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Abstract

Recent technological developments in molecular biology have made it possi-
ble to measure the expression level of thousands of genes simultaneously.
These measurements provide a “snapshot” of what is happening at the
level of genes within a cell. The massive amount of these datasets make
automated analysis nessecary. It is becoming evident that statistical and
computational issues will largely determine what scientific questions can be
answered.

This thesis deals with the application of a probabilistic framework called
learning Bayesian networks for the analysis of gene expression datasets.
Bayesian networks have already proven to be useful in this field. Our ap-
proach shows the usability of implementations of standard learning Bayesian
network algorithms to analyze microarray data. We use gene expression
measurements made on patients with mutiple myeloma and breast cancer.

Our setup results in answers about the kind of biological information
that can be found with such experiments, and which algorithms should be
used to learn Bayesian networks. We will show that Bayesian networks can
achieve good classification accuracies and can find interesting subsets of dis-
ease related genes. Problems we encountered are the difficulties to find one
network that best represents the data, estimating the classification accura-
cies and finding optimal settings of the parameters used by the algorithins.
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Chapter 1

Introduction

1.1 Motivation

Ever since the discovery of the cell, the study of the function, components,
and interaction of cells has been a major part of biology. Genes are among
the most important components of a cell, and the last few years a revolu-
tion has taken place in monitoring the behavior of genes in a cell. Tradi-
tional time-consuming experiments are automated in miniature experiments
carried out by robots. Thanks to these so-called “high-throughput exper-
iments” experimental scientists can perform thousands of experiments at
once or at an unprecedented rate. For example, a molecular biologist can
measure the expression of all the known genes in yeast (several thousand)
simultaneously by using the microarray technique. Massive amounts of data
are available.

The experimental scientists have to analyze the experimental data. A
molecular biologist may ask which genes are important for certain cell func-
tions and in what way the genes are related to each other. These kinds of
questions require a lot more than statistical tests like a t-test, for exam-
ple [Gla01]. The development of statistical and computational procedures
to address the scientific questions asked by these experimenters is develop-
ing rapidly. Also it is becoming evident that statistical and computational
issues will as much as experimental methods or technologies determine what
scientific questions can be answered and what breakthroughs will be made.

This thesis applies a probabilistic framework called learning Bayesian
networks for the analysis of DNA microarray data. Bayesian networks have
been developed within artificial intelligence to construct expert systems.
In the 1980s Pearl [Pea88] showed that with Bayesian networks, experts
can construct networks which are able to give advice, by reasoning with
probabilities, on the basis of observations from the real world. In that time
the networks were constructed by experts.

Techniques to automatically learn Bayesian networks from a dataset
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have improved enormously over the past decade. Learning Bayesian net-
works have been applied in all different kinds of fields including weather
forecasting, image processing, and medical systems [Neo04]. Learning net-
works with microarray data have several potential advantages for the analy-
sis of experimental results, including a graphical representation of the result.
Some studies have already proven that robust and interesting networks can
be learned from microarray datasets [FLNP00, DWFS99].

Section 1.2 provides a short introduction into the biological background
of microarrays. In Section 1.3 the analysis of microarrays is shortly discussed
and in Section 1.4 the layout of this thesis is presented.

1.2 Biological introduction

Basic knowledge about biology is needed to understand the methods used
and the context of this thesis. As some of the readers might lack biological
background we decided to explain biological terms and background in this
chapter. Terms like genes and DNA are explained in Section 1.2.1 and the
subsequent section describes the DNA microarray techniques.

1.2.1 Central dogma

In 1953 Watson and Crick [WC53] discovered the structure of DNA (de-
oxyribonucleic acid). Human DNA is a double-stranded helix of nucleotide
sequences which carries the genetic information. Each strand is constructed
by 4 nucleotides; A (adenine) ,C (cytosine),T (thymine) and G (guanine).
The two strands are connected by hydrogen bonds between A and T, and
between C and G (these pairings are called complementarities; A is the
complement of T).

Ounly a few years later Crick introduced a model of protein synthesis
[Cri58]. The model is known as the central dogma of molecular biology. The
model is not fully accepted, and had to be updated with reverse transcriptase
in 1970, but gives a basic idea about the information flow in a cell, see Figure
1.1. In the DNA sequences all the information is stored to construct proteins
that carry out most cell functions. RNA is a single strand of nucleotides,
just like DNA, only T is substituted by nucleotide U (uracil), and U and A
are each others complement.

The complete DNA sequence of an organism is called the genome of
that organism. In molecular terms, a gene is a portion of DNA sequence
that codes for a functional protein or RNA. A large proportion of DNA
in the human genome does not encode for any protein or RNA; the genes
make up merely 3% of our genome. Biologists believe the other part, which
they sometimes call “junk DNA”, could be a result of evolution or serve as
a reservoir for making new genes. The function of this junk DNA is not
known yet.
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Transcription Translation
Replication DNA » RNA » Protein
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Transcription is carried outby RNA polymerase
Translation is performed on ribosomes
Replication is carried outby DMA polymerase
Reverse ranscriptase copies RMNA into DNA

Figure 1.1: Central dogma of molecular biology.

Though no two humans have the same set of genes (except for identical
twins), experts estimate that about 99.9% of any one person’s genes are
exactly the same as any one other person’s DNA. In April 2003 the human
genome project finished the identification of almost all the common DNA
sequences in our entire genome'. The next job is to annotate this map by
allocating the position of all our genes and understanding their role and
function. Humans are thought to have at least 20,000 genes.

Nearly every cell in a multi-cellular organism contains its complete genome.
However, the expression (activity) of genes in cells with different functions
within a multi-cellular organism is normally not the same. The function
and differentiation of a cell could be explained by the expression levels of
the genes. The expression level of a gene in a cell at a certain point in time
is the amount of transcribed RNA encoded by the gene at that timepoint.
Monitoring the expression levels of all the genes in the genome of an organ-
ism is exactly what microarrays can do. Microarrays measure the amount
of RNA in a sample and therefore we have an indication of the amount of
the corresponding protein in the sample, see Figure 1.1.

