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Chapter 1

Introduction

Multiagent Systems (MAS) is a relatively new research field in Artificial Intelli-
gence (AI) that has been given increasing attention in both theory and practical
applications [Vlassis, 2003]. MAS focusses on complex systems containing mul-
tiple, autonomous agents in which MAS aims to provide principles and theories
for dealing with problems like coordination of behaviors and machine learning
in multiagent domains.

An agent can be seen as anything (from an ant to a chess playing computer)
that is situated in an environment and that perceives this environment though
sensors and acts upon it through effectors [Russell and Norvig, 1995]. Effectors
are anything that can be used by the agent to affect its environment. If the agent
is an ant, its effectors would include its jaws and the gland that produces trail
pheromones. For a chess playing robot, its effectors would consist of a pincer
to pick up chess pieces, and various motors to control the robot arm. Besides
this, an agent can have some knowledge of the environment, which can be used
to reason about the possible actions available to the agent. Often, an agent
has a goal which it tries to achieve through interaction with the environment or
other agents. Each action will then bring the agent closer to its goal, or further
away from it. This is often modelled by assigning utilities to actions; a value
representing how good (or bad) a certain action is with respect to the goal the
agent is trying to achieve.

When more than one agent is situated in the same environment we call this a
multiagent system. In a multiagent system, an agent tries to model the behavior
and goals of the other agents in its environment. This can be done either
indirectly, through observation, or directly, through communication. Often a
combination of the two is used.

In any situation, agents do not always share a common goal. Two ant popula-
tions might desire the same stock of food. In this case, where the goal of one
group of agents is incompatible with the other, the other agents are seen as the
group’s adversaries, and the group will have to work together to a) maximize
their own utility and b) minimize the other group’s utility. Often, realizing the
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former will result in realizing the latter.

The use of MAS in the design of complex systems may have several advantages
over using a single agent design. The most notable are robustness, scalability,
parallelism, and efficiency.

Robustness is achieved by the fact that, when one agent in a multiagent system
fails (either because it is unable to achieve its goal, or because it breaks down)
the overall performance of the system will degrade gracefully. Up to a certain
extent, other agents may take over the tasks left behind. In a single agent
system, the failure of this agent will most likely result in a complete system
breakdown.

Because agents in a MAS system are usually simple, small units, it is far easier
to expand this system than it is to expand a single agent system, by adding
new agents that may or may not have new capabilities available to them. This
is called scalability.

Since there are several agents performing subtasks independently, a multiagent
system is highly suitable for implementation using multiple processors or work-
stations. This inherent parallelism may not only increase the system’s overall
speed, but it also adds another layer of robustness.

Another important aspect of multiagent systems is efficiency. It is often far
cheaper to design multiple agents whose behavior is not very complex than to
design a single, highly complex system. Design times are shorter and debugging
is easier and thus less time consuming. And time, as is commonly known, equals
money spent.

One of the most exciting and dynamic domains for MAS research is that of
robotic soccer as represented in the RoboCup Initiative. While a relatively new
domain (the first RoboCup was held in 1998), it has quickly evolved to a large-
scale platform for numerous areas of artificial intelligence and robotics research,
amongst which are robot motor control, sensor fusion, strategy acquisition, and,
more specific to the field of MAS, multiagent collaboration and coordination.
The ultimate goal of RoboCup is to develop a team of humanoid robots that
will be able to compete against human teams.

The initital objective of our research was to investigate real soccer situations
and strategies and to see whether a mapping was possible from these situations
to those within the RoboCup domain. This proved to be extremely difficult, as
most situations in a real soccer match are the result of years of training and
expertise, and even the slightest change in conditions might very well result in
a vastly different situation. However, we found that there were indeed certain
foundations to the decisions make by real soccer players that could be mapped
into the decision making process of our robotic soccer players. As a result, we
focussed our research on finding these fundamental rules.

We then considered various methods of implementing this prior knowledge into
our robotic soccer team. Prior to our research, a framework called coordina-
tion graphs had been proposed by Guestrin [Guestrin et al., 2002a] as a means
of eliminating the problem of exponential computational complexity in multi-
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agent coordination, and a generic implementation of this framework had been
implemented into our robotic soccer team [Kok et al., 2003].

The implementation of the CG algorithm used by our robotic soccer team,
though it proved successful at the RoboCup World Championships in Padova,
Italy, had several disadvantages. It was implemented to improve the passing
behaviour of our soccer players, and thus was not very flexible with respect
to inserting other types of rules. The passing rules were hard coded, so could
not be changed without recompiling the soccer agent program, which made
adapting the strategy of our soccer team during competitions tedious at best.
In addition, the implementation was built to be fast enough to be used during
RoboCup competitions, and although this surely was desired, it involved several
obscurities that did not improve the clarity of the program code.

We decided to expand this implementation, aiming to create a system that
was as flexible as possible with respect to inserting and changing the rules
from our prior research, and fast enough to be useable in the various RoboCup
competitions. As the original CG implementation involved only a small number
of rules, we were curious to see whether the algorithm would still be usable in
terms of speed with a greater number of rules. Answering this question was an
important part of our experiments.

We further aimed for our implementation to be as clear as possible, allowing fur-
ther development by others after the completion of our graduation project. The
resulting implementation, as well as the results of the research that preceeded
it, are presented in this thesis.

1.1 Guide to the Thesis

This thesis is organized as follows: in Chapter 2 we describe the various details of
the RoboCup Initiative as the domain of our research. In Chapter 3 we present
the results of our research of real soccer strategies and tactics, introducing the
tactical system known as Total Football, and the movement system as one of
its forms. Chapter 4 describes the coordination problem and introduces the
notion of Coordination Graphs (CGs) as a means to represent the coordination
requirements in a multiagent system. In Chapter 5 we present the extensions
made to the UvA Trilearn Soccer Simulation Team as a result of our research,
and we present a number of coordination rules describing a game of soccer and
the implementation of these rules in the UvA Trilearn Team using CGs. In
Chapter 6 we describe the experiments conducted to test our extensions and
their results. We present our conclusions in Chapter 7, and we look ahead to
possible angles and ideas for future research.
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Chapter 2

The RoboCup Initiative

In this chapter we introduce the RoboCup initiative as the domain for our re-
search. We begin with a description of the RoboCup’s ultimate goal in Section
2.1, as well as its various short and longer term goals. Next we describe the
RoboCup domain as the newest standard AI problem, comparing it to the al-
ready solved problem of computer chess, in Section 2.2. Section 2.3 continues
with an overview of the organisation of RoboCup. In Section 2.4, we describe in
detail the soccer server as the underlying framework of the RoboCup Simulation
League, in which our research takes place, describing the soccer server program,
the soccer monitor, and the logplayer, respectively. Finally, Section 2.5 describes
the UvA Trilearn Soccer Simulation Team as another part of this framework.

2.1 Introduction

The Robot World Cup Initiative (RoboCup) is an attempt to foster Artifi-
cial Intelligence (AI) and intelligent robotics research by providing a standard
problem where a wide range of technologies can be integrated and examined
[Kitano et al., 1997]. The ultimate goal of RoboCup is as follows:

“By mid-21st century, a team of fully autonomous humanoid robot
soccer players shall win a soccer game, complying with the official
rules of the FIFA, against the winner of the most recent World Cup
for human players.”[Kitano and Asada, 1998]

This goal was proposed to be one of the grand challenges shared by the AI and
robotics community for the next fifty years. Given the current state of affairs
in AI and robotics this goal might sound overly ambitious, even unrealistic, and
many people would claim that it may never be met. However, the challenge
to build a computer chess program that could defeat the chess world champion
encountered the same skepticism, and we have seen, in May 1997, that this
challenge was met when IBM’s Deep Blue was victorious over Gary Kasparov,
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beating him 3.5-2.5 over 6 games. Reaching this goal took only forty years.
Also, it took only some 66 years from the first man-carrying powered aircraft
built by the Wright brothers on the 17th of December 1903 to Neil Armstrong
speaking the famous words “That’s one small step for [a] man, one giant leap
for mankind” as he was the first man setting foot on the surface of the moon,
on the 20th of July 1969.

What this clearly shows is that it is impossible to judge a challenge of a mag-
nitude like that of the RoboCup as unrealistic. But to have to wait fifty years
for the conclusion is a bit of a long time. Therefore various short-term goals
have been proposed. Firstly, RoboCup is a project to promote robotics and
AI research by providing a challenging problem. The tasks of RoboCup are
varied and require a merging of various areas of robotics and AI, among which
are design principles of autonomous agents, multi-agent collaboration, strat-
egy acquisition, (real-time) sensor fusion, reactive behavior, learning, real-time
planning, context recognition, motor control, strategic decision making, intelli-
gent robot control, and many more [Kitano et al., 1997]. To reach RoboCup’s
ultimate goal all these areas will need to be incorporated into a single working
system and many breakthroughs in the various areas must be made. Even if
the ultimate goal is not met, several advances will undoubtedly emerge from the
effort to get there alone. This can be considered one of the short-term goals of
the RoboCup initiative.

Another intention of the RoboCup organization is to use RoboCup for edu-
cational purposes and to stimulate the public’s interest in the fields of AI and
robotics by offering a highly-dynamic, exciting, and appealing framework for re-
search. Already, a large number of universities offer courses and study projects
that are related to the different aspects of RoboCup. Additionally, the increasing
number of publications concerning RoboCup other than technical papers reflect
the growing interest from the media and the general public for the RoboCup
competitions and related events.

2.2 RoboCup as a standard AI problem

Since the beginning of AI, standard problems have been the main driving force
behind AI research. Research on computer chess, the most typical example of
a standard problem, had led to several developments, among which are the dis-
covery of some of the most powerful search algorithms to date. Other problems,
like the Missionaries and Cannibals Problem (MCP)1, have illustrated the diffi-
culties involved in everyday reasoning. There are, however, several reasons why
people might criticize the use of these problems. One of the reasons is that the
problems are abstract ones, ignoring essential elements of the real world. While
this is a valid reason for rejecting abstract problem solving tasks, it is often
infeasible, socially, economically or for any other reason, for research institutes

1The MCP is usually stated as follows. Three missionaries and three cannibals are on
one side of a river, along with a boat that can hold one or two. Find a way to get everyone
across, without ever leaving the missionaries outnumbered by the cannibals on either side.
[Russell and Norvig, 1995]
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to focus on real world problems. Also, it is difficult to build rigorous theories on
problems involving uncertain environments. It is therefore the aim of RoboCup
to provide a standard problem which is both realistic and affordable, although
the latter is, due to the participation of major companies like Philips and IBM
in the Middle-Size league (described in Section 2.3), quickly changing. Univer-
sities are increasingly unable to keep up with the significant amounts of money
these companies are able to spend on equipment.

As a sharp contrast to the standard problem of chess, RoboCup offers a dy-
namic, real-time environment, in which the agents are forced to deal with noisy,
incomplete information. In addition to these difficulties, the information offered
is non-symbolic and processing and control is done in a decentralized manner.
Table 2.1 gives an overview of the different characteristics of the chess and Robo-
Cup domains, respectively. With the achievement of the long-term objective of
the computer chess problem, it is believed that the characteristics of the Robo-
Cup domain, and more specifically the technologies that will emerge thereof,
will be especially important for the next generation of industrial applications.

Computer chess Robotic soccer

Environment static dynamic

State change turn-taking real-time

Information accessibility complete incomplete

Sensor readings symbolic non-symbolic

Control central distributed

Table 2.1: Domain characteristics of computer chess compared to those of
robotic soccer. From [Kitano and Asada, 1998].

2.3 RoboCup organization

The RoboCup competition contains a number of different leagues, each focusing
on a specific part of the overall problem. This allows researchers to concentrate
on several aspects of the problem individually, without having the overhead
introduced by the other tasks. Currently, the following leagues are available:

• Small Size Robot League (F-180). In this league a team of five robots
plays on a soccer field the size of an official-size table-tennis table. The
robots are about 20cm high and have a diameter of about 15cm, and
are colored to allow friend-foe identification. The ball is an orange golf
ball. An overhead camera provides the a global view of the playing field.
This view is sent to the controlling PC, which extracts the information
needed and determines the actions to be executed by the robots. A game
consists of two halves, each 10 minutes in length. Research areas which are
important in this league include intelligent robot control, image processing
and strategy acquisition.

• Middle-Size Robot League (F-2000). In this league a team may con-
sist of no more than four robots, each about 75cm in height and with a
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diameter of about 50cm. The dimensions of the playing field are approx-
imately 9 by 5meters. The robots have no global information of the field
as in the Small Size League. The matches last 20 minutes. Important re-
search areas in this league include localization, vision, sensor fusion, robot
motor control, and hardware issues.

• Sony Legged Robot League. In this league a team consists of four Sony
quadruped robots (better known as AIBOs), including the goalkeeper.
The playing field is of the same size as that of the Small Size League.
Though the robots have no global information about the playing field,
a number of colored markers is set up around the field to aid in robot
localization. The length of a match is the same as in the Middle-Size
League. The main problems addressed in this league are intelligent robot
control2 and the interpretation of sensory information3.

• Humanoid Robot League (H-40, H-80 and H-120). The Humanoid
League is the most recent addition to RoboCup. It was introduced in 2002,
and has three sub-leagues. The differences in the three sub-leagues can
be found in the size of the robots, with the height of the robot being
the decisive factor. The heights are 40cm, 80cm and 120cm, respectively.
All robots are biped, and competition events include walking a specified
course and shooting penalties. Up until now the playing of a soccer match
has been beyond the state of the art.

• Simulation League. The Simulation League is currently the largest of
the five RoboCup Leagues, largely due to the fact that no expensive hard-
ware is required to participate and teams can be easily tested against other
teams. A team consists of 11 software agents which operate in a simulated
environment, the RoboCup Soccer Server [Foroughi et al., 2001]. This sys-
tem allows teams of agents to play against each other in a real-time en-
vironment. Sensing and acting are asynchronous, and various forms of
uncertainty are added to the sensor inputs. Agents have limited percep-
tion of the playing field, communication is unreliable and low-bandwidth
(meaning that only a limited number of characters can be transmitted at
each interval), and agents are limited in their physical capabilities. The
abstractions made in the soccer server allow researchers to focus more on
strategy acquisition and learning than on movement and object recogni-
tion. The research areas explored in the Simulation League include ma-
chine learning, multiagent collaboration and opponent modeling, as well
as the earlier mentioned strategy acquisition.

