On the Use of Learning Bayesian Networks
to Analyze Gene Expression Data:
Classification and Gene Network

Reconstruction

Emiel Ver Loren van Themaat

MASTER THESIS

Universty of Amsterdam

Artificial Intelligence

June 2005

Supervisors:
Frans Voorbraak Ben Krose Han Rauwerda

E il‘“‘e"igen"‘ autonomous sysfems I |‘m ersiteit van -\|\|sl._-x'd;’u|’|

ii

Pieter Emiel Ver Loren van Themaat
Email: P.E.VerLorenvanThemaat@amc.uva.nl
Artificial Intelligence, Multimodal Intelligent Systems
Informatics Institute, Faculty of Science
University of Amsterdam
Ter verkrijging van de graad van Master of Science

iii

v

Abstract

Recent technological developments in molecular biology have made it possi-
ble to measure the expression level of thousands of genes simultaneously.
These measurements provide a “snapshot” of what is happening at the
level of genes within a cell. The massive amount of these datasets make
automated analysis nessecary. It is becoming evident that statistical and
computational issues will largely determine what scientific questions can be
answered.

This thesis deals with the application of a probabilistic framework called
learning Bayesian networks for the analysis of gene expression datasets.
Bayesian networks have already proven to be useful in this field. Our ap-
proach shows the usability of implementations of standard learning Bayesian
network algorithms to analyze microarray data. We use gene expression
measurements made on patients with mutiple myeloma and breast cancer.

Our setup results in answers about the kind of biological information
that can be found with such experiments, and which algorithms should be
used to learn Bayesian networks. We will show that Bayesian networks can
achieve good classification accuracies and can find interesting subsets of dis-
ease related genes. Problems we encountered are the difficulties to find one
network that best represents the data, estimating the classification accura-
cies and finding optimal settings of the parameters used by the algorithins.

Contents

Abstract

1 Introduction
1.1 Motivation
1.2 Biological introductiono
1.2.1 Centraldogma
1.2.2 Microarray technology
1.3 Analyzing microarray data and using Bayesian networks . . .
1.4 Goals and thesis overview,

2 Scientific background
2.1 Machine learning methods to analyze microarray data
2.1.1 Supervised classification methods
2.1.2 Unsupervised cluster methods
2.2 Genenetworks L o
2.3 Learning Bayesian networks oL
2.3.1 Bayesian network classifiers
2.3.2 General Bayesian networks
24 Concluding remarks o oL

3 Learning Bayesian networks
3.1 Bayesian networks 0 L.
3.2 Learning Bayesian networks
3.3 Methods used in our research
3.3.1 Naive Bayesian classifier
3.3.2 CTanclassifier
3.3.3 Markov Blanket classifier
3.3.4 The CBL algorithm
3.3.5 The K2 algorithm
3.4 Summary

4 Microarray datasets: Experiments and data pre-processing
4.1 Multiple myeloma
4.1.1 The microarray data and backgrounds

vi

10
12
14
16
16
18
19

21
21
25
26
27
28
29
30
31
32

CONTENTS vii
4.1.2 A study on data mining the multiple myeloma data 34

4.2 Breast cancer and prognosis of metastases 36
4.2.1 The microarray data and backgrounds 36

4.2.2 Predicting the clinical outcome 36

4.3 Pre-processing thedata 38
4.3.1 Gene selection: Information gain 38

4.3.2 Gene selection: Correlation 40

4.3.3 Discretization 42

5 Results and discussion 43
5.1 Results on the multiple myeloma dataset 43
5.1.1 Classification networks 44

5.1.2 General networks L. 46

5.2 Results on the breast cancer dataset 50
5.2.1 Classification networks 50

5.2.2 General networks L. 53

5.3 Summary and comparison of the results o7

6 Conclusions and future work 61
6.1 Conclusions 61
6.1.1 Classification networks 62

6.1.2 General networks L. 64

6.2 Futurework 65
Bibliography 73

Chapter 1

Introduction

1.1 Motivation

Ever since the discovery of the cell, the study of the function, components,
and interaction of cells has been a major part of biology. Genes are among
the most important components of a cell, and the last few years a revolu-
tion has taken place in monitoring the behavior of genes in a cell. Tradi-
tional time-consuming experiments are automated in miniature experiments
carried out by robots. Thanks to these so-called “high-throughput exper-
iments” experimental scientists can perform thousands of experiments at
once or at an unprecedented rate. For example, a molecular biologist can
measure the expression of all the known genes in yeast (several thousand)
simultaneously by using the microarray technique. Massive amounts of data
are available.

The experimental scientists have to analyze the experimental data. A
molecular biologist may ask which genes are important for certain cell func-
tions and in what way the genes are related to each other. These kinds of
questions require a lot more than statistical tests like a t-test, for exam-
ple [Gla01]. The development of statistical and computational procedures
to address the scientific questions asked by these experimenters is develop-
ing rapidly. Also it is becoming evident that statistical and computational
issues will as much as experimental methods or technologies determine what
scientific questions can be answered and what breakthroughs will be made.

This thesis applies a probabilistic framework called learning Bayesian
networks for the analysis of DNA microarray data. Bayesian networks have
been developed within artificial intelligence to construct expert systems.
In the 1980s Pearl [Pea88] showed that with Bayesian networks, experts
can construct networks which are able to give advice, by reasoning with
probabilities, on the basis of observations from the real world. In that time
the networks were constructed by experts.

Techniques to automatically learn Bayesian networks from a dataset

1.2 Biological introduction 2

have improved enormously over the past decade. Learning Bayesian net-
works have been applied in all different kinds of fields including weather
forecasting, image processing, and medical systems [Neo04]. Learning net-
works with microarray data have several potential advantages for the analy-
sis of experimental results, including a graphical representation of the result.
Some studies have already proven that robust and interesting networks can
be learned from microarray datasets [FLNP00, DWFS99].

Section 1.2 provides a short introduction into the biological background
of microarrays. In Section 1.3 the analysis of microarrays is shortly discussed
and in Section 1.4 the layout of this thesis is presented.

1.2 Biological introduction

Basic knowledge about biology is needed to understand the methods used
and the context of this thesis. As some of the readers might lack biological
background we decided to explain biological terms and background in this
chapter. Terms like genes and DNA are explained in Section 1.2.1 and the
subsequent section describes the DNA microarray techniques.

1.2.1 Central dogma

In 1953 Watson and Crick [WC53] discovered the structure of DNA (de-
oxyribonucleic acid). Human DNA is a double-stranded helix of nucleotide
sequences which carries the genetic information. Each strand is constructed
by 4 nucleotides; A (adenine) ,C (cytosine),T (thymine) and G (guanine).
The two strands are connected by hydrogen bonds between A and T, and
between C and G (these pairings are called complementarities; A is the
complement of T).

Ounly a few years later Crick introduced a model of protein synthesis
[Cri58]. The model is known as the central dogma of molecular biology. The
model is not fully accepted, and had to be updated with reverse transcriptase
in 1970, but gives a basic idea about the information flow in a cell, see Figure
1.1. In the DNA sequences all the information is stored to construct proteins
that carry out most cell functions. RNA is a single strand of nucleotides,
just like DNA, only T is substituted by nucleotide U (uracil), and U and A
are each others complement.

The complete DNA sequence of an organism is called the genome of
that organism. In molecular terms, a gene is a portion of DNA sequence
that codes for a functional protein or RNA. A large proportion of DNA
in the human genome does not encode for any protein or RNA; the genes
make up merely 3% of our genome. Biologists believe the other part, which
they sometimes call “junk DNA”, could be a result of evolution or serve as
a reservoir for making new genes. The function of this junk DNA is not
known yet.

1.2 Biological introduction 3

Transcription Translation
Replication DNA » RNA » Protein

U‘%\ et
i

Transcription is carried outby RNA polymerase
Translation is performed on ribosomes
Replication is carried outby DMA polymerase
Reverse ranscriptase copies RMNA into DNA

Figure 1.1: Central dogma of molecular biology.

Though no two humans have the same set of genes (except for identical
twins), experts estimate that about 99.9% of any one person’s genes are
exactly the same as any one other person’s DNA. In April 2003 the human
genome project finished the identification of almost all the common DNA
sequences in our entire genome'. The next job is to annotate this map by
allocating the position of all our genes and understanding their role and
function. Humans are thought to have at least 20,000 genes.

Nearly every cell in a multi-cellular organism contains its complete genome.
However, the expression (activity) of genes in cells with different functions
within a multi-cellular organism is normally not the same. The function
and differentiation of a cell could be explained by the expression levels of
the genes. The expression level of a gene in a cell at a certain point in time
is the amount of transcribed RNA encoded by the gene at that timepoint.
Monitoring the expression levels of all the genes in the genome of an organ-
ism is exactly what microarrays can do. Microarrays measure the amount
of RNA in a sample and therefore we have an indication of the amount of
the corresponding protein in the sample, see Figure 1.1.

1.2.2 Microarray technology

While it is very hard to detect the quantities of proteins in a cell, methods
for detecting RNA can take advantage of the sequence complementarity of
RNA or DNA. This means that if DNA or RNA occurs as a single strand of
a certain sequence it really likes to pair with another single strand DNA or
RNA of complementary sequence. A single strand of DNA with the sequence
ACTTACG likes to pair with a strand of exact complementary sequence,
thus TGAATGC. This pairing of two complementary single strands of DNA
or RNA is called hybridization.

!Further information on the human genome project can be found on the NHGRI website,
http://www.nhgri.nih.gov.

1.3 Analyzing microarray data and using Bayesian networks 4

Essentially, a microarray is a carefully constructed set of the comple-
ments of known gene sequences arrayed on a special impermeable rigid sur-
face (glass for example). A sample of unknown RNA sequences is poured
over the surface to pair with the known sequences. If a RNA sequence has
paired with its complement on the glass this is measured by special scanning
techniques. Using a rigid surface has many practical advantages, such as the
help of robots to create the arrays on microscopic scales.

Oligonucleotide versus spotted arrays Two basic methods to cre-
ate microarrays are widely used; spotted arrays and oligonucleotide ar-
rays [LDB196]. In the spotted arrays a large number of DNA strands, com-
plementary to known mRNA? sequences, are prepared from cDNA libraries
and spotted onto a glass slide by a robot. Because the DNA is complemen-
tary to the mRNA, it is called cDNA. In this type of experiment cDNA can
vary in length from 100 to 1,000 bases. Each spot on the slide contains
several copies of a particular cDNA probe.

The key difference in the oligonucleotide arrays is that the probes are
constructed nucleotide by nucleotide using photolithography or inkjet tech-
nologies. In hundreds of thousands of positions on the glass array, probes of
length 20 or more are synthesized. For most genes, a probe containing 20
nucleotides can be created which is unique for that gene. Usually a set of
probes is synthesized for each gene.

Single channel versus two channel arrays To estimate the expression
of a gene in a sample two methods can be used. In the single channel method
we elute only one sample over the array. RNA of the sample is colored and
will hybridize to it’s complement on the array. The expression rate of each
gene is measured by scanning the intensity of the color on the array.

By eluting two samples over the same array, one sample is colored red
and the other green, we can estimate the relative expression rate for each
gene. On one array we can measure the expression of a healthy sample
versus a tumour sample for example.

The resulting arrays can be viewed in Figure 1.2. It’s not clear yet which
method is best and to what extend experiments from different platforms are
comparable.

1.3 Analyzing microarray data and using Bayesian
networks

Turning scans into expression values The scans of a microarray have
to be transformed into values representing the gene expression rates in or-

2RNA that codes for proteins is also referred to as messenger RNA, or mRNA.

1.3 Analyzing microarray data and using Bayesian networks 5

Figure 1.2: Two microarray techniques: On the left side a segment of a two
cannel cDNA chip is shown and on the right side a single channel oligonu-
cleotide chip (both taken from yeast cells).

der to make quantitative analysis possible. The scans usually contain a lot
of noise and specialized image processing methods are used to reduce this.
Background estimation and finding the optimal spot regions are a few ex-
amples. The resulting intensity values are transformed into well distributed
gene expression values, by logarithmic (logy) transformation for example,
making statistical analysis easier. At last, the data has to be normalized
to correct for systematical differences between the conditions in which the
microarrays are hybridized®. The result is a data matrix representing the
(relative) gene expression values.

Machine learning challenges Analysts of microarray data make use of
statistics, pattern recognition and machine learning techniques to extract
interesting and relevant biological information. The information that can
be found depends on the techniques that are used and on the experimental
setup of the microarray experiment. Hierarchical clustering techniques, for
example, can find groups of genes or persons that have similar expression
patterns. Genes that show similar expression patterns are believed to be re-
lated in biological function. The biological functions, and how the functions
are interrelated, are described in so-called biological pathways. Discovering
the structure of these pathways is one of the ultimate goals in molecular bi-
ology. Gene network learning algorithms can discover relationships between
genes and provide information on possible pathways.

The challenge for researchers in artificial intelligence in analyzing mi-
croarray experiments is the fact that the number of samples is usually a
few dozen while the dimensionality, the number of genes whose expression
is measured, is very large, usually several thousand. The low number of
samples is mainly caused by the high costs of microarray experiments and

3A lot of conditions influence the results. Even the amount of ozon in the laboratorium
influences the results (because the behaviour of the fluorescence depends on it)!

1.3 Analyzing microarray data and using Bayesian networks 6

the difficulty of acquiring samples, in case of tumours for example. An-
other challenge, and problem, are the unstable conditions in which probes
are labelled and arrays are hybridized. The data contains a lot of noise.
In order to let a computer ’learn’ or extract meaningful information from
such a noisy, high dimensional, dataset a lot of samples are needed. But
that is just what is missing. Basically, the problem is that the dataset does
not reveal the ’real’ world extensive enough and the danger of biased, data
specific, results increase.

Several studies have proven in an empirical way that interesting infor-
mation can be found by using machine learning techniques [Val02]. Some
of these methods reduce the dimensionality of the data by selecting relevant
genes, based on mathematical criteria. They make the assumption that in
the context of an experimental setup, only some mechanisms (and genes) are
(in)active in the sample. A lot of genes behave independently from the ex-
perimental setup and are therefore less interesting. If in an experiment two
types of cancer are compared, correlation measures (or PCA) can be used
to find genes associated to each cancer type. Machine learning techniques
can be used to learn how to distinguish these cancer types and diagnose new
patients.

Bayesian networks All kinds of machine learning techniques have been
used and each one has its own advantages and flaws. In this thesis we
will use techniques to learn Bayesian networks. Omne of the advantages of
learning Bayesian networks is they have well understood statistical founda-
tions. Clear methodologies are incorporated enabling it to learn from the
noisy conditions of gene-expression data. A second advantage of Bayesian
networks is the appealing graphical representation of the result.

Analyzing microarray data with learning Bayesian networks can poten-
tially give several kinds of biologically interesting results:

e classification of samples into biological classes,
e find disease related genes,
e show gene to gene relations,

e general overview of relations and processes in which genes are involved.

In short: “a Bayesian network represents the joint probability distribu-
tions of a set of variables and captures the dependencies and conditional
independencies between variables in a graphical manner” [FLNPO0O].

With gene expression data, modeling of dependencies and conditional
independencies between variables (genes) can be done as follows. Suppose
we have gene A, B and C. Let’s say gene B is up regulated by A and C
is up regulated by B. We can represent these relationships in a Bayesian
network where A is the parent of B and B is the parent of C :

1.4 Goals and thesis overview 7

A—-B— C.

We say that B is dependent on A.

Suppose we measure that B is highly expressed. We can reason with the
network that C' is more probable to be highly expressed as well. Our network
is also designed such that knowing that A is highly expressed doesn’t matter
anymore for the probability that C' is highly expressed if B is given. In this
case C' is conditionally independent of A given the expression value of B.

Algorithms have been designed to automatically construct a Bayesian
network that represents dependencies and (conditional) independencies within
a dataset. These algorithms are known as Bayesian network learners.

1.4 Goals and thesis overview

In this thesis we use learning Bayesian network algorithms to analyze mi-
croarray data. In most of the existing projects applying Bayesian network
learners to microarray data, large groups of people from very different sci-
ence fields are working together to obtain interesting networks. The methods
used are complex, specialized and therefore not usable on a wide-scale for
microarray analysts and research groups. Though several implementations
of standard learning Bayesian network algorithms are publicly available, no-
body, as far as we know, has fully explored using these methods for the
analysis of microarray data.

