Neural approaches in the approximation of eye-hand mapping
and the inverse kinematics function: A Comparative Study

Ferry van het Groenewoud

March 31, 1995

University of Amsterdam
Faculty of Computer Science

Contents

1 Introduction

1.1 Tackling the Problem
2 System Description
2.1 The Hardware. e e e e e
2.1.1 The OSCAR-6 Robot
2.1.2 The camera and end-effector L 0oL
2.1.3 Sun Workstations.
2.2 The Software e e e e e e e e
2.2.1 The Control Loop o o i e e e e e e
2.2.2 Creation of learning patterns oo 0oL
2.2.3 Prelearning L e
2.2.4 Quantizing the error L.
2.2.5 Adaptivity of the systemo
2.3 Non-nested approXimators v v v i vt i e e e e e e e e e e e
2.4 Nested ApproXimators v v v v v v i e e e e e e e e e e e e e e e e e
2.4.1 Thetreeconcept i i i i i e e e e e e
2.4.2 Propagating learning patternso L oL
2.4.3 Split and merge algorithm 0oL
244 BIns e e e e e e e
2.4.5 Adding pre-knowledge Lo
2.4.6 Issues on boundaries of the camera inputs
3 Neural Network Approaches
3.1 Non-nested approaches
3.1.1 Feed-forward networks L e
3.1.2 Kohonen networks e
3.2 The Nested Network Method
3.2.1 Attaching binstothetree oL
3.2.2 Training of approXimators v v it e e e
3.23 Results e e e e e
4 The Nested Perceptron Approach
4.1 Perceptrons e e e e e e e e e e
4.1.1 General least squareso e e e e e e e
4.1.2 Incremental propertyo
4.2 Attaching binstothetree L Lo
4.2.1 Using multiple perceptrons for one approximator

— -

O © ~J Ut U W W W W

16
16
16
16
17
17
19
19

CONTENTS

4.3 Avoiding the Input Adjustment Method 26
4.3.1 Modifications concerning learning patterns 26
4.3.2 Partially implicit subspace assignment 28
4.3.3 Modifications concerning branch numbers 28
4.3.4 Consequence on performance 29

4.4 Problems with the split and merge algorithm 29
4.4.1 Behavior of the split algorithm 000000 30
4.4.2 Merging nodes wrongly Lo 30
4.4.3 Limitations of the absolute merge algorithm 30
4.4.4 Limitations of the relative merge algorithm 31
4.4.5 Another wrong way to implement merge 33
4.4.6 An alternative way to implement merge 33

Performance of Nested approaches 35

5.1 Modifications to the Nested Network approach 35

5.2 Parameters influencing system behavior 000000 36

5.3 Performance of linear interpolation o000 L. 36
5.3.1 Results using the input adjustment method 36
5.3.2 Results without using the input adjustment method 48

Conclusion 58

Internals of the Software 60

A1 Thedatafiles 60

A.2 The configuration file. L 61

A3 Datastructures L. 65

A4 Complexity and internal mechanisms00 0L 67

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
4.1
4.2
4.3
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

5.12
5.13

5.14

Wired frame model of the OSCAR-6robot
The reach space of the OSCAR-6 robot
An image frame produced by the camera in the end-effector
Control scheme of therobot L o
Creating multiple learning patterns
Subdividing a two-dimensional spaceo L Lo

Feed-forward networks containing 25 and 45 hidden units
Kohonen network; Results of a 7x 7 X 7Xx 7 x 7network
A binary tree with virtual nodes and bins

Bin-sinking; moving bins after asplit o 0 L.
Moving bins after amerge Lo
Example of multiple perceptrons linked toanode

Results of learning F using the input adjustment method with split error 1-107% .
Results of learning F using the input adjustment method with split error 1-1075 .
Results of learning F using the input adjustment method; trials 0-3000.
Results of learning F using the input adjustment method and low split error; trials
0-3000 . . . o
Results of learning F using the input adjustment method; Camera rotation of 90
degrees. e e e e e e e e e e
Results of learning F using the input adjustment method; Camera rotation of 30
degrees. L e e e e e e
Results of learning F using the input adjustment method; Elongation of link 1 with
10 centimeters L L. e e e e e e e e
Results of learning F using the input adjustment method; Elongation of link 2 with
10 centimeters Lo e
Results of learning F using the input adjustment method; Elongation of link 2 with
-10 centimeters L. Ll L e e e e e e
Results of learning F without using the input adjustment method with split error
L1074
Results of learning F without using the input adjustment method with split error
11075
Results of learning F without using the input adjustment method; trials 0-3000 . .
Results of learning F without using the input adjustment method and low split
error; trials 0-3000 L e e e e e e e e
Results of learning F without using the input adjustment method; Camera rotation
of 90 degrees. L

iii

N © 00 O Ut i

18
19

24
25
27

42

43

44

45

46

47

49

50
51

53

iv

5.15

5.16

5.17

5.18

Al
A2

LIST OF FIGURES

Results of learning F without using the input adjustment method; Camera rotation

of 30 degrees. L e 54
Results of learning F without using the input adjustment method; Elongation of
link 1 with 10 centimeters e 55
Results of learning F without using the input adjustment method; Elongation of
link 2 with 10 centimeters 56
Results of learning F without using the input adjustment method; Elongation of
link 2 with -10 centimeters. L L e 57
Internal representation of a treeenode Lo oL L oL 66

