected,training is halted.

If insufficient hidden nodes would have been added, the slope would flatten out, and an extra
hidden node should be added to determine whether further improvement compared to this number
of hidden nodes is possible.

Unfortunately for many data sets the generalization error doesn’t follow this pattern, but
instead includes many ups and downs. Using early stopping would likely stop training prematurely,
thus decreasing the quality of the final model.

Goodness of fit using R2

The values of the most common error function, Mean Square Error (MSE), are hard to interpret.
One can easily understand that a smaller MSE means a better fit, and MSE 0 a perfect fit, but
without analysis of the data set it is impossible to tell whether a MSE of 100 might be considered
a good or bad fit. There is no reference model defined as ‘worst’ other models can be compared
with.

A statistic related to MSE is R2, which is defined as the proportion of total variation of T
about its mean T accounted for by the network output y. It is a rough measure of how close the
sample data lie to the estimated regression line. Mathematically,

R2 =

∑nm

i=1(Ti − T )2
∑nm

i=1(yi − T )2

As a way of trading off R2 fit and model complexity, adjusted R2 has been devised, similar to
penalty-based model selection methods for MSE mentioned in section 2.4.3. Its definition is

adjusted R2 = R2 − (t − 1)
(

1 − R2
)

nm − t

in which t is the model size. Like other penalty-based algorithms, it also has a specific bias
weighing error and model complexity, and should only be considered a rough indication of the
relative qualities of different-sized models (Draper and Smith, 1998).
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2.5 Rule extraction

2.5.1 Overview

An important limitation of MLP neural networks is that it is not directly possible to gain under-
standing of the modelled input-output relations. As an example, consider the formula obtained
for a very simple network (two inputs, two outputs and the hyperbolic tangent sigmoid transfer
function). It is

2
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In order to obtain models from which it is possible to gain insight in the input-output relation-
ships, rule extraction techniques have been devised. These analyze the network weights and/or
behavior with the purpose of generating a humanly understandable model similar to the network.

2.5.2 Taxonomy

There is a wide range of different rule extraction techniques, and to allow easier comparison a
taxonomy has been proposed (Andrews et al., 1995) based on several different features of these
techniques. Here we present this taxonomy including an assessment of the relative importance of
each criterium in relation to our subject matter.

1. Expressive power/rule format How understandable are the rules?

Boolean/propositional if A ∧ B ∧ ¬C then . . . else . . .

Fuzzy Using membership functions with overlapping sets. Example: if (x1 = low) ∧
(x2 = high) then . . .

First-order logic Has not been used yet. ∀x1∃x2: . . .→ . . .

The rule format is closely related to the comprehensibility. Although for regression problems
a comprehensible formula is preferable, it seems impossible to straightforwardly map the MLP
formula to a simpler one; the existing algorithms use various forms of discretization.

2. Quality What is the error level of the model for the training data?

Accuracy What is the error level for the testset?

Fidelity How closely does the ruleset mimic the neural network (will the error levels be
distributed in a similar fashion)?

Consistency Will different runs of the algorithm yield similar results?

Comprehensibility How many rules are generated, and how long is each rule?

Only for over-fitted networks a difference between fidelity and accuracy is to be expected.
As it is vital not to have over-fitted networks in order to be able to gain insight, this is an
important criterium. For non-overfitted networks, accuracy follows from fidelity; a network
trained on a training set representative of the test set will yield similar errors for both.
Consistency is not very important as long as the results represent the system well. As such,
we will only discuss fidelity and overfitting.

3. Translucency How is the network being used to generate the rules?

Decompositional/Local The weights and structure of the neural network are directly
analyzed

Pedagogical/Global/Oracle/Black box Only input/output pairs are being analysed

Eclectic A combination of both methods is being used
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It is not very important for us whether an algorithm examines the weights inside the network
or not, as long as the results are reliable. Of course it is best if an algorithm is pedagogical
as we can then use any network structure we like, and only for pedagogical algorithms the
extracted rules from MLPs can be guaranteed to give a behavior approximating the network
(Tickle et al., 1998). Other factors are much more important.

4. Complexity What is the relationship between the size of the network and required rule ex-
traction calculation time?

Algorithmic complexity is very important; scientists usually require answers in limited time,
and have little use for calculations requiring extensive amounts of time.

“My circuits are now irrevocably committed to calculating the answer to the
Ultimate Question of Life, the Universe, and Everything [. . . ] but the programme
will take me a little while to run.” Fook glanced impatiently at his watch. “How
long?” he said. “Seven and a half million years,” said Deep Thought. (Adams,
1979)

This is generally not a situation scientists wish to encounter; thus, algorithms of a large
complexity can only be used for simple problems. Complexity can depend on a number of
factors, which may include (but are not limited to) the number of hidden nodes, inputs and
input samples available. The number of hidden nodes and inputs is most often the problem
with decompositional algorithms. As the focus of this thesis is large networks with many
input patterns, small complexity is an important criterium.

5. Portability Does the method work just for one kind of network structure or does it have a
broader application?

The criteria pedagogical and portability are strongly correlated, as having no restrictions for
the network structure implies complete portability. On the other hand, the decompositional
and eclectic algorithms by definition expect a certain network structure. A free choice of the
layout of a network is preferred as it gives a great deal of freedom, but for our purposes it is
only necessary to have support for some network structure as powerful as MLPs.

In appendix A we present a meta-analysis of the different surveys for rule extraction algorithms.
Unfortunately, the large majority utilizes if-then-else rules which we consider strongly limiting for
the task at hand. However, the RF5 algorithm shows promise.

2.5.3 Summary

Like equation discovery, rule extraction from neural networks is an interesting technique, but also
not ideal for our purpose. Most rule extraction algorithms partition the input space into sections,
which may limit the understandability of relationships in regression problems.

We have discussed the taxonomy of different qualities of rule extraction algorithms and their
relevance for extracting understandable rules from noisy data sets. For us, the specific form of
the rules is not really important, as long as they are humanly understandable. The quality of the
algorithm is definitely important, but quality is generally inversely related with comprehensibility;
high quality usually means a lot of rules and thus low comprehensibility, while this is also very
important. Translucency in itself is less important, as long as the restrictions do not limit the
network’s power. Complexity on the other hand certainly is; we require answers in a reasonable
amount of time. Finally, portability is no real concern as long as it works for a technique with
similar strength as normal MLPs.

Rule extraction strengths are

- Models with relatively many inputs can be tackled.

- Relatively insensitive to noise.
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but again, there’s a catch:

- Models are often complex and not very understandable.

- Almost all generate if-then-else rules which are not ideal for regression problems

- Indirect modelling; a model of a model is being made. This may in certain cases improve
generalization but will most likely result in a lower-quality model.

2.6 Conclusion

We have presented a brief overview of knowledge discovery in databases (KDD) and focused on
the step we will discuss in our thesis, data mining. Two methods capable of providing insight
in relationships existing in data set were discussed, equation discovery and rule extraction. The
latter technique uses neural networks, which were also explained in detail.

There are several approaches we can use to solve the problem of finding humanly understand-
able relationships in noisy data sets introduced in chapter 1. The methods presented in this chapter
provide some answers but none is ideally suited for this task. Our ideal would be a method which
combines the best of both the equation discovery and rule extraction worlds. Equation discov-
ery returns continuous, humanly understandable models and has relatively powerful expressional
capabilities. Rule extraction provides a method which is quick, noise-resistant, and can take a
relatively large number of inputs. We are interested in combining both strengths while avoiding
most drawbacks.



3. RF5

3.1 Introduction

An interesting hybrid which can be classified both as an equation discovery system and rule
extraction algorithm is the product unit network, as implemented as equation discovery system in
RF5 (Saito and Nakano, 1997a; Saito and Nakano, 1997c).

It combines several desirable features for our data mining task, both from equation discovery
and rule extraction systems. It shares with equation discovery systems that it works directly
on data, yields continuous formulas and has a relatively powerful expressional capability. The
interesting features it shares with rule extraction are a good tolerance for noise and the ability to
handle more inputs than the discussed equation discovery systems.

The system was demonstrated (Saito and Nakano, 1997a; Saito and Nakano, 1997c) as func-
tioning with artificial data consisting of up to five related features and four unrelated ones, and
with real data consisting of one to two features. It consists of a combination of three techniques;

- Using product unit networks for equation discovery,

- Training them with the BPQ algorithm, and

- Selecting the number of hidden nodes with MDL,

which we will now discuss in detail below.

3.2 Product unit networks in RF5

3.2.1 Product units

The product unit was introduced in 1989 by Durbin and Rumelhart (Durbin and Rumelhart,
1989). They provide a powerful addition to the toolbox of neural network researchers, as they
allow higher orders of the unit inputs to be used. Product units are defined as

nx
∏

u=1

xpu
u instead of the regular summation unit

nx
∑

u=1

wuxu

in which p is a power weight, w a multiplicative weight and nx the number of inputs. A single
product unit can therefore obtain relationships like y = x4.14

1 x7.18
2 / 1.4

√
x3, which would require a

network of summation units to approximate. On the other hand, they cannot create sums and
as such can’t replace summation units. Also, they seem more prune to creating local minima
(Leerink et al., 1995).

3.2.2 Product unit networks

Networks should not fully consist of product units, as these would be no more powerful than a
single unit. Instead, the most common approach is to have a hidden layer of product units and
one summation unit as output, as proposed by Durbin and Rumelhart (Durbin and Rumelhart,
1989). No biases are used in the hidden layer as these would fulfill the same multiplicative role the
output weights have. This product unit network (PUN) structure is also the one we will use here.
Like regular MLPs (Hornik et al., 1989), such product unit networks are universal approximators
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(Leshno et al., 1993). The research focus was mainly on networks relating boolean inputs and
outputs, and as such the output of the network was squashed by the used activation functions.
The mostly binary focus on product units remained in most publications on product units (Leerink
et al., 1995; Leerink et al., 1996; Shi and Eberhart, 1998; Ismail and Engelbrecht, 2001).

Defining nh as the number of hidden nodes, nx the number of inputs, w the weights between
hidden and output (with w0 being the bias weight), and p the input weights, this network structure
can fit the following kind of functions

y =

nh
∑

h=1

wh

nx
∏

u=1

xphu
u + w0 (3.1)

An example of such a function is:

y = 1.23x−0.73
1 x2.34

2 x0
3 − 4.56x0

1x
2
2x

−0.25
3 + 7.89

which can be simplified to

y = 1.23x−0.73
1 x2.34

2 − 4.56x2
2x

−0.25
3 + 7.89

To prevent output in the complex domain, the attribute vectors should be restricted to non-
zero, positive values. If needed and prior knowledge admits it, this can be done by feeding inputs
with such attribute vectors exp(x) instead of x. After training the weights p and w can directly
be interpreted as powers and coefficients respectively.

The training of product units has not been without difficulties; the methods tried include
random search, different forms of particle swarm optimization, genetic algorithms, leapfrog opti-
mization and simulated annealing, with a number of publications on this subject comparing several
of these techniques (Janson and Frenzel, 1993; Leerink et al., 1996; Shi and Eberhart, 1998; Ismail
and Engelbrecht, 2001).

In 1997, Saito and Nakano introduced RF5 (Saito and Nakano, 1997a; Saito and Nakano,
1997c), an equation discovery system using these PUNs, their regularization method (Saito and
Nakano, 1997b) for the number of hidden nodes based on the MDL principle (Rissanen, 1983),
and their quasi-Newton learning algorithm BPQ (Saito and Nakano, 1997d). Saito and Nakano
found that the network weights are directly interpretable as an easily understandable multivariate
power function, if no activation functions are used.

