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Abstract

This thesis introduces concepts for learning expert human positional classifiers in

the game of Go. While most studies in the field of Go focus on learning methods

to find the best move, this thesis focuses on learning methods for evaluating the

quality of Go stones in a position. A data set of 2,638 Go Tesuji problems has been

created. For these problems expert human classifiers have been recorded using

a first order logic annotation extension developed for the current standardized

format SGF (Smart Go File). The learning of the human classifiers has been

conducted with Support Vector Machines using low level features such as the

Relative Subgraph Features (RSF) from the Common Fate Graph (CFG). Relative

Subgraph Path Features (RSPF) have been developed for learning connectivity

and proved to be an appropriate representation for the learning task.
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Preface

Reading this thesis requires some basic knowledge of the Game of Go. Readers

unfamiliar with the game are therefore advised to start reading chapter 2 first, to

get an impression of the game.

Writing a thesis is very difficult as it is. Reading a thesis is probably more dif-

ficult though, especially for a person who has not been involved in the creation

of it. Reading a considerable amount of papers involving computer science and

Go, I could not help but wonder whether a regular Go player with no scientific

background would be able to read them. Equally the question arose whether re-

searchers with no Go background would feel comfortable reading them. I tried to

make it my merit to write this thesis in a way that it would be attractive to read

no matter what background one has. I hope you will find yourself having as much

pleasure reading it as I had writing it.
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Chapter 1

Introduction

For over 20 years Go has attracted computer scientists and programmers as an

appealing research field. Many articles have been written covering various aspects

of the game; also Go programs have been written, however, none of them has

yet reached the level of an Amateur 1-dan, which is considered to be the entry

level for an expert/master player. Remarkably, since the introduction of pattern

recognition methods in Mark Boon’s Goliath program [1] no significant improve-

ments in the development of new Go programs have been made, while computer

processing power has steadily increased. Since then many new techniques have

been developed and applied [3, 4, 8, 11, 21] however none of these approaches

resulted in a much needed boost in this research area. Perhaps one of the main

reasons why no significant improvements have been made is the lack of digitally

available expert knowledge. For a computer scientist without any expert/master

level in Go it seems almost impossible to create a reasonable Go program without

any well documented expert data. As a consequence the research area is almost

restricted to Go experts with computer science background. In addition a pro-

grammer/researcher in this field has to spend a great deal of time to start up

his project by creating a framework for displaying moves and extracting simple

features (although to some extend frameworks are available online [2, 9, 12]).

Altogether, these aspects make the research field of applied computer science

to Go attractive because of the challenges involved, but at the same time there is

a burden for interested researchers because of the commitment required to com-

plete a research project, risking that the task ahead possibly will not deliver any

significant improvement or clear results to current research. For ”life and death”

problems, a crucial part of the game, several techniques have been developed ca-

pable of delivering good move predictions [19, 31, 20]. But are there more of this

1



2 Chapter 1. Introduction

type of areas inside the Go domain? The main question of this thesis therefore

deals with whether there are ways to make this research area more attractive

and accessible for interested researchers and how experts can be involved in this

process.

Jan Roman and Hendrik Blockeel presented in [23] some directions of possible

research in the field of computer Go. Next to improving min-max search meth-

ods using temperature functions, they also suggest that it would be fruitful to

learn high-level concepts such as secure territory and influence, as then decision

processes for making moves can be more accurate. They also stress that the in-

cremental building of such high-level concepts is one of the most important aspect

for further research in the application of inductive logic programming to Go. As

this field is relatively unexplored a good foundation on how to learn high-level

concepts needs to be made. But moreover to even think about learning high-level

concepts such as influence or secure territory we must have a reliable dataset were

these concepts are included. So far the only electronically available expert data

on Go are:

1. Records of expert players

2. Collections of life and death problems

3. Handmade pattern databases like the ones used in GnuGo [12]. This data-

bases contain collections of abstract patterns which define what kind of move

should be played to accomplish an outcome, see figure 1.1 for example pat-

terns

4. Joseki (an optimal corner sequence) databases in which correct opening

sequences are stored

None of these expert data reveal high-level concepts in a obvious way. Without

expert knowledge of the game the most a researcher can see from those records

is what the likely best next move in a given situation could be. Therefore there

is a need for datasets with high-level concepts labeled by an expert. But more

importantly a standard for recording high-level expert labels needs to be created

to record them. For this reason was one of the main aspects of this thesis to cre-

ate a recording standard and the collection of expert data. To prove the dataset’s

usability and also to show what kind of progress can be forecast by putting more

resources in this type of interdisciplinary research, several tests have been con-

ducted.
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(a) A 5x5 pattern of the category
”edge block/expand”

(b) A 4x3 pattern of the category
”cut/connection”

Figure 1.1: Example patterns from GnuGo. Explanation: the red dot marks
Black’s next move, ¥ marks a square either containing black or empty but not
white. The symbol ’-’ marks the edge of the board indicating the patterns relevance
is for edge situations. Finally ‘?’ indicates a location where it does not matter
what is there, except that it cannot be off the edge of the board.

Once several accurate high-level predictors have been developed for evaluating

a position, they can be used to find a good next move by using temporal difference

learning, a method first described by Rich Sutton in 1988 [28]. In backgammon

where the evaluation of the quality of a position is easier, temporal difference

learning has already been applied successfully. TD-gammon, the backgammon

program written by Tesauro [29] is not only a great example of how a program can

reach expert level in a highly complex game with machine learning, but is arguably

the most impressive result so far in the field of applied learning methods. Also

in Go experiments with temporal difference learning have been executed, inspired

by the success of Tesauro. Schraudolph et al. [25] tried a similar approach, but

with limited success compared to TD-gammon.

Of course temporal difference learning with high-level concept predictors would

still be a challenge, but should be more promising than trying to learn directly from

a board situation. Markus Enzenberger developed the Go program NeuroGo for

9x9 boards [10], which basically learns by connecting the Go board intersections

to a neural network with several hidden layers for learning high-level concepts

with considerable success. Graepel et al. [13] point out that all known approaches

render the learning task too abstract, as the representations of board positions

and candidate moves are too confined.
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1.1 Learning Go

Before we can decide which methods we want to use for learning Go, it is important

to outline what the learning task actually is. Or in other words, we need to outline

what is important in Go and how we can learn these aspects.

Because of the simplicity of the Go rules a novice can learn the essence of

the game within fifteen minutes. But just understanding these rules quickly leads

to a couple of deceiving approaches to learn the game. As researchers in the

field of Artificial Intelligence we are mainly interested in the methods used to

solve our problems rather than the problems we are trying to solve. This creates

some misconceptions on learning Go using AI methods, as essential aspects of

the game are often overlooked and omitted. One of the main misconception is

that the bottleneck of current software is the lack of reliable territory evaluation

functions. Learning such a function (see [26] for an approach) in combination

with an exhaustive min-max research would lead presumably to a breakthrough

and bring Go programs to the next level. This view has been brought forward as

the game is obviously decided by who has more territory at the end of the game.

My experience with the game, as an Amateur 6-Dan, however brings me to the

conclusion that this view indeed captures an important aspect of the game, but

lacks the understanding of why humans can play this game at a so much higher

level than current programs.

For several years I have been teaching Go to various people from novice to

master level. It is my experience that the strength of a Go player does not lie

in whether he or she is able to decide what move is bigger by looking at the

distributions of the territories, but the skill of a player lies in the ability to fight

simple or complex battles by being aware of their outcome and consequences. In

fact one of the first things among the things I teach to novices is that Go is a battle

for territory. This means that understanding the value of territory is important

but even more essential is to understand how the game is fought. So what makes

us humans strong at learning these two aspects of the game?

The game has 361 empty intersections at the beginning and starts filling up

during the course of the game. In order not to waste thinking time about all those

possibilities a player develops concepts to evaluate a position. One of the most

basic concepts is the construct of a group, its strength, its influence, its weakness.

With the notion of these concepts a high-level understanding is developed which

is then used to determine short and long term goals. Finally these goals result in

move considerations which are then evaluated within the context of the underlying
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goals. Learning concepts involves the recognition of patterns of either structures

or other high-level concepts or shapes appearing on the Go board.

The pattern recognition process is therefore essential to the learning and un-

derstanding of concepts in the game. The better the understanding of concepts in

the game the better decisions can be made when playing. If concepts can be learnt

from patterns by humans then there should be also a way for computer programs.

This thesis tries to show ways how concepts can be learnt from patterns.

Simple pattern databases have already been developed in connection with a

set of decision rules and conclusions which are followed when a pattern occurs.

The part of learning concepts is usually skipped and left at the hands of the

programmer. It seems therefore interesting whether this process can be improved

by directly learning concepts from patterns using concepts labeled by experts. So

far, no research has been done specifically on the learning of basic concepts in the

game of Go. This thesis shows how learning the basic concepts of connectivity,

move type and best next move can be achieved.
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Chapter 2

The game of Go

This chapter briefly describes the rules of the game. Also some of the concepts

and notations used in this thesis are described in a separate section.

Go is a game played by two players with two sets of stones. One player takes

the black stones and the other the white stones. The game is played on a board

with 19 horizontal and vertical lines, see figure 2.1 (b). Beginners normally start

playing the game on board with 9 horizontal and vertical lines to get accustomed

to the rules of the game, see figure 2.1 (a). For the purpose of explaining the rules

the 9x9 board is mostly used for illustrative reasons.