2.4 The RoboCup Soccer Server

The RoboCup Soccer Server is a soccer simulation system which allows teams of
autonomous agents to play soccer matches against each other. It was originally

2An AIBO has as much as 20 degrees of freedom
3An AIBO has 7 different types of sensors: an image sensor, an audio sensor, a temperature

sensor, an infrared distance sensor, an acceleration sensor, pressure sensors (head, back, chin
and legs) and a vibration sensor.
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developed in 1993 by Dr. Itsuki Noda from the Electrotechnical Laboratory
(ETL) in Japan. It has been used since the beginning of RoboCup as the basis
for several competitions and research challenges.

The Soccer Server consists of three main components, namely the soccer server
itself, the soccer monitor and the logplayer. These three components will be de-
scribed globally in the following sections. For a more detailed description, see the
thesis by Jelle Kok and Remco de Boer [de Boer and Kok, 2002], who provide an
excellent source of information without becoming overly technical. More techni-
cal information can be found in the Soccer Server Manual [Foroughi et al., 2001].

2.4.1 The Soccer Server

The soccer server provides a domain (a virtual soccer field), simulates the move-
ments of all objects on the field, and controls the soccer game according to
several rules. It adds a certain amount of noise to the perception of the agents
connected to it, regulates stamina loss and recovery, is able to simulate weather
conditions (such as wind and rain) and provides a referee module, which is
able to detect trivial situations like scoring, players in an offside position, and
the ball going out of bounds. It is the aim of the soccer server to provide an
environment that is as realistic as possible.

Agents (soccer players) can connect to the soccer server as clients, using a speci-
fied port. One program may only control one agent. Using the UDP/IP protocol
the agents are able to send requests to the server to perform a certain action
(like kick or dash). The server then processes these requests and updates the
environment accordingly. The server also sends, at given intervals, information
about the environment to the agents.

Though direct inter-agent communication is not allowed, the agents may use
the say and hear commands to communicate indirectly. These commands are
severely restricted in their use by several server-side parameters, like the length
of a message (currently the maximal length of a message is 10 bytes) and the
intervals at which the agents receive messages. This makes communication
difficult and unreliable and thus advocates the use of MAS approaches that rely
little, or not at all, on inter-agent communication.

The soccer server also provides and manages the various models of the agents
and their environment, like the different sensor models. A soccer agent has three
types of sensors: a visual sensor, a body sensor, and an aural sensor.

The visual sensor provides the agents with visual information of the playing
field. The accuracy of this information as well as the intervals at which it is
received can be changed by the agent program.

The body sensor reports physical information to the agent, such as its stamina
level, speed and the angle of its neck. The information of this sensor is sent to
the agent automatically at intervals defined by the soccer server.

Finally, the aural sensor enables the agent to hear other agents’ messages, pro-
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vided that whoever spoke the message is within hearing distance. An agent can
only receive one message each time step, and if multiple messages are received
within a certain time only the first is acknowledged. The other messages are
discarded. This, too, makes communication very unreliable. The agent sensors
are discussed in more detail in Section 3.2 of [de Boer and Kok, 2002].

The soccer server further provides a number of action models, which model the
various actions an agent can perform. These actions are currently kick, dash,
turn, say, turn neck, catch, move, change view, sense body, score and more
recently added, tackle and point to. The agent action models are described
in Section 3.4 of [de Boer and Kok, 2002], with the exception of the tackle and
point to models.

Lastly, the soccer server provides a movement model, which simulates the move-
ments of all the objects on the field. It calculates the acceleration of an object,
adds a noise vector to the movement of objects and models a wind vector, which
in turn affects the movement of objects. The movement model is described in
Section 3.3 of [de Boer and Kok, 2002].

First appearing in version 7 of the soccer server was the concept of heterogeneous
players. In earlier server versions all the players on the field were physically iden-
tical and the values for the player parameters were the same for each player.
Since soccer server version 7 however, each team can choose from several differ-
ent player types with different characteristics. These player types are randomly
generated, within limits, when the soccer server is started. In a match, both
teams choose from the same set of player types. An example of a player type
which is different from the standard type (which is still supplied, since not all
teams make use of heterogeneous players) is a player which is faster than av-
erage, but gets tired more easily. The use of heterogeneous players makes the
game more interesting. The problem of choosing where to put which playertype
makes a (basic) knowledge of tactics indispensable.

2.4.2 The Soccer Monitor

The simulator includes a visualization tool, the soccer monitor, which allows
researchers (and spectators) to see what is happening on the field during the
course of a match. It is connected to the soccer server through UDP/IP. When
the server and the monitor are connected, the server will send information about
the state of the environment to the monitor in each cycle. The monitor then
displays this information on a computer screen using the X Window system. A
typical instance of the soccer monitor is shown in Figure 2.1.

The soccer monitor provides a two-dimensional, top-down view of the playing
field. The concept of height therefore plays no role in the simulation. The
dimensions of the field adhere to those in real soccer, except for the width of
the goals. This is doubled due to the fact that it is harder to score in two
dimensions than it is in three.
The players are shown as colored circles. Two lines originate from the center
of each circle, indicating the direction the body of the player is facing and the
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Figure 2.1: The soccer monitor display. The dimensions of the field are 105 by
68 meters, with each goal 14.02 meters wide.

direction the neck is turned to, respectively. Depending on the detail level,
which can be set by clicking on the button labeled detail with either the right
or the left mouse button4, the players are labeled with no information at all,
with their player number, their stamina information, or their player type. In the
appropriate view mode, the view cone of an agent can be displayed as well, by
pressing the number of the desired agent on the keyboard. The soccer monitor
further displays the team names, the current score, the cycle number and the
current play mode as determined by the referee module5. As the referee module
is only able to discern trivial situations, a server interface is provided by the
soccer monitor which allows a human referee to give free kicks to either team
or to drop the ball on an arbitrary position on the field.

The tools provided by the soccer monitor are of great benefit to researchers,
who can view the performance of their agents as they play. The ability to zoom
into a part of the field and the ability to show more or less detail concerning
the agents make debugging a lot easier, and thus more efficient. Another tool
that provides functionality to simplify soccer agent development and debugging
is the logplayer.
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Figure 2.2: The logplayer. The colored buttons and the area below are an
extension to the standard logplayer.

2.4.3 The Logplayer

The logplayer can be regarded as a video recorder which can be used to replay
soccer matches. The soccer server can be started with the option of recording
all current match data, storing this data on disk (in a logfile). The logplayer
can then be used in combination with the soccer monitor to replay the recorded
match. Just like a normal video recorder, the logplayer is equipped with start,
stop, fast forward and rewind buttons. It can also show a match or situation in
slow-motion. Another feature of the logplayer allows one to jump to a certain
cycle of the match, which can be useful if you want to view only a certain part
of the game, such as a goal.

In Figure 2.2 the logplayer is shown as it is used for the development of the UvA
Trilearn soccer simulation team (see Section 2.5). Besides the buttons of the
standard logplayer it features a row of colored buttons and a text area. These
features are part of an extension called layered disclosure, first introduced by
Peter Stone and colleagues in [Riley et al., 2000]. In this system, the developer
defines an information hierarchy which may hold information about the agent’s
internal state and beliefs. The user may then request this information at any
of the specified levels of detail, and either retroactively (i.e. through a logfile)
or while the agent is acting. In this way, the user gains access to the reasons
behind an agent’s actions in addition to the world state as shown by the soccer
monitor. Knowing the way the agent sees the world (which is, due to sensory
noise and the dynamics of the environment, often different from the actual state
of the environment) and the decision process that led to a certain action can be
very helpful in debugging the agent program.

The layered disclosure system that was implemented in the UvA Trilearn team
was built on top of the multi level log system that was already present in the
team code. The buttons added to the standard logplayer allow the developers

4Clicking left will decrease the amount of details shown, while clicking right will increase
the amount of detail.

5The most important play modes are the following: before kick off, play on, time over,
kick off x, kick in x, free kick x, corner kick x, goal kick x, goal x, drop ball, offside x, where
x denotes the side to which the mode applies. It can be either l or r, indicating the right or
left team. From [Foroughi et al., 2001]
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to view the specific world model, observations and decision processes of the
selected agent. This information is then displayed in the text area below the
row of buttons. In addition to textual information it is also possible to view the
agent’s world model in a more graphical manner, using lines and circles drawn in
the soccer monitor display. The combination of layered disclosure, the standard
functions provided and the graphical display of the soccer monitor make the
logplayer an extremely powerful debugging tool.

2.5 The UvA Trilearn Team

The UvA Trilearn soccer simulation team was built by two masters students,
Remco de Boer and Jelle Kok, for their graduation project in 2001. The resulting
team UvA Trilearn 2001 was built from scratch, focusing mainly on the lower
levels of the program and the basic skills of the players (shooting, passing, etc.).
Finding the code of other teams lacking in both structure and documentation
and considering the fact that, if they would decide to stop further development
of the team, the code should be easy to read, understand and build upon, a
lot of effort was spent on structuring the code. An object-oriented approach
was decided upon, resulting in a program both highly accessible (the Object
Oriented Programming (OOP) paradigm is one very well known and widely
used) and easily scalable.

The development of the UvA Trilearn 2001 team, as mentioned, focused mainly
on the lower levels of the agent program. Due to the fact that the code was
build from scratch, a lot of improvement on the underlying code of other teams
could be implemented. This, among others, led to an advanced synchronization
scheme, effectively dealing with the synchronization problems introduced by the
soccer server, and accurate estimation techniques for velocities and positions.
The higher levels, added only after the lower levels were perfected to satisfac-
tion, introduced an optimal scoring policy and a fast-play strategy using het-
erogeneous players. More information on the 2001 version of the UvA Trilearn
team can be found in [de Boer et al., 2002] and [de Boer and Kok, 2002], and
references therein.

UvA Trilearn 2002 [Kok et al., 2002a] was an extension on the 2001 team. The
position and velocity estimation scheme was improved considerably by the use
of particle filters. The agents’ decision algorithm was improved upon as well,
introducing a priority-confidence model [Lubbers and Spaans, 1998]. In this
model, each agent assigns priorities to its different actions based on the agent’s
position on the field. Then a confidence value is calculated, indicating the chance
that an action will succeed. The priority values and the confidence values are
then combined to calculate a priority-confidence measure on the selected actions,
after which the action with the highest value is selected for execution.

The UvA Trilearn team has proven to be very successful in the various RoboCup
competitions. Currently it is two-year title holder in the German Open com-
petition and current RoboCup World Champion. An overview of the team’s
results can be found in Table 2.2.
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Competition Result

German Open 2001 5th (of 12)

World Cup 2001 4th (of 42)

German Open 2002 Champion (of 13)

World Cup 2002 4th (of 42)

German Open 2003 Champion (of 12)

American Open 2003 Champion (of 15)

World Cup 2003 Champion (of 46)

Table 2.2: Results for the UvA Trilearn Team.
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Chapter 3

Real Soccer Strategies and
Tactics

In this chapter we present the results of our research of real soccer strategies
and tactics. After a short introduction to the complexities of the different roles
in a soccer game in Section 3.1, we describe the development of soccer tactics
and the use of formations in Section 3.2. Next we introduce the tactical system
known as Total Football in Section 3.3, starting with a description of its history
and philosophy in Section 3.3.1. Then, in Section 3.3.2, we describe in more
detail the movement system, one of the many forms of Total Football.

3.1 Introduction

“The object of soccer is to score more goals than the opposing team.”

While the above is an extremely simple statement, it is, in essence, a complete
description of the game. Unfortunately, actually playing the game of soccer is all
but as simple as the above description would lead us to think. Ask a randomly
chosen player, no matter the level of competition he (or she, of course) is in,
what his task on the field is and you will receive a multitude of answers, few
of which will be the simple ‘to prevent the opposing team from scoring’ or ‘to
score as many goals as possible’. The roles of players on the field differ, both
from a tactical point of view as from what the crowd perceives happening. A
defender’s task is more than stopping the opposing team from scoring, while the
tasks of the attackers do not merely exist of scoring as many goals as possible.
Generally, what the supporter sees is but a glimpse of the real task a soccer
player has to perform.
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Ask a defender (also known as a fullback1) what his task on the field is, and ask
him to elaborate. He will probably surprise you with the amount of subtasks he
is required to perform to reach his (and his team’s) ultimate goal: to end the
match victorious. Some of the defender’s subtasks are more obvious, others are
more hidden. It is obvious to see a defender disrupt attack after attack. What is
less obvious is the subgoal of this activity. The offense becomes agitated, their
morale goes down, and subsequently they will be more prone to make errors.
Another example of a defender’s task is to provide a solid basis to the attack. By
spreading out while in possession of the ball they force the opposing team to do
the same, thus creating more space for the midfield and attack to maneuver in.
By keeping possession when their own team is ahead, the defense wins valuable
time in which the opposing team, obviously, cannot score goals.

The role of the attacker (or forward) is just as varied, and while the supporter
watching from the sideline is generally satisfied by the forward scoring goals,
the team’s expectations are much higher. The forward, and this applies more
specifically to the wing forward, is expected to be constantly on the move,
drawing the opposing defense away from the path of the ball, facilitating the
final scoring attempt. He is expected to fall back in times of danger, making
the transfer from defense to offense easier and thus less risky. A forward should
have great insight of the game, which is especially hard considering he is on the
opposite end of the field, mostly facing the opposing team’s goal. You might
even extend the role of the forward to that of a defender. After all, in many
formations and strategies defending begins as soon as the ball is lost, and after
a failed attack, who is closest to the ball holder?

Remains the midfield, the most important part of a formation. The midfield is
the spine of the team, the link between offense and defense. The midfield serves
to slow an attack down so the defense can organize, and it provides the forwards
with ‘the right ball in the right place’. A team’s strategy is often, if not always,
build around its midfield, and often you can define a team’s complete formation
just by looking at the team’s midfield [Glanville, 1979].

Clearly, the game of soccer is not as simple as it looks. This has not always been
the case. In the next section I will give a brief overview of the changes in soccer
tactics since the English ‘invented’ the game in 1863.2 The official name of the
game then was ‘Association Football’, which was later abbreviated to ‘soccer’3.
The name stuck.

1There appears to be some confusion concerning the terms fullback, back, and halfback.
While the first two are one and the same, indicating a defender, the last is actually a mid-
fielder. As other terms for defenders include sweeper and stopper, the confusion is quite
understandable.

2Soccer as a game, of course, had existed for roughly nine centuries, then. It was in 1863,
however, that the University of Cambridge bound the game to a set of rudimentary rules. In
that same year the English Football Association (EFA) was formed.