Saito and Nakano claimed former research focused solely on binary data (Saito and Nakano,
1997a; Saito and Nakano, 1997c). However, Durbin and Rumelhart already gave the example of
learning a real-valued circular domain in their 1989 article introducing the product unit (Durbin
and Rumelhart, 1989), and Janson and Frenzel published a 1993 article (Janson and Frenzel,
1993) about using them for a real-valued VLSI construction task). Still, their proposal to use it
for equation discovery is novel.

Properties

The networks are in the real, continuous domain. Although it has been stated that calculating
the complex part of resulting equations (occurring when non-positive inputs are presented to
the network) is generally not worth the effort for product units for boolean inputs (Durbin and
Rumelhart, 1989), it is essential for equation discovery that correct calculations are being made.
It is possible to circumvent the need for complex calculations by restricting inputs to positive
values. Table 3.1 shows the valid ranges and domains. Alternatively one could handle complex
number calculations, if feasible.

3.3 BPQ

A second element of RF5 is the proposed use of the second-order training algorithm BPQ (Saito
and Nakano, 1997d), which belongs to the family of Quasi-Newton algorithms discussed in sec-
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Item Domain Range

Inputs (x) < 〈0,∞〉
Targets (y) < 〈−∞,∞〉
Coefficients (w) < 〈−∞,∞〉
Exponents (p) < 〈−∞,∞〉

Tab. 3.1: Domain and range of the different classes of variables

tion 2.4.1. It is a compromise between a normal Quasi-Newton algorithm and memoryless Quasi-
Newton as discussed in section 2.4.1. Instead of building a complete Hessian approximation using
nw weights for step direction determination it only uses a selected number of steps z before restart-
ing using steepest descent, with z � nw. As a result of this, it is possible to restrict the memory
requirements for the Hessian to O(znw) instead of O(nw

2).

Instead of the original partial BFGS algorithm mentioned in 2.4.1, which stores step s and
gradient change c, BPQ stores s and the multiplication of the Hessian approximation Ĥ with
gradient change c. Also, BPQ determines step length λ by minimizing a second-order Taylor
approximation ŷ of the network output y,

Ê(λ) ≈ E(0) +
∂E

∂λ
(0)λ +

1

2

∂2E

∂2λ
(0)λ2 (3.2)

If ∂E
∂λ (0) > 0, the approximation is not working well and we are actually going uphill. In this

case the step direction is reset to the negation of the gradient.

When ∂E
∂λ (0) < 0 and ∂2E

∂2λ (0) > 0, we are going downhill with flattening slope. In this case

BPQ uses the familiar “bottom of parabola” formula − b
2a on equation (3.2), in which a = ∂2E

2∂2λ (0)

and b = ∂E
∂λ (0).

If ∂E
∂λ (0) < 0 and ∂2E

∂2λ (0) < 0, we are also going downhill but the slope is steepening. In this
case we can’t use the previous tactic as it would lead to a top, not a bottom (i.e., higher than
the current position). Saito and Nakano here propose to use a different error approximation Ê
by using a first-order Taylor approximation of the network output ŷ = y + λ ∂y

∂λ , which can be
minimized to obtain λ. It is

Ê(λ) ≈ E(0) + λ
∂E

∂λ
(0) +

1

2

nm
∑

i=1

λ2

(

∂y

∂λ

)2

minimized at

λ = −
∂E
∂λ (0)

∑nm

i=1

(

∂y
∂λ

)2

To prevent long steps from being taken, Saito and Nakano propose to use a maximal size one
for the total step s (direction d times length λ). We believe a better option might be to restrict
the step length relative to the steepness of the gradient (but allowing complete steps when the
optimization error is becoming small), because their heuristic might cause a large number of steps
when the starting position is far from the minimum.

Finally, if the resulting step λd yields an error E(λ) > E(0), an existing method (Gill et al.,
1981; Battiti, 1989) is being used. If we define t to be the original step length λ and assuming the
error surface to be quadratic, we can plot a curve through the current error level E(0) and the
error level for the current step length E(t) with gradient ∂E

∂λ (0). This curve has the formula

E(λ) ≈ E(0) +
∂E

∂λ
(0)λ +

E(t) − E(0) − ∂E
∂λ (0)T

T 2
λ2
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and its minimum can be found using

λi+1 = −1

2

∂E
∂λ (0)λ2

i

E(λi) − E(0) − ∂E
∂λ (0)λi

(3.3)

Because the step direction points downwards, the error is guaranteed to decrease at least for
some small λ. As λ is decreased with every iteration of equation 3.3, this algorithm is guaranteed
to converge.

3.4 Hidden layer size selection using MDL

The last element of RF5 is the use of MDL for selection of the number of hidden nodes; Saito and
Nakano propose to use all available data, add fully connected (i.e., to all inputs and all outputs)
hidden nodes and measure generalization error using the MDL criterium

MDL = 0.5nm log(MSE) + 0.5nw log(nm)

which in the example from their article correctly chooses the number of hidden units to use.
Thus, the models are being selected on the basis of number of hidden nodes with optimal MDL
performance.

This is a penalty-based method as described in section 2.4.3, which as described there implies
specific assumptions about the data sets are being made. MDL is being used to defines the best
model as the one with the shortest total data length of the encoded model and the residuals
(Rissanen, 1983).

3.5 Conclusion

In this chapter we have discussed the RF5 system developed by Saito and Nakano. It consists of
product unit networks, the BPQ training algorithm and MDL hidden layer size selection.

RF5 seems a very useful technique, but the data sets in the demonstrated applications are
much smaller than those we intend to use it on. Thus, it appears in its current state unusable
for use on our data. We should find ways of expanding the applicability of the system to larger
tasks.
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4.1 Introduction

Although we consider RF5 a good equation discovery system, we believe in its current state it is
not sufficient for the problem we are tackling. We see several possibilities for improvement, which
we will discuss here.

4.2 Input normalization

Input normalization is the process of translating and scaling the sample vectors for each input.
In the context of neural networks, this is mostly done in order to create a better conditioned

error surface; one in which it is more or less equally turbulent in all weight dimensions, not very
flat in some and very curved in others.

Some algorithms, like the standard steepest descent, greatly benefit from normalization and will
more quickly find the optimum. More advanced algorithms, including the Levenberg-Marquardt
algorithm used in this thesis, gain less by normalization. Still, especially in the context of product
unit networks, there is a very practical need for normalization.

Due to their raising of input values by powers, slight changes in input values can produce
drastic changes of the output value. Thus, for p < −1 or p > 1, badly normalized inputs are also
likely to cause overflow or underflow on calculation of the output on a computer. In such cases
normalization allows for more accurate calculations, and thus likely for better solutions.

4.2.1 Translation of inputs

Unlike scaling, translation of the input vectors causes fundamental changes to the network which
cannot be undone with a change in w or p.

Translation of an input transforms the formula terms wxp to

w(x + t)p (4.1)

If it would be possible to translate an input x without affecting the possible outcome of the
network, it should be possible to undo the change in output caused by the translation by finding an
appropriate {w̃, p̃} pair to replace the original {w, p} weights, which compensate for the translation
of t for any value of x.

Theorem 1. It is not possible to find a suitable {w̃, p̃} pair replacing {w, p} in wxp able to
compensate for translation of x, for all possible values of x.

Proof by contradiction. Supposing the theorem is false, the following expression would be valid:

∀t, w, p ∃w̃, p̃ ∀x > 0 : w̃(x + t)p̃ ≡ wxp

Using t = w = p = 1 and inputs {x1 = 1, x2 = 3, x3 = 7}, we first determine w̃ in relation to p̃
for x1:

w̃(x1 + t)p̃ ≡ wxp
1

w̃2p̃ ≡ 1

w̃ ≡ 2−p̃ (4.2)
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Using equation (4.2) in (4.1) for x2,

w̃(x2 + t)p̃ ≡ wxp
2

2−p̃4p̃ ≡ 3

we can determine the only fitting values of p̃ and w̃ for {x1, x2}
{

p̃ =2 log(3), w̃ =
1

3

}

(4.3)

However, using equation (4.2) in (4.1) for x3:

w̃(x3 + t)p̃ ≡ wxp
3

2−p̃8p̃ ≡ 7

yields the {p̃, w̃} pair valid for {x1, x3}:
{

p̃ =4 log(7), w̃ =
1√
7

}

which is unequal to the pair for {x1, x2} in (4.3). Thus, models trained on translated inputs
cannot be rewritten for untranslated inputs without losing the easily interpretable PUN equation
structure.

4.2.2 Scaling of inputs

The most important part of normalization for our purposes is scaling, since it can give all features
the same order of magnitude, preventing large-scale features from gaining an artificial advantage
during training. We have found that inputs can be scaled, while un-scaling of the equation found
by the PUN is possible to obtain a formula for the original inputs. Since

(x

s

)p

≡ xps−p

any solution

y =

nh
∑

h=1

wh

nx
∏

u=1

~xphu
u

can be rewritten to

y =

nh
∑

h=1

w̃h

nx
∏

u=1

(

~xu

su

)phu

in which each input ~xu has been scaled by factor su 6= 0. In this solution, each

w̃h = wh

nx
∏

u=1

sphu
u

Thus, after finding a solution, the w for unscaled inputs is

wh = w̃h/

nx
∏

u=1

sphu
u (4.4)

which we can use to replace w̃ to obtain the formula for unscaled inputs. An important result is that
the inputs are linearly scale-independent, and that any difference in scale will be compensated by
the coefficients w. We can scale the inputs within our algorithm for optimal training performance,
and afterwards straightforwardly obtain the formula for the original unscaled inputs using formula
(4.4).



4.2. Input normalization 25

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100
Distribution of MSE for 1 hidden nodes

max
mean
median

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100 Distribution of MSE for 2 hidden nodes

max
mean
median

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100
Distribution of MSE for 3 hidden nodes

max
mean
median

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100
Distribution of MSE for 4 hidden nodes

max
mean
median

MSE

MSE

MSE

MSE
P

er
ce

nt

P
er

ce
nt

P
er

ce
nt

P
er

ce
nt

Fig. 4.1: MSE distribution for different scaling methods and network sizes

4.2.3 Comparison of scaling methods

We have studied scaling methods for the inputs both empirically and theoretically. The options
we have explored are scaling by mean, median and maximum input value of the training set.

Our empirical study involved data sets with inputs scaled by maximum, mean or median,
in networks using different structures (1 to 4 hidden nodes). These networks were trained on
the Groynes data set we will discuss in section 6.2.1, using the Levenberg-Marquardt training
algorithm.

For each network size and each scaling method, a total of 423 trainings were done before these
results were aggregated (thus, a grand total of 5076 trainings were performed for this comparison).
Per training round and per network structure the network weights were randomly initialized, but
the same initial weights were used for each of the three scaling methods to ensure identical starting
conditions.

In figure 4.1 the training error distribution is shown. As can be seen, the scaling factors didn’t
vary that much, but for every network structure the mean and median scaling consistently returned
models with lower or equal error compared to max scaling. A smaller difference was found between
mean and median scaling, but in those cases mean scaling returned best results. Mean scaling
always resulted in a model with the same weight configuration, while the other methods did not.

This indicates that training a network with data scaled on its mean is less likely to result in
a network trapped in a local minimum (although these chances remain small otherwise). This
makes sense; by dividing by mean the inputs are scaled around 1, the point where the output is
the least dependent on correct values of the power weights. Remember that 1p = 1, no matter
the value of p. The farther away from 1 the input is, the larger the relative error will become and
thus the more important the input will be for weight correction.

As scaling inputs with their mean results in these inputs having mean 1, on average each input
in each sample will be closest to 1 compared to any other scaling method. Thus, each input will be
in the least error-sensitive state and no input will have an artificial advantage caused by scaling,
which might otherwise cause a bias in the weight training. This bias could result early in training
in a stronger than normal increase of weights connected to the input if a crude correlation between
target and input exists, or stronger decrease if not.