In the beginning the Go board is empty. The player with the black stones is

allowed to play first. It is only allowed to play one stone at the time, which is

placed on one of the intersections (which includes edge and corner intersections).

Figure 2.2 shows a typical opening sequences.

A stone, once played, is not to be moved unless captured. If a stone or multiple

stones of the same color are surrounded by the other color, such that no direct

adjacent intersection is empty, then the stone(s) is (are) captured (see figure 2.3).

Adjacent empty intersections are also referred to as liberties.

7



8 Chapter 2. The game of Go

(a) 9x9 board (b) 19x19 board

Figure 2.1: Empty Go boards

(a) A 19x19 opening (b) A 9x9 opening

Figure 2.2: Opening sequences in the game of Go
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(a) The white stone is removed after
black played at 1.

(b) The three white stones are removed
after black played at 1.

Figure 2.3: The capturing rule

From the capturing rule for multiple stones it can be seen that stones are

connected which are positioned on directly neighboring intersections. Diagonal

neighboring intersections are not connected as there is no direct line between them,

see figure 2.4. Connected stones share a common fate and cannot be captured

separately. Stones which are connected are also called a chain. Note that a single

stone is also a chain.

The goal of the game is to make territory. The player who has the largest

territory at the end of the game is the winner. Territory can be empty surrounded

intersections and captured enemy stones, see figure 2.5(a) and (b).

A situation where black and white could capture each other without interrup-

tion is called a ko (meaning indefinite in Japanese). Figure 2.6 (a) shows a typical

ko situation. It is not allowed to recapture directly in a ko situation. If both

players have played elsewhere before, it is allowed to recapture. The rule can be

simplified by saying that it is not allowed to repeat a position on the Go board

during a game.
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(a) The black stones are connected and
so are the white ones.

(b) The two black stones and the two
white stones are separated.

Figure 2.4: The connectivity rule

(a) Black has 36 points and white has
27, hence Black wins by 9.

(b) White captured one black stone. So
the score is 29 for Black and 28+1=29 for
White.

Figure 2.5: The counting rule

The above explanations are sufficient for playing the game. There are some

concepts and notations used inside the thesis which will be defined now, but are

not part of the rule set.



2.1. Concepts and notations 11

2.1 Concepts and notations

In Go, advanced players label moves with a descriptive name. A diagonal move

for example is called a kosumi or a one space jump is called an ikken-tobi or

simply tobi. These names are referred to as move types inside this thesis. This is

useful as moves can be labeled according to their property. Discussions between

players about moves can than become easier as players can point out a move by

its property instead of using coordinates. See figure 2.7 (a) for examples.

Another property of a move is the positional change it will inflict. A move

which captures a stone is a capturing move. A move which threatens to capture a

stone is called an Atari. A move which reduces territory is a reducing move and

so on. This property of a move is referred to as outcome type in this thesis. See

figure 2.7 (b) for examples.

Places which are important to both players are called vital points. In figure

2.7 (b) for instance, the white group at the left can survive if it would have been

White’s turn and he/she would play at the same spot as black. The place is

therefore called a vital point.

An concept used very often in Go is the one of a group. The term has already

been used in the above contents. It identifies a set of chains which are related and

have a common fate. A group is alive when it has two eyes. An eye consists of one

empty or several empty connected intersection(s) where the surrounding chains

can only be captured if a stone is placed in such a way that it does not have any

liberties. Usually a stone is captured when it does not have any liberties left. If

the last stone placed takes the last liberty of other stones then those stones will

removed and the last placed stone remains on the Go Board. Therefore a group

is alive if it has two eyes. See figure 2.8 for examples.

Stones which are not part of the same chain but cannot be separated because

of the rules imposed by the game and optimal play are also called connected. In

figure 2.7(a) are the black stones connected for instance, as Black has two possible

moves to connect his stones to a single chain. If a chain A is connected with

another chain B then this fact is abbreviated with the notation A ←→ B.

The above explanations of the game are very concise and the reader who is

unfamiliar with the game can visit an online lecture by Jan van der Steen for more

examples at http://gobase.org/studying/rules/.
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(a) Black has just captured the white
stone marked with X. White is not al-
lowed to recapture directly.

(b) White plays elsewhere first with 1 and
Black responds 2, finally White can re-
capture with 3.

Figure 2.6: The ko rule

(a) Black plays a kosumi and White re-
sponds with an ikken-tobi.

(b) Black kills the white stones at the left
by playing the vital point. White replies
by reducing Black’s territory in the top
left corner with a peeping move.

Figure 2.7: Move type, outcome type and vital point examples
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(a) The white group has one eye. Black
can capture the white group by playing
at A. The black stone would then take
its last liberty, but because it takes the
last white liberty as well the white group
can be captured.

(b) The white group has two eyes and
cannot be captured. If Black plays into
one of the eyes the stone would be auto-
matically captured.

Figure 2.8: Example of eyes
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Chapter 3

The XGF-standard

Today many AI-approaches in the field of Go research involve the use of pro-

fessional or master level Go records for extracting knowledge. In David Stern’s

approach [27] move predictions are the result of learning a Bayesian pattern rank-

ing from 181,000 expert games. The idea of this approach was inspired by Frank

de Groots Go software Moyogo [14], which contains a SQL database of 450,000

games. The incorporation of this technique into Go playing software has also been

tried, but the success and impact of this approach remains to be seen yet.

Although de Groot and Stern’s success can be considered as remarkable, the ques-

tion that arises here from a Go player’s point of view is: why are hundreds of

thousands of Go records not enough to learn the game at master level? The ques-

tion might seem dubious to a Go programmer, as writing a playing Go program is

extremely difficult, but if we put in perspective that professional Go players rarely

replay over 5,000 games during their Insei (professional aspirant) education, then

the value and effectiveness of the game records needs to be put into question. Also

when we look at how humans learn the game, learning from expert games seems

premature, as most players would study high-level games only after reaching a cer-

tain understanding of the game themselves. Expert Go players encourage studying

expert games for two learning purposes. Firstly, it is important for a player to

get a feeling of what correct and incorrect moves and good and bad shapes are.

Secondly, people study expert games to understand the thought and evaluation

processes of the players, e.g., when a situation is settled on the board and does not

require any more attention with another move, or how strong a group is and what

the appropriate distance to that group would be. Both these purposes usually

require the player to have some basic knowledge of the game in the first place.

15
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But as far as the Bayesian pattern ranking approach goes, it seems a good way to

learn correct and incorrect moves based on shapes without the understanding of

the local and global thinking and evaluation process.

So the question remains how can a Go program learn more from the available

material? Are the learning methods used adequate enough to deal with a problem

of this complexity? Is the learning material rich enough so that proper learning

is possible or is it necessary to develop more detailed and descriptive material?

It is hard to point the finger on where the learning process can be improved, but

the answer to the problem probably involves a little bit of everything. While

it might be fairly hard to create better methods for learning Go because it is a

problem without a known solution, it is actually quite easy to create better learning

material for computers. Easy in the sense that we know that we can attach more

meaning to a Go record than only the move order involved. The simplest way

to illustrate that is by asking an expert player to explain any Go position. Most

likely the expert would come up with various responses, such as: ”the black group

in the upper left corner is safe and also puts pressure on the white group on the

right”, ”the black group in middle is very vulnerable, but if it will survive or a

part of it Black will win the game by points easily” or ”White’s territory does not

look solid yet, Black should look for ways to exploit its weaknesses”.

Of course we could also ask the expert where he or she believes the best next

move would be, but without understanding the concepts of the game that might

not be very useful to a learning person or program. As this labeling of attributes

on the groups, territories, positions are hard to derive by just replaying a game

record, it seems interesting to try a more subtle approach. The straightforward

thing to do would be to record everything an expert player says on a position and

keep his/her comments in a text file, however that would lead to complications of

the file interpretation. Obviously it would be better to define certain attributes

first and then let an expert player understand the attributes and subsequently let

him or her explain positions using the attributes. But for precisely this reason a

well elaborated standard for recording expert knowledge needs to be developed.

In the next section a short introduction on current available Go documents will be

given to show their significance in history, and in the final section a new standard

will be proposed to improve the quality of today’s learning material for computer

Go programs.
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3.1 A short introduction to Go documents

Searching for new ways to create learning material for Go programs, it seems a

good idea to look back in history to see how Go has developed over the course

of time. Go related documents played a crucial role in the study of Go as they

preserved the knowledge of players who studied the game intensively. In the

present time the quality of play of today’s strongest players keeps improving and

documents catalyze the process for upcoming generations to reach the highest

level.

3.1.1 The history of Go documents

Although it is not known when Go exactly was invented most sources reveal that

the game is about 4,000 years old. Since then the quality of how the game is played

evolved to today’s standards. Also the rules of the game have slightly changed,

such as the starting position (ancient Chinese game records show that games were

beginning with preset stones on the starpoints, see figure 3.1 for examples) and

complex ko rules.