We will explore the possibilities of applying well-known, and relatively
easy to use, implementations of learning Bayesian networks to the field of mi-
croarrays. Learning Bayesian network algorithms implemented in Bayesware
Discoverer [Ram99] and the BNsoft package made by Cheng [CBL97a| shall
be used. These algorithms are subdivided in classification network learners
and general network learners.

Of course, a complete answer is not realizable within our time-scope. We
have focussed on a selection of features of the algorithms — such as classifica-
tion, gene selection and discretization — and used them to analyze publicly
available and as large as possible cancer microarray datasets. A breast can-
cer dataset [VDH102] and a multiple myeloma dataset [PCW102] will be
used. The multiple myeloma set was already used to learn a special type
of Bayesian networks, but we will extend this experiment. For both exper-
iments we try to obtain interesting networks, small subsets of interesting
genes and high classifcation accuracies.

Overview First of all, in Chapter 2, a selection of publications related to
our study is discussed. An overview of machine learning techniques used
for microarray data analysis is followed by the discussion of methods used
to construct networks from microarray data. The last part of Chapter 2

1.4 Goals and thesis overview 8

presents a collection of publications on learning Bayesian networks (LBN)
applied to the analysis of microarray data.

The third chapter is used to explain the LBN techniques and Bayesian
theory in general. Examples of Bayesian networks are given to explain the
concept of Bayesian networks. In Section 3.3 the algorithms used in this
thesis are discussed in detail.

The microarray datasets used to learn networks are described in the
fourth chapter as well as the biological questions that we hope to answer.
In that chapter we will also discuss the pre-processing techniques which are
used to select a subset of genes and to discretize the data.

The 5th chapter presents and analyzes the resulting networks and clas-
sification accuracies. In the last chapter the conclusions of the results are
formulated as well as some ideas for future research.

Chapter 2

Scientific background

The analysis of gene expression data obtained in microarray experiments has
been of great interest in the research areas of pattern recognition, machine
learning and statistics. Researchers all over the world are attracted to the
problem of discovering biologically interesting information in the expression
data of so many genes.

As mentioned in Section 1.3 the main problem — a problem for ev-
ery analysis method in the microarray world — is the ratio between the
enormous amount of genes measured per sample and the small number of
available samples. All kinds of data mining and machine learning methods
have been applied and extended for the purpose of analyzing microarray
data.

In this chapter the methods and results of several Al techniques in mi-
croarray context are discussed. The biological information found by these
methods is different for each method. Section 2.2 deals with learning gene
networks from microarray data. Section 2.3 analyzes the few studies pub-
lished about learning Bayesian networks in a microarray environment. First,
we discuss standard machine learning terms and algorithms.

2.1 Machine learning methods to analyze microar-
ray data

Before we go on we will distinguish the machine learning methods used by
the biological information they can find. First of all we have classification
techniques that find potentially interesting genes related to a certain class
and use the expression patterns of these genes to classify new arrays. Such
techniques are called supervised learning because information on the biologi-
cal class of the sample is given to the learning method. Not surprisingly, the
other methods are called unsupervised learning. These methods can cluster
genes or persons that have similar expression patterns.

2.1 Machine learning methods to analyze microarray data 10

Before the data is given to us, Al-scientists, a lot of work and manip-
ulation of the data has already been done. Image analysis and data pre-
processing steps to transform the microarray scans into a clean normalized
set, representing the expression levels of the individual genes, will not be
discussed here. However, a large part of the current microarray research is
involved in these processes and are therefore worth mentioning.

2.1.1 Supervised classification methods

Suppose we have a typical microarray experiment in which the expression
profiles of 20, 000 genes from 50 prostate cancer patients and 50 healthy per-
sons is measured. Genes related to prostate cancer are hoped to be found,
and classification techniques are used to try to predict that a patient suf-
fers from prostate cancer. Classification methods are used to distinguish
between disease subtypes but also for treatment response and disease prog-
nosis [SBCT02].

To check if a sample taken from a patient displays healthy or prostate
cancer patterns we could use techniques as (k-) nearest-neighbour, voting,
decision trees, support vector machines (SVM), neural networks and a lot
more. Central problems of classification methods in microarray context are
the reduction of the dimensionality of the problem space (reduction of the
number of genes), coping with missing data and estimating the classification
accuracies. These issues are discussed next, and in the latter part of this
section several examples of supervised learning methods are given.

Central problems In machine learning and pattern recognition we often
represent the gene expression measurements made in an experiment as a
m dimensional space (genes) with n data points (samples) in it. In the
prostate cancer case we get m = 20,000 and n = 100. Using gene selection
methods we can reduce the dimensionality m of the so-called problem space,
which is necessary, for computational reasons, for some of the supervised
and unsupervised learning methods.

Most gene selection methods, in the supervised case, are based on sta-
tistical measurements to find the genes that differ most between, as in our
example, the prostate cancer and healthy samples. The n-fold approach is
a popular method to tackle this problem. In the n-fold method genes are
selected that differ in their mean value between classes at least n times.
Variations of this method are also often used, see [SKR03]. In [DFS00]
genes are selected by the ratio of their between-class to within-class sums of
squares. Golub et al. [GSTT99], and many others, select informative genes
by the correlation of their expression pattern with the class distinction. A
pre-set threshold, based on the significance of the correlation, is used to find
the potentially interesting genes. Other methods to select genes that are dif-
ferentially expressed across the different classes can be found in [SBC02],

2.1 Machine learning methods to analyze microarray data 11

but the authors mention that a search for better ways of measuring differ-
ences in the expression of a given gene in two tissues is far from complete
exploration.

The problem of missing data in gene expression measurements can be
solved by using nearest neighbour or expectation maximization (EM) tech-
niques (also used for cluster techniques). Troyanskaya et al. [TCSt01] con-
clude that the nearest neighbour technique can compute robust and accurate
estimates of the missing value of a gene.

The issue not discussed so far is, once we have chosen and learned a
classifier, how the performance of a classifier can be estimated. If we learn
a classifier we usually test it on samples the algorithm hasn’t seen before.
Basically, the gene expression dataset is divided into a test set and a train-
ing set. A classifier is constructed on the basis of the training set. This
classifier is then used to classify the samples in the test set. The percentage
of correctly classified test samples is an estimation of the true classification
accuracy of the constructed classifier. The test set should be independent
from the training data and may not be used in the learning procedure.

Because the number of samples is usually very low in the microarray
world, leave-one-out cross-validation is popular. In this method a classifier
is repeatedly constructed on, for our example, 100 — 1 = 99 samples and
tested on the sample left over. The mean error (equal to the percentage
of misclassified samples) is the estimation of the true error of the classifier
learned on 100 samples. The variation leave-N-out is also often used and
seems more reliable [Val02].

Some of the machine learning methods create classifiers that seem to be
“overfitted” to the training data and have a very poor classification perfor-
mance on the test data [BSB103]. This means that the underlying structure
of the data is poorly modelled but only the specific characteristics of the
training set are learned. Complex models tend to perfectly classify training
data while making a lot of errors on the test set. The challenge for machine
learning techniques is to generalize the training data such that unseen data
can be classified correctly.

Examples of supervised machine learning algorithms Now we have,
after treatment with the methods discussed above, a complete data matrix
with a reduced dimension p (p < m). With this dataset we can use super-
vised classification techniques. A short description of some of the algorithms
will give an idea about the current situation of research.

The nearest neighbour techniques use distance measures to find a sample
(with a known class) that is closest to the, unknown, sample in the problem
space. The unknown sample inherits the class of its nearest neighbour. In
k-nearest neighbour the unknown class of the new sample is predicted by
the most common class among its k£ nearest neighbours. Nearest neighbour

2.1 Machine learning methods to analyze microarray data 12

techniques are popular and suited for classification of microarrays because
they are easy to implement and understand, and the method seems to be
able to compete in performance with other, advanced methods such as neural
networks and SVM [BSBT03].

Because nearest neighbour techniques calculate distances between two
points in space, the choice of the distance measure has significant conse-
quences for the nearest neighbour that is found. Special scaling of the axes
and trying several kind of distance measures (such as the Euclidian and
Manhattan distances) give different results [Qua0l]. Many other supervised
and unsupervised methods also require the specification of some distance
measure.

Another relatively simple approach is to use a voting algorithm. Each
gene votes for a certain class and the class that receives the majority vote
is selected as being the class of the unknown sample. For example, if a
gene is highly expressed within prostate samples and has a low expression
in healthy patients, then the gene will vote for prostate cancer if the gene has
a high expression in an unknown sample. Golub et al. [GST199] and Page
et al. [PCWT02] use slightly adjusted voting algorithms that can predict the
state of patients with high accuracy, ranging from 90% to 100%.

Studies on using support vector machines (SVM) to classify the class
of a sample based on its gene expression pattern report promising results.
SVMs solve the problem by mapping the gene-expression patterns in the
problem space non-linearly into a higher-dimensional space, in which kernel
functions are used to measure distance such that the data can be separated
into two classes by a hyperplane with optimal margins [Qua01]. Non-linear
robust classifiers can be learned with high predictive accuracies. A serious
drawback is that the choice of kernel function affects the learned hyperplane
and classification accuracies [SBCT02].

Comparative studies of machine learning methods to classify biological
samples on basis of their gene expression pattern show no real winner, see
[Val02], [PCWT02] and [BSB103]. Some prefer SVM for its robustness,
while others prefer nearest neighbour for its easy interpretation.

2.1.2 Unsupervised cluster methods

Reasons why a medicine does not work can be that a disease is subdivided
into several, unknown, classes with different types of behavior. Expression
patterns of genes have proven to reveal subtypes of diseases [SEBB98|.

An example of such an experiment is that researchers take 100 prostate
cancer samples and look for subsets (clusters) of genes that exhibit similar
expression patterns across samples. A cluster of similar genes can repre-
sent biologically related genes —which may therefore be functionally re-
lated [SEBB98]— and can reveal biologically related samples. Clustering
techniques are used to find clusters of genes or samples that show similar-

2.1 Machine learning methods to analyze microarray data 13

ity in their expression pattern. Time-course experiments, where expression
profiles of an organism are measured at several points in time, are also ana-
lyzed with clustering methods to find genes with similar expression patterns
over time. A collection of hierarchical clustering methods, k-means cluster-
ing and self-organizing maps [Val02] are often used in these experimental
scenarios.

K-means clustering divides the data points into & clusters. The clusters
are created by moving a data point from one cluster to the other with the
purpose of minimizing the within class distances and maximizing the between
class distances. An obvious disadvantage is that the number of clusters must
be specified in advance while usually this is not known. Another difficulty
is to visualize and interpret the resulting clusters, as this is dependent on
the number of clusters [TSM*99].

Hierarchical clustering resolves the problem of interpreting the clusters
because the clusters can easily be visualized. In contrast to K-means clus-
tering, hierarchical clusters can show how the clusters are related with each
other and how the clusters are build. See Figure 2.1 for an example of the
visual advantage. By calculating the similarity between each cluster, the
clusters that are most similar are merged. The algorithm starts with single
genes as a cluster and ends with one cluster; a hierarchy of clusters is cre-
ated!. A demonstration of the possibilities of hierarchical clustering is given
in [SEBB98]. The problems, however, are the choice of a similarity measure
and the meaning of a cluster at each level in the dendrogram [Qua01].

Finally we mention a popular clustering method called the self-organizing
map (SOM) [Koh95]. The method is somewhat complex with respect to
the other methods, so we shall not go into detail. A variety of studies,
including [GSTT99] and [TSM™99], have found interesting yeast cell cycle
clusters and disease subtypes respectively.

With SOMs, k-means clustering and hierarchical clustering the problem
is to make a choice on the number and size of the clusters in the problem
space. Although some people have tried to tackle the problem no conclu-
sive solution has been proposed. D’Heaseleer et al [DWFS99] state that
“Kach clustering method imposes some underlying structure on the data
and therefore no objective score of a cluster can be given without mention-
ing this assumption”. The visual results of a cluster can be misleading if
the underlying structure is not taken into account. We must also note that,
especially with the noisy microarrays, the resulting clusters might look to-
tally different when the expression data is slightly modified. The robustness
of the resulting clusters are important when the clusters are analyzed.

As knowledge about the function of genes grows the integration of this

!Other algorithms for hierarchical clustering exist. The divisive method for hierarchical
clustering works the other way around and starts with all the genes and then splits it into
clusters which do not look alike.

2.2 Gene networks 14

A I L

TIME

|
[
|
|
J

Figure 2.1: Clustered display of data from time course of serum stimu-
lation of primary human fibroblasts. Experimental details are described
in [SEBB98]. Note that similar expression profiles are grouped together.
The height of the branches in the dendrogram represent the similarity be-
tween clusters (short disctance means very similar). The genes in the sub-
cluster annotated by A are also biologically related because they are involved
in cholesterol synthesis. Cluster B contains cell cycle genes and E wound
healing genes.

knowledge with cluster visualization becomes important. Partially super-
vised methods, with a priori knowledge about the function of genes inte-
grated with the clustering method, are recommended by Quackenbush et
al. [Qua0l]. We could, for example, start with clusters of genes which are
known to be related in a certain process and then check the similarity of the
expression of this process with other processes.

2.2 Gene networks

The ultimate goal microarray researchers have in mind is to decipher the
precise connections of the genetic network: for each gene, they want to know
which other genes and functions it influences, and in what way. The prob-
lem is how to infer gene networks from the small gene-expression datasets.
Clustering techniques already show some information about the regulation
of groups of genes but novel functional relations of genes between, and within
these groups are hard to discover.

Because of computational reasons and the small availability of samples,
simplifications and assumptions must be made to infer networks of gene
relations from our microarray datasets. The resulting networks can reflect
only a subset of types of (mathematical) relationships and model only a part
of the genome.

The choice of model, and simplification of biological processes, is best
illustrated by comparing the random Boolean network of Kauffman [Kau93]
against the biochemically realistic network constructed by Arkin and Adams
[MA97]. The random Boolean network, in which genes can be either ON or

2.2 Gene networks 15

OFF, can represent some biologically interesting gene interactions such as
self-organization. Such networks are mathematically well formulated, and
allow examination of thousands of genes. In a realistic approach, where genes
are continuous and full biochemical interactions with stochastic kinetics?
can be modelled, only a few genes are allowed in the model because of
computational limitations. The relationships in the resulting networks can
be very complex and hard to analyze.

A method to infer (or learn) gene networks from microarray data (of-
ten referred to as reverse engineering) worth mentioning uses differential
equations. Mjolness [MSR91] showed differential equations able to simulate
developmental processes in the fruit fly. In differential expressions, the ex-
pression of a gene is calculated by the sum of weighted expression levels of
other genes. To find the best weight parameters optimization procedures are
used, such as least squares. A small known part of the gene network of a rat
is reconstructed from gene expression data in [WHO00]. The determination
of the parameters, using genetic algorithms, show great accuracy. Usually
a set of differential expressions is used, motivated by biological processes.
Due to the complexity of these functions, a lot of parameters have to be
estimated and only a small part (6 genes for example) can be modelled.

To infer a network from a microarray dataset a choice has to be made
on which type of, mathematical, model should be inferred and what kind of
experimental setup should be used. Any attempt at predictive data analysis
and model building critically depends on the scope and quality of the input
data [DLS00]. We can use time-course experiments, comparative experi-
ments and gene-knockout experiments. Time-course experiments generally
contain less information than measurements under dissimilar environmen-
tal conditions, but can reveal information on the dynamics of a process.
In gene-knockout datasets a gene is externally put to sleep in each experi-
ment. Effects of this sleeping gene on gene expression can be identified and
modelled [Wag02].

If we want to put more genes in the inferred networks more networks
are theoretically possible and more parameters have to be learned or esti-
mated. In consequence we need more data as evidence to estimate all these
parameters and find the optimal network [Dut99]. Narrowing the range of
possible models by extra constraints and simplifying the networks can make
the search for the model faster. Using clustering techniques to find subset
of genes is a possibility to narrow down the search space. In [DLS00], esti-
mates on the amount of data needed to construct Boolean and continuous
networks are made. The authors stress that comparing data from different
experiments should be made possible. In this respect standardization of

2The time intervals in genetic processes can vary widely across otherwise identical cells, as
a result of stochastic processes. Mechanisms as the need of collision between reagents to
start a process explain this stochasticity. Therefore the inclusion of stochasticity seems to
be necessary.

2.3 Learning Bayesian networks 16

microarray experimentation is important?.

A balance between the mathematical complexity of a network, the amount
genes in the network and the data available is needed in order to infer a
meaningful network. For now, gene networks constructed from microarray
data mainly lead to hypothetical relationships interesting for further research.