3Inspired by the loose term for playing Rugby, which was known as playing ‘rugger’.
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3.2 A history of tactics

In the early stages of soccer tactics were largely absent. Dribbling was the way
to play, and a typical match would consist of the player at the ball trying to
pass as many defenders as possible, while the rest of the six to eight forwards
followed closely behind, not as much to backup the ball holder but more in the
hope that, when the ball would be lost, they would be the one recovering it.
A player’s skill was measured by his control of the ball and his ability to drive
the opposing team’s defenders crazy. Players chased the ball all over the field,
leaving the goalkeeper as the only player on the field with a set position.

Defending was not an important issue back then, even though the development
of tactics, up until the introduction of Total Football around 1970, was to focus
more and more on the defense. With eight forwards in the 1860s, reduced to
seven later that decade, there were only some four players left as a defense,
including the goalkeeper, who was crippled all the more by not being allowed
to use his hands until 18704. The basic approach to defending was to clear the
ball as soon and as far away from the own goal as possible, after which the cycle
of attacking and defending began anew.

Things started to change in rapid succession after the Scots introduced the
enlightened concept of passing in the beginning of the twentieth century. This
caused a shift in formation. One of the six forwards was brought back to become
a center half, creating a well-needed link between offense and defense. Of course
the center half could not look after the midfield all by himself, and often the
wing defenders or the inside forwards would reposition to assist him. Still the
formation looked roughly as shown in Figure 3.1.

Goalkeeper

Right back

Center forward

Center half

Outside right Inside right Outside leftInside left

Left halfLeft backRight half

Figure 3.1: Common formation in the beginning of the 20th century.

Another shift occurred when the EFA, irritated by the abuse of the offside rule,
changed that very rule, reducing the number of players to put a man onside
from three to two. Consequently the center half was pulled back once again
to function as a defender, later evolving into the stopper. To make up for the
loss in midfield Arsenal invented the Third Back game, also termed the WM
formation after the placement of the halfbacks and inside forwards. Figure 3.2
shows this formation. Note that, in fact, not much changed from the formation
in Figure 3.1, except that the positions that were already commonly filled by
the halfbacks and inside forwards were now made ‘official’.

4A decision further refined in 1912, when the keeper’s use of hands was restricted to his
own penalty box.

17



Goalkeeper

Center forward

Center half

Left half

Left back

Right half

Right back

Inside leftInside right

Outside leftOutside right

Figure 3.2: The Third Back game.

The Third Back game gave birth to a new defensive system known as pivotal cov-
ering (Figure 3.3). In this system, whenever the right flank was threatened, the
right back would attempt to reclaim the ball. The central defender (still known
as the center half, then) covered the right back, while the left back would cover
the central defender. The same, of course, applied to the left flank. So, if the
first defender failed to stop the opposing forward the next man in line would be
there to solve the problem, and so on.

Left back

Center half

Right back

ball

Figure 3.3: Pivotal covering.

It was this system of defense that caused the invention of 4-2-45, and later 4-3-3,
by the Brazilian team. The Brazilians were unable to adopt pivotal covering into
their playing style, much due to their wing backs, also called volantes. True to
their name, they were an example of the classical half backs that existed before
the Third Back game, moving upfield and downfield freely. This often left the
central defender alone to defend his zone, which was quite impossible to do
effectively. Instead of forcing their backs into the pivotal covering system, the
Brazilians solved the problem with the same simple elegance they showed on
the field. They added another defender, so that the central defender always
had someone to back him up in times of need, and at the same time giving
the volantes the freedom to move upfield, assured by the fact that there would
always be a covering defender close at hand. The midfield was left to two players,
assisted in turn by the backs and the wing forwards, while the four players at
the front provided plenty strength to worry the opposing defense. The 4-2-4
formation, together with its successor, 4-3-3, is shown in Figure 3.4.

5Soccer formations are typically described as A-B-C, where A, B and C denote the number
of defenders, midfielders and forwards, respectively. The 11th player is assumed to be the
goalkeeper.
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Goalkeeper

Left backRight back

Outside leftOutside right Forward

Center back

Forward

Midfielder Midfielder

Center back

Forward Outside leftOutside right

Wing midfielder Midfielder Wing midfielder

Right back Center back Center back Left back

Goalkeeper

Figure 3.4: 4-2-4 and 4-3-3 formations.

The 4-3-3 formation was born more out of necessity than out of the intention
to create a breakthrough in tactics. Other teams simply lacked the quality
that made the two-man midfield of the Brazilians possible, and were forced
to pull back a forward, thus bringing the count to three midfielders and three
forwards. Brazil would eventually adopt this strategy as well, for as the team
that originally introduced the 4-2-4 formation grew older, the midfield lost its
speed and agility, and a change in tactics was required.

We have seen a tendency toward defense that was present since the beginning of
tactics, and it was this tendency that created 4-4-2, which up to this day is one
of the two most used formations, the other being 4-3-3. Both formations exist
in a large number of variations, the most notable those with defensive systems
using a sweeper6, but the base has remained largely the same. For completeness,
the schematic of the 4-4-2 formation is provided in Figure 3.5.

Goalkeeper

Left backRight back Center backCenter back

Wing midfielderWing midfielder Midfielder

ForwardForward

Midfielder

Figure 3.5: 4-4-2 formation.

The last great change in tactics up to today was the advent of Total Football.
It is on this tactical system that we have based the larger part of our research,
and we will describe it in more detail in the following section.

6Introduced by the ever-defensive Italians as a libero, the sweeper remains behind the
three-man line of defenders, ‘sweeping up’ the balls that make their way past that line.
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3.3 Total Football

3.3.1 History

The philosophy of Total Football was conceived as early as 1955, by the Viennese
sports journalist and former goalkeeper of the Austrian national team Dr. Willy
Meisl. In Soccer Revolution, a book by his hand, he spoke of a new concept
in soccer he called The Whirl. In his idea, the future of tactics lay in fluidity,
where players would abandon their normal positions and, like fluid, spread in
all directions, typically into the opposing team’s defensive half. To properly
execute The Whirl a team would need players of immense skill and insight,
jack-of-all-trades on the field, able to, at the whim of a moment, change their
role from defender to midfielder to attacker, and back again. He believed that
it would be possible to reach this breakthrough in soccer in as little as a few
seasons. It turned out, though, that it would take the better part of two decades
before Meisl’s ideas would take root, personified in the teams of the Netherlands
and West Germany.

In West Germany, it was Franz Beckenbauer that introduced his team Bayern
Munich to what later would become known as Total Football. He was inspired
by the Italian left back Fachetti, who had the habit of moving upfield and into
the attack, adding to the successes of his club, Internationale. Beckenbauer
reckoned that if a left back could use this tactic, then a right back could do as
well, and why not the center of the defense? He further saw that the sweeper was
in a sense an invisible player, hidden from view and consideration by the three
defenders before him. That meant, according to Beckenbauer, that he could, if
the opportunity arose, move from the shadows to assist in midfield, and even, if
he was adventurous enough, in the attack. Beckenbauer’s idea of an attacking
sweeper proved successful, and the West German team proceeded to win both
the European Cup in 1972 and the 1974 World Cup against The Netherlands.
In addition to the attacking sweeper, the entire West German defensive line was
often found participating in the attack, switching roles as easily as the all-round
footballers Dr. Meisl had described twenty years earlier.

Meanwhile the Dutch, with major contributor Ajax, were building on what
would be the greatest team in the history of Dutch football. Legendary players
like Johnny Rep, Arie Haan, Wim van Hanegem and of course Johan Cruijff,
due to the legalization of professional soccer in The Netherlands, no longer
sought their fortune abroad and thus were free to be incorporated into the
Dutch implementation of Total Football. The Netherlands, who had never been
a football nation of any importance, quickly rose to the top of the world’s soccer
community, with two successive appearances in the World Cup Finals, in 1974
and 19787. The development of Total Football in The Netherlands took place
in parallel to the rise in Germany, and it was in Johan Cruijff that the Dutch
found a Franz Beckenbauer of their own. Though it was the coach of the Dutch
national team, the Romanian Kovacs, who implemented the concept, it was
Cruijff who was seen to have made it a success. Of course, even he could not

7The Netherlands never managed to become World Champion; they lost 2-1 against West
Germany in 1974, and 3-1 against Argentina in 1978.
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have done it if the rest of the team had not consisted of such talented players.

Total Football, like the fluidity that was such a central concept, spread to all
corners of the world, and nowadays most major soccer teams make use of the
tactic, in one way or another.

3.3.2 A System of Play

Total Football, though the central philosophy has remained largely the same,
can be found in many different forms. Some teams might only apply the concept
to their offense and midfield, letting their defense adhere to the more traditional
rules of formations and positions. Others, like the former team of West-Germany
led by Franz Beckenbauer might have one or more players in a free role, adding
then to the defense, then to the attack as the situation allows.

The movement system [Catlin, 1990] is one of the many forms of Total Football.
It is appealing because of the simplicity of its philosophy, and because it is
relatively easy to implement either partially or fully. The two central concepts of
the movement system are space and time, both of which are natural implications
of the concept of fluidity that lay at the base of Total Football. The following
sections will describe the central concepts of the movement system and show
how these concepts are related, and then continue to show how they can be
influenced by the players on the field.

Of the two concepts of space and time, space is the more prominent one. A
simple yet complete definition of space on a soccer field is the gaps between and
around opponents, the areas on the field that hold no players of the opposing
team. A player standing in such an area ‘is open’ or ‘has space’. Space allows
a player to handle the ball unchallenged, to control it and pass it to another
player unhindered. Space is used to maintain possession, and the ball can be
advanced by making use of open spaces.

Space, if used correctly, is often distributed evenly across the field; more space
is available at a distance from the ball, while around the ball players are closer
together and space is more limited. When a team has more space, it is more
difficult to defend against successfully, and it is harder for a team to score against
a defense that allows only limited space.

Inseparable from the concept of space is the concept of time; time influences
space, or the need for space, and space influences time. The more space a
player has available, the more time he has to control the ball, look up, analyze
the situation around him, and find a suitable player to pass to. The amount of
time a player needs is dependent on the skill of the player, and when a player
needs less time, he immediately needs a smaller amount of space. The amount
of time a player has depends not only on the size of the space around him, but
also on the speed and aggressiveness of the opposing team.

There are several ways in which a soccer team can influence space and time, all
of which are in one way or another related to movement. The movement system
defines three types of movement; movement related to support, movement after
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passing and movement to create or fill space. The difference between the three
types of movement is not always clearly distinguishable, and often a player
fulfills several of the types with one single movement.

Movement related to support, or support movement, is very important. A
player that is well-supported will have a greater degree of confidence, and will
as a result play better. A team that understands and makes good use of support
movements will be hard to put out of possession. One of the major issues in
support movement is the creation of passing options. Ideally, a player should
be supported by three to four players. Two of these players provide passing
options to the left and right of the player with the ball, while the other two
provide backward and forward passing options, respectively. This gives the
player with the ball four options to pass the ball, and the opposing team will
have to cover all four. Even when one of the options is unavailable (e.g. when the
forward passing option is not possible because of a possible offside situation), the
remaining three options are very hard to cover. It is the task of the supporting
players to make sure that the passing lanes between them and the player with
the ball remain free. This allows the ball holder to concentrate on other things,
like finding the best player to pass to, or deciding whether or not there is a
possibility to dribble past an opposing player. Communication is an important
part of support movement; often the player holding the ball will have his head
down or turned in another way. Shouting is then the only way a supporting
player can communicate his position.

When a player is unable to offer support (e.g. he is tightly marked by an opposing
player), he should move away from the player with the ball. More often than not
the opposing player marking him will move with him, leaving a space for another
player to fill, thus making sure that the player with the ball is supported. This
is an example of a movement that has two goals, both providing support and
creating and filling space.

Movement after passing is a very common way to penetrate the opposing teams
defense. After passing the ball the player moves downfield, in the direction
of the goal, creating a forward passing option (or a through passing option).
Moving after passing may trigger several penetrating passes, one of which is
the wall pass. The wall pass is a very popular and effective way of passing
defenders; the ball holder passes the ball to either his left or right, then sprints
past his defender. The receiver of the pass then passes the ball directly back
to the original passer. A great advantage of this pass is, beside getting the ball
past a defender, that there is often a large amount of space behind a defender.
This space then allows the team to advance still more.

Movement after passing can also be used to offer support, if needed. When a
player passes the ball and the receiver of the pass has no passing options, the
original passer should move to provide support. This can be done either by
dropping back or by making a run into a space that provides a passing option.
Lastly, movement after passing can be used to create space. A player making a
run after passing the ball draws the attention of the defense, luring them into
believing that the player is initiating a wall pass or through pass, or a similar
penetrating movement. Thus the defender will move with the player, leaving
behind space.
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The final type of movement defined in the movement system is movement to
create or fill space. We have already seen an example of this type of movement
in the situation where a player who is in a support position is unable to give
the support because of a tightly marking defender. As he moves away from his
position he is creating space for an open team member. This team member then
moves to fill the space created.

Movement to create space is not bounded to those players in a support position
around the ball, or to the player in possession of the ball. It is used by all the
players on the field, in offense, midfield, and defense. When a player makes a
run forward after passing, he leaves behind a space to be filled by the nearest
available player. When a defender engages an opponent, it is up to his fellow
defenders to fill up the space that is left behind, thus not allowing an opposing
player to make use of that space.

One of the most important ways to create space, and one of the most effective,
is the use of ‘width’ and ‘depth’. By using width and depth, an offensive team
can spread out across the entire length of the field. They consequently force the
team on the defense to do the same, creating tremendous amounts of space. As
said before, a team that has space is very difficult to defend against.

The opposite also applies. A defensive team will try to narrow the field of play,
making the spaces available to the offensive team smaller, and thus making it
easier to prevent them from penetrating the defense and score. Typically a
team will continually switch from one end of the spectrum to the other, as ball
possession is lost and regained.
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Chapter 4

Coordination Graphs

In this chapter we introduce the notion of coordination graphs (CGs) as a means
to represent the coordination requirements in a multiagent environment. We
begin in Section 4.1 by describing the coordination problem and the problem
of the exponential explosion of the joint action space in existing methods using
Nash Equilibria as an example. Section 4.2 then introduces coordination graphs,
with a description of the original CG algorithm in Section 4.2.1. Section 4.2.2
then describes two extensions to the original CG algorithm to overcome the
limitations in using coordination graphs in the RoboCup domain.