26 4. Improvements

4.3 Boolean inputs

4.3.1 Introduction

We will now show the scope of RF5 can be expanded to include boolean inputs. Note that Saito and
Nakano have developed a method able to handle nominal (and thus also boolean) values called
RF6 (Nakano and Saito, 1999; Saito and Nakano, 2000). This would require a more complex
network structure with more weights and larger training difficulty, so we prefer to use RF5 due to
its smaller complexity.

It is quite possible the behavior of the network is a mixture of different formulas, dependent on
the state of certain boolean parameters. Consider for example the water level in a sink, dependent
on the open/closed states of the tap and the sink. For systems like this the ability to switch
formulas depending on boolean inputs is essential. An example input vector would be

〈TapOpen,SinkOpen,CurrentWaterLevel〉

While former research with boolean values for PUNs was focused on boolean input-output
mapping, this functionality allows the network to indicate different formula for different truth
values; each term in the hidden node can be (partly) switched on and off.

4.3.2 Boolean-to-real mapping

We have found that booleans mapped to different numeric values can be successfully used in
product unit networks to learn to separate different learned functions. In the following discussion
we will represent the value chosen for true as BT and the one chosen for false as BF .

Consider a network with two inputs, x1 being a boolean and x2 a continuous value. We can
map input x1 with truth value true to value BT = 1 1

3 , and false to BF = 2
3 . Any two different,

positive values will work; these values were chosen because they have mean one following our
recommendation in section 4.2.3, and a factor two difference making further explanation easy (it
is recommended not to choose two values very near to each other as this may cause computational
difficulties in separating the functions for true and false inputs).

When the power weight for this input would learn the value 0, the true and false cases would
yield the same xp value (1), and as such the input would be deemed irrelevant. For power 1, false
would yield 1

2 the value of true, as this is the ratio BF /BT . For power 2 this would become 1
4 th,

power 3 1
8 th and so on, following a (BF /BT )

p
pattern.

The p value learned by the network thus defines how different the coefficients will be. If for
example a hidden node term is valid for one true and not for false, the learned power for data
sets without noise would become ∞, but for real data sets as high as needed to separate up to the
signal-to-noise ratio S which determines how strong the average formula signal is in comparison
to the noise in the measurements.

Thus, the smaller the learned p, the less important the boolean input is. Large p values will
cause the result of xp for false input values to be negligible in comparison to the result for true
input values, for all practical purposes making the factor behave like a true boolean function
switching the connected hidden node on and off. Conversely, if the boolean factor has only partial
influence, the training will assign only a small positive value to p resulting in a non-neglectable
term for this hidden node, whether this input is true or false.

Negated relationships (partly) inhibiting a hidden unit can be created by using negative p
powers. Here, small negative weights (close to zero) partially inhibit it, while large negative
weights cause near-complete inhibition.

Example

As an example, suppose we are looking for a function describing some system, for which the formula
depends on a boolean. When the boolean value is true, the target formula y = 4x2

2 applies, and
otherwise y = 5x−3

2 .
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Fig. 4.2: Mixed boolean and continuous input PUN

If the data set we would train the PUN on would be perfectly noise-free (and no roundoff errors
would occur), training would never complete. It is not possible to completely inhibit a node in
this way; Bp

F 6= 0 for any p. In any real data set this is no problem because as soon as the function
has been learned accurately enough that noise in the data prevents it from further improvement,
training is stopped as no further progress can be made.

Suppose we have a very clear signal, with relative signal strength S = 1024 compared the noise
(thus, signal-to-noise ratio 1024 : 1). Due to this clear signal separation, the resulting equation
would require a very crisp boundary separating the two different functions using the boolean input.
As the noise level is less than one per mil of the signal, both functions can be quite accurately
found in the training data; only below this noise level it becomes impossible to separate these. If
our algorithm performs well, the functions should thus be very well separated here.

The value the network will learn for the power weight p between a boolean input and a hidden
node depends on the (unknown) signal strength S and the ratio BT /BF . We will here use BT = 1 1

3
and BF = 2

3 as input values for true and false respectively.
Then, the minimal constant raising the boolean inputs up to the level needed to separate the

functions up to the signal-to-noise ratio is q =(BT /BF ) log(S) =(1 1
3 / 2

3 ) log(1024) = 10. This means
the boolean input should be raised to the tenth power to separate the functions as well as the
noise level allows.

The functions can be modelled using a PUN with mapped-boolean input x1 and continuous
input x2, yielding equation

y =
4

Bq
T

xq
1x

2
2 +

5

B−q
F

x−q
1 x−3

2

as shown in figure 4.2. When x1 = BT , the first function term precisely returns the formula
required for true input samples, while the second term returns only an extremely small value.
When x1 = BF , the opposite happens; the first term becomes roughly zero, and the second term
returns the formula required for input false.

4.3.3 Multiple biases

When a analyzed system consists of a different power functions separable using boolean inputs,
these functions can of course have different added constants. While the PUN only has one bias,
hidden nodes can also act as boolean-dependent added biases. They can do so when the PUN
bias w0 is trained to be one of the bias values to be modelled, while such a hidden node (one per
different bias value) learns coefficient weights wi set to the difference between that bias and w0,
while its continuous inputs are approximately 0. The hidden node thus returns a constant equal
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x1 x2 5% noise 10% noise

true true 3519.161x−3.009
3 3584.827x−3.023

3

true false 20.498x1.984
3 19.301x2.007

3

false true 1.009x3.996
3 0.815x4.104

3

false false 100.694x0.994
3 100.138x0.988

3

Tab. 4.1: Formulas discovered by PUN

to the difference between the bias and required bias, depending on the values the boolean input
weights have learned.

Example

For example, if we add a bias to above-mentioned formula to obtain y = 4x2
2 + 50 and y =

5x−3
2 + 150, the learned model could become

y =
4

B10
T

x10
1 x2

2 +
5

B−10
F

x−10
1 x−3

2 +
100

B−10
F

x−10
1 x0

2 + 50

which would always add 50 as constant term, but also add 100 in case the boolean input x1 receives
the 2

3 mapped false value. Conversely, the network could also learn bias 150 and extract 100 in
case x1 receives the mapped true value.

4.3.4 Multiple booleans

This capability of PUNs is not restricted to one boolean input; an unlimited number of boolean
inputs can be used. Each hidden unit can have a different activation based on the boolean
inputs. Using the previously mentioned power-coefficient combinations, the boolean inputs can
be considered to be combined with the logical operator AND. Each input can be used directly, first
negated using NOT or it always returns true making the boolean input irrelevant for that hidden
node (always returning false is also possible but of course not very useful, as it would result in
a never-active hidden unit). Combinations of i boolean inputs can at maximum fit 2i different
functions.

Example experiment

As another example, consider the function set with boolean inputs x1,x2 and continuous input x3:

y =























x1 = true

{

x2 = true → 3500x−3
3

x2 = false → 20x2
3

x1 = false

{

x2 = true → x4
3

x2 = false → 100x3

(4.5)

which can be modelled in a four-node PUN as

y =
3500

B2q
T

xq
1x

q
2x

−3
3 +

20

Bq
T B−q

F

xq
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−q
2 x2
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T
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4
3 +
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F

x−q
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2 x3

The PUN is indeed able to recover distinct formulas in this way. A test training for the
formulas in (4.5) using 1000 samples per formula, in which the inputs were corrupted with 5% and
10% normally distributed noise, yielded the formulas described in table 4.1, which clearly closely
resemble the original formulas from (4.5).

Here, the hidden unit with the largest contribution was considered the right formula; as de-
scribed above the other hidden units all contributed as well. However, their contribution was very
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Boolean inputs 5% noise 10% noise
x1 x2 HN1 HN2 HN3 HN4 HN1 HN2 HN3 HN4

true true 100.00 0.00 0.00 0.00 99.99 0.00 0.01 0.00
true false 0.00 100.00 0.00 0.00 0.01 99.39 0.00 0.60
false true 0.00 0.00 100.00 0.00 0.62 0.00 99.32 0.06
false false 0.00 0.00 0.00 100.00 0.00 0.39 0.20 99.41

Tab. 4.2: Node activation distribution (%) per input combination and noise level

small, and thus clearly attributable to the noise in the data. The relative activations levels of the
hidden nodes, sorted in the order of function set 4.5, is shown in table 4.2.

If the value of the power weight of a boolean is low and thus brings a less sharp distinction,
one can straightforwardly extract the different formulas for the different combinations of values
of the booleans. To do so, all that is needed is to multiply each coefficient by the product of the
xp factors for each connection between a boolean input and the hidden node belonging to that
coefficient, and then removing these factors from the resulting equation.

4.3.5 Conclusion

In conclusion, boolean inputs can be used by PUNs to create clearly distinct formulas. The formula
represented by each hidden node per boolean value can be determined by removing the boolean
input factor xp and multiplying the hidden node coefficient with Bp

T to obtain the formula for
input value true, and with Bp

F for false. This can be done in an iterative way if multiple boolean
inputs exist.

4.4 Analytical weight determination

If we would be able to set the weights of the network analytically, even as a first approximation,
this might speed up and improve the solution finding process. We found it to be possible for cases
where an oracle (a model which can provide target values for requested input vectors, such as
a previously trained neural network) is present. Using our technique, the network can have an
unlimited number of inputs, but only one hidden node.

When inputs are set to one, the PUN equation is simplified as its power weight for that input
becomes irrelevant (as 1p remains 1 for any p). We exploit this fact by feeding the network with
inputs 1 except for one input which we feed different values. This means an unlimited number of
inputs can be handled using this method.

We have found that it is possible to reduce formula complexity by using a smart choice for the
interval between given input values x; best results were obtained when their magnitude differed
by a factor exp(2). Thus, we choose input values xi = exp(2i−1), with i = {1, 2, 3 . . .}; any real
positive value can be used though.

In these formulas, we have also included a scaling factor s which can be used to scale the input
values to the input domain. This is important to evenly distribute the samples over the input
domain and avoid using input values outside this domain.

4.4.1 Calculation

A number of different samples equal to the degrees of freedom in the network (i.e., number of
weights) is required to estimate all parameters. Thus, for one hidden node, we need three mea-
surements. When all inputs except for the one under investigation are set to value one, the
resulting PUN formula is yi = w0 + w1 exp(2i−1p1) which we can rewrite to

w1 =
yi − w0

exp (2i−1p1s)
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to yield for i = {1, 2, 3}

w1 = (y1 − w0) exp(−p1s) (4.6)

= (y2 − w0) exp(−2p1s) (4.7)

= (y3 − w0) exp(−4p1s) (4.8)

By equating one of these formulas for w with one for w + 1, we obtain a new equation which
can be rewritten to obtain the value of other variables, of the general form

p1 =
log
(

yi+1−w0

yi−w0

)

is

Equating formulas (4.6) and (4.7) and rewriting it to obtain a formula for w1, and repeating
this for formulas (4.7) and (4.8), we find

p1 =
log
(

y2−w0

y1−w0

)

s
and

log
(

y3−w0

y2−w0

)

2s

which we can again equate. This can finally be rewritten to a formula for bias w0, resulting in the
rather complicated formula

w0 =
y2
2 + y2y1 − 2y3y1 + y2

√

−3y2
2 + 4y2y3 + 2y2y1 − 4y3y1 + y2

1

3y2 − 2y3 − y1 +
√

−3y2
2 + 4y2y3 + 2y2y1 − 4y3y1 + y2

1

(4.9)

4.4.2 Results

We have performed several experiments on this technique. Although working well when no noise
is present, it is extremely sensitive to noise, often causing the formula below the square root
in equation (4.9) to become negative, resulting in imaginary numbers. This sensitivity to noise
also results in unusable initializations in case the system cannot be perfectly described using
multivariate power functions. Also, the limitation of using one hidden node is a serious impedance
for use of this technique. Thus, we do not consider it viable for initializing PUNs.