Internal representation of a pattern-list. 67

A cknowledgements

This thesis could not have been written without the help, support and faith of many people. First
of all, I would like to thank Patrick van der Smagt for his assistence, suggestions and patience.
His brilliant views on the subject matter, his programming skills and remarkable cleverness have
impressed me a lot. Besides that, he also is a nice person to deal with and is equipped a great yet
subtle sense of humor. It was a pleasure to have him as my supervisor.

Many helpful suggestions were given by Prof. F.C.A. Groen and Dr. B. Krése, who among
other things invented the methodology to solve the problem at hand. Special thanks go to my
parents, who motivated me during the entire track, and to Barbara, my girlfriend, who helped
me in many ways. They sacrificed much of their spare time to make life easier for me. I also
appreciate their interest in my thesis, especially because it takes considerable effort to read with-
out background knowledge on the subjects of artificial intelligence and computer programming.
Without their invaluable support in countless ways, I could never have had this work done. I am
deeply indebted to them.

Ferry van het Groenewoud, Amsterdam, March 31 1995.

Chapter 1

Introduction

Kinematics deals with the science of motion. This science studies the motion without regard to
the forces which cause it. For instance, a study of the position, velocity and acceleration of an
object belongs to the domain of the kinematics. A robot consists among other things of a set of
joints and a set of links. The joint angles and the length of the links determine the position of
the end-effector. When the lengths of the links and the joint angles are known, the position of
the end-effector can be calculated. This is called the forward kinematics function. The problem
discussed in this thesis deals with the reverse problem. Given a position in the world space, a set
of joint angles is wanted that will make the robot’s end-effector reach this position. This is called
the inverse kinematics function.

In order to be able to solve equations of the inverse kinematics function the entire geometric
description of the robot has to be known in advance. Only when a very accurate description of the
geometrical properties of the robot is known, a target position in the world space can be reached
with high precision using the inverse kinematics function. Although this solution can be sufficient
in many cases, it is very inflexible. As soon as a link of the robot becomes deformed (for instance
after a collision) operator intervention is needed to adapt the equations or repair the robot.

Another property of the systems that are investigated in this thesis is that they are equipped
with vision. This adds to the complexity of the problem since the position of the target is initially
not known in world coordinates, but has to be determined using data that is retrieved from a
camera. The system not only has to learn how to move the end-effector from one point to another,
it also has to learn how the feedback of the camera should be interpreted. Hence the problem
can be described more accurately as eye-hand mapping, with the camera representing the eye,
the end-effector representing the hand and the mapping representing a system which handles the
eye-hand coordination.

1.1 Tackling the Problem

The method used to solve the eye-hand mapping discussed in this thesis is such that it learns to
determine the position of a target object in the world space and reach it without any knowledge
of the physical properties of the robot and with limited knowledge of the properties of the camera
beforehand. Also, the system is designed in such a way that it is able to adapt to changes that
may occur regarding the geometric description of the robot or in the representation of the world
space by the camera. This means that the system can adapt to exterior changes without operator
intervention. It is important that such adaption be fast, in order to make the resultant system of
interest for real-world applicability.

2 CHAPTER 1. INTRODUCTION

In order to be able to accomplish such a system, the robot has to receive feedback about its
state and actions. To fulfill this demand the robot is equipped with joint sensors. The accuracy
of the displacements towards the target object can be determined by combining the information
retrieved from the camera, which reveals the distance between the end-effector and the target
object, and the joint sensors which are used to determine the position of the end-effector. The
goal of the system is to reach the target object with the end-effector at a user-defined precision.
Specifically, the robot arm must be moved so as to get the target object in the center of the camera
image, having a predefined size as observed by the camera. The information that is retrieved by
the camera and the joint sensors is used to give the system feedback about how well its attempts
to reach the target object are proceeding. Furthermore, correct input-output pairs called learning
patterns are created with this information, which provides the system with points in the high
dimensional function it attempts to approximate.

In this thesis several methods to approximate the eye-hand mapping function are discussed
and compared with each other. Earlier results as investigated and described by Arjen Jansen [?],
using the Nested Network approach as well as other neural approaches are shortly discussed and
placed in perspective with results achieved with the Nested Perceptron approach which has been
investigated by us. Also, a look at the implementational aspects will be taken.