2.3 Learning Bayesian networks

In the previous sections we have discussed techniques that enable us to
answer the following biological questions:

e Which specific genes are related to the class of a sample?

e Can we diagnose a new sample on the basis of its gene expression
pattern?

e Are there groups of functionally related genes?

e Can we construct a network that represents the relationships between
genes from microarray data?

Learning Bayesian networks (LBN) could have been placed in each section
because variants exist to answer these questions. Classification networks
can be used to answer the first two questions and general Bayesian networks
can help to find answers to the last two questions.

Not so many studies have been published yet on Bayesian networks to
analyze microarray data, but the number of studies is growing rapidly. In the
first part of this section we discuss studies on Bayesian network classifiers.
These networks are especially learned to predict the value of a certain vari-
able, such as the disease-state variable, and are usually supervised. The sec-
ond part presents studies on unsupervised learning Bayesian networks that
reveal functionally related groups of genes and how genes interact within
these groups.

Several LBN concepts might still be abracadabra. A more detailed
discussion on LBN follows in the next chapter. A short description of a
Bayesian network, as given in Section 1.3, might be helpful to understand
some of the terms.

2.3.1 Bayesian network classifiers

To learn a Bayesian network classifier (BNC), the pre-processed gene ex-
pression dataset, including information about the class of samples, is given
and a network that can predict the class of a new sample is the result. This

3The issue of standardization is recognized by the introduction of a standard microarray
object model and data-format, MAGE-OM and MAGE-ML.

2.3 Learning Bayesian networks 17

classifier has the advantage of giving a graphical representation of the result
and potentially providing insights into the disease by showing relationships
between genes.

As with other network reconstruction techniques, the number of genes
(nodes) in the network can’t be very large. The total number of theoret-
ically possible networks increases super exponentially with the number of
nodes in the network [NeoO4]. Searching for the best network is a difficult
task. Learning BNC methods can already reduce the search space because
they only need to consider genes that are related to the resulting class of a
sample. Even with this reduction of the number of possible networks, the
number of genes can’t be very large and ranges roughly between 10 and
a 1000. Supervised gene selection methods, discussed in Section 2.1.1, are
often used to achieve the reduction from the thousands of genes measured
in a microarray experiment to the maximum of genes allowed by the BNC
learner.

Zhang et al. [ZHO3] learn BNCs with a selection of 50 and 30 genes.
Before the gene expression data was given to the BNC learning algorithm
the continuous dataset needed to be discretized because of the nature of their
BNC learners (probability tables are used). Discretization methods based
on mean or information values assign bins to the, originally, continuous data.
Of course discretization implies loss of information, and this is a drawback
of BNCs.

The results obtained in [ZH03] are good. A comparison was made be-
tween other state-of-the-art techniques; the Bayesian classifiers could achieve
competitive prediction accuracy. The leukemia set*, the same as in [GST199],
and a colon cancer set® were used. Classification accuracies, in the leave-
one-out cross-validation was 97.22% for the leukemia set and 85.48% for
the Colon cancer set. The authors constructed a variation on the BNC
learning algorithm to make the classifier more robust. Instead of a single
best network they used an ensemble of networks. Ensembles consisting of
5, 7, 10, 15 and 20 networks were constructed from the cancer datasets and
the best ensemble was selected. The authors mention that, besides a high
classification accuracy, the resulting networks also generated relationships,
potentially interesting for further research.

Helman et al. [HVAWO02] propose a Bayesian network classification method-
ology for microarrays. They propose to select a variable number of plausible
networks and try to blend them in such a way that classification accuracy
is optimized. Special methods to search through the networks, select genes
and to select and blend the resulting networks are implemented. Their
methodologies were tested on the same leukemia and colon cancer datasets

“The leukemia set consisted of 72 samples; 25 acute myeloid leukemia and 47 acute lym-
phoblastic leukemia samples, see http://www.genome.wi.mit.edu/MPR

5The colon cancer consisted out of 62 colon tissues; 22 healthy and 40 tumor tissues, see
http://microarray.Princeton.edu/oncology/affydata

2.3 Learning Bayesian networks 18

as mentioned before. In contrast with the previous study, Helman subdi-
vided the dataset into a training (about 70%) and test set. The authors
tested with different sets of networks and with different type of gene se-
lection methods. The best performing networks occur when gene selection
is based on the informative power of a single gene and a large number of
networks (about 300) are merged. The authors selected the best classifiers
based on leave-one-out cross validation error on the training set. The colon
cancer test set was classified with 92% accuracy (training set had 84%), and
the accuracy on the leukemia set was 95% on both the test and training
set. One important conclusion is that the networks have generalized very
well; test results are as good as the results on the training data. The au-
thors do not go into details of the structure of the constructed networks and
concentrate solely on the classification performance of the BNC algorithms.

We conclude that BNC learners show some promising results. However,
the methods developed in these studies are not publicly available in an easy
to use program. In chapter 4 another article on Bayesian network classifiers
is discussed and will be partially reproduced to get a better understanding
of the possibilities of standard BNC learners.

2.3.2 General Bayesian networks

In the microarray world the best-known study on using Bayesian networks
to analyze microarray data is done by Friedman et al. [FLNP00]. His group
constructed a network that shows interactions between genes and groups of
genes. The yeast cell cycle dataset created by Spellman et al. [SSMT98] was
used to learn a network. The dataset had measured the expression of 6177
genes during its cell cycle at different points in time. One of the advantages
of using Bayesian networks to reconstruct networks from microarray data,
according to Friedman et al., is that they are able to describe complex
stochastic processes and provide clear methodology for learning from (noisy)
observations.

In learning general Bayesian networks (GBN), in contrast to BNCs, every
relationship between two variables (genes) is relevant. The total possible
networks is immensely large for a relatively small set of genes, see Section
3.2. Friedman et al. managed to learn a network from the expression profile
of 800 genes (out of the 6177 originally measured). These 800 genes were
selected by unsupervised clustering, done by Spellman et al. in [SSM198].
The Bayesian network learning method is described below.

Two-hundred Bayesian networks are learned and only two features of
each gene in each network are stored for the final network. Each network is
learned on a slightly pertubated dataset by a special LBN algorithm they
call the Sparse Candidate Algorithm (SCA). The set of possible parent rela-
tions (candidates) for a node are preselected by SCA on the basis of simple
statistics, such that the search space of all possible networks is reduced. For

2.4 Concluding remarks 19

each gene in each learned network the set of genes on which the expression
level of the gene directly depends is selected as the first feature. The sec-
ond feature concerns some type of relationships, where intermediate genes
relate two genes. Both relationships are stored for the final network. This
final network can have relationships between genes in which the direction of
the relation is undecided, because not enough data supports either direction.
The level of confidence in a feature is decisive for the resulting final network.

With the Bayesian method, Friedman et al. obtained gene clusters re-
sembling the clusters found by Spellman et al. using hierarchical clustering.
But Friedman et al. were able to reveal more features in and structure of
the dataset®. Several dominant genes were found: genes that have a lot of
direct relationships within a gene cluster. A large part of the gene pairs that
had a high-confidence relationship were believed to be biologically related
in function, based on literature.

A few other articles propose to integrate prior knowledge into the Bayesian
networks (about experimental conditions or gene function) or to use dynamic
Bayesian networks to analyze time-course data [OPGO02]. The possibility
of integrating non-expression knowledge is an advantage of the Bayesian
approach. Experts could make an a priori Bayesian model of a certain
process [TDOT03] and update this network with experimental microarray
data; patient data (as age and gender) could be included as well. Dynamic
Bayesian networks have the advantage of being able to model feedback loops
because a gene is modelled separately at each time point. Remember that
a Bayesian network is by definition an acyclic graph. Difficulties on the
complexity of learning dynamic Bayesian network (DBN) algorithms and
scarcity of time-course data in each time point make DBN not very useful
yet.

2.4 Concluding remarks

We have seen results obtained by learning Bayesian network methods are to
be taken seriously, with respect to other analysis methods. Many microarray
analysts are not aware of the capabilities of LBNs for several reasons. First
of all the standard analysis tools (commercial and non commercial) have not
included the LBN algorithms; they focus on clustering techniques, statistical
hypothesis testing and gene ontology integration. The second reason is
the biological background of most of the analysts. They lack time and
knowledge to learn, implement or apply the specialized methods proposed
in the literature on LBNs for microarray data. This thesis will therefore
use relatively simple, accessible, and publicly available implementations of
LBNs to explore their usability for microarray analysis.

6The resulting, quite complex, network can be viewed on http://www.cs.huiji.ac.il/~nirf/
GeneExpression/top800.

20

Chapter 3

Learning Bayesian networks

Nearly 250 years ago, in 1764, Thomas Bayes wrote a theorem about chance
and probability. In artificial intelligence, Bayesian thinking has played an
important role in modelling, learning and reasoning with uncertainties.
Next we discuss Bayesian calculus and Bayesian networks [Pea88] in
general. In Section 3.2 several issues about learning a Bayesian network are
discussed and the last section presents the algorithms used in this thesis.

3.1 Bayesian networks

Basic concepts in Bayesian theory must be explained before we move on to
Bayesian networks. Although there are several ways to explain Bayesian
calculus we will focus on the concepts of (in)dependence and conditional
(in)dependence throughout this section and chapter.

Conditional probabilities Conditional probability is formally notated
as: p(A|B) = z. In words this means that given the event B, - and supposed
that everything else known is irrelevant - the probability of event A is equal
to . An event could be a variable (gene) taking on a certain value (high
expression). The remaining part of this chapter only deals with variables
instead of events.

Two variables X and Y are independent if p(X|Y) = p(X) for all values
of X and Y, otherwise they are dependent. This means that the probability
distribution of X is not dependent on Y. In a probability distribution the
chances of X taking on a certain value are given. Imagine that the distri-
bution of gene X is .2 for high expression and .8 for low expression. If gene
X and gene Y act independently, then for all values of Y the probability
distribution of X will stay the same.

If X is dependent on Y (p(X|Y) # P(X)), the probability distribution
of X is different for each value in Y. Suppose we found that the expression
of gene X is up regulated by the expression of gene Y. So our belief that

21

3.1 Bayesian networks 22

gene X has an high expression depends on the expression of gene Y. If we
measure an high expression rate for Y, we believe that X is probably highly
expressed as well. In this case X is dependent on Y.

Conditional independence describes situations in which variables X and
Z are independent given the value of variable Y. Conditional independence
holds when for all values of X, Y and Z we have: p(X|Y) = p(X|Y, Z). Let’s
extend our previous example with gene Z which up regulates gene Y but
does not regulate X directly. Suppose it’s given that Y is highly expressed
in a sample. We have the distribution for the probabilities of the values in
X given Y. If this distribution of X doesn’t change when we come to know
the value of Z, we say X and Z are independent given the value of variable
Y. But we can also reason that if we don’t know Y but do know that Z is
highly expressed, the probability distribution of Y changes (Z up regulates
Y, so Y is more probable to be highly expressed)). In turn, because X is up
regulated by Y, the distribution of X also changes. So X is dependent on
Z and at the same time conditionally independent of Z when the value of
Y is given. Conditional independence is an important principle in Bayesian
networks, because knowing the conditional independencies in a dataset can
greatly reduce the complexity of networks.

At last we have conditional dependence which describes dependence be-
tween X and Z given Y (formally we have p(X|Y) # p(X|Y, Z) for all or
some values of X, Y and Z). Correlation measures, often used in bioinfor-
matics, between two variables can imply dependence, although correlation
is not a necessary condition [FLNPO0O].

Bayesian networks Now we move on to Bayesian networks and see how
they can reason with the concepts stated above. Bayesian networks are
graph-based models of joint multivariate probability distributions that cap-
ture properties of conditional independence between variables [Jen96]. They
are also used to reason with probabilities. A Bayesian network consists of
the following

e A set of variables (nodes).

e A set of directed edges between variables representing dependencies
between variables. A variable (node) X is called a parent of Y if there
is a directed edge going from X to Y. These directed edges must form,
together with the variables, a directed acyclic graph (no directed path
from a variable that leads to itself).

e To each variable X with parents Y7,...,Y,, there is attached a condi-
tional probability distribution p(X|Y1,...,Y,). If a variable X has no
parents, the probability distribution p(X) is attached.

We can view the lack of representing cycles as a restriction, especially
in our biological domain where feedback cycles are thought to happen. For

3.1 Bayesian networks 23

time course microarray experiments dynamic Bayesian networks could be a
solution because a network can be made for each time point. The directed
edges between the variables in a network can sometimes be seen as causal
influences [SGS93], but causality in Bayesian networks (BNs) is still under
discussion and not generally accepted.

BNs can cope with variables that have continuous values but we use
methods that can only cope with discrete data. When BNs contain dis-
crete variables, conditional probability tables (CPT) are used instead of
conditional probability distributions (CPD). The main motivation for using
discrete values is that incorporating continuous data in methods to learn
Bayesian networks is still somewhat difficult and can lead to biased learning
methods [FLNP00]. Discretization of continuous (gene expression) data is
reasonably unbiased. Also, most of the standard Bayesian network learners
can not use continuous data.

A simple example of a Bayesian network is given below. This example
illustrates how Bayesian networks capture conditional independencies and
how we can reason with the networks.

Example 1 Suppose we have three genes X, Y and Z, which can take on
mutually exclusive values h (high expression) or [(low expression). In figure
3.1 the network is shown (qualitative part), including probability tables
(quantitative part).

GO ()

X=h|XxX=1I Y=h|Y=1]

X=h|07] [Y=h|08 [0.1 Z=h10.25 0.5

X=/103] [vy=/ o2 J0.9 Z=11]075 [0.5
p(X) p(Y]X) p(Z1Y)

Figure 3.1: A simple Bayesian network structure containing 3 variables.
Conditional probability tables are also shown.

The graph is constructed such that gene X can influence gene Y directly,
and gene Z indirectly through Y. Gene X has no parents and the probability
table simply consists of our prior belief on the probability distribution of
gene X (also called prior probability, p(X)). Because X is a parent of
Y we have a conditional probability table p(Y|X). The CPT consists of
probabilities for the expression values of gene Y given the expression value
of gene X. If we add the values in a column of a CPT we always get 1

3.1 Bayesian networks 24

(p(Y =h|X =h)+p(Y =1|X = h) =1 because Y is certain to be either
h or I). The prior probabilities p(Y') and p(Z) are also given by the CPT
tables, although indirectly (by marginalizing Y out of p(Y, X) which in turn
can be calculated by the fundamental rule: p(Y,X) = p(X)p(Y|X)).

If evidence on the value of a gene is given, we can update the conditional
probability tables and prior probabilities of the other genes using the fun-
damental rule and Bayes’ laws of probability. Thomas Bayes introduced his
theorem in 1764. The equation is as follows:

— p(A)p(BlA)
p(A|B) = T p(B)

Suppose we only know that the expression of Y is h, so p(Y = h) = 1 and
p(Y =1) = 0. In this case we can update the probabilities of both X and
Z. For Z we get p(Z|Y = h) = (0.25,0.75) (because now p(Z,Y = h) =
p(Z|Y = h) = p(Z)). To update the probabilities of X we use Bayes theo-
rem’ to calculate p(X|Y = h) = (0.95,0.05):

X=h)p(Y=h|X=h
PX =Y =1) = e

PX =Y =h) = 5355 = .95

We see that the probability of X = h is increased (from 0.8 to 0.95).
The increased probability of p(X = h) can be viewed as an ‘explanation’ for
the high expression value of Y.

Once we know Y, extra knowledge on the value of X can not change
anything for the probabilities of Z because gene Y blocks the information
from X to Z. The conditional independence p(Z|Y) = p(Z|Y, X) is modelled
in this network and we say that X and Z are conditionally independent given
Y.

Example 2 The Bayesian network in Figure 3.2 models the factors and
symptoms involved in the diseases pneumonia and influenza. Artificial data
was used by Abbas et al. [AMRMO04] to estimate the CPT tables of the
network. With the network they reason, for example, that the chance of
influenza increases given a persons income or ethnicity.

Bayesian networks can be a lot more complex than the ones described
above. We showed that the information flow in all BNs (updating proba-
bilities) is blocked by conditional independencies or passed on by (condi-
tional) dependencies. The conditional independencies in complex networks
are identified by a few rules called d-separation. The resulting conditional
independencies are not as obvious as in the previous example. Fast methods
to update CPTs in larger BNs have been developed [Jen96].