1.2.2 Microarray technology

While it is very hard to detect the quantities of proteins in a cell, methods
for detecting RNA can take advantage of the sequence complementarity of
RNA or DNA. This means that if DNA or RNA occurs as a single strand of
a certain sequence it really likes to pair with another single strand DNA or
RNA of complementary sequence. A single strand of DNA with the sequence
ACTTACG likes to pair with a strand of exact complementary sequence,
thus TGAATGC. This pairing of two complementary single strands of DNA
or RNA is called hybridization.

!Further information on the human genome project can be found on the NHGRI website,
http://www.nhgri.nih.gov.



1.3 Analyzing microarray data and using Bayesian networks 4

Essentially, a microarray is a carefully constructed set of the comple-
ments of known gene sequences arrayed on a special impermeable rigid sur-
face (glass for example). A sample of unknown RNA sequences is poured
over the surface to pair with the known sequences. If a RNA sequence has
paired with its complement on the glass this is measured by special scanning
techniques. Using a rigid surface has many practical advantages, such as the
help of robots to create the arrays on microscopic scales.

Oligonucleotide versus spotted arrays Two basic methods to cre-
ate microarrays are widely used; spotted arrays and oligonucleotide ar-
rays [LDB196]. In the spotted arrays a large number of DNA strands, com-
plementary to known mRNA? sequences, are prepared from cDNA libraries
and spotted onto a glass slide by a robot. Because the DNA is complemen-
tary to the mRNA, it is called cDNA. In this type of experiment cDNA can
vary in length from 100 to 1,000 bases. Each spot on the slide contains
several copies of a particular cDNA probe.

The key difference in the oligonucleotide arrays is that the probes are
constructed nucleotide by nucleotide using photolithography or inkjet tech-
nologies. In hundreds of thousands of positions on the glass array, probes of
length 20 or more are synthesized. For most genes, a probe containing 20
nucleotides can be created which is unique for that gene. Usually a set of
probes is synthesized for each gene.

Single channel versus two channel arrays To estimate the expression
of a gene in a sample two methods can be used. In the single channel method
we elute only one sample over the array. RNA of the sample is colored and
will hybridize to it’s complement on the array. The expression rate of each
gene is measured by scanning the intensity of the color on the array.

By eluting two samples over the same array, one sample is colored red
and the other green, we can estimate the relative expression rate for each
gene. On one array we can measure the expression of a healthy sample
versus a tumour sample for example.

The resulting arrays can be viewed in Figure 1.2. It’s not clear yet which
method is best and to what extend experiments from different platforms are
comparable.

1.3 Analyzing microarray data and using Bayesian
networks

Turning scans into expression values The scans of a microarray have
to be transformed into values representing the gene expression rates in or-

2RNA that codes for proteins is also referred to as messenger RNA, or mRNA.
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Figure 1.2: Two microarray techniques: On the left side a segment of a two
cannel cDNA chip is shown and on the right side a single channel oligonu-
cleotide chip (both taken from yeast cells).

der to make quantitative analysis possible. The scans usually contain a lot
of noise and specialized image processing methods are used to reduce this.
Background estimation and finding the optimal spot regions are a few ex-
amples. The resulting intensity values are transformed into well distributed
gene expression values, by logarithmic (logy) transformation for example,
making statistical analysis easier. At last, the data has to be normalized
to correct for systematical differences between the conditions in which the
microarrays are hybridized®. The result is a data matrix representing the
(relative) gene expression values.

Machine learning challenges Analysts of microarray data make use of
statistics, pattern recognition and machine learning techniques to extract
interesting and relevant biological information. The information that can
be found depends on the techniques that are used and on the experimental
setup of the microarray experiment. Hierarchical clustering techniques, for
example, can find groups of genes or persons that have similar expression
patterns. Genes that show similar expression patterns are believed to be re-
lated in biological function. The biological functions, and how the functions
are interrelated, are described in so-called biological pathways. Discovering
the structure of these pathways is one of the ultimate goals in molecular bi-
ology. Gene network learning algorithms can discover relationships between
genes and provide information on possible pathways.

The challenge for researchers in artificial intelligence in analyzing mi-
croarray experiments is the fact that the number of samples is usually a
few dozen while the dimensionality, the number of genes whose expression
is measured, is very large, usually several thousand. The low number of
samples is mainly caused by the high costs of microarray experiments and

3A lot of conditions influence the results. Even the amount of ozon in the laboratorium
influences the results (because the behaviour of the fluorescence depends on it)!
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the difficulty of acquiring samples, in case of tumours for example. An-
other challenge, and problem, are the unstable conditions in which probes
are labelled and arrays are hybridized. The data contains a lot of noise.
In order to let a computer ’learn’ or extract meaningful information from
such a noisy, high dimensional, dataset a lot of samples are needed. But
that is just what is missing. Basically, the problem is that the dataset does
not reveal the ’real’ world extensive enough and the danger of biased, data
specific, results increase.

Several studies have proven in an empirical way that interesting infor-
mation can be found by using machine learning techniques [Val02]. Some
of these methods reduce the dimensionality of the data by selecting relevant
genes, based on mathematical criteria. They make the assumption that in
the context of an experimental setup, only some mechanisms (and genes) are
(in)active in the sample. A lot of genes behave independently from the ex-
perimental setup and are therefore less interesting. If in an experiment two
types of cancer are compared, correlation measures (or PCA) can be used
to find genes associated to each cancer type. Machine learning techniques
can be used to learn how to distinguish these cancer types and diagnose new
patients.

Bayesian networks All kinds of machine learning techniques have been
used and each one has its own advantages and flaws. In this thesis we
will use techniques to learn Bayesian networks. Omne of the advantages of
learning Bayesian networks is they have well understood statistical founda-
tions. Clear methodologies are incorporated enabling it to learn from the
noisy conditions of gene-expression data. A second advantage of Bayesian
networks is the appealing graphical representation of the result.

Analyzing microarray data with learning Bayesian networks can poten-
tially give several kinds of biologically interesting results:

e classification of samples into biological classes,
e find disease related genes,
e show gene to gene relations,

e general overview of relations and processes in which genes are involved.