In chapter ?? the hardware setup as well as aspects of the software of the system will be
described. Earlier attempts to solve the eye-hand mapping in an adaptive way used several kinds
of neural networks: feed-forward networks with hidden units, Kohonen networks and the Nested
Network method. The latter method makes use of feed-forward networks with hidden units ar-
ranged in an hierarchical structure. The functionality and some of the results will be discussed in
chapter ??. The internals of perceptrons as well as the working of the Nested Perceptron approach
itself will be discussed in chapter ??. Just like the Nested Network approach it arranges networks
in a hierarchical structure. It differs in the fact that it uses perceptrons instead of feed-forward
networks to approximate the eye-hand mapping. A comparison between the several approaches
investigated by Arjen Jansen and the Nested Perceptron approach will be made in chapter ?7?.
An in-depth discussion of the software used to investigate the Nested Perceptron method and the
Nested Network method will be given in appendix 77.

Chapter 2

System Description

2.1 The Hardware

The hardware used to investigate several methods for solving the eye-hand mapping function
consists of the OSCAR-6 robot and a video camera. The hardware used to obtain simulation
results consisted of various Sun Workstations.

2.1.1 The OSCAR-6 Robot

The robot used for field-testing the system is the OSCAR-6 robot. During development a simulator
has been used [?] which simulates a robot which is geometrically equal to OSCAR-6. The OSCAR-
6 robot is a six degrees of freedom (DoF) Puma-like robot (see figure ??). Its exact geometric
properties are described in [?, Section 2.1]. The system described here is restricted to three DoF,
which is sufficient for a wide area of applications like pick-and-place operations.

Figure 7?7 defines which joint numbers and link numbers are assigned to the joints and links
of OSCAR-6. As one would expect from a six DoF robot, it is equipped with six joints. Note that
joint ¢ rotates around axis z;—1. The joint angle of some joint i will be denoted as ;. For the
assignment of joint numbers see also figure 77?.

The reach space of OSCAR-6 is depicted in figure ??. The shape of the reach an opened half
cylinder with a total volume of 533.6 cubic decimeters. It is bounded according to the following
parameters:

46 < Jz2+yZ < 93
0 < T < 93
—93 < y < 93
0 < z < 52

with z, y and z relative to the (z%,4°, 2°) coordinate system and expressed in centimeters.

2.1.2 The camera and end-effector

The robot is ego-centered, which means that the camera is placed in the end-effector. Since the
choice has been made to build a system that solves the eye-hand mapping for a three DoF robot,
constraints have to be made. These consist of:

e The value of joint 4 must always be zero to accomplish the choice that the end-effector has
to be perpendicular to the base plane (2° = 0).

4 CHAPTER 2. SYSTEM DESCRIPTION

joint3& 4.2
s 2 joints5& 6
Z3 . - Z4
4 AT
x3 :
4 y®
Xe link 4
link 2
camera 6
Zl
1
x joint 2

yO
p—
>z
Base plane

Figure 2.1: Wired frame model of the OSCAR-6 robot. Joint ¢ rotates around axis z;—1. From: [?].

joint 1

e The value of joint 6 has to be constant and is chosen to be zero.

e To accomplish the choice of the end-effector to be perpendicular to the base plane (2° = 0)
the value of joint 5 must always be equal to 180° — 3

This causes the end-effector to have an orientation which is such that the camera in the end-
effector looks downwards at an angle perpendicular to the base plane: 2% 1 (z°,¢°).

The camera will produce an image frame in which the target object is assumed to be situated.
A typical image frame is shown in figure ??. The information retrieved from the image frame will
be denoted by ¢, which consists of three components:

e The z retrieved from the camera, which is the distance between the z-coordinate of the
target position and the center of the image frame,

e In similar fashion the y retrieved from the camera,

e The z retrieved from the camera, which is a measure for the height difference between the
end-effector and the target position. The z value from the camera is obtained by measuring
the area of the object in the image frame. In the simulated situation however this value is
provided directly from the robot simulator software. See also figure ?7.

2.1.3 Sun Workstations

Several types of Sun workstations running SunOS and Solaris under a Unix environment have
been used. Here follows a table which shows the performance of these machines. For reference
purposes, the speed of a Compaq ProXL Pentium running at 66 Mhz has also been included. This

2.2. THE SOFTWARE 5

Figure 2.2: The reach space of the OSCAR-6 robot. From: [7].

is useful for making estimates on the run-time of various experiments on machines with a different
performance.

Machine SPECint’92 SPEC{p’92
Sun SPARCstation 2 21.8 22.8
Sun SPARCstation 5/70 57.0 47.3
Sun SPARCstation 10/31 45.2 54.0
Compaq ProXL Pentium66 65.1 63.6

2.2 The Software

The software of the system among others controls the behavior of the robot. It receives feedback
on what is happening to the robot through camera image frames and joint sensors, and attempts
to guide the robot to a randomly chosen target position that resides within the reach space of the
robot.