4.5 Breadth-First search

In the limited number of papers published on product units, much focus has been on local minima
(Leerink et al., 1995; Ismail and Engelbrecht, 2001). In our experience this problem only arises
for small synthetic problems. For real data, we got very consistent well-generalizing minima
with training, on par with MLP training performance. A possible explanation for the difficulties
presented in the literature is that local minima may happen more for problems having boolean
outputs.

For cases where such problems would arise, we propose to use a breadth-first search approach
which can be summarized as follows:

1. Quick model generation
Do a number (say ten) of brief (say one-tenth of the normal training epochs) successive
trainings, resetting the weights to random for every new round.

2. Model selection
Select the network with the lowest validation error (or other method as described in section
2.4.3).

3. Further training
Continue training it using normal, longer training rounds.
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The few cases where we experienced local minima were solved using this method. Large real
data sets are unlikely to require this technique due to their smoother error surface and decreased
likelihood of local minima with more dimensions. Instead of doing a fixed number of training
rounds one can also repeat an unspecified number of times until the validation error drops below
a certain threshold.

4.6 Levenberg-Marquardt training

We propose to use Levenberg-Marquardt instead of a quasi-Newton algorithm such as BPQ, as it
has shown to be superior to quasi-Newton for many real-data tasks (Shepherd, 1997; Sarle, 2002).
Because of its empirical success it is unanimously recommended as default optimization algorithm
for non-linear regression by the authors of the major mathematical analysis suites (Wolfram, 1999;
SAS Institute, 1999; Demuth and Beale, 2000; StatSoft, 2002).

Levenberg-Marquardt is ideally suited for the equation discovery task; its limitations of use
are no problem:

- Memory: Levenberg-Marquardt should not be used with large number of weights1, since
it requires calculation and storage of the Hessian with a size proportional to the squared
total number of weights. Equation discovery shouldn’t start with such huge networks as the
resulting equations are extremely unlikely to be humanly comprehensible.

- Residuals: It does not work well for systems with large residuals (that is, a large remaining
error after the network is optimally trained). When a data set causes large residuals it means
the found equation is a very bad model from which no real insight can be gained. Thus, large
residuals already indicate we should take a step back in the knowledge discovery process to
increase the data set quality and/or reassess the applicability of the network for this problem.

Although we could not implement BPQ in time to enable a direct comparison, we have com-
pared its ancestor, BFGS Quasi-Newton, with Levenberg-Marquardt on both synthetic and real
data sets. We used PUNs with up to 100 weights, which is a relatively large number of weights for
a PUN used for equation discovery. For data sets yielding small residuals (which is required for
obtaining a meaningful equation), the test results were indeed favorable for Levenberg-Marquardt.
Since BPQ is developed to decrease the memory use by trading off some performance, we conclude
Levenberg-Marquardt is preferable over BPQ for equation discovery.

4.7 Hidden layer size selection using test set

Unlike the other PUN network layers, the size of the hidden layer is not fixed and needs to be
chosen. As discussed in section 3.4, Saito and Nakano propose to use MDL to do so. The advantage
is that all samples can be used for training. As we have discussed in section 2.4.3, such penalty-
based methods make a specific bias-variance tradeoff, assuming a specific relationship between the
network error and network size.

According to the ‘No Free Lunch’ theorem (Wolpert and Macready, 1997), for any algorithm
which fares well on a data set there exists another data set on which it will perform badly. It is an
open issue how common such situations will be for real-world data sets. Penalty-based algorithms
seem quite sensitive to the problem since they use very limited knowledge about the data sets.
Good discussions of the limitations of penalty-based algorithms have been written (Webb, 1994;
Webb, 1996; Kearns et al., 1997; Domingos, 1999).

Whenever sufficient data is available, we consider using a test and validation set to obtain a
reliable assessment of the generalization error is preferable. but when limited data is available,
a reliable test or validation set may not be possible to create. We believe the validation set can

1 An estimate of the maximum number of weights can only be given in relation to a specific computer architecture
and problem. A modest Athlon 700 with 256MB RAM could easily handle some hundreds of weights with Levenberg-
Marquardt for the problems we have encountered.
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under certain conditions be equal to the test set. When it is used very sparingly (such as using it
just a couple of times for comparing different completely trained models, and not systematically
such as using it for early stopping) we assess the chance of overfitting extremely small for most
situations.

For rule extraction the absence of a precise generalization indication is not necessarily a prob-
lem. As the main objective is insight in the underlying natural systems, we regard querying
domain experts to be preferable. They can decide which equations make sense given the current
knowledge in the field. Quoting Henderson and Velleman (Henderson and Velleman, 1981),

The data analyst knows more than the computer (. . . ) failure to use that knowledge
produces inadequate data analysis.

There always remains uncertainty about the optimal number of hidden nodes. Except for the
theoretical possibility that we would have found a perfect model (i.e., zero remaining error, which
is extremely unlikely) there is no way of telling how many hidden nodes should be used. This is
true for PUNs as well as MLPs. It is quite possible that a certain signal in the data can only be
modelled using a couple of hidden nodes. Then adding nodes up to one less than this required
number of nodes will not yield an increasing performance. Similarly (and also like MLPs), it
is impossible to determine how many rounds one should initialize and train to obtain the best
possible performance; one can never guarantee the network is not stuck in a local minimum. Such
minima, when far from the global minimum, are likely to diminish the reliability of any extracted
formula. When near to the global minimum, extracted equations are likely to still give valuable
insight about the system.

The number of training steps should also be chosen. In case a network takes a long time
to converge, the network will have found a plateau (area in the weight space where the error
hardly decreases with training). It can have a minimum, but also be followed by a steep error
decrease after it has been crossed. (Too) large networks can require early stopping as discussed in
section 2.4.3 to prevent overfitting.

When multiple global minima with similar error levels but distinctively different weight con-
figurations exist, the system can be described in different ways. This may be an indication that
there are input correlations with interchangeable (combinations of) inputs.

To assess the number of required initialize-and-train rounds before the best model is most
likely found, the user can consider the number of minima found during training; if many different
local minima are found the network error surface is likely to be very convoluted and as such
more rounds than otherwise are recommended. As the learning rate is adaptive for Levenberg-
Marquardt, defining the current balance between steepest descent and Gauss-Newton, the starting
value is not very important. We have used value 0.01, as suggested by Demuth and Beale (Demuth
and Beale, 2000).

4.8 Conclusion

In this chapter, we have suggested several improvements of the RF5 algorithm. We have proposed
scaling of each input feature with its mean, to improve network training performance. We have
proved an other normalization technique, input translation, to be impossible for PUNs without
making the resulting formulas significantly less understandable. PUNs including boolean inputs
were shown to be able to accurately map different boolean input combinations to different regres-
sion functions. Analytical initialization of the weights was proved to be theoretically possible for
one hidden node and unlimited number of inputs, but unusable for patterns containing even small
amounts of noise, and badly scalable due to lack of support for multiple hidden nodes. A breadth-
first search method has been proposed which often resulted in obtaining satisfactory results much
quicker than the usual depth-first search strategy. Levenberg-Marquardt training was proposed
instead of Quasi-Newton methods such as BPQ since the algorithm has superior characteristics
for training PUNs for equation discovery. Finally, we proposed to not always use MDL but to
default to using validation and test sets for generalization assessment.



5. NETWORK SIZE OPTIMIZATION

5.1 Introduction

In chapter 4 we have proposed techniques which expand the usability of PUNs to larger problems.
One serious problem remains; the formulas extracted from the PUNs are often very large, and as
such hard to interpret. We would prefer to be able to have finer control of the network size than
the selection of number of nodes proposed by Saito and Nakano as discussed in section 3.4. In this
chapter we will propose a way to fine-tune the network size to optimize the comprehensibility of
the resulting formula.

We propose to train networks with different numbers of hidden nodes (up to maximal compu-
tationally feasible complexity or until no improvement seems to be gained by adding more nodes)
and compare the formulas resulting after pruning these. Pruning can strongly increase of the com-
prehensibility of the resulting formulas. The product unit network always yields a function with
nh terms each consisting of nx factors x

pij

j , and a bias. It is likely that not all of these terms are
important; for example, if a power pij equals 0, it can immediately be discarded as the outcome
will always be 1.

For two different reasons, it is very important to minimize the size of PUNs as long as its
accuracy is not seriously decreased:

- The function is much more likely to overfit using a full network, as it is unlikely all hidden
units will require all terms with all features.

- The resulting function will be a lot less comprehensible for the user, particularly for networks
with many features.

Besides training custom-sized networks using prior knowledge, there are two ways to create
networks without full layer connections; construction and pruning. Construction starts off with an
empty network and adds connections until it considers the network ‘finished’. Pruning starts with
a network with fully connected layers and prunes away connections until the network is considered
small enough.

5.2 Arguments for construction

Which size optimization method is best is as yet a controversial issue in the machine learning
community. We will discuss some arguments for construction in relation to the pruning approach
(Kwok and Yeung, 1997), following with a brief assessment of its impact on PUN pruning:

- No difficulty determining starting network size.
For our purposes this is not a serious issue, as pruning can also be done in a stepwise fashion,
starting out with pruning factors from one hidden node, then training a new network with two
hidden nodes and pruning factors from that one, raising complexity until either computation
limitations or common sense (persistent lack of improvement) determine a maximum.

- Computation costs are economical as the network starts small and only increases up to the
final network size instead of starting too big.
This argument assumes solutions will be found at the same rate as pruning algorithms, which
we consider unlikely, as discussed in section 5.3.
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Fig. 5.1: Difficult pruning situation

- As retraining for all possibilities is usually too expensive, pruning algorithms can only ap-
proximate the generalization error per connection removal and thus may introduce large
errors.
The better a pruning algorithm can estimate the expected increase in error, the less it will
be subject to this problem. We consider pruning algorithm for PUNs strongly less sensitive
to this problem compared to MLP pruning algorithms, due to the mathematical structure of
PUNs.

- More likely to find smaller solutions, as constructions starts small and networks with different
sizes can perform similarly.
This is a possibility, though strongly less so if one starts pruning from networks with a
progressively increasing number of hidden nodes.

The last point is illustrated in figure 5.1. The first feature has value 0.5 for almost the first
half of the training samples and ramps up to 2 for the latter half, while the second feature is its
inverse. The output of a PUN hidden node for these factors with powers one is also displayed.
It nearly always has value one except for a small peak halfway the sample space. Removing the
two factors together would not cause any real increase in MSE for most networks, but the error
of removing one single factor without the other (and without retraining) would likely cause a
severe MSE change. Thus, in such cases the importance of the related factors appears higher than
justified.

5.3 Arguments for pruning

Although we have not found any paper in the pruning literature dealing with arguments against
constructive algorithms in relation to those for pruning, we will here present some critique we have
about these techniques.

- Severe search space limitation
After the network size has been increased, constructive algorithms continue their search ex-
actly where it ended before this increase (with the exception of the addition of extra weights).
As such, the weight configuration of new networks will only start from the minima in the
weight space for the smaller network (again except for the added weights), which will severely
limit the explored weight configurations.
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Fig. 5.2: Difficult construction situation

- Difficulty of finding complex relationships
It may well be that a relation can be described by a combination of features or hidden nodes,
while every single feature or hidden node separately does not contain useful information,
causing the algorithm to make incorrect addition decisions. In this case the right combination
will only be found by chance, likely causing strongly oversized networks.

The latter point is illustrated in figure 5.2. Consider a network with three potential features
and (conveniently scaled) samples. The first feature samples follow a 1/t pattern, those for the
second one its inverse over the sampled time frame and the third a W-shaped pattern. The target
function can be perfectly fitted as the product of the (first powers of the) first two features (thus,
a PUN connected to features one and two, with all weights 1 and bias 0). On making the first
connection the construction algorithm will begin with feature three, as it resembles the target
function more than either of the other functions alone. While we believe pruning to be a more
natural choice for the non-linear problems with complex feature interactions neural networks are
usually applied to, we have also attempted the use of a construction algorithm.