In short: “a Bayesian network represents the joint probability distribu-
tions of a set of variables and captures the dependencies and conditional
independencies between variables in a graphical manner” [FLNPO0O].

With gene expression data, modeling of dependencies and conditional
independencies between variables (genes) can be done as follows. Suppose
we have gene A, B and C. Let’s say gene B is up regulated by A and C
is up regulated by B. We can represent these relationships in a Bayesian
network where A is the parent of B and B is the parent of C :
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A—-B— C.

We say that B is dependent on A.

Suppose we measure that B is highly expressed. We can reason with the
network that C' is more probable to be highly expressed as well. Our network
is also designed such that knowing that A is highly expressed doesn’t matter
anymore for the probability that C' is highly expressed if B is given. In this
case C' is conditionally independent of A given the expression value of B.

Algorithms have been designed to automatically construct a Bayesian
network that represents dependencies and (conditional) independencies within
a dataset. These algorithms are known as Bayesian network learners.

1.4 Goals and thesis overview

In this thesis we use learning Bayesian network algorithms to analyze mi-
croarray data. In most of the existing projects applying Bayesian network
learners to microarray data, large groups of people from very different sci-
ence fields are working together to obtain interesting networks. The methods
used are complex, specialized and therefore not usable on a wide-scale for
microarray analysts and research groups. Though several implementations
of standard learning Bayesian network algorithms are publicly available, no-
body, as far as we know, has fully explored using these methods for the
analysis of microarray data.

We will explore the possibilities of applying well-known, and relatively
easy to use, implementations of learning Bayesian networks to the field of mi-
croarrays. Learning Bayesian network algorithms implemented in Bayesware
Discoverer [Ram99] and the BNsoft package made by Cheng [CBL97a| shall
be used. These algorithms are subdivided in classification network learners
and general network learners.

Of course, a complete answer is not realizable within our time-scope. We
have focussed on a selection of features of the algorithms — such as classifica-
tion, gene selection and discretization — and used them to analyze publicly
available and as large as possible cancer microarray datasets. A breast can-
cer dataset [VDH102] and a multiple myeloma dataset [PCW102] will be
used. The multiple myeloma set was already used to learn a special type
of Bayesian networks, but we will extend this experiment. For both exper-
iments we try to obtain interesting networks, small subsets of interesting
genes and high classifcation accuracies.

Overview First of all, in Chapter 2, a selection of publications related to
our study is discussed. An overview of machine learning techniques used
for microarray data analysis is followed by the discussion of methods used
to construct networks from microarray data. The last part of Chapter 2
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presents a collection of publications on learning Bayesian networks (LBN)
applied to the analysis of microarray data.

The third chapter is used to explain the LBN techniques and Bayesian
theory in general. Examples of Bayesian networks are given to explain the
concept of Bayesian networks. In Section 3.3 the algorithms used in this
thesis are discussed in detail.

The microarray datasets used to learn networks are described in the
fourth chapter as well as the biological questions that we hope to answer.
In that chapter we will also discuss the pre-processing techniques which are
used to select a subset of genes and to discretize the data.

The 5th chapter presents and analyzes the resulting networks and clas-
sification accuracies. In the last chapter the conclusions of the results are
formulated as well as some ideas for future research.



Chapter 2

Scientific background

The analysis of gene expression data obtained in microarray experiments has
been of great interest in the research areas of pattern recognition, machine
learning and statistics. Researchers all over the world are attracted to the
problem of discovering biologically interesting information in the expression
data of so many genes.

As mentioned in Section 1.3 the main problem — a problem for ev-
ery analysis method in the microarray world — is the ratio between the
enormous amount of genes measured per sample and the small number of
available samples. All kinds of data mining and machine learning methods
have been applied and extended for the purpose of analyzing microarray
data.

In this chapter the methods and results of several Al techniques in mi-
croarray context are discussed. The biological information found by these
methods is different for each method. Section 2.2 deals with learning gene
networks from microarray data. Section 2.3 analyzes the few studies pub-
lished about learning Bayesian networks in a microarray environment. First,
we discuss standard machine learning terms and algorithms.

2.1 Machine learning methods to analyze microar-
ray data

Before we go on we will distinguish the machine learning methods used by
the biological information they can find. First of all we have classification
techniques that find potentially interesting genes related to a certain class
and use the expression patterns of these genes to classify new arrays. Such
techniques are called supervised learning because information on the biologi-
cal class of the sample is given to the learning method. Not surprisingly, the
other methods are called unsupervised learning. These methods can cluster
genes or persons that have similar expression patterns.
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Before the data is given to us, Al-scientists, a lot of work and manip-
ulation of the data has already been done. Image analysis and data pre-
processing steps to transform the microarray scans into a clean normalized
set, representing the expression levels of the individual genes, will not be
discussed here. However, a large part of the current microarray research is
involved in these processes and are therefore worth mentioning.

2.1.1 Supervised classification methods

Suppose we have a typical microarray experiment in which the expression
profiles of 20, 000 genes from 50 prostate cancer patients and 50 healthy per-
sons is measured. Genes related to prostate cancer are hoped to be found,
and classification techniques are used to try to predict that a patient suf-
fers from prostate cancer. Classification methods are used to distinguish
between disease subtypes but also for treatment response and disease prog-
nosis [SBCT02].

To check if a sample taken from a patient displays healthy or prostate
cancer patterns we could use techniques as (k-) nearest-neighbour, voting,
decision trees, support vector machines (SVM), neural networks and a lot
more. Central problems of classification methods in microarray context are
the reduction of the dimensionality of the problem space (reduction of the
number of genes), coping with missing data and estimating the classification
accuracies. These issues are discussed next, and in the latter part of this
section several examples of supervised learning methods are given.

Central problems In machine learning and pattern recognition we often
represent the gene expression measurements made in an experiment as a
m dimensional space (genes) with n data points (samples) in it. In the
prostate cancer case we get m = 20,000 and n = 100. Using gene selection
methods we can reduce the dimensionality m of the so-called problem space,
which is necessary, for computational reasons, for some of the supervised
and unsupervised learning methods.