We have discussed some principles of Bayesian networks and Bayesian
calculus. Readers should by aware we are giving only a very short intro-
duction to BNs and not every aspect of BNs can be treated. Important

3.2 Learning Bayesian networks 25

At
Black
Hispanic

Low

High

Figure 3.2: A Bayesian network representing disease factors and symptoms
for influenza and pneumonia.

and intersting subjects such as hidden nodes and fast inference-methods are
skipped. Jensen [Jen96] wrote an easy to read introduction to Bayesian
networks. The important message here is that BNs can be used to model
(in)dependencies between variables in such a manner that we can reason
with their probabilities given new knowledge and using Bayesian calculus.

3.2 Learning Bayesian networks

Originally Bayesian networks were constructed by experts. Prior probabili-
ties and CPT values were chosen on the basis of the knowledge of experts.
The last decade or so, methods to automatically learn Bayesian network
structures from a given dataset have improved. The increased power of
computers has been a major support.

Learning Bayesian network (LBN) methods need to find the set of edges
between variables (structure) and the values in the (conditional) probability
tables that best represents a dataset. One way to do this is to give each pos-
sible network a score such that the network with the highest score matches
the data optimally. This score can be designed in several ways and can,
for example, prefer simple networks. A fully connected network can repre-
sent any probability distribution (and can therefore optimally represent the
data), but there are many reasons for not using a fully connected model.
A fully connected model requires more memory and computations, is more
sensitive to noise (overfitting) and does not find underlying independence
structures.

3.3 Methods used in our research 26

Unfortunately, the number of possible network structures is super ex-
ponential in the number of variables, which makes it practically impossible
to score each possible network. Ten variables already produce 4.2 x 10'8
possible directed acyclic graphs (DAGs) [CG99]. The LBN algorithms have
special ways to make the search for the best network computationally feasi-
ble. Direct restrictions on the structure of the resulting network (maximum
number of parents), using search strategies (greedy search) and looking at
local structures (finding optimal set of parents for each node separately) are
examples of reducing the computational complexity.

The prior probabilities are usually based on the frequency with which
values of variables occur in the dataset and can be designed to further reduce
the computational complexity [RSO01].

Depending on the purpose of the network, important structural restric-
tions can be made. As we mentioned in Section 2.3, BNs can be learned
especially for classification. In this case, only those edges have to be found
which can influence the probability distribution of the target variable, given
that all the values of all the genes in the network are known (so condi-
tional independence is important here). In the case of general networks, less
structural restrictions can be made.

3.3 Methods used in our research

Many BN programs are available on the internet, and among them are sev-
eral Bayesian network learners, both commercial and non-commercial'. We
wanted to learn both general and classification networks to fully exploit the
possibilities of analyzing microarray data with the existing BN learning pro-
grams. We selected two programs for reasons discussed next. The rest of
this section will discuss the algorithms implemented in these programs.

By Page et al. [PCW (2] and by winning the KDD cup 20012, interesting
results were obtained with the use of a LBN package developed by Cheng
[CBL97a, CBLI7b] called PowerPredictor and PowerConstructor. In the
next chapter more information on the results of [PCW102] et al. is given.
The algorithms implemented are the Markov blanket classification network
learner and a general network learner called CBL. The programs can be
freely downloaded from Cheng’s website3.

Bayesware Discoverer, developed by Ramoni [Ram99], seemed a good
choice as our second program to show the possibilities of using LBN imple-
mentations to analyze gene-expression data for several reasons. First of all
it provides methods to cope with missing data. Secondly, Bayesware has two

'Kevin Murphy made a comparison of all the available BN software, which can be viewed
on: http//:www.ai.mit.edu/~murphyk/Software/BNT /bnsoft.html.

2The KDD cup is an Knowledge Discovery and Data mining competition. More information
can be found on http://www.cswisc.edu/~dpage/kddcup2001

3http://www.cs.ualberta.ca/~jcheng.

3.3 Methods used in our research 27

types of BNC (Bayesian network classifier) learners, the naive Bayesian and
the CTan algorithm. A GBN (general Bayesian network) learner, which we
shall call K2 is also available. A third reason is the nice graphical interface
that helps to understand and interact with the networks. And finally, a
version of Bayesware is free for non-commercial purposes. Bayesware (and
PowerConstructor and PowerPredictor) can learn from datasets with ap-
proximately 200 variables and 700 samples (in the non-commercial version).

Other programs are available, but we think our selection of programs,
and their implemented algorithms, to be a good representation of easy to
use LBN programs. Bayesian network packages implemented in Matlab by
Murphy* and Java are also available. The packages contain some LBN algo-
rithms but tend to focus more on algorithms for constructing and reasoning
with Bayesian networks. Also, these packages are more difficult to use, es-
pecially when the user is not familiar with programming environments. On
the other hand they do have the advantages of open source software.

Next, we will discuss each algorithm separately, starting with the simple
algorithms (naive Bayesian) and ending with the complex GBN learners.
Each algorithm has its own way to cope with the problems described in 3.2
and have made different restrictions and assumptions.

3.3.1 Naive Bayesian classifier

The structure of a naive Bayesian classifier (NBC) is fixed and is shown
in figure 3.3. The root node C represents the target variable that needs
to be predicted (type of cancer for example). All the child variables A;
represent the attributes (genes in our case). The structure implies that all
the attributes are conditionally independent of each other, given the value of
the target variable (formally notated as: p(A4;|C) = p(A;|A4;, C) and i # j).

Figure 3.3: An example of the structure of a naive Bayesian classifier.

“Kevin Murphy implemented BN algorithms, and some LBN algorithms, in Matlab. This
package can be downloaded from http://www.ai.mit.edu/~murphy/software/BNT /bnt.html.

3.3 Methods used in our research 28

No structure has to be learned. A NBC only needs to learn the values
in the conditional probability tables (CPT) of the attributes (p(A;|C)) and
the prior probabilities of the target variable (p(C)).

The estimation process of the CPTs becomes relatively easy. Remember
that in the supervised learning procedure we have a training set of attribute
values for which we know the values of the target variable. Because con-
ditional independence is assumed between the attributes, given the target
variable, the NBC can estimate each row of each CPT independently. Fre-
quencies of the values of the variables in the given dataset are used in this
process.

Once all the entries in the CPTs are estimated by the NBC, it can be
used to predict the most probable value (or class) of the target variable,
given the values of the attributes (gene expression values of a patient for
example). p(C) is adjusted for this set of values of the attributes and the
value (class) for C' with the highest probability is chosen as the best option.

The implementation in Bayesware Discoverer also makes use of a missing
value algorithm called bound-and-collapse [RS98,RS01]. The estimation of
the probability tables is modified and results in probability intervals. These
intervals are based on the instances in the dataset that are given and that are
missing. This results in using scoring functions for the probability intervals
for p(C') making classification possible. As a consequence the value of the
target variable remains sometimes undecided.

3.3.2 CTan classifier

The strong independence assumptions made by the naive Bayesian is often
somewhat unrealistic. The CTan tries to avoid these assumptions, maintain
computational simplicity and outperform the NBC in classification accura-
cies.

Friedman et al. argue in [FGG97] that “the performance of a BNC may
improve if the learning procedure takes into account the special status of
the class variable”. They propose to ensure this by setting an edge from
the target variable to each attribute, just like the NBC. However, the BNC
constructed by CTan is augmented with edges among the attributes. Figure
3.4 shows an example.

The, intractable, problem how to find the best set of edges is made
computationally feasible by imposing some restrictions on the structure.
The most important restriction is that each attribute is allowed to have
at most one other attribute pointing to it. This restriction allows us to
calculate an optimal tree-shaped Bayesian network for the attributes only,
based on the Chow and Liu [CL68] maximum spanning tree algorithm.

Edges between two attributes, given class in the tree are scored by the
conditional mutual information principle described in [FGG97]:

3.3 Methods used in our research 29

Figure 3.4: A simple TAN structure. Note that the attributes A1, A2, A3
and A4 form a tree.

Ip(Ai; A4|C) = %:. P(a;, a;,c)log #}%
iAj,
In the next steps the maximum weighted spanning tree is build with the
attributes; first a complete undirected graph is build and then the subset of
edges forming a (undirected) tree structure which maximizes the sum of the
scores is found. The directions of the edges between the attributes are chosen
merely to obtain a tree structured graph. One attribute in the undirected
graph constructed by the Chow-Liu algorithm is chosen as the root attribute.
The directions of all edges are set outward from it. The directed tree is
transformed into the final BNC by adding the naive structure. So in the
end we have constructed a tree-augmented naive Bayesian network (TAN)5.
Learning the parameters (probability values in the CPTs) of this TAN
is done slightly different than in the NBC, mainly because we need to learn
more values (more edges cause CPTs to grow). A smoothing parameter is
introduced to cope with those entries in the CPTs for which little evidence
is given® in the dataset. The structure is not affected by this parameter.

3.3.3 Markov Blanket classifier

While the CTan algorithm still imposed some structural restrictions on the
resulting BNC, the MB (Markov blanket) based BNC is an unrestricted BN.
The target node is not treated differently in the structure learning process.

To construct a Markov blanket (MB) classifier, the structure of a general
Bayesian network (GBN) must be learned. How this GBN is learned is
discussed in Section 3.3.4. For now we assume we have a GBN matching
the given dataset and discuss the MB principle shortly.

5CTan stands for Construct-TAN.

5Suppose we have an edge from gene A to gene B. If in the dataset only one out of 100
examples exists where both gene A and B are highly expressed. In this case there is only
little evidence for P(B = h|A = h).

3.3 Methods used in our research 30

The target node in the GBN is, given the values of all the attributes, only
dependent on those attributes that belong to the MB of the target node. The
MB of variable C' is the minimal set of variables that shield C' from the rest
of the variables in the model. Only attributes related directly (A; < C and
A; — C) or indirectly through conditional dependence (4; — A; < C) are
selected from the GBN. For these attributes, the CPT entries are estimated.

We can view this selection of attributes as a kind of feature selection. For
microarray analysis feature selection methods are very interesting (finding
“marker” genes) and a lot of research is done in this field. Friedman et
al. [FLNPOO] state that a Markov relation between two genes indicates that
both genes may be involved in the same biological interaction or process.

Because no restriction is made on the structure that can be learned,
the search space is very large and overfitting is possible. Overfitting means
that the learned model fits the given dataset very well but classifies new
data poorly. A fully connected graph, for example, always represents a
dataset optimally because each example is completely represented in the
CPTs. The problem is that these networks can not classify new samples
with high accuracy because they are overfitted to the original data.

In PowerPredictor, the MB algorithm is implemented with a special
threshold, representing a statistical condition that must be met to add or re-
move edges when learning the GBN. The optimal value for this “confidence”
threshold can be found automatically, or can be set manually. In [CG98],
Cheng and Greiner mention that setting this threshold to a higher value for
small datasets can improve the classification accuracies and, in general, will
prevent overfitting. Automatic detection of this threshold is done by com-
paring the classification performance of the Bayesian networks with different
confidence thresholds, within the training.

3.3.4 The CBL algorithm

In PowerConstructor a method to learn a GBN from a dataset is imple-
mented. As mentioned above, the Markov blanket classifier makes use of
this algorithm.

A GBN learner has a different purpose as compared to the BNC learners.
It does not focus on the variable to be classified. The algorithms of the
GBNs are designed to find the model that best describes the conditional
independencies between all the variables. By doing this it makes an efficient
model to calculate the joint probabilities.

The CBL algorithm, designed by Cheng [CBL97a, CBL97b], makes use
of the suggestion that BN structures can be learned by identifying the con-
ditional independence relationships among the nodes. Using mutual infor-
mation tests:

3.3 Methods used in our research 31

[p(X3Y) = 52 P(,y)log 3357
they make a list of possible dependencies between variables. Conditional
mutual information (see Section 3.3.2) is used to find the conditional in-
dependencies among the variables and these independencies are used as
constraints to construct a BN. These kind of algorithms are referred to
as conditional independency based algorithms [CG98]. The CBL method
algorithm uses three different phases.

At first, a basic BN tree is constructed, based on the Chow-Liu [CL68]
algorithm (same as in the CTan algorithm but without special treatment for
the target node). In the second phase edges are added on the basis of mutual
information and conditional independence. In the last phase, unnecessary
edges are removed. To add or remove an edge, a certain amount of confidence
must be obtained. The level of confidence that must be reached can vary and
is represented by the confidence threshold (see Section 3.3.3). In the CBL
algorithm the optimal threshold can not be automatically detected and has
to be set manually. If insufficient confidence is obtained to choose a direction
of an edge, the CBL algorithm leaves the edge undirected. Therefore, a
partially directed acyclic graph (PDAG) is returned.

In the CBL1 algorithm a node ordering is necessary to reduce the number
of calculations that is made. This order is based on the order in which the
variables occur in the database, and can be changed by the user. A node
ordering assigns a value to each node; no node can be an ancestor of a node
that has a higher value. The CBL2 algorithm doesn’t use node ordering but
needs to do a lot more computations. PowerConstructor can do both and
we chose for the last option, because less restrictions are made. The Markov
blanket classifier uses CBL1 and ordering of the variables is based on when
they appear in the database. The target variable is set as the first node in
the ordering.

3.3.5 The K2 algorithm

The GBN learner implemented in Bayesware Discoverer makes use of a
scoring-based algorithm. To each DAG a score is assigned and the net-
work with the highest score is selected. Unfortunately, the total number of
possible DAGs doesn’t allow us to score each network.

The problem is solved by choosing a special model for the prior proba-
bilities, factorizing the model and imposing an order to the variables [RS99].
Finding the best model is reduced to a sequence of locally exhaustive searches,
picking the best set of parents for each node independently. Because the lo-
cal models are often still too large and exhaustive search is not possible, the
greedy search algorithm called K2 is used to find the local model.

Node ordering implies a structural restriction such as in the CBL1 al-
gorithm (no node can be an ancestor of a node that appears earlier in the

3.4 Summary 32

ordering). K2 starts with the local model of a certain node and calculates
the score of the model with the node having no parents. The parent which
maximally increases the score of the local model is added. Until no parent is
found that can increase the score of the local model, this process is repeated.
This search for parents is done for every node. The K2 search strategy can
end up in a local maximum and does not always find the set of parents with
the best score.

The learning procedure makes use of the missing value algorithm de-
scribed in Section 3.3.1 when values are missing. Also, a threshold called
prior precision is added. This threshold adjusts the prior probability tables
used to score the models. The threshold represents the belief in the amount
of evidence that is needed to be confident about adding an edge.

3.4 Summary

Dependencies and conditional independencies can be used to construct and
understand Bayesian networks. We can use data to automatically learn the
structure and parameters of these networks. As explained in Section 3.3,
we use a set of LBN algorithms which can be divided in general Bayesian
network learners and Bayesian network classifiers. These algorithms are
implemented in two publicly available programs.

Chapter 4

Microarray datasets:
Experiments and data
pre-processing

In this chapter we present two datasets which we will analyze with the help
of the LBN programs in the next chapter. Both datasets are the result of
a comparative clinical experimental setup. The goal of these experiments
is to gain new insights into the diseases and identify new therapeutic tar-
gets, based on gene expression profiles. The experimenters already tried to
achieve this goal by searching for accurate predictors and applying super-
vised machine learning methods.

The first experiment compares multiple myeloma patients with healthy
persons. The second set contains samples of patients with breast cancer
that develop metastases within five years and of breast cancer patients that
remain free of metastases for five years. We will show the data and classi-
fication methods of both experiments in the first two parts of this chapter.
The last section concerns the pre-processing of the datasets, discretization
and gene selection, which is necessary to learn Bayesian networks.

4.1 Multiple myeloma

4.1.1 The microarray data and backgrounds

A large amount of microarray data is publicly available. Organized databases
can be explored to view the data of microarray experiments'. Most of these
experiments are not very large and range from 6 to 30 microarrays and

LA list of these organized databases is given on different websites. On http://ihome.cuhk.
edu.hk/%7Eb400559/array.htm an almost complete overview can be explored. We also
made a small list: http://www.science.uva.nl/~vthemaat containing some other databases
as well.

33

4.1 Multiple myeloma 34

from potatoes to yeast to human samples. Often, the experimental setup is
designed in such a manner that a lot of different conditions are compared.

Because the study by Page et al. [PCW™02] has been one of the triggers
to perform our research, we have chosen to use the same dataset used in
their study. The gene expression profiles of multiple myeloma patients are
compared to those of healthy persons and the data is publicly available at
http://lambertlab.uams.edu/publicdata.htm. The dataset is relatively large;
74 newly-diagnosed multiple myeloma patients and 31 healthy persons.

Multiple myeloma is a cancer of antibody secreting cells that grow in
the bone marrow. The disease is incurable and usually progresses rapidly
after diagnosis. In healthy patients, bone marrow plasma cell samples show
a great variety of different types of plasma cells. The samples taken from
multiple myeloma only contain one type of plasma cell that has taken over
the bone marrow.