On startup, the system will read a configuration file. This file contains several parameters of
the system that can be altered and experimented with by the user. It has been implemented to
avoid having to recompile the entire system when parameters are altered. The reader will often
encounter the word ‘user-definable’, which means that the particular parameter that is being
described has an entry in the configuration file. In section ?? a typical configuration file has been
printed, together with an explanation of all its entries.

2.2.1 The Control Loop

The goal of the system is to move the robot as close as possible to the target position within as
few steps as possible. In order to train the system it enters a loop: the Control Loop. This loop is

6 CHAPTER 2. SYSTEM DESCRIPTION

Figure 2.3: An image frame produced by the camera in the end-effector. The object is positioned
at the marked spot. The z and y values are directly measured. The z value, a measure for the
height difference between the object and the end-effector, is determined by measuring the area of
the object.

the same for every method used to solve the eye-hand mapping function discussed in this thesis.
One completion of the Control Loop will be called a trial. In a trial the system attempts to guide
the robot to the target position. The representation of the eye-hand mapping function which
the system builds will never be perfect because of the complexity of the function, although the
approximation of the eye-hand mapping function gradually improves during the learning process.
Hence we will denote the eye-hand mapping function as F and the system’s representation of the
eye-hand mapping function as N.

In order to approximate F as adequately as possible the system builds and trains its internal
representation N using learning patterns. The quality of ' depends solely on the utilisation of
learning patterns. The smarter learning patterns are utilized, the better ' will be. N can be
described as being an approzimator of F. Internally, the approximator N could consist of one
approximator, a lattice of approximators or multiple nested approximators. Methods that use
multiple approximators subdivide the entire input space U and assign approximators to subspaces
of U. Different approaches on subdividing the input space and utilising learning patterns will be
discussed in the following sections.

The robot will virtually never reach the target position within the desired precision in a single
feedback step, no matter for how long the system has been trained. This is due to the complexity
of F. Therefore multiple steps are generated. During a trial the target does not move. Typically,
a maximum of ten feedback steps are generated, with a minimum of three. No further steps are
generated if the end-effector has approached the target position within a user-defined distance
which will be denoted as €. In other words, ¢ is a threshold value which is equal to the desired
precision, i.e., the desired maximal distance between the end-effector and the target position.
Throughout this thesis, € can be assumed to be % millimeter. This parameter, as well as the number
of feedback steps the system should generate are user-definable, but the values just mentioned are
most commonly used in this thesis. In case different values were used in an experiment the reader
will be notified.

Informally, we refer to s as a step towards the target position, even though a step in some
cases increases the distance between the target position and the end-effector. In the Control Loop
the following basically happens while taking steps during a trial:

1. A random target position prarget is determined within the reach space of the end-effector,

2.2. THE SOFTWARE 7

2. The end-effector is moved to an initial starting position Pendefr._q,

3. The system generates a step s: AH_;H = N(G,62,03)s having Prarget as goal position, the

end-effector moves accordingly to a new position Pepdetr, 15

4. If || Pendef, — Prarget || < € or if s > max(s) where max(s) denotes the maximum number of
Af that are allowed to be generated, this loop is exited.

5. s+ s+ 1. Back to 3.

Although the system controls three joints of the robot, it needs only two of them as input for N
So although é;_H above is a three dimensional vector consisting of 8, 82 and 63, only 6, and 63
are needed for N/. This is also true for F. As a result, N' and F have a five dimensional vector as
their input and a three dimensional vector as their output. Let us make the following additional
notational conventions:

e An input pattern will be denoted as i = (,02,03),

e An output pattern will be denoted as &= N (i) = (Af, Ay, Abs) i.c., the delta joint values
generated using the internal representation of F of the system,

o A target pattern will be denoted as t = F(7) = (Ab;, Aby, Abs), i.e., the desired delta joint
values that bring the end-effector exactly to the target position,

o A learning pattern will be denoted as [= (;, t).

The goal of the system can now be denoted as to minimize:

DIV G) = Fiy)ll

2.2.2 Creation of learning patterns

In order to be able to let the robot move towards the target and ultimately approach the target
within the desired precision ¢, it needs information about the target position and its own current
position. Using this information, it generates a step s that ideally should move the robot closer
towards the target position. This however does not always happens as will be discussed later.

The two dimensional vector 6 that is fed to A" consists of 0> and 03 as noted earlier. It can be
shown that the current state of the base rotation #; is not needed, since the camera is attached
to the end-effector and is rotated just as much has the robot itself, and since only A6 values as
opposed to absolute joint values are used to guide the robot towards the target position. The
amount of base rotation required is solely dependent of the z and y values retrieved from the
image frame and independent of the current rotation of the base 6;. For a mathematical prove
refer to [?, figure 2.2].