5.4 Network construction

Construction algorithms can be divided in two classes:

- Coarse-grained The algorithm adds a fully connected hidden node (i.e., connected to the
output node and all feature nodes). Thus, the algorithm only selects the number of hidden
nodes and is the most basic form of construction algorithm.

- Fine-grained Only one or few connection between an feature and hidden node is added, or
a hidden node with one or a few features.

To improve the results of the construction algorithm, we propose to add a pruning step after
the construction; if the pruning would not improve the network quality one could simply keep the
final constructed network.

5.4.1 Coarse-grained construction

Coarse-grained construction is a very basic technique, adding a complete hidden node at a time.
Ash introduced it with his Dynamic Node Creation algorithm (Ash, 1989), as shown in figure 5.3.
Here, Ω denotes the complete network, that is, structure and weights. E(Ω) is the average error
for all samples using this network.
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1. Initialize network Ω0 with only a bias T , time step t = 1.

2. Generate Ωt = Ωt−1 with an added fully connected hidden node (we set the coef-
ficient weight w = 0) and small random values for the new input weights. Train it
and save its error.

3. If E(Ωt) < E(Ωt−1) for the testset: t = t + 1, return to step 2.

Fig. 5.3: Dynamic node creation

1. Initialize network Ω0 with only a bias T , time step t = 1, current hidden nodes
nh = 0.

2. For u = 1 to nx:

- For h = 1 to nh: Generate Ω3hu = Ωt−1 with an added connection between
hidden node h and feature u, train it and save its error.

- Generate Ω3nh+1u = Ωt−1 with extra hidden node nh+1 connected to feature
u, train it and save its error.

3. Save Ωt as the network with lowest error from step 2.

4. If E(Ωt) < E(Ωt−1) for the testset: nh = nhΩt
, t = t + 1, return to step 2.

5. Prune the network.

Fig. 5.4: Stepwise construction algorithm

The algorithm simply adds new hidden nodes until error criteria have been satisfied; in this
implementation, that means that a (local) minimum error has been reached. It is only recom-
mended for simple problems with relatively few features; otherwise training would still result in
many connections being created making the formula more complex. Otherwise, it would still be
advisable to switch to the constructive algorithm discussed in section 5.4.2.

5.4.2 Fine-grained construction

In case the network has many features and/or the problem is complex (requiring many hidden
nodes), coarse-grained construction is not ideal. Here, it is recommended to build the network
in a more fine-grained way. Several methods have been proposed in the literature, as well as a
taxonomy (Kwok and Yeung, 1997).

A straightforward implementation is shown in figure 5.4. It generates PUNs with one extra
connection in the bottom (power) layer for every feature and hidden node between no connection
exists as yet, as well as models with an extra hidden node which in each model is connected to a
different feature node. As retraining is necessary for every created model, this algorithm does not
scale well; our motivation for creating it was to study how node creation works for PUNs.

Unfortunately, the algorithm performed quite badly, even though we expected it to fare well
except for the high computational overhead. For several problems we have tested, the algorithm
did not converge on a satisfactory solution. Instead, it created dozens of hidden nodes each with
one power connection (thus, one xp factor), while the target formulas only used a small number
of hidden nodes.

As the heuristics behind other constructive algorithms are mainly aimed at improving the
scalability at the cost at as little as possible accuracy, we do not believe they hold much promise
for PUN networks.
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5.5 Existing pruning methods

The most reliable way to create a well-performing network is simply training a completely con-
nected network. The computational complexity of pruning such a network can be prohibitive when
there are many connections (due to many features and/or hidden nodes). It is best if the pruning
algorithm already starts off with a network which is roughly the right size.

Thus, for networks with a small number of features, it is best to simply use an algorithm
adding completely connected hidden nodes. For tasks with many features, for which pruning
the resulting fully connected network is likely to be a practical impossibility, one could use the
constructive algorithm to build a network connection by connection until it is roughly the right
size (most likely still a little larger than necessary). In both cases it would be best to prune the
resulting network afterwards (when pruning does not yield better models one can keep the current
model).

5.5.1 Weight decay

As was mentioned in section 5.1, factors with power weight p = 0 can be immediately discarded.
Factors with powers p ≈ 0 are also likely to be removable without significant decrease in perfor-
mance. The same applies to regular feedforward neural networks; in both cases the output is likely
to have little effect on the shape of the output. Weight decay (Weigend et al., 1991) is based on
this observation, and rates weights according to their distance from zero |pij |.

Although a strong correlation exists, it is not right to simply define the importance of the
factors as this distance, as the shape of the feature over the sample space is also important. To
illustrate this, consider the feature vectors fed to inputs x1 and x2

- f1 : [0.1, 0.2, 0.1, 3.6] for input x1, and

- f2 : [0.9, 1.0, 1.1, 1.0] for input x2,

with respective powers p1 = 1, and p2 = 2. Ordering the factors xp according to their power p
would clearly denote xp2

2 to be twice as important. The error increase due to removing input 1,
E(Ω 63 f1) ≈ 2.2898, is much larger than that for removing feature 2, E(Ω 63 f2) ≈ 0.9018× 10−4.
Despite the squared output of input 2 due to p2 it remains quite monotonic compared to factor 1.

5.5.2 Sensitivity-based pruning (SBP)

Sensitivity-based pruning (Moody and Utans, 1992) ranks features as pruning candidates according
to the error value for networks in which the selected feature has been replaced by its mean. The
saliency, defined as MSEoriginal − MSEpruned, is calculated, after which the feature with the
smallest saliency is removed.

The disadvantage of this method is that it is rather coarse-grained, removing complete feature
nodes. For PUNs it thus removes all xp factors in all terms for the selected p. Also, the top layer
weights are not adjusted to re-balance the hidden units after removing the feature node, while this
may well improve the pruning results.

5.5.3 Using variance

A better way to determine the importance is to sort on the contribution variance of each weight
(Sietsma and Dow, 1991). This method has been developed for standard MLP networks, measuring
the variance of x × w, but can be readily applied to PUNs by measuring xp.

Here, smaller variance indicates a flatter shape of the output of the factor, and thus less
influence on the shape of the network output. The factor with the smallest variance would therefore
be a prime candidate for pruning.

For the cases presented in section 5.5.1, the variances are var(~x1) = 9.02 and var(~x2) = 0.0802,
thus clearly indicating feature node x2 should be pruned. Using variance can also be deceptive. If
we take
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- f1 : [0.1, 0.2, 0.1, 3.6] for input x1 and

- f3 : [1.99, 0.01, 1.99, 0.01] for input x3

and both feature nodes are raised to power p = 1, we obtain var(f1) = 9.02 and var(f3) ≈ 3.9598.
Thus, although feature 1 is considered most important here (and thus the least interesting target
for pruning), the minimum possible MSE when it is removed is E(Ω 63 ~x1) ≈ 0.1226e−2 while
E(Ω 63 ~x3) ≈ 0.647e−1. Here, the shape of factor 3 is the culprit; the small value at the end almost
cancels out the extreme non-monotonicity in factor 1.

5.5.4 Skeletonization

This algorithm (Mozer and Smolensky, 1989) is focused on removing whole units at a time. The
underlying idea behind it is to add a gating variable with a range of 0 for no output to 1 for
complete normal output, and to determine the importance of the unit using an approximation of
the derivative of the error with respect to this variable for values 0 and 1. As this approximation
fluctuated wildly in their experiments, they proposed using an exponentially decaying average of
the derivative.

Since this algorithm prunes complete nodes at a time and we are looking for a pruning method
for single connections, we do not consider it for further analysis. The fact that the approximation
already fluctuates wildly for MLPs makes us doubt it would work satisfactory for the more sensitive
PUNs though.

5.5.5 Optimal Brain Damage (OBD)

This algorithm (Le Cun et al., 1990) requires the network to be trained to a minimum; the gradient
needs to be zero for the algorithm to work. It ranks pruning candidates based on saliency, a
measure of the second-order derivative of the network output error in relation to the weight wi,
defined as

saliency(wi) =
1

2
Hiiw

2
i

A second-order Taylor series is used to approximate the network error, which is only likely to
be valid for reasonably small changes, which setting the weight to zero hardly seems to be. The
error is estimated directly without any retraining being done. Their experiments indicated no
resulting problems though.

Here Hii is approximated by assuming the Hessian to be diagonal, which means that the
principal axes of the network need to be parallel to the weight axes. This is often not the case in
nonlinear optimization, and considered a weakness of OBD. Also, the criterium that the network
should be trained completely to the bottom of a minimum can be difficult to achieve for large
problems.

5.5.6 Optimal Brain Surgeon (OBS)

To avoid the diagonality assumption of the Hessian in the Optimal Brain Damage algorithm, the
Optimal Brain Surgeon (Hassibi and Stork, 1993) algorithm was developed. It works in a similar
fashion but completely calculates the Hessian, and uses a validation set to stop pruning once the
validation error begins to rise.

One of the major drawbacks of this algorithm is the high computational overhead of calculating
the Hessian every time a weight is pruned. Also, like OBD the network needs to be completely at
the bottom of a minimum, while for large problems this is often not easy to achieve in practice.

In our experience this makes the algorithm a lot less usable, as we have often encountered
very long plateaus which appeared to be close to the true minimum (in such cases the prediction
accuracy was already very good and MLP training also could not yield better models). Hence,
training was stopped before a minimum was found. In such cases OBS (and OBD) cannot not be
used.
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5.6 Enhanced Sensitivity-based Pruning (ESP)

5.6.1 Introduction

The pruning algorithms discussed in section 5.5 were all developed for MLPs, and as such none
exploit the specific characteristics of PUNs. Its structure can be used to obtain better estimates
of the importance of a connection. To do so, we have developed the Enhanced Sensitivity-based
Pruning algorithm. It is an enhanced form of sensitivity-based pruning which can prune per single
xp factor instead of per feature (which would remove all xp factors for that specific x from all
hidden nodes), and can yield much better errors estimations for PUNs.

As we have discussed in section 3.2.2, the output of the PUN per hidden node consists of a
coefficient w multiplied with the xp factors for every connected input, thus yielding a wxp1

1 xp2

2 xp3

3

term for a hidden node connected to three inputs. Thus, replacing a xp factor by a constant is
the same as removing the factor and multiplying the w of that node with this constant. We will
only consider pruning of the p weights, as pruning the w weights means pruning a whole hidden
unit at a time. This can still be done in a stepwise fashion by pruning all p weights.

5.6.2 Calculation

Per factor xp we will determine the MSE without it, adjusting the network bias and related
coefficient to minimize the error increase. Since the output of the network is a direct summation
of the bias w0 and hidden node outputs multiplied by their respective coefficients w, the problem
can be rephrased as finding the optimal {w′

i, w
′
0} pair replacing original {wi, w0} pair to obtain

output y closest to target T .
Per term i, per xp factor j, we can determine the coefficients w′

i and w′
0 in the replacement

function

y′ = w′
0 + w′

i

nxi
∏

u=1
u6=j

xpju
mu +

nh
∑

h=1
h6=i

wh

nxh
∏

u=1

xphu
mu (5.1)

for the original PUN as defined in equation 3.1, which minimizes the resulting error E(T − y ′).
If E is the mean square error function, this problem can be solved by using standard statistical
regression to analytically obtain the optimal solution possible without retraining.

We define αm as the remaining activation value of the hidden node containing the pruned
connection for sample m, and αm as the value which the sum of the hidden node and bias should
have to result in the target. This results in the equations

αm =

nxi
∏

u=1
u6=j

xpju
mu

βm = Tm −
nh
∑

h=1
h6=i

wh

nxh
∏

u=1

xphu
mu

which constitute vectors ~α and ~β containing αm and βm for all samples m. We can use these in
the linear regression equation

w′
i~α + w′

0 = ~β

In the special case nxi = 1 (the last feature connection to hidden node i is being removed) this
simplifies to

w′
0 = ~β

As has been mentioned, minimization of such a formula can be done with standard linear
regression techniques (Draper and Smith, 1998). The optimal regression coefficient w′

i can be
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1. Initialize number of left connections n = nh × nx and network Ωn = Ω.