(a) Extracted Go record from Xuanxuan
Qijing, 1347AD

(b) Wu Diagram, around 230AD

Figure 3.1: ancient Go records

The first discovered Go game record, called the ”Wu Diagram”, dates from

around 230AD in China. Which means that before that time the game has been

passed on from generation to generation by student-mentor relationships. The
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quality of the Wu-Diagram also provides an indication that the master level of

today’s 1-dan may already have been reached by a player in that time. Of course

since then many new strategy concepts and opening insights have been established,

but by only observing the tactical finesse of those players it can be concluded that

the overall skill of them would still be close to master level.

The Chinese Go book Xuanxuan Qijing from around 1350AD is a collection

of ingenious Go problems, records and essays, which shows another milestone in

the history of Go records. Its significance and quality has been proven timeless as

many professional aspirants still use the Go problems to train their ability to read

complex board situations. Without any doubt were the tactical skills of players

from that time already very high.

But it was not until the beginning of the 17th century when Go study flourished

in Japan because several study groups, the so called houses, Honinbo, Inoue,

Hayashi, Yasui, were competing for the position of being the Shogun’s personal

teacher, the Godokoro. This not only resulted in a very competitive and fruitful

environment for progress in the understanding of the game, but also in study

material in the form of game records. Most notable are the records sometimes

referred to as the Castle Games, where two players from opposing houses would

fight for several days on a single game to be presented later on to the Shogun as

a form of art and entertainment.

In 1924 the Nihon Ki-in, the Japanese Go Association, was founded, largely

responsible for the writing of many of today’s popular Go literature, such as

commentary of professional games in magazines, fuseki (opening), joseki (corner

sequences) and tsumego (life and death problems) encyclopedias, various study

material covering a variety of topics ranging from beginner to master level. In

the second half of the 20th century Go organizations in China, Korea but also

in Taiwan followed suit and started their professional organizations of their own.

Today Japan, Korea, China and Taiwan play a central role in the production of

learning and study material and in the discovery of new concepts and ideas.

3.1.2 Computer Go files

With the introduction of the internet also online Go communities started to de-

velop. Several different incompatible protocols and file formats are in use today

on the Go playing servers [17]. Their purpose is to make it easy to exchange dig-

ital game records by the internet. The first recording standards were developed

for the purpose of publishing magazines or other printed documents, which made
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those versatile for creating articles. These standards allowed the user to generate

a diagram of the actual game, but also to enter commentaries and variations or

markers insight the diagram so that a situation or a thought process could be ex-

plained. The most popular and used format at the moment is the SGF / ”Smart

Go File” [15] standard which was proposed by Anders Kierulf in 1990. Because of

the simple tree based representation SGF files are extremely compact and uncom-

mented game files rarely exceed a size of 5KB. But as before the SGF standard

was originally designed for the exchange of Go records between humans and not

for spreading computer oriented expert knowledge.

3.2 XGF an extension of SGF

When attempting to create standard to exchange expert knowledge compactness

of the representation should still be considered significant when possible, however

because of the ability to maintain larger amounts of data on computers the focus

of developing a new standard should lie in:

1. Flexibility of adding different kind of low level and high-level features of

different programs

2. Ability to incorporate (computer usable) descriptive expert terminology for

game positions

3. Usability and easy extraction of features for none expert Go players

4. Ability to transfer data to SQL-databases and number manipulation engines

like Matlab

5. Upgradeability of the standard by a new standard

Of course it is also important to create this file standard under consideration

of compactness, however compression tools like pkzip should deliver acceptable

files sizes. The SGF standard provides a basis for most of the above mentioned

points however SGF lags the ability to enter expert knowledge relevant for machine

learning as well as portability to SQL databases and easy number presentations

to Matlab. In 2002 Arno Hollosi [16] proposed the use of the XGF standard

which was meant as an XML replacement for the existing SGF standard allowing

therefore compatibility with XML databases. Because the SGF standard was

already widely used and developers did not see the need for a new standard,



20 Chapter 3. The XGF-standard

XGF has never been introduced as an official standard. Although XGF does not

propose any methods to exchange expert knowledge other than the insertion of

game commentaries, the principle of using XML should strongly be considered for

developing of a new standard to exchange expert data. The ability to exchange

expert data in combination with their relational models could create benefit for

current and future researchers. A researcher who developed a certain new feature

would then be able to improve an existing Go record by simply adding them

with a description of their use and purpose. Recording features generated by the

computer in such a standard would probably cause for unnecessary increase of the

file size. The generated features for the experiments conducted in this thesis for

instance are over 3GB in size and would be better shared by a common feature

extraction tool.

3.3 How expert data has been recorded

As the generation of a new file standard would be beyond the scope of this thesis

a middle way has been used to record and share the expert data using the current

file standard SGF. A game of Go can be recorded by writing down the sequence

of moves in the played order. SGF describes a tree based representation of a Go

record where each move is inserted as a node within the tree. The nodes are

separated by semicolons and a move is recorded with B[x] or W[x], standing for a

white or black move respectively at point x. SGF also allows to enter annotations

and variations. Annotations are recorded by adding additional properties to a

node, for instance if we want to label a point x with the letter ’A’ then we insert

LB[x:A] at the respective node within the game tree. Variations are used to explain

a situation by showing an alternative way of playing, see figure 3.2 for an example.

Inside SGF variations are branches within the game tree and are entered by placing

brackets at a node where the variation is supposed to appear. This also makes it

possible to enter variations of variations. Although the standard allows to enter

several different kind of annotations the standard is rather inflexible permitting

the adding of relational information so that new annotations have been defined

which can be used inside the current standard. The annotations can be positioned

in the game tree like other annotations.

The portability of the information is not trivial and would require a program-

mer to make adjustments if he/she would decide to read the expert information

with his/her current SGF file reader software. As it will become clear in chapter 5,

the recorded expert information describes the relations between stones, chains or



3.3. How expert data has been recorded 21

(a) A game record played (b) Variation: instead of 5 in the game
record, Black can also choose to play 1
inside the variation resulting in the ”Chi-
nese opening” after 4 Black can play at
A or B

Figure 3.2: Example of a variation with annotation

empty areas. Using first order logic this kind of relations can be easily described.

For instance if we want to say that stone A and stone B are strongly connected

we could generalize this with saying A and B have property p or also p(A,B).

The arity of a relationship p should be flexible hence it is proposed to record such

relationships as a new property inside the current SGF standard the following way:

p({a1, ..., an}, .., {z1, ..., zn}) = Xidentifier[a1, ..., an|...|z1, ..., zn|p]

It is suggested to group similar relations with an identifier and label the indi-

vidual differences with p. For example, the connectivity between two chains has

been recorded as follows:

XC[x|y|3]

Indicating that there is a connectivity relationship between chain x and y of cat-

egory 3. The recorded relationship should be placed at the relevant node inside

the game tree the same way other annotations are recorded. The merit of using a

notation involving first order logic is to make the annotations also usable for Go

projects which are using logic programming for predicting a next move. For this
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thesis however these annotations have simply been used to extract expert labels

crucial to the learning process.

The idea of the proposed extension to the SGF standard is to make it easier for

researches to add expert knowledge using simple first order logic principles. This

way more descriptive datasets can be generated and concept learning in Go can

be stimulated for new researchers and programmers. For this thesis annotated

Go records have been generated and stored in a SQL database for accessibility

reasons. The Go records can be transferred to single SGF files and read using an

adjusted SGF file reader. The produced expert data can therefore be considered

self-contained.
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XiGo - tutor and learning

program

For the purpose of this research project a Go editor and learning program has been

developed: XiGo. The X is the Greek letter χ, hence is the pronunciation of the

program ch’i go, ch’i standing for the concept of life force or spiritual energy in

Chinese culture. Several free Go programs and editors even with available source

are already freely available like GnuGo (written in C++) [12], GoGui (written in

Java) [9], and the Tesuji Go Library (written in Java) [2], but for the requirements

of this project writing a new editor instead of expanding old editors appeared to be

the better choice. In the beginning, the focus of the research was creating a large

database of Go problems with incorporated human expert knowledge, which is

then used for experiments using modern learning algorithms. Both of these tasks

needed to be fully implemented in existing software. Hence, writing a new GUI

in addition with only the necessary functions seemed to be more attractive than

trying to add new functionality to existing programs as exhaustive deepening

into those programs would have been a prerequisite. Also by introducing first

order logic inside Go records, having a proper editor in place would make the

input process easier and has been taken into consideration when developing the

software.

The result of the implementation is a Go program with three modules: XiGo

Tutor, XiGo Xtractor and XiGo domain, see figure 4.1. XiGo Tutor is an editor

which allows a Go tutor to enter the Go problems with expert annotations into

a SQL database. The SQL database chosen is MySQL and is only used for ac-

cessibility purposes as each individual problem needs to be stored permanently

in a single string. XiGo Xtractor is a program which is able to extract necessary

23
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Figure 4.1: The XiGo software concept

computer generated features and expert labels derived from the annotations. The

features in combination with the expert annotations or labels are then stored in a

training data file. These are subsequently used to train a Support Vector Machine

(SVM) a learning method used for classification explained in the next chapter.

XiGo domain is the module where the actual training of the SVM is processed.

Although not yet implemented, it is possible that the learned classifier can assist

the tutoring module as discussed in the final chapter.

A short overview of the functionality of all three modules is given in the next

sections.