4.1 Coordination Games

In a multiagent environment where all agents share a common goal (as is the
case in the RoboCup domain), it is necessary that the agents work together to
maximize the utility of their actions. Only in this way can they assure that their
goal is reached in the most efficient manner. To accomplish this, the agents need
to coordinate their actions. There are several methods for agents to coordinate
their actions. One of the best known and attractively simple methods involves
the selection of a Nash equilibrium from the set of available actions:

Let Ai be the set of actions available to agent i and A = A1 × . . . × An the set
of joint actions of all agents. Further let Ri be the payoff function for agent i
such that Ri(A) → IR is a mapping from the joint action to a real value (i.e. the
payoff for the selected joint action). A Nash equilibrium defines a joint action
a∗ ∈ A with the property that for every agent i holds Ri(a∗

i , a
∗
−i) ≥ Ri(ai, a

∗
−i)

for all ai ∈ Ai, where a−i is the joint action for all agents excluding agent i.
Such an equilibrium joint action is a steady state in which no agent can choose
a different action and increase its utility given the actions of the other agents.
Figure 4.1 shows a very simple situation in which two agents should coordinate
their actions. The Nash equilibria are denoted in bold.

The problem apparent in using Nash equilibria is that the joint action space
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Figure 4.1: A simple coordination game: choosing a movie.

of a multiagent system is exponential in the number of agents present in the
system. This means that, with a large number of agents, it becomes infeasible
to determine the Nash equilibria of the system. A method to address this
problem is the use of context-specific coordination graphs. This method has been
recently extended to be better suited for the RoboCup domain [Kok et al., 2003,
Kok et al., 2002b]. Before we discuss these extensions, we will first introduce
the original method as described in [Guestrin et al., 2002b].

4.2 Coordination Graphs

A coordination graph (CG) represents the coordination requirements of a mul-
tiagent system. A node in the graph represents an agent, while the edges of
the graph define a dependency between two agents: an agent i has a neighbor
j if the action choice of agent j affects the payoff function of agent i. At any
instance, only agents that are connected by edges need to coordinate their ac-
tions. These smaller coordination problems can be regarded as a decomposition
of the global coordination problem, and the global payoff function is the sum of
the payoff functions of the smaller problems. An example coordination graph
for a system consisting of four agents is shown in Figure 4.2.

G1

G2 G3

G4

Figure 4.2: A CG for a 4-agent system.

In this figure agent G1 has to coordinate with agents G2 and G3, agent G2 has
to coordinate with agent G1, agent G3 has to coordinate with agents G1 and
G4, and agent G4 has to coordinate with agent G3. Using an effective variable
elimination algorithm and a message passing scheme the agents can compute
the optimal joint action for this instance.
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4.2.1 The original CG algorithm

The CG algorithm is as follows; each agent is assumed to know its neighbors
in the graph (but not necessarily their payoff function, which might depend on
other agents). Each agent is eliminated from the graph by solving a local op-
timization problem that involves only the agents and its neighbors. The agent
collects from its neighbors all relevant payoff functions (i.e. the functions that
include the agent), then optimizes its decision conditionally on its neighbors’ de-
cisions. The agent then communicates the resulting conditional payoff function
back to its neighbors. This process is then repeated for all agents, after which
each agent, starting with the last agent eliminated and working back to the
first, communicates its decision to its neighbors. They then use this decision to
determine their own strategy, communicating this to their neighbors, and so on,
until the cycle completes and the algorithm terminates, resulting in an optimal
joint action.

In the context-specific CG algorithm the payoff functions are rule-based, as
opposed to the matrix-based approach described in [Guestrin et al., 2002a]. In
the rule-based approach the payoff function consists of a set of value rules, which
specify how an agent’s payoff depends on the current context. The context is
defined as a propositional rule over the state variables and the actions of the
agent and its neighbors. These rules can be regarded as a sparse representation
of the complete payoff matrices.

As an example, consider the following situation taken from the pursuit domain
(also known as the predator/prey domain) [Kok and Vlassis, 2003]: Two preda-
tors have cornered a prey and will be able to capture it in their next turn. The
prey will be captured if one of the two predators moves onto the square contain-
ing the prey, but it will escape if both predators move onto the square containing
the prey. Predators may not occupy the same square. This situation could be
described by the following rule p1:

〈p1 ; next-to-prey(G1) ∧
next-to-prey(G2) ∧
G1 = move-onto-prey ∧
G2 = move-onto-prey : −100〉

So, if both predators decide to move onto the prey, they will receive a utility of
-100, which is assumed to lower the total utility enough to prevent this choice
of action from occurring.

If in any other situation the state is not consistent with the above rule (e.g.
one of the predators is not next to the prey), the rule does not apply and is
discarded. By conditioning on the state and discarding all irrelevant rules the
CG is dynamically updated and simplified. Thus, an agent only needs to observe
that part of the state mentioned in its value rules.

For a more detailed example of how the CG algorithm works, consider the 4-
agent coordination graph depicted in Figure 4.3(a). The value rules for each
agent are given next to the agent, and the coordination dependencies are given
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by the directed edges between the agents. Note that in this example only binary
states and actions are considered.

The first step of the algorithm is conditioning over the current context. After
the agents observe x = true, the graph is conditioned, resulting in the removal
of agent G4 from the graph. This agent has no more value rules and thus does
not affect the optimal joint action of the other three agents. The result of this
step is shown in figure 4.3(b).

In the next step of the algorithm we begin the elimination process. We assume
that the elimination order of the agents has been decided in advance, and agent
G3 is to be eliminated first. After collecting all relevant value rules from its child,
agent G1 (Figure 4.3(c)), agent G3 has to maximize over the rules 〈a3 ∧ a1 :
4〉〈a3 ∧ a2 : 5〉. For all possible action choices of agents G1 and G2, agent
G3 determines its best reponse, distributing the resulting conditional strategy
〈a2 : 5〉〈a2 ∧ a1 : 4〉 to its parent G2 (Figure 4.3(d)). After this step, agent G3

has no children in the coordination graph anymore and can be eliminated. The
result is shown in Figure 4.3(e). Note that, due to the value rules communicated
by agent G3, one of agent G2’s rules is now dependent on the action choice of
agent G1, introducing a new child-parent relationship between these two agents.

The algorithm continues with agent G2 collecting all relevant value rules from
agent G1. After maximizing over these rules, agent G2 distributes the resulting
conditional strategy to its parent G1. Then agent G2 is also eliminated, leaving
only agent G1 (Figures 4.3(f), 4.3(g) and 4.3(h)).

Agent G1 then fixes its strategy to a1. With no agents left to eliminate, the
algorithm continues in the reverse elimination order. First agent G1 communi-
cates its decision to its children, agents G2 and G3. This step can be seen as the
introduction of a new context variable, over which agents G2 and G3 condition
their value rules (Figure 4.3(i)). Then agent G2 fixes its strategy to a2 and
communicates this decision to its child G3 (Figure 4.3(j)). Finally, agent G3

fixes its strategy to a3, resulting in the optimal joint action {a1, a2, a3}, with a
global payoff of 11.

4.2.2 Extensions to the CG algorithm

In applying this method to the RoboCup domain two limitations become ap-
parent. Since the payoff functions consist of propositional rules, the algorithm
requires a discrete domain. The RoboCup domain, however, is a continuous
domain. Furthermore, in the course of the algorithm the agents are required
to communicate twice; once to collect all relevant payoff functions from their
neighbors, and again to distribute their conditional payoff function amongst
their neighbors. As mentioned in the description of the soccer server (Section
2.4), communication in the RoboCup domain is severely limited and unreliable.

To be able to use the CG algorithm in a domain that is both continuous and
where communication is unavailable, it is necessary to adapt the algorithm to
deal with these domains. We will describe two extensions to the algorithm that
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G1

G2 G3

G4

〈a1 ∧ a3 ∧ x : 4〉
〈a1 ∧ a2 ∧ x : 5〉

〈a2 ∧ x : 2〉 〈a3 ∧ a2 ∧ x : 5〉

〈a3 ∧ a4 ∧ x : 10〉
(a)

G1

G2 G3

G4

〈a1 ∧ a3 : 4〉
〈a1 ∧ a2 : 5〉

〈a2 : 2〉 〈a3 ∧ a2 : 5〉

(b)

G1

G2 G3
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〈a2 : 2〉 〈a3 ∧ a2 : 5〉

〈a1 ∧ a3 : 4〉

(c)
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(h)
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a1 a1

〈a1∧ a3 : 4〉
〈a1∧ a2 : 5〉

〈a2 : 2〉 〈a3 ∧ a2 : 5〉
〈a2 : 5〉

〈a1∧ a2 : 4〉

〈a1 : 11〉
〈a1 : 5〉

(i)

G1

G2 G3

a2
〈a3 : 4〉

〈a2 : 5〉

〈a2 : 2〉 〈a3 ∧ a2 : 5〉
〈a2 : 5〉
〈a2 : 4〉

(j)

Figure 4.3: The CG algorithm in action.
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allow it to be used in the RoboCup domain. The first extension is used to solve
the problem of using the CG algorithm in a continuous domain. The second
extension shows how the CG algorithm can be used when communication is not
available.

It is difficult in the original CG domain to condition on a context that is defined
over a continuous domain. A way to ‘discretize’ the context in the RoboCup
domain is by assigning roles to agents [Spaan et al., 2002]. Roles are a natural
and intuitive way of introducing domain-specific prior knowledge to the problem
of distributing the global task of a team to its members. By using roles, one can
create an abstraction from a continuous state to a discrete context, effectively
introducing a discrete state variable (is an agent assigned a particular role or
not?) depending on a continuous state variable. In the soccer domain, typical
roles could include either general ones like passive or active, depending on for
instance the distance to the ball, or more specialized roles like forward, defender
or goalkeeper, depending on the player type or the agent’s position on the field.
The intuition is that, instead of coordinating the agents directly in a particular
environment, we first assign roles to the agents based on the situation and then
coordinate the set of roles. For more details on the assignment of roles to agents
see [Spaan et al., 2002].

The use of roles can further reduce the action space by ‘locking out’ certain ac-
tions. For example, the role of the goalkeeper does not include the action score,
nor does the role forward typically include the action tackle. This reduction of
the action space offers computational savings and facilitates finding the solution
of the local coordination problems. Consider the simple coordination game of
Figure 4.1. If one of the agents is assigned a role that forbids him to choose the
action thriller (e.g. because the agent is under 16), the other agent, assum-
ing he knows how the roles are assigned, can safely choose the action comedy,
resulting in coordination.

The second extension adresses the problem of non-communicating agents. When
communication between agents is unavailable the CG algorithm can still be
used under the requirement that the payoff function of an agent i is common
knowledge among all agents that are connected to i in the coordination graph.
Since only agents that are connected by edges need to coordinate their actions,
this requirement frees agents from having to communicate their local payoff
function during optimization. Furthermore, in the non-communicative case the
elimination order of the agents neither has to be fixed in advance not has to
be known among all agents. Each agent is free to choose an elimination order
that allows the agent to compute its optimal action quickest. This is possible
because the elimination order does not affect the resulting joint action, but only
the speed of the algorithm.

The extended CG algorithm is roughly as follows (from [Kok et al., 2002b]):

Each agent i maintains a pool of payoff functions, corresponding
to all payoff functions of the agents in its subgraph. Starting from
itself, agent i keeps eliminating agents until it computes its own
optimal action unconditionally on the actions of other agents. For
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each eliminated agent j the newly generated payoff functions are
introduced into the pool of payoff functions of agent i and the process
continues. In the worst case, agent i needs to eliminate all agents
j �= i in its subgraph. Despite the fact that each agent computes
its optimal action in a different way, the resulting joint action will
always be the optimal one.

Clearly, the computational costs for each agent are increased to compensate
for the unavailable communication. Instead of only optimizing for its own ac-
tion, an agent (in the worst case) needs to calculate the optimal action for
each other agent in its subgraph. The computational cost for each agent thus
increases linearly with the number of payoff functions generated during elimi-
nation. However, the fact that communication is no longer necessary allows the
different elimination processes to be run in parallel, while in the original CG
algorithm the eliminations are performed sequentially.

A problem with this extension is that the assumption of common knowledge is
strong and cannot be always guaranteed even when communication is available
[Fagin et al., 1995]. In the non-communicating case common knowledge can
only be guaranteed if all agents consistently observe the same world state. In
a partially observable environment like the RoboCup domain this is not always
easy to achieve.

To avoid this problem, it is required that, when the agents have to agree on a
particular role distribution in a particular context, the parts of the state that are
important in this distribution are, to a good approximation, fully observable by
all agents. As coordination games in the RoboCup domain typically involve no
more than two or three agents, this requirement is not too limiting and should
be possible to achieve with relative ease.
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Chapter 5

From Real Soccer to
Robotic Soccer

In this chapter we apply the knowledge described in Chapter 3 to the UvA
Trilearn Soccer Simulation Team. Using the existing architecture of the Trilearn
Team, we first discern the changes made to the formation in Section 5.1. Next
we specify value rules as introduced in Chapter 4 that represent the game of soc-
cer in Section 5.2. Finally we give a description of the implementation of the
coordination graph framework in Section 5.3 that makes use of the value rules.

5.1 Formations

The use of formations within a soccer team allows players to define their posi-
tions relative to each other in a way that is best suited for a certain situation
or opponent. As we have seen in Section 3.2, different formations developed
as a result of changes in the way soccer was played and because of changes in
the rules of the game (e.g. the introduction of the offside rule). A formation
determines whether a team plays offensively or defensively, and whether a team
relies more on long passes downfield or short passes across the width of the field.
A team’s formation, too, may determine how much space a team has available.