From samples of the plasma cells, cRNA is derived. By hybridizing the
cRNA to single channel Affymetrix microarrays (see Section 1.2.2), contain-
ing about 7,000 different genes, gene expression values could be measured.
The resulting dataset contains two values per gene per sample: a continuous
value (called Average difference, or AD in short) and a discrete value (Abso-
lute call, AC). The AC value can be A (absent), P (present) or M (marginal),
and is calculated by Affymetrix standards (see http://www.affymetrix.com).

4.1.2 A study on data mining the multiple myeloma data

Page et al. [PCWT02] tried to find “an accurate predictor of multiple myeloma
that will provide insight into the disease”. They test the performance of sev-
eral supervised machine learning techniques as well as the comprehensibility
of the result. Five publicly available techniques were used: Decision trees,
boosted trees, support vector machines (SVM), voting and Bayes nets.

SVM was already shortly described in Section 2.1.1. For (boosted) de-
cision trees C5.0 was used (we refer to http://www.rulequest.org for more
information). The voting algorithm works in three steps: first all the genes
are scored separately according to the entropy-based information gain score
(we will explain this later in Section 4.3), then the top scoring 1% of the
genes is selected (70 in our case), and finally a majority vote among these
genes is taken to classify new samples. Information gain is also used to
select 30 genes for the Bayes net algorithm that is based on PowerPredic-
tors’ Markov blanket algorithm. Because PowerPredictor can only learn
networks with discrete values, the AD values were discretized based on the
split value that gave optimal information gain (see Section 4.3).

Genes associated with immune function that had extremely low expres-
sion rates in the patients were called “trivially-accurate” genes —because
cells producing these genes were ‘eaten’ by the cancer—, and were removed
from the database. Remember that new insights into the disease is one of

4.1 Multiple myeloma 35

the goals of Page et al., and these genes provide no new insights. This set
is quite large and in correspondence with the authors we also removed the
genes in our further research.

The classification results are shown in Table 4.1. Leave-one-out cross-

Method AC Only | AC+AD
Trees 90.5 98.1
Boosted Trees 96.2 99.0
SVMs 95.2 93.3
Vote 94.0 100.0
Bayes Nets 95.2 100.0

Table 4.1: Leave-one-out cross-validation results for myeloma patients vs.
normal persons as they were obtained by Page [PCWT02]

validation was used to estimate the classification accuracies. This means
that the learning algorithms (including the gene selection procedure) are
run 105 times, and at each run they are learned with 104 samples and
classify the sample that is left over. The resulting accuracies show only
a few significant differences between the methods (SVMs are outperformed
using AC+AD, trees when using AC only). However, the authors argue that
voting and Bayes nets provide greater direct insight.

The Bayes nets for AC+AD resulted in a naive network but used only
19 features of the 30 provided (average over the cross validation runs). Re-
member that the Markov blanket algorithm is used, which finds a subset
of genes which aren’t conditionally independent given the target variable.
They suspect the high correlation of each gene with the class value to be the
reason for the lack of dependencies among the genes. The Bayes net learned
from AC only contained a large number of dependencies among the genes
and only used about 20 genes out of 30 to classify new samples.

The voting algorithm shows the ranking of the top voters directly and
clearly. Both voting and Bayes nets present their results in an understand-
able form which can be an advantage in analysis and finding potentially
interesting genes.

The decision trees were less informative, according to the authors, be-
cause most of the trees constructed in the cross-validation runs contained
only two or three genes.

This experiment is partly reproduced by us (the Bayes net part) and
we extended the data mining research with more LBN techniques, more
discretization methods and other ways for the estimation of the classification
error. The next chapter will show these results but first the second dataset
is presented.

4.2 Breast cancer and prognosis of metastases 36

4.2 Breast cancer and prognosis of metastases

4.2.1 The microarray data and backgrounds

The well-known breast cancer experiment published by van 't Veer et al.
[VDH'02] in Nature is our second dataset . This set contains samples of 46
patients whose breast cancer results in metastases within five years and of
51 breast cancer patients which remain free of metastases for five years. The
relatively large set is publicly available at http://www.rii.com/publications/
2002 /vantveer.

Breast cancer patients with apparently the same stage of disease be-
have differently to treatment and in their overall outcome. Development of
metastases— cancer moving to other parts in the body— in breast cancer
patients without tumourous cells in the local lymph nodes® can not reliably
be predicted yet. Development of metastases is dangerous and fatal. About
70 — 80% of the patients receiving chemotherapy or hormonal therapy to re-
duce the risk of metastases by one-third would have survived without these
physically and financially costly therapies. Patient-tailored therapy based
on gene expression profiles is the general purpose of the experiment.

From each breast cancer patient (all patients were younger than 55),
breast cancer samples were used to derive cRNA. A reference cRNA pool was
made by pooling equal amounts of cRNA of each sample. Two hybridizations
per tumour were carried out on microarrays containing 25, 000 genes by using
the inkjet oligonucleotide technique (see Section 1.2.2). After scanning,
normalization, etc., the intensity ratio between a gene in the sample and
the gene in the reference pool represented the transcript abundance of the
gene with respect to the reference pool.

4.2.2 Predicting the clinical outcome

The breast cancer dataset was used to develop a gene expression signature
that would make prediction of metastases possible. A 3-step supervised
classification method was trained with 78 samples, containing 34 patients
who developed metastases within 5 years and 44 patients who continued to
be disease-free over a period of at least 5 years. The remaining 19 samples
(12 metastases, 7 non-metastases) were used as an independent test set.
The first step in the supervised method selected 5,000 genes out of the
25,000 genes, because they were significantly regulated in more than 3 tu-
mours out of 78. The correlation coefficient of the expression for each gene
with the disease outcome was calculated and 231 genes were found to be
significantly associated with disease outcome (correlation coefficient < —0.3

2A lymph node is a small bean shaped organ connected to the lymph system by lymph

channels. In a lymph node lymphocytes are created. Lymphocytes play an important role
in detecting antigenes and removing bacterial cells and viruses. The lymph system is a
network of channels through the whole body.

4.2 Breast cancer and prognosis of metastases 37

or > 0.3). In the second step, these 231 genes were rank-ordered on the basis
of the magnitude of the correlation coefficient. Some of the genes known to
be related to breast cancer processes such as cell cycle, signal transduction
and angiogenesis occurred in the set of 231 disease correlated genes.

The third step optimizes the number of genes in the ‘prognosis-classifier’
by sequentially adding subsets of 5 genes from the top of this rank ordered
list and evaluating its power for correct classification using leave-one-out
cross-validation. Classification was made on the basis of the correlations
of the expression profile of the leave-one-out sample with the mean expres-
sion levels of the samples from the metastases and non-metastases group
respectively.

The accuracy of the prognosis classifier improved until the classifier con-
tained 70 genes. When more genes were added the accuracy dropped. The
classifier predicted correctly the actual outcome of disease for 65 out of 78
patients for the training set (83%). The performance on the test set was,
surprisingly, even higher and predicted 17 out of 19 correctly (89%). An
artificial threshold was set by van 't Veer et al. to decrease the number
of patients falsely classified as non-metastases from 5 to 3. The number of
patients falsely classified as metastases increased a little (from 8 to 12) with
this artificial threshold, but these misclassifications are less fatal.

The gene expression profile outperforms all currently used clinical param-
eters in predicting disease outcome, according to van ’t Veer et al.. Using
current treatment guidelines, up to 90% of the patients used in this exper-
iment are selected to be treated with chemotherapy, while 70-80% would
have survived without it. The findings by van ’t Veer et al. can provide
a strategy to select patients who would benefit from a therapy other than
chemotherapy.

Predicting the clinical outcome of breast cancer patients seems possible.
Because the breast cancer set compares patients with apparently the same
stage of disease, and the multiple myeloma experiment compares healthy
persons versus multiple myeloma patients, learning a classifier (and BNs)
for the breast cancer set looks more challenging. Before we can use the
breast cancer dataset however, we must discretize the data.

Comments on classification method The breast cancer study by van
't Veer et al. has been widely discussed in literature (and media). Especially
on the classification method comments have been made.

The classification accuracies obtained by van ’t Veer et al. for the train-
ing set are too optimistic for two reasons. First, they used all 78 training
samples to select the 231 genes. They included samples which where used
as test set during the cross validation runs. Second, the ensemble size for
70 genes is based on cross validation performances using the whole training
set, including those which are used as test set later on. These two “errors”

4.3 Pre-processing the data 38

resulted in what we could call “information leakage” and the estimated accu-
racies on the training set are probably too optimistic MWPS]. Recognizing
this issue, van 't Veer et al. modified their procedure and the accuracy
dropped from 83% to 73%3.

It is remarkable that the classification accuracies on the unseen test
data are better than the accuracies obtained on the training data. This
is probably a coincidence caused by the small amount of test data and
it stresses the difficulties of handling thousands of variables with only a
hundred samples.

To obtain a better estimate of the true classification error, the study
has been extended by van de Vijver et al. [VAVT02]*. They included the
78 samples of van 't Veer (et al.), but added 67 patients with the same
symptoms. van de Vijver et al. used the same prognosis profile of the 70
genes found by van ’t Veer et al.. The classification accuracies for these
67 patients dropped to 65%. However, only 1 of the 12 patients in the
important group with metastases was misclassified.

4.3 Pre-processing the data

All ingredients to explore the applicability of Bayesian networks for the
analysis of microarray data have been described. But the LBN programs
we presented can not be used with all the 25,000 genes. The data from
the microarrays must be filtered such that the number of genes is reduced
(from 25,000 to at most 200) and the continuous gene expression values are
discretized.

In Sections 4.1.2 and 4.2 methods to select genes and discretize the con-
tinuous data were proposed. We will make use of these methods as well,
because comparison of the results of the LBN (and BNC especially) pro-
grams against the results shown in Sections 4.1.2 and 4.2 is desirable. Next,
we will discuss these gene selection and discretization algorithms in greater
detail. Two other discretization methods which we shall use are presented
as well.

4.3.1 Gene selection: Information gain

A lot of gene selection methods exist and quite an amount of research
is involved in finding subsets of interesting genes. The correlation-based
and entropy-based methods presented previously are standard methods and
used in other microarray or machine learning studies. The correlation-based
method was partly explained in the three-step supervised learning algorithm
in Section 4.2 and will be discussed here in greater detail.

3The modified results are given in the supplementary information on http://www.rii.com/
publications/2002/vantveer.
“The dataset was not available to us at time of writing.

4.3 Pre-processing the data 39

Entropy In the entropy-based method genes are selected on the expected
amount of information on the target variable provided by the gene. Entropy,
as a concept in the field of information theory, can be mathematically defined
as:

n

H(X) = Entropy[p(z), ..., p(zn)] = > —p(xi) logy p(z:)
i=1
The probabilities p(x;) are the probabilities of, for example, a gene X taking
on the value z;. The formulas calculate the average information content
(bits) of the various events (—logap) weighted by the probabilities of the
events [RN95].

Example 1 Suppose we have a gene A taking on values h (high expression)
with probability p(h) = 0.5 and ! (low expression) with p(l) = 0.5. We can
use the formula to calculate the entropy of gene A and get:

Entropy(.5,.5) = —.5logy .5 — .5logy .5 =1

When we have a dataset where gene A has value h in 99 out of 100 cases,
and thus p(h) = 99/100, we get

Entropy(99/100,1/100) = (99/100) log,(99,/100) — (1/100) logy(1/100) =
08

The entropy of the gene decreases when the probabilities are not equally
distributed and the outcome of a certain value is more probable (and thus
less informative).

Information gain To find genes that provide information on the target
variable C' we move on to the principle of information gain. Information
gain for gene A that takes on v values is calculated as follows:

IGain(C; A) = H(C) — H(C|A)

if C takes on w values we have:

H(C|A) = .ZU:IP(A = a;) f:l Entropy(p(C = ¢j|A = a;))
= ji=

If C can take on two values, positive or negative, we can rewrite the equation:

IGain(C; A) =

Ppos neg) - i pos;+neg; POS; neg;)
i=1

Entropy(posi—l—negi ’ pos;+neg;

Entropy(

pos+neg’ pos+neg pos+negq

4.3 Pre-processing the data 40

where pos and neg are respectively the number of positive (healthy for
example) and negative (multiple myeloma) samples. The value of pos; is
equal to the number of positive samples in the subset of the data where
gene A has taken on value i. Calculating neg; is done in the same way, only
now the number of negative samples in the subset is counted. Information
gain subtracts the weighted entropy of the subdivided datasets from the
entropy of the target variable in the entire dataset. Mutual information,
described in Section 3.3, actually measures the same as information gain®
and is symimetric.

Example 2 Let us recall Example 1 where gene A could be h or [, and
p(h) = 50/100 and p(l) is also 50/100. Suppose the number of patients
having multiple myeloma (neg) is 70 and the number of healthy samples
(pos) is 30. We can divide the data in two groups, one group Gy, containing
all samples where gene A has a high expression and a group G; where gene
A has a low (I) expression. Suppose the number of positive samples (posy,)
in Gy, is 10 (so negyp, is 40). It follows that in G; we have pos; = 20 and

neg; = 30. Now we can calculate information gain which will be equal
to: Entropy(3, %) — -Entropy(23, 23) — 2% Entropy(15, é—g) = 0.0349.

But when we have negp, = 50 the information gain increases to 0.396 (we
assume that 0/501og, 0/50 = 0). When neg;, = 50 gene A can provide more
information on the class value when it has a high expression.

The gene selection method selects a set of genes with highest information
gain (where either a threshold is needed or a maximum number of genes).
In contrast to correlation, information gain based gene selection can be seen
as a consistency based gene selection method; how the differences between
the two classes are distributed does not matter as long as the two classes
are consistently separated by the expression value of the genes. This means
that minimal differences within the gene expression of a gene between two
groups can result in high information gain scores.

4.3.2 Gene selection: Correlation

We will shortly present the correlation based gene-selection method as it
was used by van 't Veer et al.. In general correlation values determines the
extent to which values of two variables are “proportional” to each other.
Several methods to estimate the correlation between to variables exist, but
the most widely-used Pearson correlation is also used by van 't Veer et al.
to select 231 genes.

The Pearson correlation is formulated as:

>The information gain formula can be rewritten into the mutual information formula, but
that goes beyond the scope of this thesis. Interested readers can view this on http://cgm.
cs.mcgill.ca/~soss/cs644 / projects/simon/Entropy.html.

4.3 Pre-processing the data 41

C(X,Y) =

where X and Y are the averages for X and Y respectively. We can re-write
the function with the standard deviations for X and Y:

3

5 (X X) (Y- 7)
C(X,Y) = =Gmes —

The Pearson correlation calculates the distances between all data points
and a linear regression line. The linear regression line is estimated such
that the sum squared distances between all data points and the linear line
are minimal. Scale does not matter. The correlation (linear relationship)
between two variables is strong when the Pearson correlation is close to 1 or
-1. If the Pearson correlation is close to zero the linear relationship is weak.

In our case we calculate the correlation between a gene X and the cor-
responding class values. The class values are either 0 or 1. The correlation
is close to 1 or -1 if the distance between the means for the two classes is
very large and/or the standard deviation within the classes is very small. In
Figure 4.1 two examples are given.

o9 00
46

44
|

2
1
gene X
4.2
L1
\
°

gene X

oo 10 00 10

Class values Class values

Figure 4.1: In plot A the distribution for the 2 classes are quite different.
The corresponding Pearson correlation between gene X and the class is 0.82.
The Pearson correlation for B is 0.27. The regression lines are also plotted.

It is important to note that this gene selection method, and the informa-
tion gain based method, are actually already a part of the learning process.
The fact that the selection methods already use the target class value is
sometimes forgotten by the analysts, as we already mentioned in Section
4.2.2.

4.3 Pre-processing the data 42

4.3.3 Discretization

Three methods to discretize continuous data are available in a program
that comes with PowerPredictor and PowerConstructor: a frequency-based
method, a range-based method, and a method based on information gain
will be discussed.

The frequency-based methods defines split values in such a way that each
interval contains an equal amount of examples. In the range-based method,
the intervals have an equal distance in the continuous space.

In the third discretization method, information gain is used to find the
optimal split values . The optimal split value is the value that gives the
highest information gain, given a set of continuous values and their corre-
sponding class labels. The set of continuous data, and their corresponding
class labels, are ranked by their magnitude. For each neighboring pair of
values the information gain is calculated. The average of these two values is
used as the split level, that divides the data into two groups. All continuous
values greater than the split level become equal to one, the other values
become zero.