4.1 XiGo Tutor

The XiGo Tutor allows for the input and display of expert data by a human

expert, see figure 4.2 for snapshot. The module interacts directly with the SQL

database of problems, which allows the user to browse through the whole dataset
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conveniently. The extra value of the tutor compared with other editors lays in

the ability to enter expert data. Next to the conventional annotations which can

be inserted inside a game record such as simple labels like triangles and letters, is

it also possible to enter the annotations specifically designed for this thesis. The

annotation options can be selected at the left side of the XiGo Tutor panel. The

user is allowed to enter a move sequence by selecting the play button at the right.

Also, it is possible to record additional stones into a position with the button below

the play button. The magnifier button allows to enter a focus on the Go board,

which specifies what parts of the Go board are relevant by highlighting the area.

The subsequent buttons abc, triangle, circle, square, and X are all SGF standard

annotations which were hardly used. The last three buttons allow to enter three of

the expert annotations designed for the thesis; namely: connectivity, vital points

and eye space. All the three annotations are explained in the next section in

detail. Other expert annotations recorded are the move type and outcome type of

a problem, which can be selected with a drop down menu on the top of the panel.

Other buttons allow the user to enter variations or browse through the database.

The module has been set up such that additional expert annotations types can

easily be added. It is possible that XiGo Tutor can assist the expert annotating

by making suggestions derived from a generated classifier.

4.2 XiGo Xtractor

XiGo Xtractor is a module which interacts with the SQL database to retrieve each

individual annotated Go record to generate features relevant to a learning task. In

addition labels from the expert annotations are extracted which are then combined

into training examples stored into a training file and one testing file. The testing

file generated contained 10% of the whole extracted data, while the training file

consisted of 90%. Because of constraints imposed by the SVM learning method

scaling the data was also part of the extraction process. The whole procedure is

automated and does not require the assistance of an expert. The generation of

features can be time consuming, therefore the output of the extraction process is

saved on the hard drive. A training file can have a size between 20MB to 1.4GB,

hence the generation of a training file and the actual training of a classifier were

independent processes, as hard drive space was not an issue. The Xtractor allows

the user to export the example files in two kind of formats. One format is used

by the XiGo domain module and the other format allows the direct use of the

learning application libsvm [7], which is presented in the next chapter.
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Figure 4.2: A screen shot of XiGo Tutor
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4.3 XiGo domain

XiGo domain is the module of the program in which the interaction between

training data and the learning application is done. The module’s purpose is to

generate a classifier for a selected expert concept recorded with annotations. In

the setup chosen it is presenting the java implementation of libsvm with a training

file, which then returns a classification model for the expert concept. The model

is then tested by predicting the expert labels from the test set. The module will

then output several key statistics as well as a list of test examples which have not

been classified correctly. The C implementation of the libsvm software proved to

be more powerful than its Java sibling, hence XiGo domain has not been used for

the experiments presented in this paper. Instead the files generated specifically for

the C implementation of libsvm have been used. As it is considered to generate

an interactive process during the tutoring procedure between the expert and the

program, the module can be used to assist the expert annotating. The concepts of

this procedure are explained in the last chapter where other possible future work

is discussed.
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Chapter 5

Feature extraction and

classification

Learning expert concepts in Go involves three main questions:

1. How can expert concepts be recorded?

2. What kind of computer generated features can be used to learn the expert

concept?

3. What learning method can be used?

All these aspects of the learning task are explained and examined in the sections

below. This chapter is divided into three main sections. The first section describes

what kind of and how expert information has been recorded. The second section

explains what representation has been chosen and how features can be extracted

from the representation. The last section describes the learning method used in

the experiments.

5.1 Labeling of positions by human experts

Before choosing what kinds of human expert information should be recorded, it

should be investigated whether they fulfill certain constraints. Because an expert

should input them and a computer should learn them, we are looking basically at

two types of constraints. The expert constraints typically result in the upcoming

of the following questions: Is it possible for an expert to input this information

in a practical and efficient way? Does this information have practical relevance to

29
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the decisions made by an expert to find the next move? The computer constraints

address other questions like: is it possible to learn the information with lower level

features, if not: can new low level features be created?

And there is of course the issue that different experts might have different

opinions on the same situation, which raises the question whether this could be

harmful to the learning process. Here, it should be taken into consideration that

probably these differences are inevitable and that they likely allow a learning

program to show some kind of individuality, as they can choose which opinion

fits better with their created classifier. The opinion the system might choose to

believe might fluctuate or even divert from both of the experts opinion, but this

would be very similar to the human learning process and can only be desirable. A

human expert who chooses a certain opinion might also divert from it in time as

he might arrive to new conclusions in the matter concerned. But then again, if we

do not mind the system to divert from the expert knowledge when can we say the

system is able to learn the concept given? Here, it should be assumed that the

expert opinion is likely to be true but not necessarily the exact one. So, if there

is a difference between the system and the expert it should be within the range of

one another.

5.1.1 Labeling the connectivity concept

Connectivity is an important and perhaps the most basic aspect in the game of

Go. There is a classic Go proverb for beginners saying: “first cut, then think”,

suggesting that cutting opponent’s stones usually will result in a favorable out-

come. Often a game between two players is decided because a cut has split two

important groups in two leaving behind an unmanageable situation for one player.

Knowing where a cut can occur, also allows a player not to play careless and take

preventive measures if necessary. Therefore, knowing what groups are connected

and which ones are not, is crucial to understand a given situation. Often find-

ing a cut for an expert player involves two stages. In the first stage, a cutting

shape must be recognized. Then in the second stage the player would examine

the situation by reading and confirm his findings. The recognition and analytic

part go hand and hand, the more experienced the player is the more he realizes

in the recognition stage than in the analytic one. Hence a beginner is more in-

clined to use his analytic ability to confirm his suspicions, often this leaves the

player perplex in complicated situations as channelling ones analytic ability to

the right spots is vital. This suggests that learning connectivity based on pattern
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recognition should be a highly relevant area to apply Artificial Intelligence, as the

involved parameters for finding an answer are far simpler than those required for

finding the next best move for instance.

The concept of connection in Go is not as logical as it might seem to a layman.

The principle of connectivity might easily suggest that there is transitivity, e.g.

if A ←→ B and B ←→ C then also A ←→ C. However this is not the case, a

simple example shows us that we cannot reason with transitivity. In figure 5.1 the

white stones a and b are inseparable because they can only be separated if Black

would be allowed to play two moves. The stones b and c are also inseparable,

however if Black plays at 1 in the right diagram then Black can either separate

White by playing at a or b. It is for this kind of difficulties amongst others that

computing connectivity using logical reasoning becomes a difficult task, which

can be exploited by human players when playing a computer program. Tristan

Cazenave and Bernard Helmstetter have addressed this specific issue using an

analytic approach [6].

(a) White ‘a and b’ and ‘b and c’ are con-
nected

(b) After Black plays 1, white cannot con-
nect at both points a and b

Figure 5.1: An example of non transitive connections

The used labeling method:

Connectivity is a concept which describes a relationship between two same colored

chains. Given a position a human expert can select a tuple of chains which he/she

believes is relevant to the learning task and labels their connectivity. The expert

has been given six different levels of connectivity to classify how strong or weak



32 Chapter 5. Feature extraction and classification

the connection between two chains of the same color are. Each tuple of chains

has been inspected from the player perspective of the chains’ color. The opponent

being the other color. The levels of connectivity given were:

1. The chains are strongly connected, meaning the chains cannot be separated

even if the opponent would be able to play at least two moves after another

in the area without interference, see figure 5.2 (a) and (b).

2. The chains are connected, meaning the chains can only be separated if the

opponent would be allowed to play two moves in the same area without

interference, see figure 5.2 (c) and (d).

3. The chains are conditionally connected, meaning that the chains are only

connected if the player would spend another move in that area. The chains

could be separated if the opponent would be allowed to play in that area the

next move, see figure 5.2 (e) and (f).

4. The chains are separated, meaning that the chains can only be connected if

the player was able to play two moves without interference in the area, see

figure 5.3 (a) and (b).

5. The chains are strongly separated if the player would be allowed to play three

moves without interference in the respective area, see figure 5.3 (c) and (d).

6. The chains have no connectivity, means none of the other five connectivity

level applies.

The expert would label the connectivity relationship of the two chains with

the first five levels described above. If none of those 5 levels would apply, category

6 could be assumed. To label the connectivity between each same colored tuple

of chains on the Go board is often not doable, as often the number of chains

is too large. With 20 black chains for instance the expert would have to label

20*19/0.5 = 190 different connectivity relations. Therefore, the expert was allowed

to chose from his/her point of view relevant connections at his own discretion. This

procedure led to about 11 connections in average per problem.
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(a) The connectivity of the marked chains
is strongly connected

(b) Even if White was allowed to play
two moves trying to separate the marked
stones, Black can still capture one of the
white stones by playing a.

(c) The connectivity of the marked chains
is connected

(d) The marked chains are clearly con-
nected, however, not strongly connected
as one of the stones can be captured with
two moves.

(e) The connectivity of the marked chains
is conditionally connected

(f) If Black does not play, White can sep-
arate the black stones by playing at 1,
capturing 2 stones.