In the UvA Trilearn Team, a formation is defined by both player types and
player positions [Reis and Lau, 2001]. There are eight pre-defined player types:
goalkeeper, central defender, sweeper1, wing defender, central midfielder, wing
midfielder, wing attacker and central attacker. Using a configuration file each
player on the field is assigned a player type and a home position. This home
position is used to calculate the players’ strategic position on the field during
play. Other parameters include a maximal and a minimal x-coordinate, defining
the zone in which a player may move, and so-called attraction factors, i.e. how

1The sweeper player type was not implemented in the original UvA Trilearn Team and
was added as a result of our research.
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much the player is ‘pulled towards the ball’, or how much the ball’s position
influences a player’s strategic position. Lastly, a parameter is provided to define
whether or not a player should always attempt to stay behind the ball. The
specification of the 4-3-3 formation currently used by the UvA Trilearn Team is
shown in Table 5.1. The resulting formation is illustrated in Figure 5.1.

player number

1 2 3 4 5 6 7 8 9 10 11

home x -50.0 -16.5 -21.0 -15.0 -16.5 0.0 0.0 -3.0 15.0 18.0 18.0

home y 0.0 10.0 0.0 0.0 -10.0 -11.0 11.0 0.5 -0.5 19.0 -19.0

pl type2 1 4 3 2 4 6 6 5 8 7 7

player type

0 1 2 3 4 5 6 7 8

attr x 0.0 0.1 0.7 0.65 0.7 0.65 0.7 0.5 0.6

attr y 0.0 0.1 0.25 0.4 0.25 0.3 0.25 0.3 0.25

beh ball 0 1 1 1 0 0 0 0 0

min x 0.0 -50.5 -42.0 -47.0 -45.0 -36.0 -36.0 -2.0 -2.0

max x 0.0 -30.0 0.0 7.0 7.0 42.0 42.0 44.0 44.0

extra y 0.0 0.0 0.0 0.0 5.0 0.0 4.0 1.0 0.0

Table 5.1: Specification of the 4-3-3 formation currently used by the UvA
Trilearn Team.

In this table, a home position is defined for each player by home x and home y.
These variables indicate a player’s initial position, unaffected by the position
of opponent players or the position of the ball. The center of the playing field
has coordinates (0,0), and all home positions are relative to those coordinates.
The player type of each player is indicated by the variable pl type. Note that
more than one player can have the same player type. This is due to the fact
that, in most cases, a team’s formation is symmetrical, i.e there is a right and
left wing defender, a right and left wing midfielder, and a right and left attacker
(for illustration, see the formations depicted in Section 3.2). The roles of these
symmetrical positions are so much alike that the choice of not defining separate
player types is justified.

For each player type, a number of variables is defined such that players of the
same type use the same values. This, again, can be justified by looking at
the symmetry of common formations. To prevent a player from wandering too
far from its home position, disrupting the team’s formation, min x and max x
define a minimal and a maximal horizontal player position, respectively. These
bounds also assure that a player does not waste stamina on running too far up-
or downfield. The variable beh ball is a boolean to assure that a player stays
behind the ball at all times. This is, naturally, especially useful for defenders.
Attr x and attr y are factors that define how much the position of the ball
influences a player’s strategic position. For example, a player that aggressively
‘hunts’ the ball would have high attraction factors, while a defender that ‘waits’
for the ball to come to him would have a low value assigned to attr x, but a

2The player type numbers denote the following types: 1=goalkeeper, 2=central defender,
3=sweeper, 4=wing defender, 5=central midfielder, 6=wing midfielder, 7=wing attacker and
8=central attacker.
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Figure 5.1: The 4-3-3 formation currently used by the UvA Trilearn Team as
defined by Table 5.1. The player types are shown in bold.

higher value assigned to attr y, thus ensuring that he is in the path of the ball
when it arrives.

We have extended the specification of the formation with an extra parameter,
extra y. This variable represents the idea of adding ‘width’ to the playing field
when in possession of the ball, as follows; the value of extra y is added to a
player’s strategic position, so that that player moves to a position closer to the
sideline. This has two results: the opposing team, if it wants to mark those
players spreading out, will have to spread out as well, creating space. Also, the
distances between players increase, preventing players from bunching together,
and thus making passes longer and more effective. When the team is not in
possession of the ball, the value of extra y is ignored, effectively creating the
effect of the team narrowing the playing field. This, as described in Section 3.3.2,
causes the space available to the opposing team to be smaller, making it easier
to organize the defense.

Another extension to the formation system of the UvA Trilearn Team was the
introduction of the sweeper player type. As briefly mentioned at the end of
section 3.2, the sweeper was introduced by the Italians as a one-man last line of
defense, supporting the three defenders in front of him. The role of the sweeper
is to intercept any ball that might pass the first line of defenders, as well as filling
a defender’s position temporarily if that defender moves to engage an attacking
player. Using a sweeper it becomes increasingly hard for the opposing team to
penetrate the defense. Through passes, where the ball is passed into the space
behind the defenders, after which the receiving player runs into that space and
thus penetrates the defense, are made close to impossible by the sweeper, and
a player managing to dribble past one defender finds himself facing the sweeper
next.

But as we have seen in Section 3.3.1, the role of the sweeper is not necessarily
limited to that of a defender. Often unmarked, the sweeper can move forward
to assist in midfield, or even in the attack. Due to the limitations on stamina

35



of our agents, we were unable to implement this literally. However, we simulate
the advance of the sweeper to the attack in the UvA Trilearn Team by switching
formations on gaining ball possession. In addition to the 4-3-3 formation, we
specified a 3-3-4 formation. When switching to this formation, the central de-
fender moves to play in midfield, and the central midfielder joins the forwards,
giving us an extra player in the attack. This numerical advantage is especially
useful against teams with a tight or crowded (i.e. having four or more players)
defense.

5.2 Coordination Rules

To be able to use the CG algorithm to coordinate our agents, we need value rules.
Using the knowledge from Chapter 3, we are able to define a number of rules that
make up a soccer game. Recall that, in our discussion of coordination graphs
in Chapter 4, we limited ourselves to binary rules. For ease of implementation,
we do the same in defining the rules we will be discussing. There are a number
of limitations when converting real soccer rules into robotic soccer rules. Before
we begin describing the rules we created, we first mention these limitations, and
give a solution to them where possible.

5.2.1 Limitations

The first limitation we encounter in trying to create rules that are suitable for
implementation in a soccer simulation team is communication. In every soccer
book there is an emphasis on communication. This, of course, makes sense:
when a player is free to receive the ball, but is unsure whether his teammate
knows he is, he yells out his position. When two players plan to use the wall
pass to pass an opponent player, they will have to communicate to make their
intentions known. To do this, they do not necessarily have to shout. Using body
language is an equally important part of communication on the soccer field. By
turning their head or body in a certain direction or by simply pointing to where
they want to receive the ball, players are able to derive each other’s intentions.

As we have seen, communication in the Soccer Server is extremely limited.
Thus agents cannot revert to yelling their intent, and body language is as of
yet virtually unusable (agents simply cannot spare the time it takes to turn in
a certain direction just to give an indication of their intentions). Recently, the
point to command was added to the Soccer Server, and it’s use might prove
beneficial in the future. Sofar, though, it is highly underutilized. The solution to
the absence of communication was given in Section 4.2.2, in our discussion of the
extensions to the original CG algorithm. By making an agent’s payoff function
common knowledge amongst all agents connected to it in the coordination graph,
those agents are able to ‘know’ the agent’s intent, doing the same mindreading
as real soccer players.

Another limitation is the frequent use of height in real soccer tactics. One of
the best-used tactics for advancing the ball quickly toward the opponent goal is
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using the long pass. The long pass involves passing the ball over the heads of the
opponent team’s midfield, often passing directly from a defender to a forward.
The same idea applies to the wide pass, a pass from one side of the field to
the other. It is used mostly to disorganize an opponent’s midfield or defense
by changing the field of play. A third example of a team using height to its
advantage is corner kicks or free kicks. A free kick or corner kick is often taken
by passing the ball high into the opponent team’s goal area, where a teammate
may header the ball into the goal.

In the Soccer Server, height does not play a role, and thus we are cut off from
using long or wide passes. Passing from player to player to achieve the same
effect is possible, but less effective. Beside the introduction of a third dimension
in the next version of the Soccer Server there is no ready solution for this
problem, but it is one that all teams have to deal with. So, despite the fact that
our rules become somewhat less representative of a real soccer game, we simply
ignore all tactics involving long or wide passes, or using headers.

5.2.2 Definitions

In constructing our rules we defined the following variables:

• agent is defined as the agent executing the CG algorithm.

• t is defined as an enumeration of all teammates of agent. Thus, when
agent denotes agent 4, t will have values 1, 2, 3, and 5 to 11, respectively.
When more than one t is used in a rule (e.g. t1, t2), it is assumed they
denote different teammates.

• o is defined as an enumeration of all opponents of agent. When more than
one o is used in a rule (e.g. o1, o2), it is assumed that they are not equal.

• dir is a variable denoting a direction. It can have one of the following
values: center, north, north west, west, south west, south, south east, east
and north east. In this case, when more than one dir is used, it is not
necessarily assumed that the two are not equal.

• goal is the position of the own goal.

We also defined the following roles:

• active defender. This is a specialist role. An agent is an active defender
if he is the closest defender to the ball, and an opponent player is in
possession of the ball.

• passive defender. Another specialist role. If one defender is assigned
the role active defender, the other defenders are assigned the role pas-
sive defender.

• sweeper. Only one player can be assigned this role. If defender roles (ac-
tive defender, passive defender) have been assigned, this role is assigned
to the player having the sweeper player type.
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• interceptor. An agent has the role interceptor if he is the fastest player to
the ball, but the ball is not within kicking distance.

• passer. An agent has this role when he is in possession of the ball.

• receiver. An agent is a receiver if he is within passing distance of the agent
closest to or in possession of the ball.

• passive. This role is assigned to all agents that are not assigned one of the
above roles.

These roles are assigned in the order in which they are given here. Specialized
roles are thus assigned before more general roles. Besides these variables and
roles, we defined a number of state variables. These variables map to functions
that return either true or false, depending on the current context. We will
discuss these as they are introduced in our rules. We further defined a set of
actions. These, too, will be discussed as they appear in our rules.

What is important to note is the use of uninstantiated variables in our rule
descriptions. For example, dir is an uninstantiated variable that can take the
values mentioned above. The use of uninstantiated variables allows us to define
rules that may apply to more than one agent and to more than one situation.
During the instantiation phase of our CG implementation all rules with unin-
stantiated variables are expanded into their instantiated counterparts (e.g. a
rule with a dir variable will result in nine rules, each with a different value
for dir). An added advantage is that the rulebase is smaller and less complex,
allowing us to quickly change a rule or add new rules.

5.2.3 Rules

Our first set of rules involves passing. Passing successfully is extremely impor-
tant. Every failed pass results in the loss of ball possession, and each loss of
possession may potentially result in a goal by the opposing team. Using the
rules for passing has an advantage beyond creating successful passes. By run-
ning the CG algorithm, a receiving agent knows at which position relative to
himself the pass will arrive, before the pass is actually made. Originally, an
agent knew nothing about the pass until he noticed the ball moving in his di-
rection. Thus, knowing beforehand where the pass will arrive, the agent can
begin moving earlier compared to the original situation. This gives our team a
distinct advantage over opponent teams.

Consider the following rule p1:

〈ppasser
1 ; has-role(t, receiver) ∧

not-pass-blocked(agent, t, dir) ∧
is-empty-space(t, dir) ∧
not-offside(t, dir) ∧
aagent = pass-to(t, dir) ∧
at = move-to(dir) : u(agent, t, dir)〉
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Before we explain what this rule means, we will first explain how our rules are
constructed in general. First, using the principle of roles as described in Sec-
tion 4.2.2, we indicate the role this value rule will belong to in the superscript
of the rule name. In this case, rule p1 belongs to the role passer. In our im-
plementation, thus assigning rules to specific roles allows for faster elimination
due to the fact that certain roles might have only very little rules assigned to
them (e.g. the role passive, in our implementation, is assigned only one rule).
Then we assign the other roles that will be active in the rule. In this case
we assign the role receiver to t. Note that we treat the role assignments as
binary functions, the same as we did the state variables. This makes map-
ping our rules to the actual implementation easier. Next comes a list of state
variables: not-pass-blocked(agent, t, dir), that determines whether a pass
from agent to the direction dir relative to t is blocked by an opponent or not,
is-empty-space(t, dir), that returns whether the direction dir from t is free
from opponents, and not-offside(t, dir), that returns whether moving in the
direction dir will put agent t in an offside position. Then we assign actions to
the different agents involved. In this case, agent t should move in direction dir,
and agent should pass to the direction dir relative to t. Finally we pass the
relevant parameters to a utility function.

It is not very useful to give constant utility values to rules whose utility may
depend on changing factors (e.g. a player’s position on the field). For example,
an agent passing backward relative to itself may yield a lower utility when the
agent is in his own defending area to reflect the higher risk involved. If we
would have to write down every rule with a utility for each possible situation
our rulebase would become enormous and far more complex. Therefore, we
decided to calculate our utilities in real-time, i.e. for each cycle of a match. The
variables passed to u are used to calculate these utilities. In the case of passing
(rules p1 to p5), the utility depends on the position on the field of the passer
and the receiver, and the direction in which the pass is made. Generally, passing
forward (i.e. in the directions north, north west, and north east, as well as to a
receiver with an x-coordinate closer to the opponent goal) will yield a higher
utility than passing backward. A possible exception might be the situation
where both passer and receiver are in front of the goal. In this case, passing
across the width of the field (i.e. in the directions east and west) can serve to
disorganize the defense, and will yield a higher utility than passing forward.

What rule p1 means is relatively straightforward. From the perspective of the
agent executing the CG algorithm, it means the following: “If I am in possession
of the ball, and one of my teammates is close enough to receive a pass, and
that pass is not blocked by an opponent, and my teammate has room in the
direction I will be passing, and my teammate will not be offside if he moves in
that direction, then I pass to my teammate, while he moves to the direction I
am passing to.”

Rule p2 makes use of the idea that a player can ‘know’ what his teammate will
do after running the CG algorithm:

〈preceiver
2 ; has-role(t, interceptor) ∧

not-pass-blocked(t, agent, dir) ∧
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is-empty-space(agent, dir) ∧
not-offside(agent, dir) ∧
aagent = move-to(dir) : u(agent, t, dir)〉

Using rule p2, the agent moves in a direction his teammate could pass to when
that teammate has intercepted the ball. Thus this rule is an example of support
movement, as we described in Section 3.3.2. The state variables in rule p2 are
largely the same as those in rule p1: the pass from t to agent should not be
blocked by an opponent, agent should not move into an offside position, and
direction dir from agent should be free from opponents.

Another example of support movement is when the receiver that is not being
passed to as a result of rule p1 moves to a supporting position:

〈preceiver
3 ; has-role(t, passer) ∧

not-pass-blocked(t, agent, dir) ∧
is-empty-space(agent, dir) ∧
not-offside(agent, dir) ∧
aagent = move-to(dir) : u(agent, t, dir)〉

This rule is almost identical to rule p2, but it deals with the situation where
the interceptor has intercepted the ball, and thus has become a passer. Should
this player decide to dribble rather than pass, the receiver will move with him
to provide a passing option.