2. Create a list An of the weighted connections pij ∈ Ωn between hidden nodes i and
feature nodes j.

3. For each weight pij in list An, calculate error E(Ω 63pij
), which is the error of network

Ωn without connection pij , in which w′
i and w′

0 are updated using equations (5.2)
and (5.3).

4. Select the pij connection with the smallest error.

5. If Ẽ(Ω 63pij
) ≤ Ẽ(Ωt)

† continue to step 6. Otherwise, first

(a) Retrain the network.

(b) Repeat steps 3 and 4.

(c) If E(Ω 63pij
) < E(Ωn) we have escaped a local minimum. In this case,

i. While n < nh × nx and E(Ω 63pij
) ≤ E(Ωn+1), n = n + 1.

ii. Set the weights of Ωn to those of Ω 63pij
, replacing the value of connections

pruned between these two steps with 0.

iii. Train Ωn and abort this loop to go to step 2.

6. Prune selected connection weight pij . Set An−1 = An 63 pij and n = n − 1. If
n > 1 return to step 3.

† Ẽ being any error function for the model as a whole, as discussed in section 2.4.2.

Fig. 5.5: PUN pruning algorithm

calculated using

w′
i =

{

cov(~α,~β)
var(~α) = (~αT ~β)/nm−αβ

(~αT ~α)/nm−α2 = (~αT ~β)−nmαβ
(~αT ~α)−nmα2 for nxi > 1

inapplicable for nxi = 1
(5.2)

and optimal intercept (bias) w′
0 with

w′
0 =

{

β − w′
iα for nxi > 1

β for nxi = 1
(5.3)

Thus, we can use (5.2) and (5.3) in (5.1) to establish a list of least errors without retraining.
With training these errors could likely still become lower, but they still give a very good measure
of the current importance of the individual features for the network.

When the error has hardly increased, the network already did not appear to use the pruned
factor. Retraining is in such cases less likely to yield a significant performance gain compared to
large error increases. As training costs time, we would like to avoid unnecessary trainings. To
decide whether retraining is necessary, we propose to directly accept the new pruned network if
the increase in error is less than inversely proportional to its new size; thus, if a network is pruned
from 5 to 4 nodes, to skip retraining if the error increase is smaller than 5

4 . Figure 5.5 shows the
pruning algorithm. Briefly put, for every factor the MSE is calculated of networks without it with
optimized coefficients, the network with the smallest resulting MSE is selected and this process is
repeated for all remaining factors.

5.6.3 Example use

To demonstrate the training of PUNs on synthetic data sets, we have chosen to simulate a hydro-
logical formula. To show that the PUN can indeed discover actual natural laws when available in
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MSE Iterations Time (s)
Nodes Min. Avg. SD Avg. SD Avg. SD

1 46.35 98.68 45.69 47.46 20.97 0.83 0.38
2 3.87 × 10−2 70.54 123.75 75.01 43.68 1.57 0.96
3 4.80 × 10−2 80.54 241.48 132.11 74.65 3.23 1.88

Tab. 5.1: Learning statistics for the modified Hochstein formula

the data, an artificial data set was created to model the ’modified Hochstein’ formula (Schulze,
1999), defined as

y = r1Us

(

(

Ac

Aw

)1 1
4

− 1

)

b′ + s1

in which r1 and s1 are constants, and the other factors variables. The formula can thus be written
as a PUN power function with six xp factors,

s1 + r1U
1
s A

1 1
4

c A
−1 1

4
w b′1 − r1U

1
s b′1

in which the bias would learn s1, and the coefficient weights r1.
For training, we used tiny training rounds of 10 epochs, resetting the weights when a round

yielded less than 1% MSE decrease. The tests were performed on a 700Mhz Athlon machine, which
is a quite modest computer nowadays but still returned the correct answer within one second.

The setup of the test was comparable to the synthetic test of Saito and Nakano, except that
we have raised the bar for the network in a couple of ways. We used a data set with 15 (instead
of 9 as used by Saito and Nakano) features, 4 of which are actually used in the formula, while the
remaining features contained random noise. The other 11 For the feature value distribution, we
opted for a normal distribution instead of the uniform distribution apparently used in Saito and
Nakano’s work, as we believe parameter distributions in real datasets are unlikely to be uniform
and more likely to have a normal distribution.

Also, we added noise to the targets with standard deviation 0.2 instead of 0.1. The sample
size remained 200. To select the number of hidden nodes, we have chosen to extract 20% of these
for a test set, instead of training on all and using the MDL criterium.

For data generation, we used constants r1 = 3 and s1 = 2. The results from 100 trials for 1 to 3
hidden units are summarized in table 5.1. The result for the function with smallest generalization
error (two hidden nodes) has 30 xp factors, so the function should definitely be cleared up.

The abbreviation of the function can be simplified by rounding off after the second digit and
removing weights with resulting value zero (Oost et al., 2002), resulting in

y = 2.06 + 3.06U1.00
s A1.25

c A−1.25
w b′1.00 − 3.07U0.99

s A0.01
c A−0.01

w b′1.00

which is very close to the true formula. As we explained previously, this is not a mathematically
sound way to reduce its complexity, and indeed causes two (albeit small) invalid terms here.

Using the pruning algorithm outlined in chapter 5.6, we obtained the pruning history shown
in figure 5.6. The red line indicates the training error, the green line the test error. As you can
see, the training and generalization error approach eachother until all but six nodes are pruned
away (which are precisely the six used in the network), after which both show a sharp increase in
error.

Thus, we obtain the formula

2.06 + 3.06U1.00
s A1.25

c A−1.25
w b′1.00 − 3.07U0.99

s b′1.00

which is indeed practically identical to the original formula. For the test set of both the ‘sloppy’
and precise pruning method R2 ≈ 1.00, indicating an approximately perfect fit. Further training
using this minimal network structure yields the ‘perfect’ formula

2.00 + 3.00U1.00
s A1.25

c A−1.25
w b′1.00 − 3.00U1.00

s b′1.00
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Fig. 5.6: Pruning history for Hochstein dataset

5.7 Conclusion

In this chapter we have discussed the necessity of limiting the network size to yield understandable
formulas. We have presented the arguments for both the construction and pruning methods made
for this, and presented existing algorithms for both. Unfortunately, most of these algorithms
were specifically created for MLPs. Experiments were done, in which the tested constructive
algorithms yielded less than satisfactory results. Pruning algorithms were also discussed, and a new
algorithm specifically designed for pruning single weights from PUNs called Enhanced Sensitivity-
based Pruning (ESP) introduced. ESP was tested on an artificial data set with many irrelevant
features and noise, with very good results.



6. PRACTICAL USE AND EXPERIMENTS

6.1 Introduction

Now that we have completed discussing the techniques underlying our equation discovery system,
we will present the complete framework of selected techniques from chapters 3 to 5 being part of
it. We will then use our method on real data sets. The formulas discovered by training the PUN
and progressively pruning the trained network will finally be analyzed and presented to domain
experts,to study the capability of the algorithm to reveal unknown relationships hidden in the
data.

6.2 Training procedure

1. Conversion of booleans
Any boolean input values should be mapped to any two different, positive real values, as
described in §4.3.

2. Scaling
The inputs should be scaled to prevent high-valued inputs from gaining unfair advantage
compared to others. Full normalization is not possible since the extracted formulas would
then become a lot less comprehensible. We consider scaling to mean 1 the soundest way of
scaling. This is described in §4.2.

3. Training initialization
Define a maximum number of hidden units used v, and total number of times each network
size should be initialized and trained j. Create vector A of size v containing the validation
errors for the best currently found networks, in which each element is initialized as ∞. Also
create vector B of equal size, containing these best found networks, initialized using ∅. Set
current number of nodes n = 1.

4. Network initialization
Initialize the current network Ωn, which has n hidden nodes. The weights should be ini-
tialized to values between the minimal and maximal expected power. If no knowledge is
available, we suggest using small values, for example uniform random samples in domain
[-1. . . 1].

5. Optimization
Train the network using Levenberg-Marquardt. Here, the following methodology can be
used:

(a) Training
Train using a predefined number of epochs, large enough to consider further improve-
ment unlikely if no real progress is being made during the training (we have used 500
epochs per training).

(b) Breadth-first (optional)
Select the best out of a number of brief trainings (say ten trainings each with one tenth
of the length of a normal training), using the one with the best validation error for the
next step (See section 4.5).
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(c) Repeat while progressing
Return to step 5a to continue training if the last round yielded a training error decrease
larger than a certain percentage (we have used 1%).

6. Performance comparison
Calculate the validation error Ev using a validation set or other criterium discussed in
section 2.4.3.

If Ev < An: Set An = Ev and Bn = Ωn.

If i < v: Create new network Ωn+1 with identical weights as Ωn, and one extra hidden
node with hidden weight 0 and input weights initialized as in step 4. Go to step 7.

else: Continue with step 8.

Else: Increase i. If i < v, take step 4 and continue to step 7. Else, go to step 8.

7. Perform another training (optional)
Decrease j. If j > 0, return to step 5.

8. Pruning (optional)
Select network from B with the minimum A value, and begin the pruning procedure described
in chapter 5.6.

Using this method, we combine the advantage of reusing knowledge about potential successful
weight configurations gained by training smaller networks with the wider search. To summarize,
data preprocessing is done in steps 1 and 2; the PUN is initialized in steps 3 and 4, trained in step 5
and compared with previous trained PUNs in step 6, after which the process may be repeated
with step 7. Finally, the best found PUN is optionally pruned in step 8.

6.2.1 Preliminary experiment: Groynes dataset

As a first case we have used the groynes data set, which according to the domain knowledge should
have embedded the modified Hochstein formula discussed in section 5.6.3. Unfortunately this data
set is of questionable quality containing few samples and many unreliable measurements. Despite
numerous attempts it appears impossible to create a MLP with low MSE and high R2 for it.

The PUN network trained on this data set with each feature scaled to its mean very consistently
found the same solutions, as illustrated by the MSE distribution in figure 4.1, indicating few (if
any) local minima. The quality of the resulting predictor was equivalent to that of the MLP
networks. The extracted formulas did not represent the presumed modified Hochstein formula.
Since the data set the formulas can only be considered representative of the system when the error
is low, no conclusion can be drawn from this result.

6.3 Experiment: Chloride dataset

6.3.1 Background

Recently, the decision has been made to change the regulation of the Haringvliet sluices; starting
January first 2005, a small opening will be created, which will remain for a period of five years.
This will not be a permanent situation.

Before this change can occur, it is important that the current situation is well-understood and
that a clear monitoring plan has been defined. This plan will track the results of this policy change
for the Northern Delta Basin, which are important in order to be able to reliable compensate
affected parties.