Figure 5.2: Examples of strongly connected, connected and conditionally connected
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(a) The connectivity of the marked chains
is separated

(b) The two chains can only be connected
if White was allowed to play two moves
undisturbed in the area

(c) The connectivity of the marked chains
is strongly separated

(d) The two chains can only be con-
nected if White was allowed to play three
moves undisturbed in the area, captur-
ing the black stones finally with ’a’

Figure 5.3: Examples of separated and strongly separated

Often considering the connection between two chains is rather dubious, be-

cause of their distance. Often an indirect (transitive) connection between two

chains was omitted because of its irrelevance to the player. Note that also less

trivial connections between chains have been entered, such as the connection of

chains which are separated by another opponent chain which could be captured
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playing the right move sequence, see figure 5.2 (e). Labeling this type of none

trivial connections requires a minimum knowledge of tactical understanding of

the game which makes learning a connectivity classifier more challenging.

The label for describing the connectivity was inserted with:

XC[chainA|chainB|category]

inside the SGF game records.

5.1.2 Labeling move and outcome type concepts

The entered positions are so called tesuji or best move problems. If Go could

be compared to a boxing fight, then tesuji moves can be translated as knock out

punches, meaning that their recognition results in totally different outcome than

when not played. Every problem has been recorded along with the tesuji move,

and a label for the type of move and outcome involved. In total 43 distinct move

types and 45 distinct outcome types have been defined.

The labels for describing the move and outcome types were inserted with:

GN [movetype|outcometype]

at the beginning of a game tree inside the SGF game records.

5.1.3 Extension: Labeling eyespace and vital points con-

cepts

Eyespace plays a crucial role in Go. Again expert players rely on two skills,

recognition and their analytic ability. In order for a group to live, it needs to have

two eyes (”separated surrounded liberties”). To see whether a group or parts of

it have two eyes is extremely complicated. To determine whether a group is alive

or not, a player looks at the eyespace of the group, which can be described as an

area with potential to create an eye. Sometimes, an eyespace can be big enough

to allow the player to make two eyes by putting another move inside. In case the

player would decide not to move there, then the opponent can remove one eye by

putting a stone at the exact same spot. This kind of spot can be labeled a vital
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point, see figure 5.4. Vital points usually are points on the Go board which are

essential to both players which are not necessarily related to eyespace areas.

(a) Black plays and lives (b) Black plays somewhere else and
White kills the black group

Figure 5.4: An example of a vital point

From the description above it can be noticed that a vital point is not related to

the color black or white, but applies to both. Eyespaces on the other hand always

belong to a group on the board. In rare cases potential eyespace can be shared by

both players or different groups from the same color, therefore, the expert needs

to identify the concerned group of a classified eyespace as well. Seven categories

for classifying these have been developed:

1. The eyespace contains a strong living shape even if the opponent would be

playing twice.

2. The eyespace contains a living shape even if the opponent would be playing

first.

3. The eyespace contains two eyes if the player would spend another move.

4. The eyespace contains a solid eye if the opponent would spend another two

moves

5. The eyespace contains strong one eye even if the opponent would be playing

first.

6. The eyespace contains one eye if the player would spend another move.
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7. The eyespace contains an unlikely eye if the player would be allowed to play

two moves in the same area without interference.

The labels for describing the eyespace have been inserted with:

XE[a1, ..., an|chain1, ..., chainn|category]

inside the SGF game records, a1, ..., an denoting the empty intersections of the

eyespace and chain1, ..., chainn denoting the chains which relate to the eyespace.

For the vital points the following two categories have been developed and entered:

1. The vital point is a life and death deciding point.

2. The vital point is a shape improving or teasing point.

The labels for describing vital points have been inserted with:

XV [emptyintersections|category]

inside the SGF game records.

The eyespace and vital point labels were entered on an experimental level

with the XiGo Tutor but were not extracted by the XiGo Xtractor, as no learning

methods for theses concepts have been developed.

5.2 Representation and feature extraction

Learning a good classifier for a concept requires an adequate representation of

the underlying problem of the concept. If the representation of a problem is well

defined the learning task is expected to deliver results with higher accuracy. Here

lies one of the biggest challenges in applying Artificial Intelligence to Go: What

are relevant features for the learning tasks? Can we describe a situation in such a

concise way that the learning of any concept can be done with that description?

The answer is probably no. Instead of looking for a universal representation of

the Go board, it ought to be wise to consider each learning task individually and

select intuitively appropriate features relevant to the problem at hand. In the next

subsections, several plausible feature representations are explored.
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5.2.1 Chain features

Some of the most basic features of chains can simply be derived algorithmically.

This features are:

• Number of stones.

• Number of liberties.

• Number of adjacent enemy chains.

• Number of adjacent enemy stones (sum of stones of adjacent enemy chains).

• Number of friendly chains which can be connected with one move.

• Maximum number of liberties which can be obtained by adding another

stone to the chain (can be from 2 to -1).

Although these features of chains are relevant to the game, they describe a sit-

uation of a chain too abstractly. Some of these features are derived from the

representations of the following subsection, hence the direct inclusion of these

features was omitted for all learning experiments.

5.2.2 Common Fate Graph

A richer graph representation was introduced recently by Thore Graepel et al.[13].

The Common Fate Graph’s (CFG) with Relative Subgraph Features (RSF ) have

already been successfully used in an attempt to learn graphs with Support Vector

Machines in the game of Go. Liva Ralaivola et al. also used this representation in

addition with other pattern enriched features [22]. The principle of the CFG lies

in the observation that chains in a Go position share a common fate and stones of

a chain can be summarized to a single node within a graph. To explain how this

is done, a formal definition of the graph is given.

Firstly we note that a board position can be described by Full Graph Repre-

sentation (FGR) which is an undirected graph GFGR = (P, E). P = {p1, ..., pNp}
is a set nodes pi representing each point on the Go board. Each node p has a label

l : P −→ {black, white, empty} which describes what is positioned at the node.

The set E = {e1, ..., eNE
} is the set of edges with ei ∈ {{p, p′} : p, p′ ∈ P} which

describes the edge relations imposed by the grid of the Go board.



5.2. Representation and feature extraction 39

The CFG can now be derived from the FGR by transforming it. The transfor-

mation involves merging nodes which have the same color and removing resulting

duplicate edges. A formal definition of this transformation is given below.

Given two nodes p, p′ ∈ P that are neighbors or {p, p′} ∈ E and their labels

non-empty and identical l(p) = l(p′) 6= empty perform the following transforma-

tion:

1. P −→ P \ {p′} (merging nodes)

2. E −→ E \ {{p′, p′′} ∈ E}) ∪ {{p, p′′} : {p′, p′′} ∈ E}
(this removes duplicate edges)

Applying the above transformation on the FGR until no same colored neigh-

boring nodes exist will result in the CFG. An example transformation can be seen

in figure 5.5 where a RSF in (a) is transformed to a CFG (b). The CFG is simpler

than the FGR and has the advantage that nodes can be representative for chains,

which makes the graph more suitable for learning tasks. The reason for that is

that Go players simplify neighboring stones into a single entity too.

Figure 5.5: An illustration of the feature extraction process. In (a) the FGR
representation is given, (b) is the derived CFG and (c) shows the RSF of the
green marked node inside the CFG.
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5.2.3 Relative Subgraph Features

The Relative Subgraph Features are used for learning the concepts of move type,

and best local move.

The learning methods described in the next section operate on object repre-

sentations called feature vectors −→x ∈ Rd. The question at hand therefore is: how

do we extract feature vectors from CFG for our learning method? Or more prac-

tically: how can information be retrieved from the graph which can be adequately

represented by a feature vector? Graepel et al. [13] propose the use of Relative

Subgraph Features (RSF ) which describe the pattern around a node in the graph.

The RSF of a node are constructed with a mapping φ : CFG × P −→ Rd in the

following way:

Let d be the number of possible connected subgraphs and G̃i = (P̃i, Ẽi) ∈ CFG

with i = 1, ..., d such that p ∈ P̃i. Further only select G̃i such that the subgraph

has no branches and loops and that one of the ending points inside the subgraph

equals p. The relative subgraph feature xi = φi(p) is then the number of subgraphs

G̃i which can be found in CFG.

While the formulation of the RSF might not give direct insight into what the

RSF represents, it is helpful to look at a single feature for instance and how its

value is obtained. Take the feature empty of the green marked node in figure 5.5

(b) for instance. This can be done by counting the number of adjacent empty

nodes to the marked node which is 2. Another feature is empty-black. Starting

again from the marked node the number of paths resulting in a empty-black are

counted. In this particular case there is only one such traversal by going to the left

and then diagonally to the upper right. The whole RSF describe the surroundings

of a black or white chain or an empty space. In the conducted experiments only

the RSF of empty nodes have been used. The length of a subgraph should be

limited with a constant s ≥ |P̃i| so that the size d of the feature vector remains in

a reasonable range.

Intuitively the RSF is a description of the pattern around a node. This is

similar to the image a Go player processes when seeing a situation. This led to the

hypothesis that the RSF would contain sufficient information for learning the move

type labeling. To put the hypothesis to the test an experiment involving the use

of RSF to classify the move type has been made. Another hypothesis previously

tried and confirmed by Graepel et al. is that the RSF contains enough information
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to predict the quality of a move played at the respective node. The experiment

for classifying the quality of a move by use of the RSF has been reproduced. Both

experiments have been made using RSF vectors with a maximum length of s = 6

resulting in a maximum of 406 features.