We can also make more complicated rules. Rule p4 involves three agents:

〈preceiver
4 ; has-role(t1, passer) ∧

has-role(t2, receiver) ∧
not-pass-blocked(t2, agent, dir1) ∧
at1 = pass-to(t2, dir2) ∧
at2 = move-to(dir2) ∧
aagent = move-to(dir1) : u(agent, t2, dir1)〉

In this rule, agent will move to the direction that t2 will (possibly) be passing
to after t2 has received the pass from t1.

Thusfar our passing rules are very general. We can easily create rules for spe-
cific situations, like when two agents are in front of the goal and the agent in
possession of the ball needs to decide whether to keep the ball or to pass it to
his teammate. Rule p5 represents this situation:

〈ppasser
5 ; has-role(t, receiver) ∧

in-front-of-goal(agent) ∧
in-front-of-goal(t) ∧
has-better-chance-of-scoring(t, agent) ∧
not-pass-blocked(agent, t, dir) ∧
aagent = pass-to(t, dir) : u(agent, t, dir)〉
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There are two new state variables in this rule: in-front-of-goal(agent) re-
turns true if agent is in front of the goal, i.e. in the opposing team’s goal area,
and has-better-chance-of-scoring(t, agent) compares the chances of scor-
ing of agents t and agent, returning true if agent t has a better chance of scoring
than agent. This rule states that if a teammate has a better chance of scoring
than the agent in possession of the ball, and the pass is not blocked, then the
agent should pass the ball. If no teammate has a better chance of scoring, this
rule will not apply and another course of action will be taken (like the agent
trying to score himself).

Our next set of rules describes defending. In defending it is very important that
all defenders coordinate their actions such that any defender, at any given time,
is backed by a teammate. Rules p6 and p7 define the actions available to the
defender closest to the opponent in possession of the ball:

〈pactive defender
6 ; has-ball(o) ∧

can-tackle(agent, o) ∧
aagent = tackle(o) : u(agent, o)〉

When the agent is close enough to the opponent in ball possession to attempt a
tackle, then he should attempt to tackle. We introduce two new state variables
in this rule: has-ball(o) determines whether o is in possession of the ball, and
can-tackle(agent, o) returns true if agent is close enough to o to attempt to
tackle. The action tackle(o) should speak for itself.

If the agent is not close enough to the opponent to attempt a tackle, rule p6

does not apply. Rule p7 states that in this situation the agent should position
himself between the opponent and the goal:

〈pactive defender
7 ; has-ball(o) ∧

aagent = mark-line(o, goal) : u(agent, o)〉

The new action mark-line(o, goal) causes the agent to take a position along
the line between the opponent o and the goal.

The next rule determines the action for a passive defender:

〈ppassive defender
8 ; has-ball(o1) ∧

marks(agent, o2) ∧
not-pass-blocked(o1, o2, center) ∧
not-offside(o2) ∧
aagent = mark-line(o2, o1) : u(agent, o1, o2)〉

When a pass is possible between the opponent in possession of the ball (o1) and
the opponent agent is marking (o2), then agent should move to a position along
the line between o2 and o1, preventing the pass. Note that in the state variable
not-pass-blocked(o1, o2, center), the dir variable is instantiated to center.

41



This is because we assume that our opponent does not use (the same set of) CG
rules to determine their actions. Therefor we cannot assume that o2 will move
to the direction o1 would be passing to if he did use our CG rules.

In every other situation, it should suffice that the defender moves to his strategic
position:

〈ppassive defender
9 ;

aagent = move-to-strategic-position() : u(agent)〉

The sweeper should cover the other defenders if they move to engage an oppo-
nent player:

〈psweeper
10 ; has-role(t, active defender) ∧

has-ball(o) ∧
at = tackle(o) ∧
aagent = mark-line(goal, o) : u(agent, o)〉

And move to his strategic position otherwise:

〈psweeper
11 ;

aagent = move-to-strategic-position() : u(agent)〉

Our last set of rules describes the default actions for each role, as well as deal
with some very simple situations. Rule p12 states that if the agent in possession
of the ball has space in direction dir, he should dribble in that direction:

〈ppasser
12 ; is-empty-space(agent, dir) ∧

aagent = dribble-to(dir) : u(agent, dir)〉

And when the agent in possession of the ball is in front of the goal, he should
try to score:

〈ppasser
13 ; is-in-front-of-goal(agent) ∧

aagent = score() : u(agent)〉

Note that when another rule yields a greater utility (e.g. when another agent
has a better chance of scoring (rule p5), or a pass is possible (rule p1), the agent
will chose the action resulting from that rule instead of trying to score.

Rule p14 represents the situation where the agent in possession of the ball has
a chance of beating a defender by dribbling past him:

〈ppasser
14 ; is-engaging-defender(o) ∧

has-chance-to-dribble-past(agent, o, dir) ∧
aagent = dribble-to(dir) : u(agent, o, dir)〉
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We introduce two new state variables: is-engaging-defender(o) is somewhat
like assigning a role to an opponent player. A player is an engaging defender if
he is close to the player in ball possession, and trying (or going to try) to take
the ball from that player. Has-chance-to-dribble-past(agent, o, dir) returns
true if the chance that agent can beat the defender o by dribbling in direction
dir is above a pre-defined threshold.

The roles interceptor and passive have only one action choice. If the agent is
an interceptor, he should intercept the ball (i.e. try to get ball possession):

〈pinterceptor
15 ;

aagent = intercept() : u(agent)〉

If the agent is passive, he should move to his strategic position:

〈ppassive
16 ;

aagent = move-to-strategic-position() : u(agent)〉

5.3 Implementation

In implementing the CG algorithm and our soccer rules to enable the UvA
Trilearn Team to make use of them, we decided upon the following two qualities
we felt were desirable in such an implementation:

• Speed. In the Soccer Server, one cycle of a match has a length of 100
milliseconds. In these 100 milliseconds, all agents have to update their
world model, determine their next action, and finally send their actions
back to the Soccer Server. The execution of the CG algorithm should
take place during the phase in which the agent determines his next action.
At times, due to the asynchronous implementation of the Soccer Server,
an agent determines his action twice per cycle. From the experiments
performed in Chapter 5 of [de Boer and Kok, 2002] it shows that the CG
algorithm has less than 8 milliseconds to complete3.

• Flexibility. We wanted it to be easy to change an existing rule, or add new
rules, without having to recompile our agent program. This would allow
us to change the strategy of our team depending on the opponent team
during competitions by either changing the rulebase or loading an entirely
different one. Also, we wanted it to be (relatively) simple to extend the
set of state variables, or to add new actions. Since the state variables and
actions map to functions within the agent program, having to recompile
the program after adding either one of these was inevitable.

3The experiments in Chapter 5 of [de Boer and Kok, 2002] were performed on an AMD
Athlon 700Mhz machine with 512MB of RAM.

43



5.3.1 Rules

To achieve the level of flexibility we desired, we decided to code our rules using
XML [Morrison, 2001]. XML, or eXtensible Markup Language, is rapidly be-
coming the industry standard for the encoding and communication of data. It
allows the creation of custom tags that describe the content held between these
tags. For example, the XML line

<color>red</color>

would describe red as being a color. Tags start with ‘<’ and end with ‘>’. A tag
starting with a forward slash (‘/’) is called an end tag, indicating the end of the
content. Each start tag must have an end tag.

One of the characteristics of XML is that documents created in XML must
adhere to a very strict structure. This structure is defined in the header of
the documents, in what is called the Document Type Definition, or DTD. The
DTD describes the elements (the tags) that appear in the document and their
relation. For example:

<!ELEMENT soccerteam (player+)>
<!ATTLIST soccerteam name CDATA #REQUIRED>
<!ELEMENT player (#PCDATA)>

The above DTD defines a soccerteam as consisting of one or more (the ‘+’ sign)
players. ATTLIST describes the attributes for our soccerteam. In this case, it
has the attribute name, which holds the name of the team, as CDATA (regular
text). #REQUIRED makes sure that the name attribute cannot be omitted. It
then defines a player as #PCDATA. #PCDATA stands for Parsed Character Data,
which has the same meaning as CDATA, except that the first is considered content
and the latter is considered as the value of an attribute. In the case of a player,
#PCDATA could be the shirt number of a player, or a player’s name, or anything
else we feel is descriptive enough. Using the above DTD, we can create a
document describing the Dutch national soccer team in 1970, as follows:

<soccerteam name="Dutch National Team">
<player>Johan Cruijff</player>
<player>Wim van Hanegem</player>
<player>Johnny Rep</player>

.

.
</soccerteam>

The above example shows another advantage of XML: readability. Without
knowing the DTD of the document, almost anyone that reads the above example
can surmise what the meaning of the various tags and their content is. This is
part of the reason why XML is so well suited for the encoding of data. For our
purposes, yet another advantage is that a great number of generic XML parsers
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exist. These parsers run on most different platforms, so researchers may use the
platform of their choice (e.g. Windows or Linux) for their implementation.

<!DOCTYPE rule_base [
<!ELEMENT rule_base (var-type+, rule+)>
<!ELEMENT var-type (value+)>
<!ATTLIST var-type name CDATA #REQUIRED>

<!ELEMENT rule (context, value)>
<!ATTLIST rule ID CDATA #REQUIRED>

<!ELEMENT context (state+, action+)>
<!ELEMENT state (function, arguments)>
<!ELEMENT action (function, arguments)>
<!ELEMENT function (#PCDATA)>
<!ELEMENT arguments (agent_id|role|direction)+>
<!ELEMENT agent_id (#PCDATA)>
<!ELEMENT role (#PCDATA)>
<!ELEMENT direction (#PCDATA)>

<!ELEMENT value (#PCDATA)>
]>

Figure 5.2: The Document Type Definition for our soccer rules.

Figure 5.2 shows the full DTD for our soccer rules. The DOCTYPE tag defines
a name for our DTD, in this case rule base. Then we define our tags. Our
outermost tag is rule base, which consists of one or more elements of type var-
type and one or more rules. The var-type elements define the possible values
for each variable type. The name of this type (e.g. role, see Section 5.2.2) is
an attribute as defined in ATTLIST. The possible values for each variable type
are defined by a number of value tags, which are defined at the bottom of our
DTD. Figure 5.3 shows the definition of the role variable type.

<var-type name="role">
<value>interceptor</value>
<value>passer</value>
<value>receiver</value>
<value>passive</value>

</var-type>

Figure 5.3: Definition of the role variable type.

We then define our rules to contain a context and a value. The context, in
turn, contains both state and action tags. These map to the state variables
and actions as described in Section 5.2.3. The identifier (ID) for each rule is
defined as an attribute. These identifiers are the same as the numbers of the
rules in Section 5.2.3. The definitions of the state and action tags are identical:
both contain a function (e.g. has-role or move-to) and its arguments. The
arguments are defined by their type, which is one of agent id, role, or direction.

45



Figure 5.4 shows an example definition of a state variable in which the role
passer is assigned to agent j.

<state>
<function>has-role</function>
<arguments>
<agent_id>j</agent_id>
<role>passer</role>

</arguments>
</state>

Figure 5.4: Assigning the role passer to agent j as a state variable.

5.3.2 Classes

A characteristic of XML is the ease in which tags map to C++ classes. To
store the information from our XML document in a way that can be used in
the CG elimination algorithm, we have defined a number of relatively simple
classes that map closely to the tags we defined in our XML document’s DTD.
We defined the following classes:

• Argument represents the parameters as passed to a state variable or action.
It contains a value and a type variable indicating the variable type of value
(i.e. one of agent id, role or direction).

• State represents the state variables and actions of our rules. The class
has four memeber variables: type, which indicates whether the State vari-
able is an action or a state variable, function, which holds the name of
the function (e.g. move-to or has-role), stateIsTrue, which allows us to
define negated state variables (e.g. not-offside), and a vector of Argu-
ment variables, the parameters of function. It also contains two member
functions, makeTrilearnContext and makeTrilearnAction, which return a
context or an action in a format that can be used by the CG elimination
algorithm discussed in Section 5.3.4.

• Context is defined as a vector of State variables to represent the fact
that it may contain one or more state variables and actions. It contains a
member function addState to add a state variable or action to the context.
It also contains a member variable, instMap, which is used by another
member function, instantiate. This function is used to generate contexts
that contain only instantiated variables from a context with uninstantiated
variables.

InstMap holds each variable in the context, along with its possible values.
When adding a variable to instMap, it is checked whether the variable is
instantiated. If it is, then it is added to instMap with itself as its only
possible value. If it is not instantiated, it is added to instMap, and all
its possible values are read from domainMap, a member variable of the
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Figure 5.5: UML diagram of the classes defined for the XML parser.

RuleBase class. For example, north is an instantiated variable, and thus
is added to instMap with itself as its possible value. Dir is uninstantiated,
so it is added to instMap with all nine directions (see Section 5.2.2) as its
possible values. When called, the instantiate function will loop through
instMap, creating a context for every possible combination of values, thus
resulting in contexts that hold only uninstantiated variables.

• Rule represents the coordination rules we defined in our XML document.
Similar to the definition in the Document Type Definition, the Rule class
contains two member variables: a Context and a value. Also, it contains a
function makeTrilearnValueRule, that calls the makeTrilearnContext and
makeTrilearnAction member functions of State to map the content of a
Rule to a format that can be used by the CG elimination algorithm.

• RuleBase is our main class. It is defined as a vector of Rule variables. Be-
sides a number of functions to show the curent content of the rulebase it
contains two member variables: nrOfRules holds the number of rules cur-
rently in the rulebase, and domainMap holds all variable types and their
possible values. This information is read from the XML tags var-type in
the XML document. As discussed above, domainMap is used to generate
contexts (and thus rules) that contain no uninstantiated variables.

The first member function of RuleBase, addDomain, handles the setting
of the domainMap variable. The second member function, addRule, takes
two parameters, a Context (or a vector of Context variables) anda value,
and adds these to the rulebase as a new rule. Consequently, the nrOfRules
variable is updated to reflect the new number of rules in the rulebase.