The frequency-based and range-based method are unsupervised discretiza-
tion methods but the entropy-based method is a supervised discretization
method.

Chapter 5

Results and discussion

In the previous chapters we presented the Bayesian network learning meth-
ods and the gene expression datasets we want to use to learn Bayesian
networks. The results are shown in this chapter.

The first section of this chapter shows the results obtained by applying
the LBN algorithms to the multiple myeloma dataset as described in Sec-
tion 4.1. Because we want to distinguish the learning algorithms for general
networks and classification networks we divided the presentation of the re-
sults for the myeloma dataset accordingly. Section 5.2 will be subdivided
similarly and presents the results obtained for the breast cancer dataset. A
short summary of the results to further analyze and compare the results is
given in Section 5.3.

5.1 Results on the multiple myeloma dataset

Details of the multiple myeloma dataset were discussed in Section 4.1, but
will be repeated here briefly. The multiple myeloma experiment was carried
out to compare the gene-expression of healthy human beings against multiple
myeloma patients. In total 105 bone marrow samples were measured con-
taining 34 healthy samples and 71 multiple myeloma samples. Affymetrix
oligonucleotide arrays were used and resulted in a set of absolute values
(Absolute Call, AC) and continuous values (Average Difference, AD) both
representing gene expression values.

One of the goals of the experiment was to check how well classification
techniques could distinguish between the gene expression values of a multiple
myeloma patient and a normal healthy person. Section (5.1.1) will show to
what extent our Bayesian network classifiers (BNC) learned on the multiple
myeloma dataset are capable of doing this. We will compare the results to
those obtained by Page et al. [PCWT02].

The multiple myeloma set was also used to construct general Bayesian
networks. We used two general Bayesian network learning algorithms (K2,

43

5.1 Results on the multiple myeloma dataset 44

CTan Naive Markov
Classifier Network Blanket
AC Only | 100 +0.00 | 99.05 +0.94 | 99.05
AC+AD | 100 £0.00 | 100 =4 0.00 100

Table 5.1: Classification accuracies of BNCs learned on gene expression
values of 30 genes from the multiple myeloma dataset. The entropy-based
gene selection method is used to select 30 genes. Discretization of the AD
values is also based on the entropy. Default settings of the algorithms were
used.

CBL) as described in Section 3.3 to see if they can extract interesting net-
works from the data. The resulting networks can be found in Section 5.1.2.

5.1.1 Classification networks

To compare our classification accuracies against the accuracies obtained by
Page et al. [PCWT02], we used exactly the same 30 genes they selected by us-
ing the top information gain genes for both AC (discrete values) and AC+AD
(discrete and continuous values). The set of trivial genes was removed from
the dataset. The resulting classification accuracies, using default settings of
the algorithms!, are shown in Table 5.1.

We used leave-one-out cross validation to estimate the classification er-
rors shown in Table 5.1. The classification accuracies are the percentages of
correctly classified samples. In the implementation of the Markov blanket
(MB) algorithm, leave-one-out cross validation was not possible. Instead,
the Markov blanket was trained and tested on all the 105 samples, which is
a too optimistic way to estimate the true classification error.

Another remark is about the selection of genes. The genes were selected
using all the 105 samples, including the leave-one-out samples. Remember
that entropy-based gene selection was used and that this is already part of
the learning process. The leave-one-out sample should be excluded from the
total learning procedure. The “true” classification error is expected to be
somewhat higher. We’ll return to this issue later on in this section.

In [PCW102] other machine learning techniques were used to learn to
classify new bone marrow samples, of which the results are shown in Table
5.2 (see previous chapter for more information).

Almost all classifiers (both our BNCs and the classifiers in Table 5.2)
achieve high classification accuracies. For the AD+AC values, accuracies
are for all BNCs 100%. Classifying a bone marrow sample as healthy or
multiple myeloma, almost seems as a trivial task, even after removing the

Tn the default settings the prior precision is equal to one for the CTan and Naive BNCs,
and the confidence level threshold for the Markov blanket is automatically detected.

5.1 Results on the multiple myeloma dataset 45

Method AC Only | AC+AD
Trees 90.5 98.1
Boosted Trees 96.2 99.0
SVMs 95.2 93.3
Vote 94.0 100.0
Bayes Nets 95.2 100.0

Table 5.2: Leave-one-out cross-validation results for multiple myeloma pa-
tients vs. normal persons as they were obtained by Page et al. [PCW102]

[EEER

USBE37_s_al_

(280780 1 a_d] [Er2aed | [FbeEz_ad |

U41068_cds2_{

Figure 5.1: BNC learned with PowerConstructors’ default Markov blanket
algorithm. The AC+AD gene expression values of the top 30 entropy genes
of the multiple myeloma experiment were used. The middle node represents
the multiple myeloma variable.

known trivial genes. The BNC learning algorithms in general perform well
in comparison to the other techniques.
In Figures 5.1 and 5.2 two of the six generated networks are shown.
The networks were all learned on the total set of samples. Comparing
all the generated networks, it seemed that the naive Bayesian network was
the most common among the networks based on AC+AD gene expression
values, see for example Figure 5.1. Using only AC (discrete) values to learn
classification networks, the resulting networks became less naive, see Figure
5.2. The Markov blanket shows that only half of the 30 genes are needed to
obtain high classification accuracies, see Figure 5.1.

Using an independent test set We already noted before that the esti-
mation of the classification accuracies of the learned networks was not ideal
in our leave-one-out strategy. We selected one subset of 30 genes based on
all the data, including the leave-one-out samples. Selecting genes based on
only the training set—in each cross-validation run— should make the leave-
one-out strategy a better estimator of the true classification error. But
because gene selection is not automatically possible in the programs we use,
the genes should be selected manually in each cross validation run. So we

5.1 Results on the multiple myeloma dataset 46

Figure 5.2: Bayesian classification network learned with CTan algorithm.
The prior precision threshold was set to 1 (default value). The AC gene
expression values of the top 30 entropy genes of the multiple myeloma exper-
iment were used. The middle node represents the multiple myeloma variable.

would need to select 30 genes based on our own algorithms, learn a BNC,
and classify the left-out sample 105 times in a row.

Estimation of the classification error based on one large independent test
set, with gene selection based on the training set only, can give a less biased
estimate of the true classification error as compared to the previous method.
Therefore we carried out another classification error estimation procedure,
more similar to van 't Veer et al. [VDHT02]. We randomly selected 20
samples from the 105 samples as an independent test set. A set of 30 genes
was selected, based on the information gain of individual genes within the
training set (the remaining 85 samples). Networks were learned with the
gene expression values of these 30 genes in the training set. The networks
were tested on the independent test set, see Table 5.3.

Accuracies are fairly high although they decreased a little as compared
to the accuracies in Table 5.1. Notice that the classification accuracy for
the test set is 100% (all test samples were correctly classified) and for the
training set only 94.9%, in case of AC Only and the CTan BNC.

5.1.2 General networks

To test the possibilities of the LBN programs used in our approach it is also
important to use general Bayesian networks to analyze the gene expression
data of the multiple myeloma experiment. The GBN algorithms we used
are K2 and CBL as described in Chapter 3 and are especially suited to
learn structures. The algorithms construct a network that best fits and

5.1 Results on the multiple myeloma dataset

47

CTan Naive Markov

Classifier Network Blanket
training | test | training | test | training | test
AC Only | 94.9+2.4 | 100 | 94.1£2.5| 95.0 97.7 90
AC+AD | 97.7+£2 95 96.2+2 | 100 97.7 95

Table 5.3: Classification accuracies for multiple myeloma patients vs. nor-
mal persons. The test set contained 20 samples, the training set contained 85
samples. Entropy-based gene selection was used, based on the training set.
The continuous AD values were discretized using bins based on information
gain. Default settings of the algorithms were used.

represents the values of the given variables (genes and disease state). The
K2 algorithm learns a directed acyclic graph (DAG) and the CBL algorithm
leaves connections undirected when not enough evidence is given to choose
one of the directions. Therefore CBL learns a partially directed acyclic
graph (PDAG).

Tuning the parameters of the algorithms, such as the confidence level
threshold of a dependency in the CBL, and the prior precision parameter
in K2, resulted in different networks. The GBNs learned by K2 and CBL1
depend on the order in which the genes appear in the database, see Chapter
3.

Figures 5.3, 5.4 and 5.5 depict some of the resulting networks. We used
the default parameters of the algorithms (see Figures 5.4 and 5.3) but also
modified the parameters (see Figure 5.5 for example).

The disease-state variable was also included but because the network is
not especially constructed for the prediction of this variable, we can view the
GBN learning strategy more as a kind of unsupervised learning method?.

Most of the networks (not all shown) seemed to look similar to a naive
Bayesian network with the multiple myeloma state variable being the par-
ent of the gene nodes. Setting the thresholds to a value such that more
confidence is needed, the networks changed in structure; see Figure 5.4 and
Figure 5.5. Other settings could also be changed (node ordering, discretiza-
tion). We have constructed many networks by changing these settings For
practical reasons not all these networks can be shown here. On our website
other networks can be viewed, see http://www.science.uva.nl/~vthemaat.

Changing the settings of the algorithms always resulted in GBNs with
different structures. A comparison of the structure of two, or more, networks
is hard. Some basic methods exist to compare, or combine, networks (such
as common link, complexity measures and methods mentioned in 2.3) but
these are not implemented in the software we used, so the networks can only

2We note that the genes were selected by a supervised method, therefore the complete GBN
learning procedure is supervised.

5.1 Results on the multiple myeloma dataset 48

DE0325_At }lg%/ \\\
MET328 bt ‘)‘ / '.\
R s

wg‘\

LU5BE37_Shat

Figure 5.3: General Bayesian network learned with K2 Bayesware default
settings. The AC+AD gene expression values of the top 30 entropy genes
of the multiple myeloma experiment were used. The middle node represents
the multiple myeloma variable.

be compared manually.

We also learned networks (not shown here) with a random set of genes
which did not have to be disease-related. In this case, the resulting networks
sometimes contained almost no dependencies between genes and sometimes
a lot of dependencies between genes. The networks looked a lot different
as compared to the naive networks learned with the information gain based
gene selection. The disease state variable was never a dominating node in
the networks with randomly selected genes (which seems plausible because
the random genes are not specifically related to the disease).

Quantitative analysis of the resulting networks is not very easy. The
classification accuracy might give an indication how reasonable the network
fits the data. With the networks learned by K2 we can classify samples.
Because CBL2 results in partially directed networks, classification is not
possible. The classification accuracies are very high; 99.1% using only AC
values and 100% using AC+AD values. These accuracies are almost the
same as the BNCs (using only AC values, the performance is again slightly
worse). Table 5.4 also shows these results.

5.1 Results on the multiple myeloma dataset 49

050523_5Ld

Figure 5.4: General Bayesian network learned with Powerconstructors’
CBL2 algorithm. The confidence level threshold was set to the default value.
The AC+AD gene expression values of the top 30 entropy genes of the mul-
tiple myeloma experiment were used. The node indicated by the thick arrow
represents the multiple myeloma variable.

K2
AC Only | 99.1
ACHAD | 100

Table 5.4: Classification results of GBNs learned by K2 on the multiple
myeloma gene expression data.

(SR
X1%10_aLd

AL]

762t

Figure 5.5: General Bayesian network learned with Powerconstructors’
CBL2 algorithm. The confidence level threshold was set to 8. The AC+AD
gene expression values of the top 30 entropy genes of the multiple myeloma
experiment were used. The middle node represents the multiple myeloma
variable.

5.2 Results on the breast cancer dataset 50

5.2 Results on the breast cancer dataset

The breast cancer experiment is carried out with a slightly different purpose
as compared to the multiple myeloma experiment. Predicting the future
development of breast cancer and finding developmental marker genes are
the main purposes in the breast cancer experiment. The spotted array
technique was used to spot 25,000 genes of 51 metastases breast cancer
tissues and 46 non-metastases samples against a reference pool.

In order to check the usability of the LBN programs on the breast cancer
set we learned classification and general networks. The results will be shown
below.

5.2.1 Classification networks

The classification networks were learned under several conditions we men-
tioned before. We used different types of discretization methods, different
types of gene selection methods and a variety of LBN methods. We start
with showing the classification accuracies obtained by using the same gene
selection methods as used in the breast cancer article [VDH'02]. The 70
genes they found can be extracted from their publication in Nature?. The
genes were selected on the basis of correlation and predictive powers on
a training set (78 samples), see Section 4.2 for more details. Learning our
classification networks on 78 samples (34 metastases and 44 non-metastases)
and testing the networks on 19 independent samples (12 non-metastases en
7 metastases), resulted in classification accuracies as shown in Table 5.5.

CTan Naive Markov

Classifier Network Blanket
Discretization | training | test || training | test || training | test
Entropy 99 84 87 94 94 68
Equal width 88 84 88 84 52 57
Frequency 90 78 78 89 85 a7

Table 5.5: Breast cancer classification accuracies in percentages using the
genes selected by van 't Veer et al. in [VDH'02]. Several discretization
methods and BNC learners were used.

The training set was slightly modified for the Markov blanket algorithm.
Because one of the samples contained a lot of missing values and the Markov
blanket algorithm cannot cope with that, this sample was not included.
One might argue this sample should be included as misclassified, but we
leave that up to the reader. In case one wants to include the sample as
misclassified, the accuracies should be adjusted with —1.3%.

3Seehttp:/ /www.nature.com.

5.2 Results on the breast cancer dataset 51

In Table 5.6 the results obtained by van ’t Veer et al. are presented. Our
classification accuracies can compete with their results.

Results by Adjusted
van 't Veer et al. || Markov Blanket
training | test training | test

83 88 94 88

Table 5.6: Breast cancer classification accuracies in percentages using the
genes selected by van 't Veer et al. in [VDH'02]. The adjusted Markov
blanket is learned with entropy discretization but now the confidence level is
set to 8.

A second remark on the Markov blanket is about the confidence level
threshold. Cheng [CG98] recommends to manually increase the threshold if
the number of samples is much lower than the number of variables. If this
value is increased, the accuracies on the test set seem to increase as well.
The result when the threshold was set to 8 times the default value (we just
manually picked a number as suggested by Cheng) is represented by the
“Adjusted Markov Blanket” column, see Table 5.6.

It looks as if the BNCs are overfitted to the training data if the threshold
is set to default. The problem however, is that a good learning strategy does
not allow us to adjust the threshold based on the classification accuracies
on the independent test set, which makes it hard to find the good threshold
when automatic threshold selection fails to do so.

Just like van ’t Veer et al., we selected the genes on the basis of the
complete training set. We also learned the BNCs on the complete training
set. Because of these facts the resulting accuracies on the training set may
be too optimistic. The accuracies on the independent test set give a better
indication of the true error of the learned BNCs. The problem with the
test set accuracies is the small amount of samples. This might explain why
sometimes the accuracy is higher on the test set than on the training set.

Figures 5.6 and 5.7 show a Markov Blanket and CTan network respec-
tively. Most networks contained more dependencies between genes (see Fig-
ure 5.6 for example), and looked more interesting, as compared to the BNCs
learned with the multiple myeloma dataset. But this is not always the case
(see Figure 5.7).

Information gain based gene selection In addition to the results ob-
tained using the correlation based gene selection method (based on correla-
tion) used by van 't Veer et al. we also used the information gain based gene
selection used in the multiple myeloma experiment. We selected 70 genes
from 25,000 genes based on their individual predictive power represented by
the information gain value. We did not select a larger set of genes because

5.2 Results on the breast cancer dataset 52

Figure 5.6: Bayesian network classifier learned with the breast cancer gene
expression values. Selection of the genes was based on correlation with the
breast cancer state. The algorithm to learn a Markov blanket, as imple-
mented in Powerpredictor, was used. Discretization of the gene expression
values was based on equal widths. The node indicated by the thick arrow
represents the metastases variable.

Figure 5.7: Bayesian network classifier learned with the breast cancer gene
expression values. Selection of the genes was based on correlation with the
breast cancer state. CTan algorithm was used with default settings. Dis-
cretization of the gene expression values was based on equal widths. The
middle node represents the metastases variable.

we wanted to use the same amount of genes as van 't Veer [VDH102]. The
learning strategy is also similar. The classification accuracies we obtained
are given in Table 5.7. The classification accuracies on the test set in our
entropy based selection method are overall lower in comparison with the
scores of the BNCs learned on the genes selected by van 't Veer et al.. On
the other hand, the results on the training set seemed to improve a little.
These results indicate that the BNCs are overfitted to the training data, so
we conclude that, in this case, entropy based gene selection performs worse
compared to correlation based selection.