As the strength of the above representations has been already pointed out, it

seems useful to look at the drawbacks of the representation as well. A weakness

of RSF is that the evaluation of a empty-black-empty feature might be misleading

as it is unclear how powerful or weak the black node in the subgraph is. On the

other hand this kind of information could be derived by looking at other more far

reaching features. But it is conceivable that two completely different situations

might result in a identical RSF vector.

5.2.4 Relative Subgraph Path Features

One of the main contributions of this thesis is the development of a new feature

representation which we call Relative Subgraph Path Features (RSPF). The RSPF

have been developed for learning the concept of connectivity.

While the Relative Subgraph Features describe the surrounding of an empty

spot or a chain on the Go board, it says little about the connectivity between

two chains. The richness of the CFG allows for other ways to exploit feature

extraction. The simplest way to look at the connection between two nodes in

a graph is by looking at the paths in the graph leading from chain A to chain

B. As it is not sufficient to describe the complexity of a situation by looking at

the shortest path from A to B, all possible paths from A to B are considered.

The types of paths can then be counted the same way RSF are extracted. The

hypothesis is that the developed Relative Subgraph Path Feature vectors would

describe the connectivity between the chains sufficiently.

The procedure to extract the RSP feature is the following:

• Step 1: Consider two unconnected chains A and B of the same color.

• Step 2: Start at node A in the graph and then traverse all neighboring nodes.

• Step 3: Then from each node traverse all non visited neighboring nodes until

chain B has been reached otherwise repeat step 3.

• Step 4: When chain B is reached a path or subgraph is obtained. The

starting node of chain A and ending node of chain B inside the obtained

subgraph are irrelevant as they are always of the same color, hence only the
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nodes in between are recorded subgraphs. For each distinct subgraph path

a feature will then be recorded the same way it is done with RSF.

As the feature empty-black-white-empty is technically different from empty-

white-black-empty obtaining the RSP features by traversing from B to A delivers

a different feature vector than traversing from A to B, however, their evaluation

should be identical. The RSPF from A to B,
−−−→
RSP (A,B), has also a one on one

mapping to the RSPF from B to A,
−−−→
RSP (B,A), indicating that their evaluation

would not differ. Intuitively, the connectivity between two chains would be best

described by the sum
−−−−→
RSPB(A,B) =

−−−→
RSP (A,B)+

−−−→
RSP (B,A). The mapping to RSPB

is injective, suggesting that information could be lost by using it. But it could

also imply that new information is generated, making RSPB richer in description.

To investigate which path representation is most useful for the learning task the

following 3 cases have been investigated and compared:

1. RSPF type A: only features from the paths from chain A to chain B are

used, see figure 5.6 (b).

2. RSPF type B: (RSPB) the features from the paths from chain A to chain B

and vice versa have been used and added up in a single feature vector, see

figure 5.6 (c).

3. RSPF type C: the features from the paths from chain A to B and vice versa

are used in two different feature vectors generating twice the amount of

training samples. This would cover the feature space more sparsely than

type A.

In fact one could consider another type by appending the feature vector from

chain B to chain A to RSPF type A doubling the feature space. However, for this

type there would be a direct one-on-one mapping with RSPF type A making the

considered type identical to RSPF type A. Which of the types is most suitable

for learning connections is addressed in the experiments and results chapter. The

maximum path length used in the experiments is s = 8, which is a sufficient length

for describing the connectivity relationship for the Go board.

5.3 Support Vector Machine classifier

Given human labels and computer generated features, it is possible to train a

classifier which can predict the label of a new position. The used classifier in
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Figure 5.6: An illustration of the RSPF extraction process. In (a) the CFG
representation is given, (b) is the derived RSPF type A of the nodes A and B and
(c) shows the RSPF type B.

all experiments is the Support Vector Machine [5], which is a useful classification

method. The method has been chosen as Graepel et al. showed that SVMs

generate better predictors learning RSF vectors compared to kernel perceptrons

[13]. The essence of the SVMs lies in the formulation of a mathematical problem.

Given a set of labeled training instances (xi, yi), i = 1, ..., l, xi being the description

of the instance in a n-dimensional space xi ∈ Rn (here the computer generated

features extracted for the specific task) and yi being the labeling of the instance

with y ∈ {1,−1}l (here the labeling given by the expert), SVMs attempt to find

a solution to the following optimization problem:

min
w,b,ξ

[
1

2
wTw + C

l∑
i=1

ξi], (5.1)

subject to

yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0 (5.2)

The description of the instances xi are mapped into a possibly higher or even

infinite dimensional space by φ(xi). Predictions of the classifier for a point x are
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then made by the decision function:

ŷ(x) = sgn(
l∑

i=1

yiαiK(xi, x) + b) (5.3)

Where K(xi, x) is a kernel function of vertices. The kernel used in the experiments

is the radial basis function (RBF), as proposed by [7].

K(x, x′) = exp(−γ‖x− x′‖2), γ > 0 (5.4)

The learning task of a SVM can best be described with a small illustration in

a two dimensional feature space, see figure 5.7. The learning task lies in the find-

ing of a separating plane of two different labeled entities. In the example a simple

line has been found.

Figure 5.7: A generated classifier for predicting ¥ and N inside a 2 dimensional
feature space
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As SVM’s have been widely standardized as a classification method, a variety

of ready-to-use SVMs are available on the Internet [18]. The SVM used in the

experiments is libsvm developed by Chih-Chung Chang and Chih-Jen Lin [7]. The

SVM has been chosen because a Java interface was integrated in the software,

which allowed the XiGo program to communicate with the SVM directly.
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Chapter 6

Experiments and results

In this chapter an overview of the generated data and the description of the ex-

periments with their results are presented. The first section describes what kind

of Go records and expert labels have been recorded. The following sections then

describe how this data in combination with computer generated features has been

used to generate predictors. The predictors made during the experiments where

connectivity, move type and best move predictors.

6.1 General setup of experiments

For the experiments a collection of expert-annotated Go records has been created.

The collection consists of of 2,638 so called tesuji problems, or best move problems.

The emphasis of these problems lies in finding the best local move in the given

position. The problems are either given in a whole, half or quarter board context.

There are 1,997 quarter board, 480 half board and 161 whole board problems.

Each problem has been recorded with a solution and possibly with a variation

on the correct or the wrong answer. In addition, all problems have been labeled

with an outcome and move type if the best move is played. In total, there are 43

move type categories given ranging from simple diagonal move to complex move

sequences. For the description of the final outcome 45 categories were recorded,

such as ”killing a group”, ”connecting”, ”sacrifice” or ”torturing”.

6.1.1 Recorded expert annotations

With the developed expert concepts 300 problems have been analyzed and labeled

with annotations. The connectivity expert annotations proved to be the most
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relevant to this dataset. In total 3,143 connections have been labeled averaging

roughly 10 connections per problem. Some categories where better represented

than others as they would occur more often, see figure 6.1. Especially the lack of

category 4 and 5 made identifying those categories more difficult as can be seen

later in the results sections.

Connectivity category number of samples
1 422
2 1,472
3 957
4 228
5 64

Figure 6.1: Number of samples per connectivity category

The recording of eyeshape concepts proved to be irrelevant for the dataset as

most problems do not involve life and death tasks. However, in total 140 eyeshapes

have been identified which could be used for future learning tasks. Locating and

labeling vital points proved to be the most irrelevant concept developed for this

data set and only 15 vital points have been labeled. The concept of vital points

could probably be improved by defining a vital area as a set of best black moves

and best white moves related to the same problem spotted on the Go board.

Often, one player would play in an area slightly different depending on the global

conditions, as a position can actually have several vital points.

6.1.2 Testing methods and results presentation

In all experiments SVMs have been used to predict the expert labeling. Scaling

the training data before applying SVMs is very important [24] and has been done

by dividing each instance of a training vector by the maximum value it has in the

entire training set. A SVM can only create a good model when the parameters γ

and C have been chosen optimally [7]. For this reason, all experiments determined

this parameter by doing a grid search over a part of the γ, C space. The accuracy

of a possible classification model would be then predicted using 5-fold cross valida-

tion. In 5-fold cross validation the training set is split into 5 similar sized subsets.

A classifier is then learnt by leaving out one set at a time, with which a temporary

classifier would be validated. This method is considered the appropriate method

for finding correct γ, C values, as finding these values by optimizing the results for
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a separate testing set could result in overfitting of the classifier in respect to the

testing set [7]. The accuracy inside the γ, C space is described with 2 dimensional

graphs marking areas with their validation-rates. The higher the rates are the

higher the accuracy of a possible model. The optimal found γ, C are then used

to learn a classification model which is then tested on a separate test set which is

about one ninth the size of the training set.

6.2 Predicting Connectivity

For each of the in chapter 5.2.4 defined relative subgraph feature types a separate

test has been executed to determine which of the representation would be most

suitable for the learning task. For type A and B identical training and testing

sets have been used, such that each training example from the type A at any

position within the data set correspondents with the training example of type

B at the same position. The size of all RSPF types used was s = 8 as that

would also be considered to be a maximum distance for a connectivity relationship

between two chains on the actual Go board. Type C allows for twice as many

training and testing samples so direct comparison of the test results could be

misleading. As intuitively assumed before, Type C proves to be the most effective

representation for obtaining accurate predictions. Type A proved to be the least

accurate representation of the learning task as its optimal classifier showed a higher

classification error rate than Type B and C. This leads to following conclusions.