Most gene selection methods, in the supervised case, are based on sta-
tistical measurements to find the genes that differ most between, as in our
example, the prostate cancer and healthy samples. The n-fold approach is
a popular method to tackle this problem. In the n-fold method genes are
selected that differ in their mean value between classes at least n times.
Variations of this method are also often used, see [SKR03]. In [DFS00]
genes are selected by the ratio of their between-class to within-class sums of
squares. Golub et al. [GSTT99], and many others, select informative genes
by the correlation of their expression pattern with the class distinction. A
pre-set threshold, based on the significance of the correlation, is used to find
the potentially interesting genes. Other methods to select genes that are dif-
ferentially expressed across the different classes can be found in [SBC02],
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but the authors mention that a search for better ways of measuring differ-
ences in the expression of a given gene in two tissues is far from complete
exploration.

The problem of missing data in gene expression measurements can be
solved by using nearest neighbour or expectation maximization (EM) tech-
niques (also used for cluster techniques). Troyanskaya et al. [TCSt01] con-
clude that the nearest neighbour technique can compute robust and accurate
estimates of the missing value of a gene.

The issue not discussed so far is, once we have chosen and learned a
classifier, how the performance of a classifier can be estimated. If we learn
a classifier we usually test it on samples the algorithm hasn’t seen before.
Basically, the gene expression dataset is divided into a test set and a train-
ing set. A classifier is constructed on the basis of the training set. This
classifier is then used to classify the samples in the test set. The percentage
of correctly classified test samples is an estimation of the true classification
accuracy of the constructed classifier. The test set should be independent
from the training data and may not be used in the learning procedure.

Because the number of samples is usually very low in the microarray
world, leave-one-out cross-validation is popular. In this method a classifier
is repeatedly constructed on, for our example, 100 — 1 = 99 samples and
tested on the sample left over. The mean error (equal to the percentage
of misclassified samples) is the estimation of the true error of the classifier
learned on 100 samples. The variation leave-N-out is also often used and
seems more reliable [Val02].

Some of the machine learning methods create classifiers that seem to be
“overfitted” to the training data and have a very poor classification perfor-
mance on the test data [BSB103]. This means that the underlying structure
of the data is poorly modelled but only the specific characteristics of the
training set are learned. Complex models tend to perfectly classify training
data while making a lot of errors on the test set. The challenge for machine
learning techniques is to generalize the training data such that unseen data
can be classified correctly.

Examples of supervised machine learning algorithms Now we have,
after treatment with the methods discussed above, a complete data matrix
with a reduced dimension p (p < m). With this dataset we can use super-
vised classification techniques. A short description of some of the algorithms
will give an idea about the current situation of research.

The nearest neighbour techniques use distance measures to find a sample
(with a known class) that is closest to the, unknown, sample in the problem
space. The unknown sample inherits the class of its nearest neighbour. In
k-nearest neighbour the unknown class of the new sample is predicted by
the most common class among its k£ nearest neighbours. Nearest neighbour
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techniques are popular and suited for classification of microarrays because
they are easy to implement and understand, and the method seems to be
able to compete in performance with other, advanced methods such as neural
networks and SVM [BSBT03].

Because nearest neighbour techniques calculate distances between two
points in space, the choice of the distance measure has significant conse-
quences for the nearest neighbour that is found. Special scaling of the axes
and trying several kind of distance measures (such as the Euclidian and
Manhattan distances) give different results [Qua0l]. Many other supervised
and unsupervised methods also require the specification of some distance
measure.

Another relatively simple approach is to use a voting algorithm. Each
gene votes for a certain class and the class that receives the majority vote
is selected as being the class of the unknown sample. For example, if a
gene is highly expressed within prostate samples and has a low expression
in healthy patients, then the gene will vote for prostate cancer if the gene has
a high expression in an unknown sample. Golub et al. [GST199] and Page
et al. [PCWT02] use slightly adjusted voting algorithms that can predict the
state of patients with high accuracy, ranging from 90% to 100%.

Studies on using support vector machines (SVM) to classify the class
of a sample based on its gene expression pattern report promising results.
SVMs solve the problem by mapping the gene-expression patterns in the
problem space non-linearly into a higher-dimensional space, in which kernel
functions are used to measure distance such that the data can be separated
into two classes by a hyperplane with optimal margins [Qua01]. Non-linear
robust classifiers can be learned with high predictive accuracies. A serious
drawback is that the choice of kernel function affects the learned hyperplane
and classification accuracies [SBCT02].

Comparative studies of machine learning methods to classify biological
samples on basis of their gene expression pattern show no real winner, see
[Val02], [PCWT02] and [BSB103]. Some prefer SVM for its robustness,
while others prefer nearest neighbour for its easy interpretation.

2.1.2 Unsupervised cluster methods

Reasons why a medicine does not work can be that a disease is subdivided
into several, unknown, classes with different types of behavior. Expression
patterns of genes have proven to reveal subtypes of diseases [SEBB98|.

An example of such an experiment is that researchers take 100 prostate
cancer samples and look for subsets (clusters) of genes that exhibit similar
expression patterns across samples. A cluster of similar genes can repre-
sent biologically related genes —which may therefore be functionally re-
lated [SEBB98]— and can reveal biologically related samples. Clustering
techniques are used to find clusters of genes or samples that show similar-
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ity in their expression pattern. Time-course experiments, where expression
profiles of an organism are measured at several points in time, are also ana-
lyzed with clustering methods to find genes with similar expression patterns
over time. A collection of hierarchical clustering methods, k-means cluster-
ing and self-organizing maps [Val02] are often used in these experimental
scenarios.

K-means clustering divides the data points into & clusters. The clusters
are created by moving a data point from one cluster to the other with the
purpose of minimizing the within class distances and maximizing the between
class distances. An obvious disadvantage is that the number of clusters must
be specified in advance while usually this is not known. Another difficulty
is to visualize and interpret the resulting clusters, as this is dependent on
the number of clusters [TSM*99].