Figure 5.5 shows the Unified Modeling Language (UML) diagram for our classes.
UML is a language for specifying, visualizing, constructing and documenting the
artifacts of a software system [Rumbaugh et al., 1999]. UML supports nine dif-
ferent types of graphical diagrams, one of which is the class diagram used in
Figure 5.5. Classes are represented by rectangles which are divided into three
rows. The top row contains the name of the class, the middle row contains a list
of attributes for the class (the member variables), and the bottom row contains
the operations defined for these attributes (the member functions). Relation-
ships between classes are indicated by different kinds of arrows which indicate
the kind of relation. In Figure 5.5 the only relation used is the composition rela-
tion. This means that one class is part of another (e.g. the Rule class is part of
the RuleBase class, since a rulebase consists of one or more rules.). Multiplicity
notations are placed near the arrows. These indicate the number of instances
of one class linked to one instance of another class. For example, one RuleBase
may contain one or more (1..*) instances of Rule.
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Figure 5.6: UML diagram of the classes defined in the UvA Trilearn Team’s
implementation of the CG algorithm.

5.3.3 Parser

To parse our XML rules we used the Expat4 parser. We chose to use this parser
because it has built-in support under Linux. Expat is a so-called non-validating
parser, which means that it does not check whether the XML rules presented to
it are well-formed with respect to the Document Type Definition. This allows
for faster parsing.

Expat parses XML using an event-driven approach. This means that, while
reading an XML document, certain situations (e.g. the reading of an end tag)
will trigger the calling of the function linked to that event. Commonly, there
are three events that are required to be handled by the appropiate function:
the reading of a starting element5, the reading of an end element, and the
reading of character data. In our implementation, these events were handled
by the startElement, endElement, and charElement functions, respectively. The
pseudo code for the XML parser is depicted in Algorithm 5.1.

• startElement handles the processing of start tags. It’s main tasks are
setting the currentTag variable to the current tag being processed and
processing the attributes of that tag, if any. Depending on the current
tag, it performs the appropiate action.

• endElement handles the processing of end tags. Depending on the value of
the currentTag variable, it stores the data initialised by the startElement
and charElement functions in the appropiate data structures (as described
in Section 5.3.2), thus building up the rulebase for use by our agents.

• charElement basically handles everything else. It processes and stores the
names of functions and variables to be later on processed by the endEle-
ment function.

4http://www.jclark.com/xml/expat.html
5Expat uses the term element instead of tag.
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State variables

has-role CONTEXT HAS ROLE

not-pass-blocked CONTEXT PASS NOT BLOCKED

is-empty-space CONTEXT EMPTY SPACE

in-front-of-goal CONTEXT IN FRONT OF GOAL

not-offside CONTEXT NOT OFFSIDE

Actions

move-to COORDACT MOVE dir6

COORDACT HOLD

pass-to COORDACT PASS

move-to-strategic-position COORDACT GOTO STRAT POS

intercept COORDACT INTERCEPT

dribble-to COORDACT DRIBBLE

score COORDACT SCORE

Table 5.2: The possible state variables and actions and their mapping to Trilearn
contexts and actions. The left column shows the state variables and actions de-
fined in our implementation, the right column shows the corresponding contexts
and actions used by the UvA Trilearn Team.

5.3.4 Mapping

Our implementation of the XML parser and the classes used focussed on clarity
rather than speed. Parsing the XML rules and building the rulebase is done
only once, in the beginning of the agents’ program, and thus speed was of little
importance.

However, the generic CG algorithm that was used by the UvA Trilearn Team
during the RoboCup World Championships in Padova was built to be fast, which
resulted in the use of a different class architecture [Kok et al., 2003]. Therefore
it was necessary to create a mapping from our implementation as discussed
in Sections 5.3.1, 5.3.2, and 5.3.3 to the implementation used by the Trilearn
Team. This resulted in the makeTrilearnValueRule function, which in turn calls
the makeTrilearnContext and makeTrilearnAction functions. The pseudo code
for these three functions is given in Algorithm 5.2.

The UvA Trilearn Team’s implementation of the CG algorithm defines three
classes. The UML diagram for these classes is shown in Figure 5.6.

• ValueRule represents a rule in the coordination graph, and contains a
value, a vector of Context variables, and an array mapActions which con-
tains an Action for each agent involved in the rule.

• Context defines a state variable and its parameters. The possible state
variables are shown in Table 5.2. An example context might look like
this:

6Dir denotes one of the following directions: NORTH, NORTHEAST, EAST, SOUTH-
EAST, SOUTH, SOUTHWEST, WEST and NORTHWEST. The direction CENTER results
in COORDACT HOLD.
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Context( CONTEXT HAS ROLE, 1, -1, DIR ILLEGAL,
ROLE PASSER )

In this context agent 1 has role passer. The third and fourth parame-
ters (a second agent and a direction) are not used and are set to -1 and
DIR ILLEGAL. Compare this to Figure 5.4, which describes the same
context but with j uninstantiated.

• Action defines the possible actions for an agent and its parameters. The
possible actions are shown in Table 5.2. An example action might look
like this:

Action( COORDACT PASS, 4, DIR NORTH )

The agent executing this action will pass to agent 4 in the direction north.
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global tmp
global currentTag = the tag being processed
global rulebase = the rulebase to be created

{ startElement function }
set currentTag to the current tag being processed
if currentTag == var-type then

add the value of the name attribute to tmp
else if currentTag == state then

clear tmp
else

continue processing
end if

{ endElement function }
local context = the context of the rule being processed

if currentTag == var-type then
{ tmp contains the variable name and its possible values }
add tmp to the domain map of rulebase
clear tmp

else if currentTag == state then
{ tmp contains the function name and its arguments }
add the state defined by tmp to context
clear tmp

else if currentTag == action then
{ tmp contains the action name and its arguments }
add the action defined by tmp to context
clear tmp

else if currentTag == rule then
{ tmp contains the rule’s value }
{ context contains the uninstantiated context of the rule }
call instantiate on context
add the resulting instantiated context and tmp to rulebase as a new rule
clear tmp
clear context

else
continue processing

end if

{ charElement function }
local str = the string being processed

if currentTag == value, function, agent id, role, or direction then
add str to tmp

else
continue processing

end if
Algorithm 5.1: Pseudo code for the XML parser.
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{ makeTrilearnValueRule function }
local rule = the rule being processed
local trilearnV alueRule = a rule in the format of the CG algorithm
local trilearnContext = the context used to create trilearnV alueRule
local trilearnActions = the actions used to create trilearnV alueRule

for all states in rule.context do
if state.type == “state” then

call state.makeTrilearnContext
add the resulting state variable to trilearnContext

else if state.type == “action” then
call state.makeTrilearnAction
add the resulting action to trilearnAction

end if
end for
create trilearnV alueRule
return trilearnV alueRule

{ makeTrilearnContext function }
create trilearnContext depending on state.function (see Table 5.2)
return trilearnContext

{ makeTrilearnAction function }
create trilearnAction depending on state.function (see Table 5.2)
return trilearnAction

Algorithm 5.2: Pseudo code for the functions mapping our classes to the
Trilearn Team’s implementation of the CG algorithm.

52



Chapter 6

Experiments and Results

In this chapter we describe the experiments we did to test the effects of our
extensions to the UvA Trilearn Soccer Simulation Team. Section 6.1 describes
a simple experiment to show the effect of the extra y parameter on the space
available to the Trilearn Team. Section 6.2 describes the various experiments we
did related to coordination. In Section 6.2.1, we describe the experiment we did
to determine the effect of changing the utilities of our value rules on our agents’
behavior. In Section 6.2.2, we describe the experiments we did to determine the
effects of coordination on our players’ passing behavior. Finally, in Section 6.3,
we look at the execution time of the CG algorithm and determine which factors
influence this time. We further show whether the CG algorithm is fast enough
to be used in the RoboCup competition.

6.1 Space

Our first experiment aims to show the effects of the extra y parameter in the
UvA Trilearn Team’s formation file. As mentioned in our discussion of the
extra y parameter in Section 5.1, it was introduced to create ‘width and depth’
in the team’s use of the soccer field, thus increasing the space available to
the players. In this experiment we compare the avarage space available to the
UvA Team during several soccer matches. In half of the matches the extra y
parameter is used, in the other half it is set to zero and thus is ignored.

Recall the definition of space from Section 3.3.2:

“. . . space on a soccer field is the gaps between and around oppo-
nents, the areas on the field that hold no players of the opposing
team.”

Using this definition, we calculate the space available to the UvA Team as
follows: First we draw an imaginary rectangle around our players. The extremes
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of this rectangle are the left-most player, the right-most player, the forward
nearest to the opponent goal and the goalkeeper. The area around the rectangle
is also space, but since there are no players in it, it is useless to our team and
thus is not taken into account when calculating the space available to our team
[Catlin, 1990].
We then draw circles around the opponent players within the rectangle. The
radius of these circles we defined to be the distance a homogenous player may
cover in the space of one cycle. We subtract the area of each of these circles
(taking into account possible overlapping circles and circles not completely inside
the rectangle) from the area of the rectangle. The resulting number is the space
available to our players (for illustration, see Figure 6.1).

Figure 6.1: Example of how space was calculated during Experiment 1. The
space available to our team is indicated in a darker green color.

In our experiment, we first set up the UvA Trilearn team to play three matches
each against three different opponents, without using the extra y parameter
(i.e. with it set to zero), and calculated the average space available to our team,
as described above. We then repeated this while using the extra y parameter.
The results are shown in Table 6.1.

The results in Table 6.1 show that the addition of the extra y parameter has
the desired effect: the average space available to our team increases. However,
this result is only part of what we tried to achieve. By spreading out our players,
we wanted to force the opposing team to do the same, resulting in larger gaps
between their players, and their defense in particular. This effect cannot be
surmised from the results in Table 6.1. While the average number of goals
scored in a match did not decrease, neither did it increase due to a possibly
weakened defense.

There are several explanations to why using the extra y parameter did not
have the desired effect. Firstly, the opponent teams we played against during
the experiment did not respond to our players spreading out as we had wished.
Therefore their defense remained the same as in the situation where we did not

1The average space taken over all matches (i.e. the average space calculated over 54.000
cycles).
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not using extra y using extra y

team name score avg. space % score avg. space %

FC Portugal 10 - 0 37.04 (± 6.85) 10 - 0 39.35 (± 8.33)

10 - 0 36.39 (± 7.23) 8 - 0 38.70 (± 7.73)

6 - 0 39.45 (± 6.40) 6 - 0 39.85 (± 8.25)

YowAI 11 - 0 36.90 (± 5.35) 14 - 0 39.43 (± 4.61)

7 - 0 36.78 (± 5.38) 11 - 0 38.40 (± 5.26)

12 - 0 37.49 (± 5.49) 10 - 0 39.43 (± 4.61)

AT Humboldt 23 - 0 34.86 (± 8.48) 21 - 0 35.71 (± 8.96)

24 - 0 34.85 (± 8.27) 18 - 0 36.85 (± 8.44)

23 - 0 33.68 (± 8.06) 22 - 0 36.08 (± 8.75)

avg. space %1 36.38 (± 6.83) 38.20 (± 7.21)

Table 6.1: Results for Experiment 1. Note that each match lasts 6000 cycles,
and the average space is calculated over each cycle.

use the extra y parameter. While our attackers were, in most cases, better able
to set up attacks from the wings, they were not more effective compared to the
original configuration.

Another explanation is that to make the most of the effect of the extra y pa-
rameter, its values should be adapted to the playing style and formation of each
individual opponent. This requires either an extensive knowledge of those op-
ponents or the careful analysis of their playing style in earlier matches, or both.
Due to time constraints we were unable to use either approach, thus limiting
the effect of the extra y parameter by using a fixed configuration throughout
the experiment.

Finally, the changes to the extra y parameter were kept deliberately small. Our
belief was that changing the extra y parameter too greatly would result in a loss
in performance. This is because the distances between our players would become
too great, and thus the chance for a successful pass would become smaller.

6.2 Coordination

In our second experiment we aimed to show the effects of using the CG algorithm
and the rules we defined in Section 5.2 within the UvA Trilearn team. For this
experiment we selected a subset of the rules from Section 5.2.3. We converted
these rules to XML as described in Section 5.3.1.

In our rulebase, several rules have a value of -1. The values of these rules, which
involve passing and player movement, are computed in real time. The other
rules have constant values. Note that the rules involving the interceptor and
passive roles (rules 14 and 15) have a value of 1.0, to indicate that these rules
should always be executed by the players with the appropiate roles. This is quite
natural, since we do not want an interceptor to do anything else but intercept
the ball, and we do not want a passive player to do anything but move to its
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strategic position. Likewise, rule 12, in which a player in front of the goal tries
to score, also has a value of 1.0. Finally, rule 11 has a value of 0.95. Because
of the nature of the values computed in real time, this means that an agent
that has the role passer will choose to dribble (if the context allows the rule) if
he cannot pass in the directions north, north-east, or north-west of one of his
receivers. This causes an emphasis on dribbling in the behavior of our players.

After instantiation, the 7 rules in our XML rulebase amount to 274 rules in
total.

6.2.1 Experiment 1: Utilities

In the first part of the experiment we wanted to show the effect of changing the
utilities of our value rules on the overall behaviour of our players. Using the rule-
base and utilities as described above, we set up the UvA Trilearn Team to play
against a team called De Meer 5. This team is one of the earlier versions of the
UvA Trilearn Team and is described in Section 9.5.1 of [de Boer and Kok, 2002].
De Meer 5 is not a strong team with respect to the teams available at the time
of writing this thesis (the difference, for example, with the UvA Trilearn Team
that won the World Championship in Padova is quite stunning), but in the light
of our expectations and aims in this experiment, the team’s performance was
sufficient.

We played our team against De Meer 5 for five full matches, and calculated
how many times each action (see Table 5.2 for the complete list of actions)
was selected by each player type. The results of our calculations is shown in
Table 6.2.

It is clear to see that most of the action took place in the offensive zone of
the field. The defenders (player types 2, 3, and 4) did little more than move
to their strategic position, which indicates that they were assigned the role
passive for most of the match. Looking at the midfielders and forwards, a
greater emphasis is on passing and intercepting. Especially noteworthy is the
high percentage of dribbling by the wing attackers. A favorite strategy of our
team was to pass the ball to the wings, who would dribble past the defenders
(and, unfortunately, often past the end-line, as well, due to the fact that only
dribbling in the direction north was defined) and pass the ball back to the
central attacker.

In the second part of the experiment we changed the utility of rule 11, the rule
that defines the dribbling behaviour of our players, to 0.5. The resulting action
percentages, calculated again over five full matches against De Meer 5, are shown
in Table 6.3. As expected the overall amount of dribbling decreases, while there
is an increase in the pass-related actions move-to, pass-to, and intercept.
Also, looking at the percentages for the move-to-strategic-position action,
the activity on the field is spread more due to the fact that passing backwards
now yields an higher utility than dribbling forwards.