Input vector i defines the state of the robot and the target position. All information is present
to be able to calculate an output vector 0 needed to move the robot exactly to the target position,
provided that the Denavit-Hartenberg description of the robot is known to the system or N' =
F. Such is not the case. The system has to learn how to move to the target position using
the information it receives during the learning process. While this process is progressing the
approximation of F, i.e., N generally improves.

During the learning process the system generates a large number of learning patterns [= (;, t).
The key to the learning process is the ability of the system to create such learning patterns, which

8 CHAPTER 2. SYSTEM DESCRIPTION

(8,67
Robot
) 9 %2
Jy oG) :
C
(Ael'AGZABC’P @, : rotation of base
4 : rotation of lower arm
6¢: rotation of wrist
) . camera
image processing i -
Cx Cy C; information

Figure 2.4: Control scheme of the robot. From the current robot position determined by 65 and
03, and the target position determined by the camera image a unique input vector i coming from
the robot at point B, can be fed to the controller at point C. The controller has to generate from
this input vector a robot displacement A6, Afy and Af3 (point A). This displacement has to
bring the object in the center of the camera image at a certain size. This process can be repeated if
the previous displacement is not accurate enough and are called the feedback steps of the system.
From: [?].

means that the exact delta joint values needed to reach a position in the world space, i.e., £ have
to be known.

When at step s an input pattern iy is generated, the system calculates an output pattern
os = N (;5) 05 is sent to the robot which moves its end-effector accordingly. Ideally it places
its end-effector within distance € from the desired target position, however this does not happen
in most cases, especially when the system is in an early stage of the learning process. The
system then retrieves once again information from the camera to calculate its current position
and calculates what the desired movement would have been, i.e., £, us1ng the input adjustment
method. Consequently the system constructs a learning pattern l = (4 f) which is a point in F.
The more points of F are known to the system, the better its approximation A will become. For

a discussion of the input adjustment method refer to [?, Appendix C].

If the system takes s steps towards a target position during a trial, it is possible to create

s(s—1)

14+2+--- =
+2+---+s 2

learning patterns for each trial. See figure ?? for a clarification.

To give a quick indication of the number of learning patterns the system creates: when the
number of steps in one trial is 10, the number of learning patterns may reach 8,000 within 500
trials as can be seen from figure [reference].

2.2. THE SOFTWARE 9

@ (b)

Figure 2.5: Creating multiple learning patterns from a particular end-effector position. The end-
effector of the robot travels path a, b, ¢, d (three steps). After the movement from a to b, a
learning pattern can be calculated from this movement. If the end-effector continues and reaches
¢ (b), not only can a learning pattern be calculated using the movement from b to ¢. From the
information of the positions of a and ¢ yet another learning pattern can be calculated (b). If the
end-effector continues and reaches d, three additional learning patterns can be calculated, shown
with solid lines in (c).

2.2.3 Pre-learning

The system starts learning without any knowledge of F. In order to give the system a minimal
amount of knowledge about the function it has to approximate, pre-learning is used. One pre-
programmed target position is generated, as well as a number of pre-programmed robot moves.
These moves generate learning patterns which are learned by the system. The learning patterns
are chosen such that it prevents the system from sticking to only a small portion of the total reach
space of the robot. After pre-learning, it will be almost certain that the entire reach space will be
explored. The number of learning patterns generated with pre-learning is very small compared to
the number of total learning patterns that will be generated when the system starts learning with
randomly generated target positions. Usually, 8 pre-learning moves are done.

2.2.4 Quantizing the error

The error of n learning patterns is determined by calculating the average sum-squared error of
those learning patterns. The sum-squared error of a single learning pattern is calculated as follows.
The input vector 7 yields an output value 6 = N (D The desired output value # then is calculated

using the input adjustment method. The error E of a single learning pattern r equals:

In words, this is the distance measured in degrees by which the joints miss the target position.

2.2.5 Adaptivity of the system

A system is wanted that not only is able to guide the robot to the target, but which is also able
to quickly adapt when changes on the robot or camera occur. For instance, the camera could
be rotated, or one of the links of the robot could be damaged and therefore be deformed. This

10 CHAPTER 2. SYSTEM DESCRIPTION

would result in a different F. The system should behave such that it can adapt to an altered
F quickly. Although in early approaches some facilities were already implemented to accomplish
this, they relied mainly on the adaptive behavior of feed-forward networks and Kohonen networks.
The Nested Network and Nested Perceptron methods use a more sophisticated approach which
enables the system to adapt much faster to changes caused by external influences.

2.3 Non-nested approximators

Using only one approximator to approximate F means that the input space has not been divided
in any subspaces. All generated learning patterns are used to train a single approximator that
represents the entire input space. The results of an instance of this approach are discussed in
section 77 in which a feed-forward network with hidden units is used as approximator.