Hierarchical clustering resolves the problem of interpreting the clusters
because the clusters can easily be visualized. In contrast to K-means clus-
tering, hierarchical clusters can show how the clusters are related with each
other and how the clusters are build. See Figure 2.1 for an example of the
visual advantage. By calculating the similarity between each cluster, the
clusters that are most similar are merged. The algorithm starts with single
genes as a cluster and ends with one cluster; a hierarchy of clusters is cre-
ated!. A demonstration of the possibilities of hierarchical clustering is given
in [SEBB98]. The problems, however, are the choice of a similarity measure
and the meaning of a cluster at each level in the dendrogram [Qua01].

Finally we mention a popular clustering method called the self-organizing
map (SOM) [Koh95]. The method is somewhat complex with respect to
the other methods, so we shall not go into detail. A variety of studies,
including [GSTT99] and [TSM™99], have found interesting yeast cell cycle
clusters and disease subtypes respectively.

With SOMs, k-means clustering and hierarchical clustering the problem
is to make a choice on the number and size of the clusters in the problem
space. Although some people have tried to tackle the problem no conclu-
sive solution has been proposed. D’Heaseleer et al [DWFS99] state that
“Kach clustering method imposes some underlying structure on the data
and therefore no objective score of a cluster can be given without mention-
ing this assumption”. The visual results of a cluster can be misleading if
the underlying structure is not taken into account. We must also note that,
especially with the noisy microarrays, the resulting clusters might look to-
tally different when the expression data is slightly modified. The robustness
of the resulting clusters are important when the clusters are analyzed.

As knowledge about the function of genes grows the integration of this

!Other algorithms for hierarchical clustering exist. The divisive method for hierarchical
clustering works the other way around and starts with all the genes and then splits it into
clusters which do not look alike.
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Figure 2.1: Clustered display of data from time course of serum stimu-
lation of primary human fibroblasts. Experimental details are described
in [SEBB98]. Note that similar expression profiles are grouped together.
The height of the branches in the dendrogram represent the similarity be-
tween clusters (short disctance means very similar). The genes in the sub-
cluster annotated by A are also biologically related because they are involved
in cholesterol synthesis. Cluster B contains cell cycle genes and E wound
healing genes.

knowledge with cluster visualization becomes important. Partially super-
vised methods, with a priori knowledge about the function of genes inte-
grated with the clustering method, are recommended by Quackenbush et
al. [Qua0l]. We could, for example, start with clusters of genes which are
known to be related in a certain process and then check the similarity of the
expression of this process with other processes.

2.2 Gene networks

The ultimate goal microarray researchers have in mind is to decipher the
precise connections of the genetic network: for each gene, they want to know
which other genes and functions it influences, and in what way. The prob-
lem is how to infer gene networks from the small gene-expression datasets.
Clustering techniques already show some information about the regulation
of groups of genes but novel functional relations of genes between, and within
these groups are hard to discover.

Because of computational reasons and the small availability of samples,
simplifications and assumptions must be made to infer networks of gene
relations from our microarray datasets. The resulting networks can reflect
only a subset of types of (mathematical) relationships and model only a part
of the genome.

The choice of model, and simplification of biological processes, is best
illustrated by comparing the random Boolean network of Kauffman [Kau93]
against the biochemically realistic network constructed by Arkin and Adams
[MA97]. The random Boolean network, in which genes can be either ON or
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OFF, can represent some biologically interesting gene interactions such as
self-organization. Such networks are mathematically well formulated, and
allow examination of thousands of genes. In a realistic approach, where genes
are continuous and full biochemical interactions with stochastic kinetics?
can be modelled, only a few genes are allowed in the model because of
computational limitations. The relationships in the resulting networks can
be very complex and hard to analyze.

A method to infer (or learn) gene networks from microarray data (of-
ten referred to as reverse engineering) worth mentioning uses differential
equations. Mjolness [MSR91] showed differential equations able to simulate
developmental processes in the fruit fly. In differential expressions, the ex-
pression of a gene is calculated by the sum of weighted expression levels of
other genes. To find the best weight parameters optimization procedures are
used, such as least squares. A small known part of the gene network of a rat
is reconstructed from gene expression data in [WHO00]. The determination
of the parameters, using genetic algorithms, show great accuracy. Usually
a set of differential expressions is used, motivated by biological processes.
Due to the complexity of these functions, a lot of parameters have to be
estimated and only a small part (6 genes for example) can be modelled.

To infer a network from a microarray dataset a choice has to be made
on which type of, mathematical, model should be inferred and what kind of
experimental setup should be used. Any attempt at predictive data analysis
and model building critically depends on the scope and quality of the input
data [DLS00]. We can use time-course experiments, comparative experi-
ments and gene-knockout experiments. Time-course experiments generally
contain less information than measurements under dissimilar environmen-
tal conditions, but can reveal information on the dynamics of a process.
In gene-knockout datasets a gene is externally put to sleep in each experi-
ment. Effects of this sleeping gene on gene expression can be identified and
modelled [Wag02].

If we want to put more genes in the inferred networks more networks
are theoretically possible and more parameters have to be learned or esti-
mated. In consequence we need more data as evidence to estimate all these
parameters and find the optimal network [Dut99]. Narrowing the range of
possible models by extra constraints and simplifying the networks can make
the search for the model faster. Using clustering techniques to find subset
of genes is a possibility to narrow down the search space. In [DLS00], esti-
mates on the amount of data needed to construct Boolean and continuous
networks are made. The authors stress that comparing data from different
experiments should be made possible. In this respect standardization of

2The time intervals in genetic processes can vary widely across otherwise identical cells, as
a result of stochastic processes. Mechanisms as the need of collision between reagents to
start a process explain this stochasticity. Therefore the inclusion of stochasticity seems to
be necessary.
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microarray experimentation is important?.

A balance between the mathematical complexity of a network, the amount
genes in the network and the data available is needed in order to infer a
meaningful network. For now, gene networks constructed from microarray
data mainly lead to hypothetical relationships interesting for further research.

2.3 Learning Bayesian networks

In the previous sections we have discussed techniques that enable us to
answer the following biological questions:

e Which specific genes are related to the class of a sample?

e Can we diagnose a new sample on the basis of its gene expression
pattern?

e Are there groups of functionally related genes?

e Can we construct a network that represents the relationships between
genes from microarray data?