A specific modelling task requested by the Rijkswaterstaat RIZA institute coordinating this
study, was the salt distributions (amounts of chloride) near Alblasserdam (Witteveen+Bos, 2001).
This can be used to determine the water flow, as saltwater from the North Sea has higher chloride
levels than freshwater from the Rhine1. Because the complex interactions in the system proved very

1 Then again, Rhine freshwater may be considered a contradictio in terminis.
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Fig. 6.1: Chloride data sampling locations

difficult to model using regular statistical methods, MLP neural networks were used to analyze the
system, with good results. As explained previously, it is very hard to determine causal relationships
between the inputs and outputs of neural networks, while this would certainly be of value for insight
in the natural system.
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Variable Description Unit

ClH,t−x Chloride levels at Hoek van Holland, x = {3, 4} hours ago mg/l
HH,t−x Water level at Hoek van Holland, x = {2, 3, 4} hours ago m NAP
HM,t Current water level at Moerdijk m NAP
HL max(HH) − min(HM ) for current tide m
ClL,t−x Chloride level at Lobith, x = {47, 48, 49} hours ago mg/l
QW,t−x Run-off at Hagestein, x = {12, 34} hours ago m3/s
ClE,t−48 Chloride level at Eijsden, 48 hours ago mg/l
WsH,t Current wind speed at Hoek van Holland m/s
dHV S Current state of Haringvliet sluice, open (1) or closed (0) boolean

Tab. 6.1: Predictor variables for the Chloride data set
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Fig. 6.2: Chloride target distribution

6.3.2 Approach

Figure 6.1 shows the sampling locations for data points throughout the Netherlands. The inputs
for the model are shown in table 6.1, and a histogram of the target values in figure 6.2. The
histogram clearly shows the irregular distribution of the chloride level, with extremely rare huge
peaks.

Some adjustments needed to be made to make the data suitable for training PUNs. First, we
converted the boolean to real values as described in section 4.3. Secondly, some data with unit
m NAP were non-positive and needed to be adapted for PUN use2. One possibility would be to
convert such values x to values exp(x), another to use a different reference point than NAP to
obtain strictly positive data. Following expert advise the latter approach was chosen. We used
the approach outlined in chapter 5.6, trained networks of increasing sizes and pruning them factor
by factor.

6.3.3 Results

In figure 6.3 the pruning log is shown for the best networks found with respectively 2, 3 and 4
hidden nodes. As there were fifteen inputs, the total number of factors for unpruned PUNs with
2, 3 and 4 nodes were 30, 45 respectively 60. We show the MSE as well as the adjusted R2. In
order to obtain a clearer view of the error activity, only the part of the graph where the training
or test error actually changes is shown; left of these graphs the errors stay practically identical to

2 NAP is a Dutch unit for water level relative to a reference point called Nieuw Amsterdams Peil (New Amsterdam
Level).
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Fig. 6.3: Chloride pruning errors

the left border of each graph. The test error is represented as a +, the train error as a × and the
error of the total data set as ◦.

An interesting result was that during pruning all of the different-sized networks converged
to practically identical formulas, which we consider a verification of the robustness of our prun-
ing methodology. The error levels follow a nearly identical path for the last couple of hidden
nodes. Where they converge, at around 5 factors, the formulas from these networks are practically
identical, and the generalization error the lowest.

Table 6.2 shows the formulas obtained in the last five pruning steps, for networks initialized
with two, three and four hidden nodes. The MSE is given, as well as the adjusted R2 to give
a rough indication of the relative model qualities. In this section, I will refer to the resulting
equations as n(m), n being the initial number of hidden nodes and m the number of xp steps left.

6.3.4 Interpretation

As you can see, the pruned networks all converge to a near-identical solution; the last three steps
are completely identical with the slight exception of ClL,t−47 instead of ClL,t−49 being chosen for
the 4-node PUN.

Note that although formulas 2(3) and 3(3) contain identical inputs, the resulting weights are
different, resulting in a better MSE fit for equation 2(3). The network may have become trapped
in a local minimum or have found a very long plateau; still, in all three cases the pruning algorithm
consistently chose to prune HM,t0.
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# MSE aR2 Formula (2-node PUN)

5 242.36 0.81 44.01 + 0.50 Cl1.08
L,t−49 + 1.44 × 1081 Q−30.32

W,t−12 H15.68
M,t0 H2.81

H,t−3 H−2.30
H,t−2

4 305.05 0.75 46.87 + 0.40 Cl1.12
L,t−49 + 2.20 × 10106 Q−38.63

W,t−12 H19.86
M,t0 H3.0

H,t−3

3 272.91 0.79 46.55 + 0.40 Cl1.12
L,t−49 + 3.15 × 10107 Q−38.63

W,t−12 H19.86
M,t0

2 392.40 0.68 46.41 + 0.41 Cl1.12
L,t−49 + 3.73 × 10116 Q−39.94

W,t−12

1 397.95 0.67 47.26 + 0.41 Cl1.12
L,t−49

# MSE aR2 Formula (3-node PUN)

5 302.53 0.73−4.04 × 106 + 2.57 × 10−5 Cl2.82
L,t−49 + 9.27 × 10112 Q−41.10

W,t−12 H21.16
M,t0 H3.12

H,t−3 + 4.04 × 106 Q−7.01×10−6

W,t−34

4 274.30 0.76−4.04 × 106 + 2.70 × 10−5 Cl2.81
L,t−49 + 1.51 × 10114 Q−41.10

W,t−12 H21.16
M,t0 + 4.04 × 106 Q−7.01×10−6

W,t−34

3 368.53 0.79 114.38 + 2.42 × 10−5 Cl2.83
L,t−49 + 2.91 × 10117 Q−42.94

W,t−12 H27.63
M,t0

2 392.40 0.68 46.41 + 0.41 Cl1.12
L,t−49 + 3.73 × 10116 Q−39.94

W,t−12

1 397.95 0.67 47.26 + 0.41 Cl1.12
L,t−49

# MSE aR2 Formula (4-node PUN)

5 255.20 0.80−1.06 × 106 + 1.06 × 106 Cl6.54×10−5

L,t−47 + 4.76 × 10117 Q−43.28
W,t−12 H29.66

M,t0 + 1.89 × 10−11 Cl5.36
L,t−49 + 9.16 × 10−57 Cl13.58

H,t−3

4 291.17 0.77−1.06 × 106 + 1.06 × 106 Cl6.54×10−5

L,t−47 + 4.76 × 10117 Q−43.28
W,t−12 H29.66

M,t0 + 1.89 × 10−11 Cl5.36
L,t−49

3 323.99 0.75−1.06 × 106 + 1.06 × 106 Cl6.54×10−5

L,t−47 + 4.76 × 10117 Q−43.28
W,t−12 H29.66

M,t0

2 456.96 0.65−1.06 × 106 + 1.06 × 106 Cl8.79×10−5

L,t−47 + 2.81 × 10117 Q−40.25
W,t−12

1 459.86 0.64−1.06 × 106 + 1.06 × 106 Cl8.79×10−5

L,t−47

Tab. 6.2: Chloride formulas
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Fig. 6.4: Targets vs. output three- (left) and five- (right) parameter model

The functions 5 have a very small power for ClL,t−47, resulting in a near-constant output very
slightly increasing from 1 with input level. The large coefficient magnifies these values while the
bias translates them back to the correct output range. The final result is an activation curve for
input to output which is roughly linear but slightly boosts mid-domain input levels. This yields
less performance than time frame t−49 as used in the other formulas. The decision of the pruning
algorithm to keep time frame t − 47 instead of t − 49 may have been caused by a local minimum
in the pruning process or may have yielded superior results in more complex formulas.

Formula 2(3) and 2(5) are the most interesting formulas, since they have the lowest general-
ization errors. They are plotted in figure 6.4. The error of 2(5) is lower than that of 2(3), but the
formula is less easy to understand.

In formula 2(3) the predicted chloride level is most strongly dependent on the upstream chloride
level at the German border, as can be expected. The power of 1.12 indicates that peaks of ClL,t−49

have become extra high relative to lower values of this variable.

Another clearly existing but less obvious relationship is run-off at Hagestein 12 hours QW,t−12

ago and current water level at Moerdijk HM,t0. A combination of very low run-off at Hagestein
followed 12 hours later by relatively high water levels at Moerdijk yields extra high chloride peaks
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at Alblasserdam.
As has been mentioned before, water level does not have a physically logical unit; it relies on

an arbitrary reference point. As such, the resulting equation in itself is not the ‘true’ underlying
formula of the system, but it gives a clear indication of the existing relationships between the
inputs, which can be used to study other formula hypotheses.

The high powers and low coefficients result in a mostly flat line, with high values only occurring
at very low run-off and very high water level. This can be trivially shown by rewriting the term

H20
M,t0

Q40
W,t−12

to

(

HM,t0

Q2
W,t−12

)20

resulting in a more intuitive formula; a HM,t0/Q
2
W,t−12 relationship extremely exponentially bent.

After scaling using the extremely small coefficient, it is approximately zero for most situations
and returns high values in some extreme cases.

The RIZA institute considered the HL feature likely to be of particular importance, because it
is considered a measure of salt penetration. Surprisingly, this feature did not appear in the found
formulas. We turned to domain experts from Witteveen+Bos for their opinion on this subject,
which considered it a very interesting result. The network may have found a relation able to
more precisely predict chloride levels than HL. HL is not as adaptive as it remains a static value
between tide changes, hence it cannot explain the (potentially strong) chloride fluctuations within
a tide. Further study of the found equation can thus yield a better insight in the relationships of
the features.

In formula 2(5), the ratio of the powers of QW,t−12 : HM,t0 is again −2 : 1. This is in line with
our above-mentioned assumption of a negated quadratic relationship between these two inputs.
The term now also includes the factors H2.81

H,t−3H
−2.30
H,t−2, which is interesting as HH and HM , now

both present in the formula, are the two features determining HL.

6.4 Conclusion

The performance of our proposed equation discovery system was studied for two real data sets.
One of these data sets was of low quality containing few samples and large measurement errors.
Here, the error of the test set prediction for the trained PUN was practically identical to that
found using an MLP, and too high to consider the equation found reliable. The other data set
was of high quality, with many samples and small measurement errors. Here, the PUN test set
prediction error was again on par with the MLP error, and low enough to warrant further study.

Pruning PUNs with different amounts of hidden nodes trained on this data set resulted in
convergence to near-identical formulas for the last steps in the pruning process, indicating the
consistency of the pruning algorithm. According to domain experts the extracted formulas indi-
cated sensible relationships, and an interesting potential replacement function for a currently used
parameter was found.
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7. CONCLUSION

7.1 Summary

In this thesis, we have studied different techniques for gaining insight in large data sets with
complex interactions. We have given an overview of equation discovery and rule extraction, as
well as the models rule extraction is dependent on, neural networks, and the most common neural
network configuration, multi-layer perceptrons (MLPs) . Both techniques were found to have
desirable properties, but neither provides a clear optimal solution.

We focused on RF5, which can be described both as equation discovery and rule extraction
system, and yields multivariate power functions. Its three elements product unit networks (PUNs),
the BPQ training algorithm and MDL hidden layer size selection were described. The technique
was found to be very promising, but some limitations would need to be addressed.

Several improvements and additions were suggested. Normalization by scaling to an attribute’s
mean was found to work well, while translation of attributes was proved to be unhelpful. PUNs
were shown to be able to separate different functions based on mapped boolean attributes. An-
alytical weight initialization was studied but did not yield good results. A breadth-first search
strategy was proposed which strongly decreased training time. The Levenberg-Marquardt training
algorithm was proposed instead of BPQ, and use of a validation set instead of MDL for hidden
node layer size selection.

Network size optimization techniques were studied which might strongly increase formula un-
derstandability. Tests on constructive algorithms did not yield good results. Pruning algorithms
were discussed but none considered good candidates for PUN pruning. A new pruning algorithm
(ESP) was introduced and tested on artificial data, with very good results.

A combination of techniques was proposed for obtaining understandable rules from PUNs. Two
real data sets were analyzed using this system; one small data set with unreliable measurements,
and one large data set of higher quality. Both yielded predictors of similar quality as MLPs. The
first data set quality was insufficient for obtaining reliable rules, the latter did yield good predictors
for differently sized networks. When pruned using our Enhanced Sensitivity-based Pruning algo-
rithm these network consistently returned near-identical formulas. According to domain experts
the extracted formulas indicated sensible relationships, and an interesting replacement function
which potentially amends a currently used parameter was found.