The input space U can be divided into subspaces, and to each subspace an approximator can
be assigned. The subdividing of U is done by dividing each dimension of U in a fixed number of
equally large subspaces. For instance, a two dimensional space U? would be split in four subspaces
if each dimension of U? would be split in half. Since F is a five dimensional function, halving
each dimension would result in 32 subspaces. An approximator assigned to a subspace then only
has to approximate 31—2 part of the input space, which results in a more accurate approximation of
that subspace and consequently of F. Results of this approach are described in section ??. U was
divided in 7% = 16,807 subspaces. It was implemented using a 7 x 7 x 7 X 7 x 7 Kohonen network.

2.4 Nested Approximators

The complexity of F will not be the same at any interval. For instance, F can be smooth and
nearly linear at some subspaces, while being highly non-linear and having many discontinuities at
other subspaces. This property can be taken advantage of by dynamically assigning approximators.
A subspace of U can be divided if F appears to be more complex for that part of the input space,
while other subspaces of U can remain undivided if the approximation suffices there. The result is
a multi-resolution approximation of F. The following description of the internal representation of
nested approximators applies to the Nested Network method as well as to the Nested Perceptron
method. Because differences in the internal representation exist between these two methods the
description below is not complete. In chapters 77 and ?? the method-specific details will be
discussed.

2.4.1 The tree concept

In order to be able to dynamically assign approximators, a tree structure is used. The root of the
tree holds one approximator that represents the entire input space U. Initially, the root node is
the only node that exists. Each node in the tree has 2! branches and consequently can maximally
have 27 children, with I denoting the dimensionality of the input space (I = 5 in our case). A child
node N (b) of a node N with b representing a branch is constructed by halving each dimension of
subspace Uy and choosing the appropriate half, i.e., choosing each of the I halves such that N(b)
represents Upp). Since there are for each dimension two halves to be chosen from, a binary digit
is used to represent either of the halves. Each branch of a node is given a value

b= [Br-1B8r-2 ... Bo]

2.4. NESTED APPROXIMATORS 11

with 3 € {0,1} and b equaling
I-1
b= 82
7=0

As a result, 0 < b < 2. Now, each node in the tree can be uniquely identified by d branch
numbers:
N = <b17b27"'7bd>

where d denotes the depth of the node in the tree. N represents an input space
Un = U, bs,....00)
The root node resides at depth 0 by definition. Note that
Ubs baenbad C Ulbybypas) C--- CU (2.1)

and that the number of elements in the array NV defines the depth of N in the tree and subsequently
of Uyn. A single node N also will be denoted as N[d] with d denoting the number of elements in N.
Consequently, Uy[q4) denotes a single subspace of U at depth d. Note that it does not define which
subspace. For an example of subdividing a two-dimensional input space U? refer to figure ?7.
Subdividing a subspace Unq by adding a node that represents a subspace Un(g41] C Unpq) will
henceforth be called a split.

The depth of the tree will never exceed a user-definable maximum, which will be denoted as
D; 0 <d < D. The input space will be split until for every subspace Uy a desired user-definable
precision has been reached (see section ??7). However, a subspace Unp; will not be split any
further even if the desired precision is not achieved for Uy p) since the depth of the tree would
then exceed D.

The result of this mechanism is that at lower depths in the tree and particularly in the root
node a coarse approximation of F exists, while at higher depths a fine approximation of F exists.

2.4.2 Propagating learning patterns

A learning pattern belonging to a subspace Upy[p) will be trained to all existing approximators
representing subspaces Unpj] C Unp-1] C ... C Unpq]- N|[0] represents the root node and
consequently Upyo) represents the entire input space U. Note that every new learning pattern will
be trained to the root node. The result of this mechanism is that nodes at higher levels in the
tree will receive more and thus newer learning patterns than nodes residing at deeper levels in
the tree. Consequently, approximators at higher levels in the tree will adapt relatively quickly to
a change in F such that a coarse approximation of F will be re-established more quickly than a
fine approximation. From this it is also clear that any new learning pattern will be learned to the
deepest existing approximator that represents the subspace of that learning pattern.

2.4.3 Split and merge algorithm

The decision whether a subspace Uy/q should be split creating a new node N[d + 1] representing
a particular subspace Upn[q41] C Unq), Will be taken regarding three conditions:

e A split should not make the tree deeper than its maximum depth, i.e., d+1 < D.
e A minimum number of learning patterns belonging to Un[441) is required to exist.

e The produced error of selected learning patterns that belong to Uy[q4.1] must exceed a user-
definable value. This value will hence be called the split error.

12 CHAPTER 2. SYSTEM DESCRIPTION

APPROXIMATION

d=3

d=2

Nomenclature of quadrants:

d=4 <0,2,0,0,0>

d=5 Fine approximation

Figure 2.6: Example of the subdividing of a two-dimensional space U2. Each space can be divided
into four equally sized parts. If no further subdividing exists the best possible approximation for
that specific subspace is reached. From: [?].