5.2 Results on the breast cancer dataset

53

CTan Naive Markov
Classifier Network Blanket
Discretization || training test training | test || training | test
Entropy Failed | Failed 96.1 73 100 68
Equal width 98 68 97 73 80 47
Frequency 96 78 98 68 97 42

Table 5.7: Breast cancer classification accuracies using the genes selected
by information gain. Several discretization methods and BNC learners were
used. Default settings of the thresholds were used. Failed means that the
program crashed.

5.2.2 General networks

We have learned general Bayesian networks (GBN) under the same condi-
tions as we used above. Only 78 samples were used. The resulting networks
looked interesting and showed a lot of gene-gene dependencies. But again,
under different circumstances and by tuning parameters different networks
were learned by the algorithms. Showing all these networks is practically
impossible and of no real use. In Figures 5.8, 5.9, 5.10 and 5.11 a small
selection of networks is shown.

At first sight, the networks look quite complex. In contrast to the GBNs
from the multiple myeloma experiment (see Section 5.1.2), these GBNs show
structures where the disease node is not the parent of all gene nodes.

By varying the threshold values of the GBN learning algorithms, the
structure of the networks always change quite a lot. In Figures 5.9, 5.10
and 5.11, the prior precision parameter was set to 1,4 and 78 respectively.
By increasing this threshold the evidence needed for a dependency between
two genes decreases. While Figure 5.9 contains not so many dependencies,
the GBN in Figure 5.11 contains a very large amount of dependency rela-
tionships (and the program even crashed before it could finish).

The GBNs learned by the K2 algorithm could be tested for their clas-
sification result on the metastases variable, the results are given in Table
5.8. As expected, classification accuracies on the test set are much lower
compared to the BNCs.

Comparison of GBNs Comparing the resulting networks cannot be done
by the programs. Because we wanted to know to what extent the result-
ing GBNs resembled each other we compared some of them by hand. This
resulted in a list of genes and the frequency of their direct or indirect depen-
dency relationship with the metastases variable*. Although the networks

*We compared five networks using correlation-based gene selection: CBL2 range discretized,
K2 entropy, range and frequency discretized, and K2 range with other threshold settings.

5.2 Results on the breast cancer dataset 54

Figure 5.8: General Bayesian network learned with the breast cancer gene
expression values. Selection of the genes was based on correlation with the
breast cancer state. Powerconstructor (default settings) was used to learn the
network. The node indicated by the thich arrow represents the metastases
variable.

Figure 5.9: General Bayesian network learned with the breast cancer gene
expression values. Selection of the genes was based on correlation with the
breast cancer state. The K2 algorithm was used with default settings (prior
equal to one). The node indicated by the thick arrow represents the metas-
tases variable.

Correlation based Entropy based
selection selection
Discretization || training test training | test
Entropy Failed | Failed 100 36
Equal width 90 68 Failed | Failed
Frequency 87 73 97.4 47

Table 5.8: Breast cancer state prediction results of the GBNs created by
the K2 algorithm using different gene selection and discretization methods.

were quite different from each other, four genes were consistently directly
related to the metastases variable throughout all the networks we checked.

5.2 Results on the breast cancer dataset 55

/

Figure 5.10: General Bayesian network learned with the breast cancer gene
expression values. Selection of the genes was based on correlation with the
breast cancer state. The K2 algorithm was used with prior set to 4. The
node indicated by the thick arrow represents the metastases variable.

Figure 5.11: General Bayesian network learned with the breast cancer gene
expression values. Selection of the genes was based on correlation with the
breast cancer state. The K2 algorithm was used with prior set to 78. Learn-
ing the network crashed after several minutes. The node indicated by the
thick arrow represents the metastases variable.

A CTan BNC was learned with the expression values of these four genes
in the 78 training samples and this resulted in classification accuracies of
80% on the training set and 84% on the test set. These accuracies are quite

5.2 Results on the breast cancer dataset 56

4 genes
selection

training | test
80 84

Table 5.9: Breast cancer development prediction based on gene expression
values of 4 genes in 78 samples (training set). The test set contained 17
samples. The CTan Bayesian network classifier was used.

good compared to the results when 70 genes are used.

The four genes are: NM_003748, NM_006681, AL080059 and contig63102_RC.
Contig63102_RC is not mentioned in other literature, but AL080059, NM_003748
and NM_006681 have been linked to cancer. Kulaeva et al. [KDL103] report
that ALO080059 is involved in cellular immortality, which could be an impor-
tant process in early development of cancer. The gene-database provided
by NCBI® links AL080059 to a brain protein (protein KIAA1750). Gene
NM_003748 represents ALDH4 protein and is involved in several processes
ranging from cancer to cellular stress. Alevizos et al. suggest in [AMZ701]
“the need for further study of the role of NMU in carcinogenesis”. NMU is
represented by the gene NM_006681. Alevizos et al. report that the poorly
understood NMU seems to be strongly related to oral cancer and refer to
other studies on the role of NMU in cancer.

So, even while it is hard to compare the networks, interesting information
can be found.

Exploring relations between genes Finally we like to remark the pos-
sibility of exploring the properties of dependencies between genes. In the K2
version implemented in Bayesware this is easily possible because Bayesware
shows the conditional probability table (CPT), as described in Chapter 3,
in a 3-dimensional output. Of course, it is standard to be able to visusalize
the CPTs because these are part of the Bayesian model, but nevertheless it
can be useful to researchers.

Figure 5.12 shows such an example. In this figure, contigb7258_Rc is
dependent on X05610. The gene values were discretized into 4 bins. We
can see, for example, that if X05610 has a continuous value of 0.2 (which
represents a relative high expression), contigh7258 Rc is most likely to have
a relatively high expression (between 0.09 and 0.43) as well. For analyzing
certain gene expression values and relationships, such a graphical display
can be very helpful.

For more information look at: HTTP://www.ncbi/nlm/nih/gov/entrez.

5.3 Summary and comparison of the results 57

» ¥ Conditional Probability Distributions [Contig:

1 Labels
7 sten |

Mouse Left o ratate the obiect, Mouse Right to move light, Mouse Shift Left o mave the object

Figure 5.12: A conditional probability table as showed in Bayesware.

5.3 Summary and comparison of the results

In the previous sections the results of different experiments were presented.
In this section a summary of the results is given, enabling us to compare the
Bayesian networks as learned under different conditions.

The classification results of the BNCs and GBNs are graphically dis-
played in Figure 5.13.

Note the difference between the classification accuracies of the multi-
ple myeloma and the breast cancer BNCs. This is in accordance with the
classification results shown in [VDH'02] and [PCW*02].

We can also notice the low accuracies obtained by the general networks
and the Markov blankets on the test sets in the breast cancer sample. Appar-
ently these methods are less capable of avoiding overfitting and generalizing
the training data. For the case of the general networks, it is easy to under-
stand, because they are not especially learned to predict the state of one
variable. The Markov blanket overfitting the training data is a little more
surprising. The fact that the threshold might not be set optimally (see Table
5.5, here the result of a MB with a different threshold is shown) could be
an explanation for this result.

Another interesting result is the ability of the BNCs to compete, in clas-
sification accuracies, with the methods used in [VDH102] and [PCW*02].

Using information gain to select genes from the breast cancer gene ex-
pression database also gives an interesting result. This selection causes the
Bayesian networks to classify the training data very well while the classifi-
cation accuracies on the test patients are relatively low. When we compare
these accuracies against the correlation based gene selection results it seems

5.3 Summary and comparison of the results 58

Correlation Infarmation gain
CTan MNaive Markov K2 wvan'tVeer CTan MNaive Markow K2 Wyeloma
007 + 100 L -
— - —— —— ﬁ bl m]
) = = = — :
o | =L 1= — @ .
= &0 - = 80 1 -+
Jal fod é
= I = 5 — = -~
= ! ! =) !
T B0 o | B B0 5 :
[! c
2 - k=
- : L
= - o il = -
= 40 = 40 [—]
o wm
(] [d
o T
20 1 20
1T T T T T T T 1 T T T T T T T T T 1
2§ 2828 2% 2% 282828278 2%
= = £ = £ = £ = £ = £ < E 2 E = £ = E =
g g g g g T © © e e

Figure 5.13: Boxplots of classification accuracies obtained by Bayesian net-
works under different circumstances for correlation (left) and information
gain (right) based gene selection. All plots represent accuracies on the breast
cancer dataset, except for the most right boxplot, which represents the ac-
curacies for the multiple myeloma set.

that information gain causes overfitting.

The high accuracies on the training data throughout these experiments
could be a too optimistic because the selection of genes was based on the
whole training set.

A last remark on the results shown in Figure 5.13 is about Occam’s razor
stating that the simplest solution is probably the best. The naive Bayesian
network, which has a very simple structure, obtains high classification ac-
curacies on both training and test sets. The naive BNC is also very fast in
learning and probably favorable for classification purposes. A disadvantage
is that the naive BNC can not learn interesting networks or find marker
genes.

A comparison between the structures of the Bayesian networks learned
under the different circumstances is much more difficult. As we already
noted earlier, there was a difference between the networks learned with the
multiple myeloma set and the breast cancer set. The Bayesian networks
based on the multiple myeloma set resulted in networks where the disease
state variable was the parent of all gene nodes. In the breast cancer experi-
ment more complex structures were created.

A reason for this difference in network structure, and for the differences
in classification accuracies, between the multiple myeloma and breast cancer
experiment, could be explained by the information gain values of the indi-
vidual genes used in the networks. Figure 5.14 shows that the information
gain values for the breast cancer genes are much lower than the information

5.3 Summary and comparison of the results 59

0.9 5

0.8 4

0,7 4

0.8

05 - —a— Myeloma AC+AD
' —=— Breast cancer

04 —a— Myeloma AC
0.3 4
N _M

0.1

infermation gain

0 L e e B L
13 868 7 9 11 13 15 17 18 21 23 25 27 20

genes

Figure 5.14: Top 30 information gain scores of genes from different gene
expression sets

gain scores for the multiple myeloma genes.

Figures 5.9, 5.10 and 5.11 show that the structures of the constructed
networks depend on the values of the thresholds used by the variables. A
slight change of these thresholds can cause great differences in network struc-
ture. Because it is not possible to automatically compare the structures of
the networks it is very hard to find the most representative network for a
given dataset.

60

Chapter 6

Conclusions and future work

In this thesis we considered the analysis of microarray data with Bayesian
networks. We described how the Bayesian techniques can be applied to
analyze gene expression data. Our approach was based on the demands
posed by the domain of microarray analysis. The central question stated in
Chapter 1 was whether easy accessible and understandable learning Bayesian
network (LBN) methods can be used for the analysis of microarray data.
The results we obtained lead to conclusions on the possibilities of using
LBN programs for classification purposes and on the difficulties of using
general Bayesian network learners for gene expression analysis.

In Section 6.1 we present our general conclusions as well as our con-
clusions for classification and general Bayesian network learners specifically.
We conclude in Section 6.2 with ideas for future work and improvements to
the used programs.

6.1 Conclusions

In the experimental setup of this thesis we looked at LBN algorithms able to
learn classification networks or general networks. To show the possibilities
of these algorithms we applied them under different conditions, including:

e Two programs with different implementations of general and classifi-
cation network learners

Two different microarray experiments

Different gene selection methods

Different discretization methods

Our results show that the LBN methods we used can be very useful to
answer relevant biological questions and to extract biologically interesting
information. We have seen that for the purpose of diagnosis and prognosis

61

6.1 Conclusions 62

the Bayesian network classifier (BNC) learners achieve high classification
accuracies and can compete with other classification methods. The LBN
programs can also provide insights into gene relationships (by means of the
graphical output and possibilities of relationship analysis). With the help of
both general and classification LBN methods we found small sets of marker
genes, ranging from 4 to 15 genes, which may be of interest for molecular
biology.

However, the LBN algorithms we used did not always give good or eas-
ily interpretable results. The BNC learners poorly classified the test sets
under some conditions and robust estimation of classification accuracies is
difficult with our high dimensional microarray data. The networks learned
with GBN learners varied a lot under slightly different settings (changing
parameter values), which make the resulting networks not very robust and
hard to interpretate. In the next parts we will discuss the conclusions for
the classification and general networks separately.

6.1.1 Classification networks

By comparing the results from the two different experiments we see that the
differences in the resulting network structures and prediction accuracies are
significant. When we are comparing a multiple myeloma patient versus a
healthy person, the classification task seems almost trivial with accuracies of
100%. In most of the resulting classification networks the multiple myeloma
state variable is the parent of all other gene variables. When comparing
two developmental subtypes of breast cancer the classification accuracies
are far less accurate in comparison to the multiple myeloma case and the
networks become less simple. The experimental design is of importance for
the expected accuracies and networks.

The information gain scores of individual genes seem to give an indication
for the classification accuracies and the resulting networks. The information
gain scores were high for the genes in the multiple myeloma set but relatively
low for the genes in the breast cancer set.

For the BNC learners the most important issues concerning the clas-
sification of high dimensional gene expression patterns are: overfitting to
training data (see Section 2.1.1) and the estimation of classification error.

Overfitting The results we obtained show that simple Bayesian classifi-
cation techniques, such as the naive and CTan Bayesian network classifiers,
can generalize over the training data. We can see this in the high classifi-
cation accuracies for the training data as well as for the independent test
set. Classification networks which learn more complex networks, such as
Powerpredictor’s Markov blanket BNC, have more difficulties to generalize
over the training data and perform less on the test data (especially when
the classification task is less trivial as in the breast cancer experiment).

6.1 Conclusions 63

The gene selection methods used to select a subset of genes (about 1%
of the total set) affects the ability of the BNC learners to generalize over
the training data. The classification accuracies for the test set of the breast
cancer dataset was lower with entropy based gene selection than with cor-
relation based selection. If the entropy based gene selection is used, the
chance of overfitting seems to increase.

By tuning the parameters of the algorithms the classification accuracies
on the training set can be optimized. By increasing the confidence level of
the Markov blanket BNC, the network can become less sensitive to over-
fitting and perform better on the test set. However, this kind of manually
adjusting the parameters should only be tested within the training set. If the
test set is used to optimize parameters the test is not independent anymore
and we would insert a bias which can make the results too optimistic. A
procedure to select a level of confidence is to increase the level of confidence
until the accuracy on the training set drops below a certain level. We must
note that, in most cases, the default settings of the algorithms can be used
to obtain high accuracies.

Estimation of error The limited availability of the number of samples
and the large amount of variables are a serious problem for the estimation
of the classification error. Since we want to use a test set to estimate the
classification accuracies, only a part of the data can be used as training data.
Our estimations, based on an independent test set, sometimes resulted in
higher classification accuracies for the test set than for the training set,
which is remarkable. Leave-N-out cross-validation can’t be easily used in
the programs we tested when supervised gene selection methods are used,
but is almost necessary to obtain a robust estimation of the classification
accuracies in these small datasets. It should be noted that the sets we used
may be relatively large in microarray terms, but are in fact quite small in
machine learning terms.

Leave-N-out cross-validation can’t be easily used because supervised
gene selection methods are not integrated into the programs. When using
leave- N-out cross-validation for error estimation, a supervised gene selection
must be made for each training set at each cross-validation run separately.
As this is not automatically possible, we are forced to select genes with
our own gene selection methods at each cross-validation run, and we must
manually insert the expression values of these selected genes into our BNC
programs. This is practically impossible when we use leave-one-out cross
validation with our datasets; we should manually learn 100 classifiers if the
dataset contains 100 samples.

Learned structures The structure of the resulting networks learned by
the BNC algorithms can be interesting for two reasons. We have stated

6.1 Conclusions 64

in Chapter 2 that the Markov blanket of a target variable might represent
a collection of genes possibly involved in the same biological process. The
Markov blanket of the metastases variable learned by Powerpredictor for
example, possesses gene-to-gene relationships which can be interesting for
further investigation. The second interesting feature is the selection of only
several genes for classification. This set contains the genes that must be
known to predict the value of the target variable and can be viewed as
“marker” genes.

Summary We conclude that the BNC learners used in this thesis are a
useful tool for classification and finding marker genes. However, ways to re-
liably estimate the classification error and the integration of gene expression
specific tools, such as gene selection methods, are missing.

6.1.2 General networks

The purpose of learning general Bayesian networks (GBN) with gene expres-
sion data is to represent gene interactions by modelling conditional indepen-
dencies between genes. Clusters of co-regulated genes, dominant genes and
relationships between genes and the disease state of a sample are hoped to
be discovered by learning GBNs.