Learning Bayesian networks (LBN) could have been placed in each section
because variants exist to answer these questions. Classification networks
can be used to answer the first two questions and general Bayesian networks
can help to find answers to the last two questions.

Not so many studies have been published yet on Bayesian networks to
analyze microarray data, but the number of studies is growing rapidly. In the
first part of this section we discuss studies on Bayesian network classifiers.
These networks are especially learned to predict the value of a certain vari-
able, such as the disease-state variable, and are usually supervised. The sec-
ond part presents studies on unsupervised learning Bayesian networks that
reveal functionally related groups of genes and how genes interact within
these groups.

Several LBN concepts might still be abracadabra. A more detailed
discussion on LBN follows in the next chapter. A short description of a
Bayesian network, as given in Section 1.3, might be helpful to understand
some of the terms.

2.3.1 Bayesian network classifiers

To learn a Bayesian network classifier (BNC), the pre-processed gene ex-
pression dataset, including information about the class of samples, is given
and a network that can predict the class of a new sample is the result. This

3The issue of standardization is recognized by the introduction of a standard microarray
object model and data-format, MAGE-OM and MAGE-ML.
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classifier has the advantage of giving a graphical representation of the result
and potentially providing insights into the disease by showing relationships
between genes.

As with other network reconstruction techniques, the number of genes
(nodes) in the network can’t be very large. The total number of theoret-
ically possible networks increases super exponentially with the number of
nodes in the network [NeoO4]. Searching for the best network is a difficult
task. Learning BNC methods can already reduce the search space because
they only need to consider genes that are related to the resulting class of a
sample. Even with this reduction of the number of possible networks, the
number of genes can’t be very large and ranges roughly between 10 and
a 1000. Supervised gene selection methods, discussed in Section 2.1.1, are
often used to achieve the reduction from the thousands of genes measured
in a microarray experiment to the maximum of genes allowed by the BNC
learner.

Zhang et al. [ZHO3] learn BNCs with a selection of 50 and 30 genes.
Before the gene expression data was given to the BNC learning algorithm
the continuous dataset needed to be discretized because of the nature of their
BNC learners (probability tables are used). Discretization methods based
on mean or information values assign bins to the, originally, continuous data.
Of course discretization implies loss of information, and this is a drawback
of BNCs.

The results obtained in [ZH03] are good. A comparison was made be-
tween other state-of-the-art techniques; the Bayesian classifiers could achieve
competitive prediction accuracy. The leukemia set*, the same as in [GST199],
and a colon cancer set® were used. Classification accuracies, in the leave-
one-out cross-validation was 97.22% for the leukemia set and 85.48% for
the Colon cancer set. The authors constructed a variation on the BNC
learning algorithm to make the classifier more robust. Instead of a single
best network they used an ensemble of networks. Ensembles consisting of
5, 7, 10, 15 and 20 networks were constructed from the cancer datasets and
the best ensemble was selected. The authors mention that, besides a high
classification accuracy, the resulting networks also generated relationships,
potentially interesting for further research.

Helman et al. [HVAWO02] propose a Bayesian network classification method-
ology for microarrays. They propose to select a variable number of plausible
networks and try to blend them in such a way that classification accuracy
is optimized. Special methods to search through the networks, select genes
and to select and blend the resulting networks are implemented. Their
methodologies were tested on the same leukemia and colon cancer datasets

“The leukemia set consisted of 72 samples; 25 acute myeloid leukemia and 47 acute lym-
phoblastic leukemia samples, see http://www.genome.wi.mit.edu/MPR

5The colon cancer consisted out of 62 colon tissues; 22 healthy and 40 tumor tissues, see
http://microarray.Princeton.edu/oncology/affydata
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as mentioned before. In contrast with the previous study, Helman subdi-
vided the dataset into a training (about 70%) and test set. The authors
tested with different sets of networks and with different type of gene se-
lection methods. The best performing networks occur when gene selection
is based on the informative power of a single gene and a large number of
networks (about 300) are merged. The authors selected the best classifiers
based on leave-one-out cross validation error on the training set. The colon
cancer test set was classified with 92% accuracy (training set had 84%), and
the accuracy on the leukemia set was 95% on both the test and training
set. One important conclusion is that the networks have generalized very
well; test results are as good as the results on the training data. The au-
thors do not go into details of the structure of the constructed networks and
concentrate solely on the classification performance of the BNC algorithms.

We conclude that BNC learners show some promising results. However,
the methods developed in these studies are not publicly available in an easy
to use program. In chapter 4 another article on Bayesian network classifiers
is discussed and will be partially reproduced to get a better understanding
of the possibilities of standard BNC learners.

2.3.2 General Bayesian networks

In the microarray world the best-known study on using Bayesian networks
to analyze microarray data is done by Friedman et al. [FLNP00]. His group
constructed a network that shows interactions between genes and groups of
genes. The yeast cell cycle dataset created by Spellman et al. [SSMT98] was
used to learn a network. The dataset had measured the expression of 6177
genes during its cell cycle at different points in time. One of the advantages
of using Bayesian networks to reconstruct networks from microarray data,
according to Friedman et al., is that they are able to describe complex
stochastic processes and provide clear methodology for learning from (noisy)
observations.

In learning general Bayesian networks (GBN), in contrast to BNCs, every
relationship between two variables (genes) is relevant. The total possible
networks is immensely large for a relatively small set of genes, see Section
3.2. Friedman et al. managed to learn a network from the expression profile
of 800 genes (out of the 6177 originally measured). These 800 genes were
selected by unsupervised clustering, done by Spellman et al. in [SSM198].
The Bayesian network learning method is described below.

Two-hundred Bayesian networks are learned and only two features of
each gene in each network are stored for the final network. Each network is
learned on a slightly pertubated dataset by a special LBN algorithm they
call the Sparse Candidate Algorithm (SCA). The set of possible parent rela-
tions (candidates) for a node are preselected by SCA on the basis of simple
statistics, such that the search space of all possible networks is reduced. For
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each gene in each learned network the set of genes on which the expression
level of the gene directly depends is selected as the first feature. The sec-
ond feature concerns some type of relationships, where intermediate genes
relate two genes. Both relationships are stored for the final network. This
final network can have relationships between genes in which the direction of
the relation is undecided, because not enough data supports either direction.
The level of confidence in a feature is decisive for the resulting final network.