If those conditions are fulfilled, a split is executed. The newly created node N[d+1] will be trained
immediately with selected learning patterns belonging to Un{441] C Unjq)-

Several measures have been taken to retain adaptivity when minor changes in F occur and
to facilitate the detection of major and sudden changes in F. Major changes are caused by for
instance a rotation of the camera by 90 degrees, or by elongating a link considerably. In these
cases it is desirable to discard all learning patterns and relearn the new F from scratch instead of
gradually adapting, which will take more trials or can in some cases even be impossible. Therefore,
the system is able to cut branches and its nodes N[d +] representing a subspace Unjati C Unia,
i.e., merge parts of the tree. Two kinds of merge exist: absolute merge and relative merge.

An absolute merge is executed when the error in a node becomes higher than a user-definable
threshold value. This is done in order to be able to merge a node if its error becomes very large, for
instance after a rotation of the camera of 90 degrees. Therefore, each approximator calculates the
average error that the most recent n (user-definable) learning patterns have produced. Every time
some approximator A receives a new learning pattern, and at least n learning patterns have been
learned to A, the average error that the most recent n learning patterns produced is updated.
This error is used to decide if a node needs to be merged by comparing it to a user-definable
parameter called the absolute merge error. The reason that the average error based on the most
recent n learning patterns is calculated is because of the fact that the error that an approximator
produces shows large fluctuations. By taking the average error of the most recent n patterns these
fluctuations can be largely reduced.

2.4. NESTED APPROXIMATORS 13

The situation in which an absolute merge is required occurs after a major change in F, for
instance, after a 90 degrees camera rotation. After such a major change, the system fails to deliver
correct learning patterns. A vicious circle is then entered: approximators do not receive correct
learning patterns because of the large errors they produce, and because of the incorrect learning
patterns, approximators keep producing large errors. That is why, when an approximator shows
a large error, it should be merged using absolute merge.

A relative merge is executed if some node N[d] approximates a particular subspace Unig41) C
Uniq) better than N[d + 1] by a user-definable threshold value which will henceforth be called the
relative merge error. When some node N|[d] receives a child node N[d+1], N[d] will start measuring
how well it approximates Un[441]- It does this by separately measuring the error that learning
patterns belonging to Un[a41] produce when they are tested in N[d]. This error is averaged over
a user-definable number of learning patterns, identically to the way this is done with the absolute
merge error. The result is compared to the absolute merge error of a child node N[d + 1], which
represents the error of the same part of the input space. If the absolute merge error of that
particular child node is significantly higher than the error that the parent node produces for the
same part of the subspace, the child node and all its children will be merged. The user decides
what is significant in this case by determining an appropriate value for the relative merge error.
Formally, a node N[d + 1] such that Uy441] C Un[q) is merged if

Ei(b1,b2,...,ba) > E(bi1,ba,...,b4,i) + € (2.2)

where E denotes the average absolute error of a node N = (by,bs,...,bs), E; denotes the error of
node N for learning patterns belonging to the subspace that is also represented by the child node
at branch number %, and €, denotes the relative merge error.

The situation in which nodes at deeper levels approximate a subspace worse than nodes at
higher levels arises mainly after a minor change of . Nodes at higher levels adapt more quickly
to a change of F than nodes at deeper levels, since the former receive more learning patterns. This
is caused because of the fact that nodes at higher levels represent a larger part of the input space.
Therefore, at some point in time a coarse approximation of a subspace can become significantly
better than a fine approximation. At that point, a relative merge is executed.

A merge of a node N[d] will recursively delete all existing nodes N[d], N[d+1],..., N[D] with
Unia) O UN[a41) D --- D Unip]. Simply put, the subtree at NI[d] is cut from the tree as well as
N[d] itself.

2.4.4 Bins

To be able to train a newly created node with learning patterns created earlier in the learning
process and to be able to calculate the error of a node using earlier created learning patterns,
learning patterns are stored. Learning patterns belonging to a subspace Uy[p) are stored in a bin
representing just that subspace. A bin can hold a user-definable maximum of learning patterns. If
a bin is full while a new learning pattern has to be stored in that bin, the oldest learning pattern
will be discarded in favor of the new learning pattern. A bin can be uniquely identified by the
array

(b1,b2,...,bp)

where b is a branch number and D is the maximum depth of the tree. Note that a bin represents a
smallest subspace of U that can be represented by an approximator in a tree of depth D. Learning
patterns stored in an arbritrary bin represent the following subspaces: Unp; C Unp-1) C ... C
Unpo}- This is a consequence of equation (77).