As can be seen in the results presented in the previous chapter, the
structure of the networks with the same set of genes differ considerably with
varying discretization methods, learning methods and parameter settings.
It seems that for our datasets several optimal networks can be created.
This leads to the hypothesis that the number of Bayesian networks that
reasonably represent the data is quite large (other studies report the same,
see Friedman et al. [FLNPOO] for example). The problem of having so many
reasonable networks cannot easily be tackled. Automated ways to compare
and combine a set of reasonable networks, as well as automated threshold
optimizers are not available within the GBN programs.

The GBNs seem to get less naive and more interesting when the experi-
ment at hand is less trivial. We saw differences in structure between the net-
works learned with the multiple myeloma dataset and the networks learned
with the breast cancer dataset. The networks learned with the breast can-
cer dataset looked more complex and interesting. An explanation for these
results could be given by the information gain and correlation scores of the
genes that we selected In the multiple myeloma set the genes are far more
correlated with disease state. These strong correlations with the disease
state make all the genes almost conditionally independent of each other if
the disease state is known, which results in naive networks.

Analysts can use the GBN methods to analyze their gene expression data
for two reasons. As we have shown, marker genes can be found by comparing

6.2 Future work 65

the learned GBNs. Ideally, the programs are able to compare the networks
automatically, but since this is not the fact we compared them by hand.

Another reason to use the GBN learners is their graphical output; direct
overview of the results, gene relationships can be explored and the networks
can be manipulated by experts.

The use of the GBN learners for the purpose of analyzing microarray data
is restricted to finding marker genes and visualizing possibly interesting gene
relationships. The methods we used cannot really cope with small amount
of evidence and the large amount of variables; one “perfect” network cannot
be expected as a result.

6.2 Future work

The results and conclusions of this thesis led to ideas how to improve the
usability of the LBN programs and how we could make better use of them
for analyzing gene expression data.

Improvements The most important improvement for the BNC learners
is the integration of automated gene selection methods making leave- N-out
cross-validation possible. Estimating the classification error is of great im-
portance when we are dealing with patients. If we want to use the BNCs we
need a robust estimation of the error and integrating gene-selection methods
can help to achieve this.

A second improvement of the LBN programs would be to have a dy-
namic Bayesian network learner specialized to learn from time-course ex-
periments. These learners can provide more insight into the dynamics of
biological mechanisms. A lot of time-course experiments are already avail-
able.

At last, we would like to be able to automatically compare and combine
the GBNs we learned. By making a comparison between networks, we were
able to find possibly interesting marker genes, which is one of the purposes
of doing microarray experiments. By automatically merging and combining
networks, see Section 2.3 for examples, the networks might become more
robust and give a better representation of the underlying structure.

Hopefully, methods to learn Bayesian networks will keep improving the
coming years, just as they did the last few years. We would like to be
able to include more genes in our networks and include continuous data.
As computer powers keep increasing exponentially over time, hope exists,
although the number of networks increases super-exponentially with the
number of nodes in the network.

Experiments In general, the number of samples in microarray experi-
ments must grow. We used relatively large datasets compared to common

6.2 Future work 66

microarray experiments with about 5 to 20 samples. For these experiments
the robustness and overfitting problems are even more important. A trans-
formation in the way of thinking about experiments is needed. Unfortu-
nately, microarray experiments are very costly: only one array costs about
500 Euro’s. If we add costs of extracting RNA etc., the experiment becomes
very expensive. Luckily, experiments which use a lot of samples get more
common.

Literature based gene selection An idea to make better use of LBNs to
analyze microarray data, is to select genes based on prior belief that the used
genes are somehow related. In our case we selected genes by their correlation
with some class. These genes do not necessarily have to be involved in the
same biological mechanism. To learn Bayesian networks we could select gene
expression patterns of genes known, or thought, to be related. Mootha et
al. [MLE103] propose a gene selection method based on this idea, called
Gene Set Enrichment Analysis. Basically, they make sets of genes known
to be related! and tested the correlation of these sets of genes with the
target classes. The gene group with the highest correlation could represent
a disease specific mechanism and learning a network from these genes could
give some extra insights into the underlying mechanism.

Our gene markers The set of four genes found by comparing several
GBNs could be interesting for future research. First, the way in which
the genes are involved in the development of metastases is not yet known
and, as our results indicate, could be very important. Second, a diagnos-
tic tool based on only four genes could be designed. The study by van 't
Veer et al. was used to design a prognostic microarray containing the 70
genes [VHV102]. The prognostic array performs better than currently used
methods to predict metastases. A prognostic tool using only four genes in-
stead of 70 genes could be an improvement for practical reasons, including
costs.

Concluding remarks The field of microarrays will have impact in medicine,
molecular biology and bio-technology. Artificial intelligence can greatly help
and speed up knowledge discovery from microarrays. Our main contribu-
tion to microarray data analysis is that we have shown that interesting
biological information can be found and good classification accuracies can
be obtained using easy to use LBN programs. However, the programs need
to be extended for microarray research to make full use of their possibili-
ties. Hopefully, our results, conclusions and ideas for future work will inspire
others to join this rapidly evolving field.

'Large databases exist with information on which genes belong to a certain biological
mechanism. See also http://www.affymetrix.com/analysis/index.affx for example.

6.2 Future work 67

Acknowledgements As we have reached the end, T would like to thank
a few persons who have been helping me along the way.

First, I would like to thank the MicroArray Department for creating a
very pleasant atmosphere to work in. It was exiting to see the department
expanding so rapidly and becoming an important part of life sciences. Han,
and Marco, have been helpful in microarray issues, as well as statistics and
by inspiring me with scientific articles.

Han, Sjaak and my Dad were kind enough to comment my thesis, which
has been of great help (although it might have caused some delay :), thanks.

Finally, T would like to thank Frans. Starting from the day 1 when I
contacted him to do research in biology and AI, he has been supporting me,
giving me tips and hints on writing, explaining the Bayesian part, keeping me
on track (which was nessecary considering some wild, probably unrealisable,
ideas that I proposed) by making sure we would meet once in every two weeks
and helping me to get a job at the AMC.

68

Bibliography

[AMRMO4] K. Abbas, A. Mikler, A. Ramezani, and S. Menezes. Computa-

[AMZ+01]

[BSB+03]

[CBL97a]

[CBLY7H]

[CGYS8]

[CGY9]

[CL68)

[Cri58]

tional epidemiology: Bayesian disease surveillance. In Proc. of
the International Conference on Bioinformatics and its Appli-
cations (ICBA °04), 2004.

I. Alevizos, M. Mahadevappa, X. Zhang, H.Ohyama, and
Y. Kohno. Oral cancer in vivo gene expression profiling as-
sisted by laser capture microdissection and microarray analysis.
Oncogene, 20(43) 1n0.6:196-204, September 2001.

D. P. Berrar, B. Sturgeon, I. Bradbury, C. S. Downes, and
W. Dubitzky. Microarray Data Integration and Machine Learn-
ing Techniques for Lung Cancer Survival Prediction. Critical
Assessment of Techniques for Microarray Data Analysis Tech-

niques, 2003.

J. Cheng, D. A. Bell, and W. Liu. An algorithm for Bayesian
belief network construction from data. In Proceedings of AI and
STAT 1997, pages 83-90, 1997.

J. Cheng, D. A. Bell, and W. Liu. Learning belief networks from
data: An information theory based approach. In Proceedings of
ACM CIKM 1997, 1997.

J. Cheng and R. Greiner. Comparing Bayesian Network Clas-
sifiers. University of Alberta, 1998.

Cooper and Glymour. Computation, Causation and Search.
AAAIPress/The MITPress, 1999.

C.K. Chow and C.N. Liu. Approximating discrete probability
distributions with dependence trees. IEEE Trans. on Informa-
tion Theory, 14:462-467, 1968.

F.H.C. Crick. On protein synthesis. In Symposium of the society
for experimental biology XII, page 153, 1958.

69

BIBLIOGRAPHY 70

[DFS00]

[DLS00]

[Dut99]

[DWFS99]

[FGGY7]

[FLNPOO]

[Gla01]

[GSTT99]

[HVAW02]

[Jen96]
[Kau93]

[KDL 03]

S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of Dis-
crimination Methods for the Classification of Tumors Using
Gene Expression Data. Technical Report #576, UC Berkely,
Baltimore, Maryland, June 2000.

P. D’Haeseleer, S. Liang, and R. Somogyi. Genetic Network In-
ference: from Co-expression Clustering to Reverse Engineering.
Bioinformatics, 16 no. 8:707-726, 2000.

Bas Dutilh. Analysis of data from microarray expperiments, the
state of the art in gene network reconstruction, 1999.

P. D’haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear
modeling of mrna expression levels during cns development and
injury. In Pacific Symposium on Biocomputing, pages 41-52,
1999.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian Network
Classifiers. Machine Learning, 29:131-161, 1997.

Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er.
Using Bayesian networks to analyze expression data. In Pro-
ceedings of the fourth annual international conference on Com-
putational molecular biology, pages 127-135. ACM Press, 2000.

Stanton A. Glantz. Primer of Biostatistics. McGraw-Hill Pro-
fessional, fifth edition, 2001.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasen-
beek, J.P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A.
Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classi-
fication of cancer: Class discovery and class prediction by gene
expression monitoring. Science, 286:531-537, 1999.

Paul Helman, Robert Veroff, Susan R. Atlas, and Cheryl Will-
man. A Bayesian Network Classification Methodology for Gene
Expression Data. Technical Report TR-CS-2002-18, Computer
Science Department, University of New Mexico, 2002.

Finn V. Jensen. Introduction to Bayesian networks. UCL Press,
1996.

S. A. Kauffman. Origins of Order : Self-Organization and Se-
lection in Evolution. Oxford University Press, Oxford, 1993.

O. Kulaeva, S. Draghici, L.Tang, J.M. Kraniak, S.J. Land, and
H.A. Tainsky. Epigenetic silencing of multiple inferon pathway
genes after cellular immortalization. Oncogene, 22:4118-4127,
2003.

BIBLIOGRAPHY 71

[Koh95]

[LDB*96]

[MA97]

[MLE*03]

[MSR91]

[MWPS]

[Neo04]

[OPGO02]

[PCW*02]

[Pea88]

[Quall]

[Ram99]

[RN95]

Teuvo Kohonen. Self-Organizing Maps. Springer, Berlin, first
edition, 1995.

D.J. Lockhart, H. Dong, M.C. Byrne, M.T. Follettie, M.V.
Gallo, M.S. Chee, M. Mittmann, C. Wang, M. Kobayashi,
H. Horton, and E.L. Brown. Expression monitoring by hy-
bridization to high-density oligonucleotide arrays. Nature
Biotechnology, 14:1675-1680, 1996.

H.H. McAdams and A. Arkin. Stochastic mechanisms in gene
expression. Proc. Natl. Acad. Sci (PNAS), 94:814-819, 1997.

V.K. Mootha, C.M Lindgren, K.F. Eriksson, A. Subramanian,
and S. Sihag. PGC-la-reponsive genes involved in oxidative
phosphorylation are coordinately downregulated in human dia-
betes. Nature Genetics, 34(3):267-273, 2003.

E. Mjolness, D. H. Sharp, and J. Reinitz. A connectionist model
of development. J. theor. Biol., 152:429-456, 1991.

M. Molla, M Waddel, D. Page, and J Shavlik. Using machine
learning to design and interpret gene-expression microarrays.
AT magazine, Special issue on bioinfomatics, To appear.

Richard E. Neopalitan. Learning Bayesian Networks. Pearson
Education, first edition, 2004.

I. Ong, D. Page, and J.D. Glasner. Modelling regulatory path-
ways in E.Coli from time-series expression profiles. Bioinfor-
matics, 17:215-224, 2002.

D. Page, F. Zhan J. Cussens, M. Waddell, J. Hardin, B. Bar-
logie, and J. Shaughnessy. Comparative Data Mining for Mi-
croarrays: A Case Study Based on Multiple Myeloma. Techni-

cal Report 1453, Computer Sciences Department, University of
Wisconsin, 2002.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: net-
works of plausible inference. 1988.

John Quackenbush. Computational analysis of microarray anal-
ysis. Nature Reviews Genetics, 2(6):418-427, June 2001.

M. Ramoni. Bayesware discoverer 1.0, http://www.bayesware.
com, 1999.

Stuart J. Russel and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall International, 1995.

BIBLIOGRAPHY 72

[RS98]

[RS99]

[RSO1]

[SBC02]

[SEBBYS]

[SGS93]

[SKRO3]

[SSM*98]

[TCS*01]

[TDO03]

[TSM+99]

M. Ramoni and P. Sebastiani. Parameter estimation in Bayesian
networks from incomplete databases. Intelligent Data Analysis,
2(1), 1998.

M. Ramoni and P. Sebastiani. Intelligent Data Analysis: An
Introduction, chapter 4: Bayesian methods. Springer-Verlag,
1999.

M. Ramoni and P. Sebastiani. Robust Bayes Classifiers. Artifi-
cial Intelligence, 125:209-226, 2001.

A. Szabo, K. Boucher, W.L. Carrol, L.B. Klebanov, A.D.
Tsodikov, and A.Y. Yakovlev. Variable selection and pattern
recognition with gene expression data generated by the microar-
ray technology. Mathematical Biosciences, 176:71-98, 2002.

Paul T. Spellman, Michael B. Eisen, Patrick O. Brown, and
David Botstein. Cluster analysis and display of genome-wide
expression patterns. Proceedings of the National Academy of
Sciences (PNAS), 95(25):14863-14868, December 1998.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction,
and Search. Springer Verlag, first edition, 1993.

Paola Sebastiani, Isaac S. Kohane, and Marco F. Ramoni. Ma-
chine learning in the genomics era editorial: Methods in func-
tional genomics. Machine Learning, 52:5-9, 2003.

P.T. Spellman, G. Sherlock, M.Q., M. Zhang, V. Iyer, K. An-
ders, M. Eisen, P. Brown, and D. Botstein. Comprehensive
identification of cell cycle regulated genes of yeast by microar-
ray hybridization. Molecular Biology of the Cell, 9:3273-3297,
1998.

O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie,
R. Tibshirani, D. Botstein, and R. Altman. Missing value es-
timation methods for DNA microarrays. Bioinformatics, 17 no
6.:520-525, 2001.

O. Troyanskaya, K. Dolinsky, A.B Owen, R.B. Altman, and
D.Botstein. A Bayesian framework for combining heterogeneous
data sources for gene function prediction. Proceedings of the
National Academy of Sciences (PNAS), pages 8348-8353, 2003.

Pablo Tamayo, Donna Slonim, Jill Mesirov, Qing Zhu, Sutisak
Kitareewan, Ethan Dmitrovsky, Eric S. Lander, and Todd R.
Golub. Interpreting patterns of gene expression with self-
organizing maps: Methods and application to hematopoietic

BIBLIOGRAPHY 73

[Val02]

[VDHT02]

[VHV*02]

[Wag02]

[WC53]

[WHOO]

[ZHO3]

differentiation. Proceedings of the National Academy of Sciences
(PNAS), 96(6):2907-2912, March 1999.

F. Valafar. Invited article: Pattern Recognition Techniques in
Microarray Data Analysis: A Survey. Techniques in Bioinfor-
matics and Medical Informatics, 980:41-64, 2002.

L.J. van 't Veer, H. Dai, Y.D. He, M. J. van de Vijver, A.A.M.
Hart, and M. Mao. Gene expression profiling predicts clinical
outcome of breast cancer. Nature, 415:530-535, January 2002.

M.J. van de Vijver, Y.D. He, L.J. van ’t Veer, H. Dai, and
A.AM Hart et al. A Gene-Expression Signature as a Predictor

of Survival in Breast Cancer. The New England Journal of
Medicine, 347:25:1999-2009, 2002.

A. Wagner. Estimating coarse gene network structure from
large-scale gene perturbation data. Genome Research, 12:309—
315, 2002.

J. D. Watson and F. H. C. Crick. Molecular Structure of Nu-
cleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature,
171:737-738, 1953.

M. Wahde and J. Hertz. Coarse-grained reversed engineering of
genetic regulatory networks. Biosystems, 55:129 — 139, 2000.

B.-T. Zhang and K.-B. Hwang. Bayesian network classifiers for
gene expression analysis. In D.P. Berrar, W. Dubitzky, and
M. Granzow, editors, A Practical Approach to Microarray Data
Analysis, pages 150-165. Kluwer Academic Publishers, 2003.