With the Bayesian method, Friedman et al. obtained gene clusters re-
sembling the clusters found by Spellman et al. using hierarchical clustering.
But Friedman et al. were able to reveal more features in and structure of
the dataset®. Several dominant genes were found: genes that have a lot of
direct relationships within a gene cluster. A large part of the gene pairs that
had a high-confidence relationship were believed to be biologically related
in function, based on literature.

A few other articles propose to integrate prior knowledge into the Bayesian
networks (about experimental conditions or gene function) or to use dynamic
Bayesian networks to analyze time-course data [OPGO02]. The possibility
of integrating non-expression knowledge is an advantage of the Bayesian
approach. Experts could make an a priori Bayesian model of a certain
process [TDOT03] and update this network with experimental microarray
data; patient data (as age and gender) could be included as well. Dynamic
Bayesian networks have the advantage of being able to model feedback loops
because a gene is modelled separately at each time point. Remember that
a Bayesian network is by definition an acyclic graph. Difficulties on the
complexity of learning dynamic Bayesian network (DBN) algorithms and
scarcity of time-course data in each time point make DBN not very useful
yet.

2.4 Concluding remarks

We have seen results obtained by learning Bayesian network methods are to
be taken seriously, with respect to other analysis methods. Many microarray
analysts are not aware of the capabilities of LBNs for several reasons. First
of all the standard analysis tools (commercial and non commercial) have not
included the LBN algorithms; they focus on clustering techniques, statistical
hypothesis testing and gene ontology integration. The second reason is
the biological background of most of the analysts. They lack time and
knowledge to learn, implement or apply the specialized methods proposed
in the literature on LBNs for microarray data. This thesis will therefore
use relatively simple, accessible, and publicly available implementations of
LBNs to explore their usability for microarray analysis.

6The resulting, quite complex, network can be viewed on http://www.cs.huiji.ac.il/~nirf/
GeneExpression/top800.
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Chapter 3

Learning Bayesian networks

Nearly 250 years ago, in 1764, Thomas Bayes wrote a theorem about chance
and probability. In artificial intelligence, Bayesian thinking has played an
important role in modelling, learning and reasoning with uncertainties.
Next we discuss Bayesian calculus and Bayesian networks [Pea88] in
general. In Section 3.2 several issues about learning a Bayesian network are
discussed and the last section presents the algorithms used in this thesis.

3.1 Bayesian networks

Basic concepts in Bayesian theory must be explained before we move on to
Bayesian networks. Although there are several ways to explain Bayesian
calculus we will focus on the concepts of (in)dependence and conditional
(in)dependence throughout this section and chapter.

Conditional probabilities Conditional probability is formally notated
as: p(A|B) = z. In words this means that given the event B, - and supposed
that everything else known is irrelevant - the probability of event A is equal
to . An event could be a variable (gene) taking on a certain value (high
expression). The remaining part of this chapter only deals with variables
instead of events.

Two variables X and Y are independent if p(X|Y) = p(X) for all values
of X and Y, otherwise they are dependent. This means that the probability
distribution of X is not dependent on Y. In a probability distribution the
chances of X taking on a certain value are given. Imagine that the distri-
bution of gene X is .2 for high expression and .8 for low expression. If gene
X and gene Y act independently, then for all values of Y the probability
distribution of X will stay the same.

If X is dependent on Y (p(X|Y) # P(X)), the probability distribution
of X is different for each value in Y. Suppose we found that the expression
of gene X is up regulated by the expression of gene Y. So our belief that

21
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gene X has an high expression depends on the expression of gene Y. If we
measure an high expression rate for Y, we believe that X is probably highly
expressed as well. In this case X is dependent on Y.

Conditional independence describes situations in which variables X and
Z are independent given the value of variable Y. Conditional independence
holds when for all values of X, Y and Z we have: p(X|Y) = p(X|Y, Z). Let’s
extend our previous example with gene Z which up regulates gene Y but
does not regulate X directly. Suppose it’s given that Y is highly expressed
in a sample. We have the distribution for the probabilities of the values in
X given Y. If this distribution of X doesn’t change when we come to know
the value of Z, we say X and Z are independent given the value of variable
Y. But we can also reason that if we don’t know Y but do know that Z is
highly expressed, the probability distribution of Y changes (Z up regulates
Y, so Y is more probable to be highly expressed)). In turn, because X is up
regulated by Y, the distribution of X also changes. So X is dependent on
Z and at the same time conditionally independent of Z when the value of
Y is given. Conditional independence is an important principle in Bayesian
networks, because knowing the conditional independencies in a dataset can
greatly reduce the complexity of networks.

At last we have conditional dependence which describes dependence be-
tween X and Z given Y (formally we have p(X|Y) # p(X|Y, Z) for all or
some values of X, Y and Z). Correlation measures, often used in bioinfor-
matics, between two variables can imply dependence, although correlation
is not a necessary condition [FLNPO0O].

Bayesian networks Now we move on to Bayesian networks and see how
they can reason with the concepts stated above. Bayesian networks are
graph-based models of joint multivariate probability distributions that cap-
ture properties of conditional independence between variables [Jen96]. They
are also used to reason with probabilities. A Bayesian network consists of
the following

e A set of variables (nodes).

e A set of directed edges between variables representing dependencies
between variables. A variable (node) X is called a parent of Y if there
is a directed edge going from X to Y. These directed edges must form,
together with the variables, a directed acyclic graph (no directed path
from a variable that leads to itself).

e To each variable X with parents Y7,...,Y,, there is attached a condi-
tional probability distribution p(X|Y1,...,Y,). If a variable X has no
parents, the probability distribution p(X) is attached.

We can view the lack of representing cycles as a restriction, especially
in our biological domain where feedback cycles are thought to happen. For
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time course microarray experiments dynamic Bayesian networks could be a
solution because a network can be made for each time point. The directed
edges between the variables in a network can sometimes be seen as causal
influences [SGS93], but causality in Bayesian networks (BNs) is still under
discussion and not generally accepted.