These results show that changing the utilities of the various rules results in
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action %

pl. type move-to pass-to dribble-to intercept score strat.-pos.

2 3.48 0.58 0.28 2.59 0.00 93.07

3 4.81 0.70 0.74 3.35 0.00 90.40

4 6.53 0.78 0.97 2.70 0.00 89.02

5 27.86 2.07 1.47 5.71 0.01 62.88

6 17.39 1.41 1.41 5.11 0.02 74.65

7 24.88 3.27 6.78 9.96 0.12 55.00

8 26.33 3.41 2.06 7.82 0.01 60.36

Table 6.2: The first set of results from Experiment 1.

action %

pl. type move-to pass-to dribble-to intercept score strat.-pos.

2 6.45 0.73 0.00 2.94 0.00 89.88

3 3.91 0.52 0.22 2.18 0.00 93.17

4 12.16 1.96 3.00 5.96 0.00 76.93

5 19.57 2.06 0.00 4.99 0.00 73.39

6 21.85 1.97 0.92 6.46 0.00 68.81

7 20.09 3.27 2.27 8.35 0.00 66.02

8 31.59 2.90 1.34 5.91 0.00 58.27

Table 6.3: The second set of results from Experiment 1.

different behavior of our players on the field. Since the changes were made
solely in the XML document describing our rules, this also shows that our aim
of flexibility has been realized, at least in the aspect of changing the behavior
of our soccer player by changing the utilities of our rules.

6.2.2 Experiment 2: Passing

In our second experiment we observed the passing behaviour of our agents. We
used the same rulebase as used in the first part of Experiment 1.

We played ten games against ourselves, with one team using coordination and
the other without using coordination in passing. The former team used the
full rulebase, while the latter used the rulebase with rule 1 edited to remove
the receiving player’s move-to action. In this way, the coordination between
passer and receiver was removed, disabling the ability for the receiving player
to ‘think ahead’ on the action of the passer as discussed in Section 5.2.3 while
describing the passing rules. For the same reason, rules 2 and 3 were removed.
After instantiation, the rulebase for the non-coordinating team consisted of 94
rules.

Table 6.4 clearly shows the effect of coordination on the passing behavior of
our agents. The successful passing percentage for the team using coordination

2The percentage the ball was on the offensive half of the field.
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using coordination no coordination

wins 8 0

draws 2 2

losses 0 8

avg. score 1.80 (± 1.40) 0.00 (± 0.00)

possession % 53.78 (± 3.95) 46.22 (± 3.95)

passing % 88.53 (± 1.90) 60.62 (± 4.56)

ball pos. %2 66.86 (± 5.58) 33.14 (± 5.58)

Table 6.4: Results of ten games against ourselves, with and without coordination
in passing.

was 88.53%, where the percentage of successful passes for team that did not
use coordination was 60.62%. The number of passes for each team did not
differ much. Another apparent effect of using coordination in passing is shown
by the ball position percentage: two thirds of the match the ball was in the
offensive half of the team using coordination, which resulted in more scoring
opportunities (and consequently more goals) for that team.

Also, to see how our team would hold against different opponents, we played
our team for five full matches each against de Meer 5 and the UvA Trilearn
Team that was used during the World Championships in Fukuoka in 2002. We
generated the successful passing percentages and ball possession percentages
using ProxyMike, a program that analyzes games played through the logplayer,
generating a wide range of statistics.

using coordination no coordination

de Meer 5 UvA Fukuoka de Meer 5 UvA Fukuoka

wins 4 5 2 5

draws 1 0 3 0

losses 0 0 0 0

avg. score 2.00 (± 1.41) 5.57 (± 3.15) 0.40 (± 0.49) 5.80 (± 1.60)

possession % 70.14 (± 1.47) 57.27 (± 4.15) 66.40 (± 1.39) 54.93 (± 1.60)

passing % 89.45 (± 0.73) 93.11 (± 1.24) 71.39 (± 2.78 ) 85.37 (± 2.47)

ball pos. % 84.23 (± 1.83) 75.89 (± 7.38) 49.51 (± 7.29) 74.45 (± 3.93)

Table 6.5: Results of five games each against two different opponents, with and
without coordination in passing.

The first thing to note in Table 6.5 is that against de Meer 5, although the ball
possession percentage was much higher than that against the Fukuoka team, our
team was not able to score as much. This is due to a difference in playing style
in the defense between de Meer 5 and the Fukuoka team. De Meer 5 plays much
more aggressively, hunting the ball as opposed to waiting for it. The defense
of the Fukuoka team is more stationary, waiting for the ball to get close while
positioning itself strategically between the ball and the goal, and the forwards
and the goal. In this situation the advantage of coordination becomes clear: by
knowing where the pass will arrive before it is made, our players were able to cut
through the defense of UvA Fukuoka quite easily, resulting in a large number of
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goals. Our team was less successful against the defense of de Meer 5, who left
us with less room to move in and less time to move into a strategic position.
When we compare the scoring results against UvA Fukuoka using coordination
and without using coordination, there is practically no difference. This is due
to the fact that dribbling in the UvA Trilearn team is very well developed.
Thus, if a player would pass the ball in front of the defense, the receiving player
could make use of the space created by one of the defenders moving to block
the passer to dribble past the defense. This tactic clearly does not work against
the aggressive defense of de Meer 5.

Looking at the successful passing percentages, we notice a greater drop in per-
formance when using no coordination against de Meer 5 than against UvA
Fukuoka. This again can be ascribed to the aggressiveness of de Meer 5. When
the passing performance is lower, an aggressive team will be able to intercept
the ball more often compared to a less aggressive team. This also resulted in de
Meer 5 being able to pressure our team more when we did not use coordination,
resulting in the change in ball position percentage and the greater amount of
drawn games.

From the experiments described above, we first conclude that using coordination
in passing results in a better performance of our team. Our team makes fewer
mistakes in passing, and thus is able to pressurize the opponent team, resulting
in more wins. What we also have seen is that using coordination in passing is
relatively more successful against teams that deploy a stationary defense that
is less aggressive in hunting the ball. While the increased ball possession is no
surprise in this situation, the ability to cut through the defense by ‘thinking
ahead’ on the passes gives our team a distinct advantage and more chances of
scoring against these kind of teams.

6.3 Execution Time

Throughout the experiments described in Section 6.2, we have measured the
execution times of the different processes of the CG algorithm. We wanted to
determine which factors influenced the total execution time of the CG algorithm,
and whether the algorithm would be fast enough to be usable in the various
RoboCup competitions.

Table 6.6 shows the execution times for the various processes of the CG algo-
rithm with a rulebase of 274 rules for each agent. This was the case when our
team used coordination in passing. Even with 274 rules, the average execution
time of the CG algorithm is 5.7230 milliseconds. When we recall that accord-
ing to the experiments performed in Chapter 5 of [de Boer and Kok, 2002] the
CG algorithm has 8 milliseconds to complete, we can conclude that, using this
rulebase, our CG algorithm would be fast enough to be used in the RoboCup
competitions.

To determine which factors contribute most to the execution time of the CG
3The games were played on a Pentium III 1000Mhz machine with 256MB of RAM.
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process avg. execution time (ms)3

assigning roles 0.0471 (± 0.0004)

context generation 1.1573 (± 0.0393)

updating context 1.8603 (± 0.0650)

updating values 0.0515 (± 0.0030)

elimination 2.6069 (± 0.3442)

total 5.7230 (± 0.4369)

Table 6.6: Average execution times in milliseconds for the different parts of
the CG algorithm during Experiment 2, calculated over 20 matches. The total
number of rules for each agent was 274.

algorithm, we compare the results in Table 6.6 with those shown in Table 6.7.
In this table, the execution times are calculated using a rulebase of 94 rules
for each agent, the rulebase used by our team during the part of Experiment 2
where our team used no coordination in passing.

process avg. execution time (ms)

assigning roles 0.0462 (± 0.0004)

context generation 0.9627 (± 0.1468)

updating context 0.3467 (± 0.0233)

updating values 0.0333 (± 0.0017)

elimination 0.4267 (± 0.0157)

total 1.8151 (± 0.1591)

Table 6.7: Average execution times in milliseconds for the different parts of
the CG algorithm during Experiment 2, calculated over 20 matches. The total
number of rules for each agent was 94.

Comparing Table 6.6 and Table 6.7, we note that there is practically no differ-
ence in execution time for the assignment of roles to our agents. This makes
sense, since for every situation the roles are distributed the same: one agent
gets either the passer or the interceptor role, two agents are assigned the re-
ceiver role, and the rest of the agents are passive. For the same reason there
is practically no difference in execution time for the generation of contexts. In
each match, more or less the same contexts apply, in more or less the same
distribution.

Updating the context is the first process that changes a lot when using a smaller
rulebase. This is because each rule in the rulebase must be checked against the
generated context to determine whether it applies or not. The grouping of rules
with respect to the agents’ roles, as we described in Section 5.2.3, has great
effect on the execution time of this process. Without grouping, each agent has
to update all rules for every agent. Using grouping, each agents only updates
the rules that belong to his role. Using grouping, the execution time for this
process is rougly 30 times faster.

Updating the values of the rules that survive updating the context is trivial
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again, taking very little time. Theoretically, the execution time depends on
the amount of rules in our XML document that require that their values are
computed during each cycle, but the difference is very small.

Lastly, the actual elimination algorithm takes the most time, as expected. The
execution time for the elimination of rules depends largely on the amount of
rules that survive updating the context, and the amount of rules therein that
involve other agents (e.g. rule 16, the only rule for the passive role, involves
no other agents and thus will not add much to the elimination time). As illus-
tration, Table 6.8 shows the number of applicable rules that survived updating
the context with the respective execution time for the elimination algorithm.
Note that the values in the bottom row are calculated where the team used no
coordination, and thus there are no rules involving other agents.

avg. applicable rules avg. elimination time (ms)

25.00 4.5251

18.70 (± 0.46) 2.6069 (± 0.3442)

10.75 (± 0.54) 0.4267 (± 0.0157)

Table 6.8: The average number of applicable values rules and the respective
execution time of the elimination algorithm. The values in the top row represent
a worst case scenario for the rulebase we used in our experiments.

In this table, the values in the top row were calculated by playing our team, using
coordination, against no opponent. In this way, most contexts were true, and
thus most rules survived updating the context, creating a worst case scenario
in terms of execution time. As we assumed that there would be practically no
variation in values over the course of several games, we calculated these values
over 750 cycles, which means that the CG algorithm was executed roughly
7500 times. As we calculated the standard deviation using several games, we
weren’t able to compute it for these values. It can be assumed, though, that
the deviation is very small.

For completeness, the complete table depicting the execution times in a worst
case scenario is given in Table 6.9.

process avg. execution time (ms)

assigning roles 0.0469

context generation 0.7822

updating context 2.5653

updating values 0.1212

elimination 4.5251

total 8.0406

Table 6.9: Execution times for the different processes of the CG algorithm in a
worst case scenario. The total number of rules for each agent was 274.
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6.3.1 Adding more rules

To see what effect a larger rulebase would have on the execution time of the
CG algorithm, we created a new rulebase by copying rule 1 and 3 eight times
each. Thus our XML document contained 16 rules, eight of which involved two
agents. After instantiation, the total number of rules for each agent was 1710.
The average number of applicable rules after updating the context was 24.

process avg. execution time (ms)

assigning roles 0.0288

context generation 0.5935

updating context 6.1769

updating values 0.1150

elimination 32.7752

total 39.6895

Table 6.10: Execution times for the different processes of the CG algorithm for
a larger rulebase. The total number of rules for each agent was 1710.

Understandably, the execution time for updating the context increases with the
larger number of rules for each agent. However, this increase is not very large
(a factor 2.4) with respect to the increase in the number of rules from 274 to
1710 (a factor 6.2).

Compared to the execution times in Table 6.9, the execution time for the actual
elimination process is much higher, while the average number of applicable
rules after updating the context is largely the same. This shows that, while the
execution time of elimination process does depend on the number of applicable
rules left, it depends also on the number of rules that involve 2 or more agents.
Where the rulebase used in Table 6.9 contained 1 such rule (rule 1), the rulebase
used in Table 6.10 contained 8 such rules (8 copies of rule 1). The execution
time is roughly 5 times higher.
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Chapter 7

Conclusions and Future
Work

7.1 Conclusions

Soccer is a complex game, and though its rules are well-defined, it is very hard
to create a mapping from real soccer situations to robotic soccer situations.
However, certain fundamental rules seem common in the decision process of
real soccer players. In this thesis, we have researched real soccer strategies and
situations to find these rules, and have used Coordination Graphs to implement
these rules into the UvA Trilearn Robotic Soccer Simulation Team.

Our main objectives were to convert and implement the real soccer rules we
found in such a way that both flexibility with respect to adding to and changing
rules and speed with respect to the execution time of the CG algorithm were
realized. From our experiments, we may conclude that to a certain extent we
have succeeded in both goals.

Coordination Graphs are a relatively simple and effective way to represent and
solve the coordination problem in multiagent systems. The research presented
in this thesis shows that CGs can be used in real-time, highly dynamic envi-
ronments. We have determined that the number of rules for each agent within
the CG does not influence the speed as much as the number of agents involved
in each rule, which advocates for keeping the rules as simple as possible. Our
research shows that even with relatively simple rules, complex behavior can be
defined.

7.2 Future Work

Future research based on this thesis can be divided into two sections:
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First, research may be done to further implement the CG algorithm and the
rules we presented in Section 5.2 into the UvA Trilearn team in particular and
robotic soccer teams in general. Due to a lack of time the experiments in this
thesis did not address using the coordination rules in the defense of the Trilearn
team, and we are curious to see the results of research in this area. Further, we
believe that some of our rules might be refined more, or new rules created, so
that a more controlled behavior might be specified.

Second, there are some interesting possibilities in the area of reinforcement learn-
ing that might be applied to CGs in general. Learning the utilities of the value
rules is one example. Another, more advanced example is the use of hybrid
systems1 to actually learn the rules used in the CG algorithm. Hybrid sys-
tems combine symbolic (rule-based) and connectionist (neural network-based)
approaches to solving problems, combining the strengths of both worlds. Also,
using CGs in other fields is an open field of research. Examples would include
traffic control, robot exploration, and many more.

1http://www.comp.nus.edu.sg/˜pris/HybridSystems/HybridSystemsIndex.html
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