Type B features contain more relevant information than type A features, while

type C features allow covering the feature space more sparsely. For future research

it is therefore recommended to test type B and C for model selection. The results

for each individual RSPF type are presented in the following subsections.

6.2.1 Relative Subgraph Path Features type A

RSPF type A showed a maximum rate of 66.5% correct classification in the grid

search with cross validation at γ = 0.125 and C = 2. Meaning that the generated

classifier was expected to predict the test set with a 66.5% success rate.
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(a) Grid search results for RSPF type A

(b) Results on testset for RSPF type A

Figure 6.2: Test results for RSPF type A
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The detailed findings of the grid search can be seen in figure 6.2 (a).

With the found parameters, a model has been learned with the SVM for pre-

dicting the expert labeling. The test results showed that the model was able to

predict the correct category with 66.0% accuracy with a mean squared error of

0.378% and a correlation of R2 = 0.476. Figure 6.2 (b) shows the evaluation

for the individual categories. Each bar represents a class classified by the expert

and its coloring reflects how well the class has been predicted by the classifier. It

can be concluded that the predictor had the biggest difficulty with learning the

concept of separation. These results must probably largely be contributed to the

small amount of available training data from those categories. Also the distinction

between strongly connected and connected appears to be difficult. From the Go

perspective this indifference of the classifier can be accepted as the difference is

rather subtle for most decisions made during the game.

6.2.2 Relative Subgraph Path Features type B

As already pointed out RSPF type B proved to be superior to RSPF type A as

can be seen from both the grid search using cross validation, as well from the

comparison of the results from predicting the test set. The optimal parameters

for the type B learning task happen to be the same as type A with C = 2 and

γ = 0.125, see also figure 6.3 (a). The 5-fold cross validation with these parameters

showed that an accuracy of 67.8% can be expected, which is slightly better than

type A.

The test results delivered the same number of correct predictions as type A

with 66.0% of the total testing set. The mean squared error µ = 0.349 and

R2 = 0.516 were slightly better than type A as the predictions of wrongly classified

test samples were in better proximity to their supposed category. The difference

can be noted for the category 3 to 5. Yet those categories have not been learnt

appropriately as the separate category 4 for example has been mostly predicted

as conditionally connected by the model, see figure 6.3 (b).

6.2.3 Relative Subgraph Path type C

The best results were obtained with RSPF type C. Not only did the grid search

using cross validation indicate that classifiers with higher accuracy up to 68.4%

could exist, but also the results with the test set showed that the classifier was

able to learn the concept of connectivity better than RSPF A and B.
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(a) Grid search results for RSPF type B

(b) Results on testset for RSPF type B

Figure 6.3: Test results for RSPF type B
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The found learning parameters were slightly different from the ones found for

type A and B with C = 32 and γ = 0.03125. The grid search results from

figure 6.4 (a) also show that the area for parameters resulting in 65% accuracy is

substantially larger than for type A and B making it easier to find good parameters.

This could be vital if the training set might expand in the future as finding optimal

γ, C values is a time consuming process. For the RSPF type C experiment for

instance, a Pentium 4 with a 3Ghz CPU and 512MB RAM required roughly 7

hours to complete the grid search.

The test results shown in figure 6.4 (b) are the most accurate predictions gen-

erated by a model for connectivity. With a mean square error of 0.369 and a

correlation of R2 = 0.5797 a promising classifier has been generated. The class

which proved to be the most difficult to learn was again the separate class. In-

terestingly connections labeled by an expert as conditionally connected have been

predicted to be separated as well. This can be explained by the fact that some

examples in the training set are situations in which stones appear to be separated

although they can be connected if the player will capture the cutting stones.

6.2.4 Progress with number of samples

In the above experiments the SVM has learnt the connectivity concept with 2,828

(or 5,656 for type C) samples. The results for those experiments have shown a

promising idea so far, although one should admit that the results also show that

the classification model is not perfect yet. The question that naturally rises now

is: what kind of progress can be expected if the training set size increases? To

get an impression on the strength of the classifier in relationship to the number

of available training samples, the experiment for the relative subgraph path type

B has been repeated for different training sizes. With help of a γ, C gridsearch

using 5-fold cross validation optimal learning parameters have been identified with

which a SVM classification model has been computed. The model was then used

to classify a testing set of 315 different samples not included in the training data.

For each experiment the percentage of correct classifications, the mean squared

error, and the correlation coefficient R2 has been recorded and are shown in figure

6.5. The number of samples are represented on the x-axis using the logarithmic

scale.
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(a) Grid search results for RSPF type C

(b) Results on testset for RSPF type C

Figure 6.4: Test results for RSPF type C
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Figure 6.5: Correlation and error rates by number of learnt samples

The correct classification percentage is the number of correct predictions di-

vided by the number of total predictions. The mean squared error tells about

the difference between the wrong prediction and the expected answer, the lower

the error the better. The last graph inside the figure is the correlation coefficient

R2, which also says how related the predictions with the intended outcome are.

From the graph it can be seen that all values improve with the number of samples.

Also, it can be derived that improvement of the classification model will require

an increasing number of samples. The exact relationship between the number of

samples and the quality of a learnt model is still inconclusive as sparsity over the

feature space also plays a vital role for obtaining a good model. But estimating

that about 200,000 samples are necessary for a prediction accuracy of about 85%

by a learnt model is a tentative forecast. It should be noted that calculating

such a model will demand a tremendous amount of computing time with an or-

dinary PC using the same learning methods as in this experiment. It is therefore

recommended to consider alternative or improved classification methods to save

computing time. The large number of training samples required for a high-level

connectivity model appears to be rather large, but probably corresponds with what
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an expert player would process before reaching expert level. One should consider

that a single game easily involves around 200 connectivity evaluations and that

an expert would play an estimated 1,000 games before reaching the expert level.

6.3 Predicting move type

The dataset has been conveniently recorded with what type of move the best

move is. As one of the strength of the relative subgraph feature is its ability to

resemble the pattern involved around an empty intersection, a correlation between

the classified move type of a best move and its RSF vector is to be expected.

Therefore, an experiment has been conducted to find whether the RSF vector of

the best move can predict the move type category.

A support vector machine has been trained learning the movetype categories

with help of RSF vectors of size s = 6. The training data for this experiment

consisted of 2,374 samples, one for each tesuji problem recorded. The results of

the grid search with 5-fold cross validation can be seen in figure A.3.

The results show an estimated 64.5 % accuracy within the grid examined.

A model with the found parameters γ = 0.5, and C = 8 has been developed

and tried on the separate testing set. The results confirm the percentage found by

cross validation and suggest correlation between the RSF vector and the move type

involved. Considering the small sample size for some of the individual categories,

which can be rather similar as well, the results show that the RSF vector of an

empty intersection can predict the move type involved. This suggests that the

RSF vector contains a considerable amount of vital shape related information and

has the ability to capture similar shape concepts as humans do. The result justifies

therefore the use of RSF vectors for learning shape and pattern related concepts.

6.4 Predicting the best move

One of the experiments conducted by Graepel et al. [13] uses RSF vectors to

learn the distinction between good and bad moves with computer generated Go

problems on the 9x9 board developed Wolf [31]. The experiment showed that

the classifier was able to discriminate between two offered moves one being the

best move and the other being the bad move with a success rate of 85%. The

problem set by Wolf is from a Go perspective rather unconventional and involves

little pattern recognition skills for finding a solution, which makes the success
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Figure 6.6: Grid search results for move type experiment

rate rather surprising. To see whether a similar success rate can be achieved with

likely game appearing situations a similar experiment has been done on the tesuji

dataset. The training set would consist of 2,374 RSF vectors extracted from the

solution of each problem and an equal amount of RSF vectors from randomly

selected bad moves. A set of 526 good and bad move samples would then be used

for testing. Two distinct learning experiments have been made. One using the

only the RSF vectors of size s = 6 for learning good and bad moves and another

experiment using RSF vectors in combination with the move type and outcome

information provided by the tesuji data set. The results are shown in the following

subsections.

6.4.1 Relative Subgraph Features

The optimal found parameters for the SVM are γ = 32 and C = 0.125 with a

success rate of 90.6% using 5-fold cross validation, see figure 6.7. On the testing
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set the learnt model predicted the better move in 91.1% of the examples as well,

which proves to be better than the similar experiment conducted by Graepel et al.

using the computer generated problem set. The reason for this can be two-fold.

The test results of this experiment are better because the training data is more

suitable for the learning task or the distances between bad and good moves were

bigger than in the previous experiments. Either way, this experiment shows that

a discriminator for finding good and bad moves using RSF vector is feasible for

finding answers to pattern related problems like tesuji.

Figure 6.7: Grid search results for best move experiment

6.4.2 Relative Subgraph Features combined with move and

outcome type labels

In addition to the above experiment a similar experiment has been made to see

whether it could be helpful to hint what kind of best move the SVM should be
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looking for by extending the RSF vector with information on the move type as well

as the kind of outcome which can be expected when playing the correct move. The

results show a similar but slightly better success rate compared to the previous

experiment. With γ = 8 and C = 0.5 a success rate of 91% of the model has

been found, while the test set has been predicted correctly 91.3% of the time.