7.2 Future work

7.2.1 Constructive algorithms

We feel more study is warranted on the subject of constructive algorithms (particularly in com-
bination with pruning algorithms). Although we have done a number of simulations for simple
constructive algorithms, we consider more complex construction algorithms likely to be more
fruitful than the dissatisfactory construction results from obtained so far.

7.2.2 Alternative weight initializations

While other researchers have proposed to use high-valued initializations for networks with product
units (Leerink et al., 1995), we consider small initializations to be preferable as these are likely
closer to the real formula to be found than formulas with many high powers. We have done some
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simulations to verify these intuitions which affirmed it, but more extensive tests are recommended
on this subject.

7.2.3 Extended unpruning capabilities

Currently, unpruning is done when local minima have been overcome up to the last prune step
with higher error. It may be interesting to re-add previously pruned connections to the networks
found in the last few pruning steps, particularly the ones which caused a relatively large error
increase when pruned. We regard this particularly important when local minima have been found
during the pruning process.

7.2.4 Model selection methods

The described pruning algorithm can use any model selection method. When the test set /
validation set approach we recommend is not viable due to limited samples, we consider a more
extensive test of different model selection methods and the threshold used to require retraining a
likely direction for provide valuable insights.

7.2.5 Application of techniques on RF6

RF6 (Nakano and Saito, 1999; Saito and Nakano, 2000) is the successor of RF5 for nominal inputs.
We have not used it in this thesis as this extra feature has not been necessary for our purposes
while it does increase the network complexity. In our understanding most of our techniques will
also be applicable to RF6 though.

7.3 Conclusion

In conclusion, we have a system for extracting insightful relations capable of handling noisy data
with complex attribute interactions. The motivation behind it is opposite to the more common
‘end of pipe’ reasoning commencing with default techniques taken for granted and converting their
results towards the solution; instead, the focus has been on the solution, and which (possibly new)
techniques are best suited for providing it.

Using this inverse strategy we can open the neural network ‘black box’ avoiding the problems
we would otherwise face, and instead obtain valuable insight into modelled systems. We have
shown this technique works, and are confident it has a bright future ahead of it.



A. RULE EXTRACTION ALGORITHMS

Table A.1 lists the properties of the rule extraction algorithms as reported in the different rule
extraction surveys. Readers interested in algorithms are referred to the survey(s) describing the
algorithm as well as the original publication. The source survey keys are listed in table A.2, and
the keys describing the properties of the algorithms in table A.3. Unfortunately only limited data
is available about many algorithms; missing data are represented with a question mark.
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Subset; KTabef 1988+ Da Da − . . . +a

− : 2nx bd − . . . +a − . . . +ad (Saito and Nakano, 1988;
Fu, 1991; Towell and
Shavlik, 1993; Fu, 1994)

RuleNetabde 1991 Da Bsa −a ±a +a (McMillan et al., 1991;
McMillan et al., 1992)

Untitledb 1993 Db Kb ? ? ? (Tresp et al., 1993)
DFA From Re-
current ANNa

1993 Da Ra +a ±a −a (Giles and Omlin, 1993)

VIAabde 1993 Pa Ca −a −a −a (Thrun, 1993)
KBANN/M-of-
Nabdef

1993 Da DaKd −a +a +a (Towell and Shavlik, 1993)

BRAINNEade 1994 Pxb NTb ? ? ? (Sestito and Dillon, 1994)
DEDECabde 1994 Ea Da ? +a (Tickle et al., 1994)
REALabde 1994 Ea Da ±a +a ? (Craven and Shavlik,

1994)
RULENEGabde 1994 Pa Ba +: nm +

nx...a
+a −a (Pop et al., 1994)

RULEXabde 1994 Da Ca ++a +a +a (Andrews and Geva, 1994)
Untitleda 1995 Da Ba −a +a +a (Sestiano and Liu, 1995)
NNESd 1995 ? ? ? −−d −d (Medina and Pratt, 1995)
BIO-RE 1996 Pa Ba − : 2nx a +a −a (Taha and Ghosh, 1996)
Comboc 1996 Dc Bc − : 2nx c +c +c (Krishnan, 1996)
Full-REa 1996 Da Ca ±a +a +a (Taha and Ghosh, 1996)
Interval Analy-
sis

1996 Pc Cc ? +c −c (Filer et al., 1996)

Partial-REa 1996 Da Da +a ±a −a (Taha and Ghosh, 1996)
Relevance
Informationa

1996 Pa Da +a ? −a (Johnson et al., 1996)

RF5c 1996 Dc Nc +: nh +
nx

c
+c +c (Saito and Nakano, 1996)
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Successive
Regularizatione

1996 De ? +z ? ? (Ishikawa, 1996; Ishikawa,
2000)

Trepance 1996 Pc Cc +c:
nm

2nx
3v2

+c +c (Craven, 1996)

Untitledc 1997 Dc BRc ? +c ? (Schellhammer et al.,
1998)

NeuroLineara 1997 Da Ca −a +a +a (Setiono and Liu, 1997)
RXc 1997 Dc 1HIc ? +c ? (Lu et al., 1996; Setiono,

1997)
Untitleda 1998 Da RIa −a +a +a (Neumann, 1998b)
Untitledf 1998 Ef ? ? ? −f (d’Avila Garcez et al.,

1998; d’Avila Garcez
et al., 2001)

ANN-DTe 1999 Pe ? ? ? ? (Schmitz et al., 1999)
M-of-N3e 2000 De Be ? ? ? (Setiono, 2000)
Untitled 2000 Dz Cz +z ? ? (Tsukimoto, 2000)
GLARE 1999 Dz B ? ? ? (Gupta et al., 1999)
Induce-Net 1999 Dz D +z ? ? (Fu, 1999)

Tab. A.1: Rule extraction methods meta-analysis

Note Reference

a (Neumann, 1998a)
b (Andrews et al., 1995)
c (Tickle et al., 1998)
d (Boz, 1995)
e (Duch, 2000)
f (Darbari, 2001)
z Claim by author

Tab. A.2: References

Key Description

Type
D Decompositional
E Eclectic
P Pedagogical
Px Pedagogical but extending input layer

Restrictions
B Boolean inputs
C Continuous inputs
D Discrete inputs
K Knowledge-based
N Custom network type
R Recurrent networks
T Structural modification/retraining

− . . . + Not good. . . good

Tab. A.3: Property legend
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Attribute: See feature.

Backpropagation: The most well-known neural network optimization technique, in which steps of
fixed length in the direction of the negated gradient are taken.

Data mining: The term data mining is somewhat overloaded. It sometimes refers to the whole
process of knowledge discovery and sometimes to the specific machine learning phase. [ML:]

Definite (positive- or negative-): If the eigenvalues of the Hessian H(w) are positive definite (strictly
positive, so not including zero), w is a strong minimum; negative definite means strictly neg-
ative eigenvalues, making w a strong maximum.

Delta rule: See backpropagation.

Epoch: See iteration.

Equation discovery: The area of machine learning that develops methods for automated discovery
of quantitative laws, expressed in the form of equations, in collections of measured data
(Langley et al., 1987).

Factor: Small part of a formula. For PUNs, this thesis reserves the term for an attribute raised to
the power of an attribute weight; xp.

Feature: Independent variable, fed into an input of a neural network. Used to predict a dependent
variable (output), usually along with other features.

Fully connected: In this thesis strictly used for networks with all normal connections (i.e., all
connections between neighboring layers). In the literature sometimes used for networks also
including non-standard connections between non-neighboring layers.

Generalization error: Average error of the network for unseen cases; measures how reliable the
model is when used on data outside the training set.

Generalized delta rule: See backpropagation.

Global (minimum): Neural network weight configuration having the lowest possible error for the
trained data set.

Gradient g: Vector containing the derivatives of the error function for every weight in the network.

Hessian (matrix): nw × nw square matrix containing the second-order derivatives of the network
error E for weight set w in relation to its individual weights;

Hij =
∂2E(w)

∂wi∂wj

for continuous error functions this matrix is symmetric, since ∂wi∂wj ≡ ∂wj∂wi.

Hidden layer: Group of hidden nodes.

Hidden (neuron/node/unit): Neuron which is not an output but sends its output value to another
neuron.



56 B. Glossary

Indefinite: If the eigenvalues of the Hessian H(w) are indefinite, w is not a minimum or a maximum.

Input: Unit in a neural network receiving data from a specific feature from the data set.

Iteration: Single optimization step.

Jacobian (matrix): ny ×nw matrix containing the derivatives of the network outputs in relation to
the weights (in the context of neural networks).

KDD: Knowledge Discovery in Databases. First defined as the non-trivial extraction of implicit,
previously unknown and potentially useful information in data (Frawley and Batheus, 1991),
later redefined as the non-trivial process of identifying valid, potentially useful and ultimately
understandable patterns in data (Fayyad et al., 1996).

Learning rate: See step length.

Line search: Used in numerical optimization to determine the step length along the search direction
to minimize the error.

Local (minimum): Neural network error minimum which is not the global minimum.

Maximum: Location in the weight space from which it is not possible to move to a location with
higher error without first decreasing it (note that we not usually would like to increase the
error).

Minimum: Location in the weight space from which it is not possible to move to a location with
lower error without first increasing it.

MLP: See Multi-Layer Perceptron.

Multi-Layer Perceptron: Most commonly used neural network type. Discussed in chapter 2.3.

Network: See neural network.

Neural network: Numerical optimization model with many different possible configurations. Unless
specified otherwise, this thesis reserves this term for Multi-Layer Perceptrons.

Neuron: See node.

Node: Elementary element of a neural network, combining (usually) multiple attribute values to
form one output value.

Off-line (training): Numerical optimization in which the weights are updated per batch instead of
per training sample.

On-line (training): Numerical optimization in which the weights are updated per training sample
instead of per batch.

Output: Dependent variable; value generated by the network based on its attribute values, which
should ideally be identical to its target for those attribute values.

Overfitting: An overfitting network’s function is more complex than the actual function of the real
system; it also partly models the noise in the training data making it perform worse on
unseen data.

Rule extraction: The process of generating (generally humanly comprehensible) rules approximat-
ing the behavior of a network.

Search direction: See step direction.
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Semi-definite (positive- or negative-): If the eigenvalues of the Hessian H(w) are positive semi-
definite (non-negative, including zero), w is a minimum; negative definite means strictly
negative eigenvalues, making w a maximum.

Stationary point: Point in the weight space where the gradient is zero.

Steepest descent: Optimization technique identical to backpropagation, except for its use of a line
search for its step length instead of a fixed step length.

Step s: Change in the network weight configuration taken to decrease the network error; step
length λ multiplied with step direction d.

Step direction d: Direction in which the optimization algorithm travels to attempt minimizing the
error. For backpropagation this is always the negated gradient.

Step length λ: Distance the optimization algorithm travels over the error landscape.

Strong (minimum/maximum): Minimum or maximum not surrounded by weight space locations
with the same error.

Supervised learning: Neural network learning method in which the network should learn to give a
predefined output per input sample.

Target: Value a network is supposed to return given a certain set of inputs.

Term: Part of a formula limited by summation or substraction operators. For PUNs, this amounts
to the output of a hidden node multiplied by its output weight (coefficient); an example for
a hidden node with three inputs is wxp1

1 xp2

2 xp3

3 .

Test set: A set of examples used only to assess the performance (generalization) of a fully-specified
classifier (Ripley, 1996).

Training rate: See step length.

Training set: A set of examples used for learning, that is to fit the parameters (i.e., weights) of the
classifier (Ripley, 1996).

Unit: See neuron.

Unsupervised learning: Neural network learning method in which the network should learn to find
relationships in data without being told which output it should generate for each specific
input sample.

Validation set: A set of examples used to tune the architecture of a classifier, for example to choose
the number of hidden units in a neural network (Ripley, 1996).

Weak (minimum/maximum): Minimum or maximum connected to weight space locations with the
same error.

Weight: Parameter of the neural network.
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