BNs can cope with variables that have continuous values but we use
methods that can only cope with discrete data. When BNs contain dis-
crete variables, conditional probability tables (CPT) are used instead of
conditional probability distributions (CPD). The main motivation for using
discrete values is that incorporating continuous data in methods to learn
Bayesian networks is still somewhat difficult and can lead to biased learning
methods [FLNP00]. Discretization of continuous (gene expression) data is
reasonably unbiased. Also, most of the standard Bayesian network learners
can not use continuous data.

A simple example of a Bayesian network is given below. This example
illustrates how Bayesian networks capture conditional independencies and
how we can reason with the networks.

Example 1 Suppose we have three genes X, Y and Z, which can take on
mutually exclusive values h (high expression) or [ (low expression). In figure
3.1 the network is shown (qualitative part), including probability tables
(quantitative part).

GO ()

X=h|XxX=1I Y=h|Y=1]

X=h|07] [Y=h|08 [0.1 Z=h10.25 0.5

X=/103] [vy=/ o2 J0.9 Z=11]075 [0.5
p(X) p(Y]X) p(Z1Y)

Figure 3.1: A simple Bayesian network structure containing 3 variables.
Conditional probability tables are also shown.

The graph is constructed such that gene X can influence gene Y directly,
and gene Z indirectly through Y. Gene X has no parents and the probability
table simply consists of our prior belief on the probability distribution of
gene X (also called prior probability, p(X)). Because X is a parent of
Y we have a conditional probability table p(Y|X). The CPT consists of
probabilities for the expression values of gene Y given the expression value
of gene X. If we add the values in a column of a CPT we always get 1
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(p(Y =h|X =h)+p(Y =1|X = h) =1 because Y is certain to be either
h or I). The prior probabilities p(Y') and p(Z) are also given by the CPT
tables, although indirectly (by marginalizing Y out of p(Y, X) which in turn
can be calculated by the fundamental rule: p(Y,X) = p(X)p(Y|X)).

If evidence on the value of a gene is given, we can update the conditional
probability tables and prior probabilities of the other genes using the fun-
damental rule and Bayes’ laws of probability. Thomas Bayes introduced his
theorem in 1764. The equation is as follows:

— p(A)p(BlA)
p(A|B) = T p(B)

Suppose we only know that the expression of Y is h, so p(Y = h) = 1 and
p(Y =1) = 0. In this case we can update the probabilities of both X and
Z. For Z we get p(Z|Y = h) = (0.25,0.75) (because now p(Z,Y = h) =
p(Z|Y = h) = p(Z)). To update the probabilities of X we use Bayes theo-
rem’ to calculate p(X|Y = h) = (0.95,0.05):

X=h)p(Y=h|X=h
PX =Y =1) = e

PX =Y =h) = 5355 = .95

We see that the probability of X = h is increased (from 0.8 to 0.95).
The increased probability of p(X = h) can be viewed as an ‘explanation’ for
the high expression value of Y.

Once we know Y, extra knowledge on the value of X can not change
anything for the probabilities of Z because gene Y blocks the information
from X to Z. The conditional independence p(Z|Y) = p(Z|Y, X) is modelled
in this network and we say that X and Z are conditionally independent given
Y.

Example 2 The Bayesian network in Figure 3.2 models the factors and
symptoms involved in the diseases pneumonia and influenza. Artificial data
was used by Abbas et al. [AMRMO04] to estimate the CPT tables of the
network. With the network they reason, for example, that the chance of
influenza increases given a persons income or ethnicity.

Bayesian networks can be a lot more complex than the ones described
above. We showed that the information flow in all BNs (updating proba-
bilities) is blocked by conditional independencies or passed on by (condi-
tional) dependencies. The conditional independencies in complex networks
are identified by a few rules called d-separation. The resulting conditional
independencies are not as obvious as in the previous example. Fast methods
to update CPTs in larger BNs have been developed [Jen96].

We have discussed some principles of Bayesian networks and Bayesian
calculus. Readers should by aware we are giving only a very short intro-
duction to BNs and not every aspect of BNs can be treated. Important
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Figure 3.2: A Bayesian network representing disease factors and symptoms
for influenza and pneumonia.

and intersting subjects such as hidden nodes and fast inference-methods are
skipped. Jensen [Jen96] wrote an easy to read introduction to Bayesian
networks. The important message here is that BNs can be used to model
(in)dependencies between variables in such a manner that we can reason
with their probabilities given new knowledge and using Bayesian calculus.

3.2 Learning Bayesian networks

Originally Bayesian networks were constructed by experts. Prior probabili-
ties and CPT values were chosen on the basis of the knowledge of experts.
The last decade or so, methods to automatically learn Bayesian network
structures from a given dataset have improved. The increased power of
computers has been a major support.

Learning Bayesian network (LBN) methods need to find the set of edges
between variables (structure) and the values in the (conditional) probability
tables that best represents a dataset. One way to do this is to give each pos-
sible network a score such that the network with the highest score matches
the data optimally. This score can be designed in several ways and can,
for example, prefer simple networks. A fully connected network can repre-
sent any probability distribution (and can therefore optimally represent the
data), but there are many reasons for not using a fully connected model.
A fully connected model requires more memory and computations, is more
sensitive to noise (overfitting) and does not find underlying independence
structures.
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Unfortunately, the number of possible network structures is super ex-
ponential in the number of variables, which makes it practically impossible
to score each possible network. Ten variables already produce 4.2 x 10'8
possible directed acyclic graphs (DAGs) [CG99]. The LBN algorithms have
special ways to make the search for the best network computationally feasi-
ble. Direct restrictions on the structure of the resulting network (maximum
number of parents), using search strategies (greedy search) and looking at
local structures (finding optimal set of parents for each node separately) are
examples of reducing the computational complexity.

The prior probabilities are usually based on the frequency with which
values of variables occur in the dataset and can be designed to further reduce
the computational complexity [RSO01].

Depending on the purpose of the network, important structural restric-
tions can be made. As we mentioned in Section 2.3, BNs can be learned
especially for classification. In this case, only those edges have to be found
which can influence the probability distribution of the tar