Again this results shows that pattern related information can be retrieved from

RSF vectors.

Figure 6.8: Grid search results for best move experiment using RSF, move and
outcome type labels
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Chapter 7

Discussion and future work

Learning whether two chains are connected on the Go board, might not seem

a big breakthrough for the experienced Go programmer, as for them it might

seem more natural to use conventional methods to solve such a problem. But on

the other hand it shows a way for researchers how Go can be tackled by solving

smaller problems with expert data. It should be mentioned that many of the

learnt connectivity examples are not trivial even for the expert player, which

suggests that advanced tactical skills have been learnt as well. Interestingly the

learned classifier can generate a weighted connectivity graph of all the chains on

the Go board which suggests that a similar graph orientated approach can be used

to learn the more abstract concept of a group. By developing more and more of

these classifiers from expert data, programs can learn the same high-level concepts

as human players. Other areas where high-level classifiers could be developed are

influence, territory and internal group strength. The art of letting these classifiers

interact will then be the next step to develop a Go learning program. As has

already been pointed out above, the next issue which will rise inevitably is the

question of how the classifiers can be combined and whether these classifiers can

learn from each other. In a sophisticated hierarchical approach low level classifiers

could be adjusted from high-level reinforcement signals. Once a system would

reach such a complex level of sophistication learning from professional games could

lead to a dramatic improvement compared to the system used at this moment.

7.1 Influence, Strength, and other annotations

Next to the developed annotations one could think of many more concepts one

could enter in a Go record to add game understanding information. Looking at
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how a player reasons when analyzing a game with other players can be a good

inspiration for the creation of such concepts. Of course the difficulty of creating an

expert concept always lies in the representation of the concept and how it can be

quantified in a sound and logical way. Other ideas for creating expert annotations

could emerge by looking at the following concepts:

• Strength is a concept a player uses to asses how likely a group could be

compromised by being attacked. Weak groups on the Go board usually sug-

gest that a player should be alert not to create more weak groups. Labeling

whether a group is weak or strong is rather arbitrary and intuitive. An ex-

pert could probably best describe the strength of a group with a scale from

one to ten.

• Influence is another high-level concept used a lot by players to make their

decision. It usually indicates areas where one color dominates and at the

same time the player is not inclined to create territory in that area. Usu-

ally this also means the player would use his influence to attack or invade

opponent groups.

• Significance is a concept players use to determine what areas or stones are

more important than others and where action is required and where is not.

One might feel this is closely related to the concept of territory, which is

true, but many times this also involves cutting situations.

Current computer programs are likely using some of the above concepts in their

code. But applying these concepts requires deep knowledge of a situation. The

lack of this knowledge in the programs usually results in wrong interpretations of

these concepts.

Learning of all of the above classifiers would require a richer representation

of the game than currently available. Therefore, it would be premature to try to

learn such concepts before actually being in possession of a representation which

contains sufficient information for the learning task.

Another way to tackle the problem of learning patterns in Go could be by

looking at the issue at a yet a smaller level of problems. The concept of connections

in Go is actually very complex as high-level concepts go in the game. Finding the

connectivity between two chains can be subject to many tactical influences. To

simplify, grouping certain patterns or move types can be considered. For instance

shapes like monkey jumps or even more simple, the one space jump could be learnt

by separate classifiers.
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While this thesis has focused on static concepts also non-static concepts could

be considered for learning purposes. For instance classification of sente (forcing)

and gote (non forcing) moves. This concept mostly applies to endgame situations.

A sente move is basically so meaningful that it forces a response of the opponent,

when this response is not absolutely necessary then it is a gote move. This does

not mean that a sente is the best move as there still could be another bigger move.

Another interesting classifier to learn would be whether stones can be captured or

not. Many times, positions in the game occur in which a stone can be captured

but from which is abstained as a rescue attempt from the opponent would be

leading to damaging consequences.

The ideas where learning in the game can be applied on very specific topics are

seemingly endless. The art of successful experimenting therefore lies in creating

well defined expert data in combination with a board representation which then

can be used successfully for the learning task.

7.2 Making learning more efficient

Entering connectivity data is a difficult task for an expert, not only because the

expert is required to think about for him/her appearing trivial issues but because

it requires also a lot of ”mousework”. Now that first steps have already been

made and a 69% correct classifier has been developed, one could think of creating

an interactive environment where the program would propose the category of a

connection not yet recorded in the training set. The selection of such a connection

could be done by certain hard coded parameters or where high uncertainty of

the classifier is apparent. A known approach to explore the feature space using

expert interaction is active learning (see e.g. by Verbeek and Vlassis [30]). The

expert can then simply agree with the opinion of the program by hitting enter

or can correct the classification by hitting a number from 1-5. The connectivity

entered can then be stored in a new training example and used for the learning

of an improved model, which could be evaluated at the end of a tutoring session.

This kind of approach would be greatly improved if sequential learning could be

implemented alongside with the interactive environment. In case improved models

and representations are developed the current model can easily be abandoned as

the generated reliable expert data remains untouched.
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7.3 Impact on Go programs

Pattern recognition always is paired with analytic ability, if a program possesses

both skills good results can be expected. Until now the pattern recognition process

was usually conducted by comparison with generated hand made patterns. The

approach presented in this thesis is semi automatic and allows for the exchange

between expert and program knowledge in a straightforward way. The connectiv-

ity classifier could be a significant asset for developing goals for a Go program,

such as were to conduct local analysis. For instance, if the classifier classifies an

opponent’s connection to be conditional, then a local search of separation possi-

bilities could identify the underlying reason for the recognition of the pattern and

might seek action in that area when the timing and conditions are right. This way

analytic computing power can be channelled into the right directions requiring the

program’s attention only when it is necessary.

Take the following example in figure 7.1. The connection between the two

marked stones is considerable and the black player would restrain from cutting

unless he would have a good reason. By labeling the connection conditionally

connected like an expert would do, a program would keep in mind during the

course of the game that separating the stones is a possibility.

(a) The marked white stones are condition-
ally connected. By playing at ’a’ the stones
can be connected or separated.

Figure 7.1: Example of how the classifier can be used



Appendix A

Used move and outcome types

In this appendix a list of move and outcome types used for labelling the tesuji

problems using (commonly used) Japanese Go terminology is given. The under-

lying thought to present these lists here is to show readers, who are not very

familiar with the game of Go, the richness of used go terminology and to show the

advanced Go playing readers what kind of aspects have been dealt with during this

research. The move type list has been presented without translations, because the

expressions used are only applicable for the game of Go and describe the shape

a move has relative to other stones. The outcome type list has been translated

into English to demonstrate what kind of concepts a player is dealing with during

a game. Sometimes two similar types are combined into a single one, which is

indicated with a dash.

Outcome type Description
arasu to destroy territory
ikiru to live with a group

ijimeru to tease or torture a group
ukeru to respond indirectly

utsutekaeshi to capture with a snapback
eguru to drill into territory

oiotoshi create shortage of liberties of adjacent chains
osamaru to solidify a group, to settle

kata o kimeru to decide, to force a shape,
kata o kuzusu to destroy the opponent’s shape

Figure A.1: Outcome type list first part

65



66 Chapter A. Used move and outcome types

Outcome type Description
katameru to make one’s own shape stronger

kikaru to take advantage of an opponent’s weakness
ko ko

korosu to kill a group
sabaku to place flexible stones

shicho - yurumu shicho ladder, loose ladder
shinogu to endure, to save seemingly dead stones

shibori o fusegu to defend against a squeeze
shiboru to squeeze

shimetsukeru sacrifice a stone/stones to solidify
shinsuisuru to escape from an enclosed position

suteishi to sacrifice a stone, group of stones
seikei connecting stones loosely

setsudan to separate two groups (amputate)
semeai liberty race
semeru to attack a group
seriai close and tight combat

sente o toru take initiative / sente
dashutsu to escape

dametsumari ni suru creating a shortage of liberties
te o tsumeru remove liberties from the inside

togameru punish a weakness of the shape
toru capture stones

hangeki counter attack
fusa enclose opponent’s stones

fusegu to close territory
fuyasu increase territory
fundan to separate groups
herasu reduce territory

mamoru to protect territory
yaburu to capture a chain from a group
yosumi to test the opponent’s reaction

ryonirami double attack
renzoku to connect two groups
watari to connect from underneath

Figure A.2: Outcome type list second part



67

Move type
ate - atekaeshi deru - tsukidashi

atekomi dekiri
uetstuke - zutsuke - hanazuke tobi - hazamatobi - chikiritobi

oki tobitsuke
osae narabi
oshi nidanbane - nidanosae
kake ninoichi

kaketsugi nuki
kado - katatzuki nozoki

kiri - kirichigai - chokiri - ishinoshita nobi
guzumi hai

keima - ogeima hasamitsuke
kosumi hane

kosumitsuke hanekomi
sagari hanedashi

shitatsuke hiki
tsugi fukurami

tsukiatari - butsukari - sashikomi hekomi
tsuke hourikomi

tsukekiri mage - magari
tsukekoshi yokutsuke - haratsuke

warikomi

Figure A.3: Move type list
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