A quick calculation shows that the maximum number of bins of a five dimensional tree with
a maximum depth of 6 amounts to 32 = 1,073,741,824, i.e., more than a billion. It is clear that

14 CHAPTER 2. SYSTEM DESCRIPTION

memory-wise, this number of bins can never be created. This is not necessary since the number of
learning patterns created during the learning process typically reaches a maximum of 20,000 for a
run with a reasonable number of trials. The number of learning patterns that are created during
learning is always at least the same but generally more than the number of bins since multiple
learning patterns can reside in one bin.

To be able to retrieve learning patterns belonging to a certain subspace U y[q) without excessive
computational overhead the bins are attached to the tree in such a way that it will not be necessary
to visit every bin to see if it holds learning patterns that belong to Up|q). Since the Nested Network
Method and the Nested Perceptron Method each use a different method to attach bins to the tree,
the details will be described separately in chapters ?? and 77?.

2.4.5 Adding pre-knowledge

One of the problems with approaching a target position closely with the end-effector is that once
the end-effector is very near, say well within the limit of €, it can direct the end-effector to a position
well out of the € range the next feedback step. This is caused by the sharp boundaries between the
subspaces that different approximators represent. If the target position lies close to a boundary
of two or more different approximators, the situation can occur that some approximator A leads
the end-effector within range € towards the target position, but at the same time also within the
subspace of another approximator B which then takes over and will generate a movement at the
next feedback step. If approximator B is less well suited to approximate that edge of its subspace
as approximator A, it will generate a movement well away from the target position. There is a
way however to deal with this problem.

The goal of the system is to approach a randomly chosen target position within range e with
the end-effector of the robot. This is translated into attempting to get the target object in the
middle of the camera image frame at a specified size, i.e., to have ¢ = (0,0,0). As soon as this
position has been reached, no further movement is required. This translates into learning patterns
that have the form

I'=(i,2) = (o) y, ¢z, 02,03, A8;, Ay, AB3) = (0,0,0,82,63,0,0,0)

In other words: if the distance between the end-effector and the target object is zero, no movement
is wanted. These kind of learning patterns will hence be referred to as known patterns. Known
patterns can be trained to the system at a user-definable percentage. When some node at some
point is trained with n regular learning patterns, the system will also train that node with (p/100)n
known patterns, where p denotes a user-definable percentage of known patterns that should be
added. Known patterns are trained to a node on the fly, directly after regular learning patterns
have been trained to it. The variable parts are chosen randomly, but such that they fall into the
input space of the node they are trained to. Known patterns are not stored since they can be
created at any time they are needed, at virtually no computational cost.

Adding known patterns is not without any side-effects. Setting the percentage of known pat-
terns to be added very high (for instance to 95%) will have the effect that the end-effector hardly
moves anymore during a feedback step. In general, it can be noted that adding known patterns
enhances the precision of the system, but raises the average number of feedback steps that have
to be taken. The benefit of this is that the end-effector tends to stay near the target position as
soon as it has approached it closely during a trial, even when the target position is near the edge
of multiple approximators.

2.4. NESTED APPROXIMATORS 15

2.4.6 Issues on boundaries of the camera inputs

Some precaution has to be taken when assigning the boundaries of the camera inputs. Recall
that when a node is being split, each dimension is divided exactly in the middle of the current
boundaries. Then, the appropriate halve is selected for each dimension. While N gradually
improves, the camera inputs & will lie closer to (0,0, 0). It represents the part of the input space
where the end-effector is close to the target position. One would want the representation of this
particular part of the input space to be very precise. Therefore it is undesirable if 0 in any of the
camera inputs would lie close to a boundary of an approximator at any depth, since that would
require extrapolation instead of interpolation to reach the target. Optimally, ¢ = (0,0, 0) should
lie exactly in the middle of the camera boundaries, regardless the depth of a node, in order to get
an as good as possible representation of &= (0,0,0). Unfortunately, this is impossible to achieve.
Consider the following boundaries of the camera vector ¢ = (c,, ¢y, ¢.):

—0y < Cp < gy —Ay < Cy < ay; —a;<c;<a;

When using these boundaries, zero is exactly in the middle of all three camera inputs for what the
root node is concerned. However, when the root node is split, the boundaries of ¢ are cut right in
the middle, and zero would end up at the edge of all camera inputs, the worst thinkable situation.
One way around this situation would be to split the camera dimensions in three equally sized
parts instead of two, to keep zero exactly in the middle of one of those parts. Another solution,
which has been applied, is to chose the boundaries such that zero can never end up at a boundary.
Consider the following boundaries:

—2a, < cp < ag; —2ay<cy<ay; —2a,<c;<a,

Zero is not in the middle, but at two third between the boundaries. If, for example, the input
space of input ¢, is divided in two equally sized halves, the boundaries around ¢, would become

1
—2a; < cp < —ia

for the left halve, and

1
—5% <czp <ag

for the right halve. Notice that zero is positioned at one third of the right halve. Would this
boundary be divided in a left and right halve again, zero would end up at two third of the left
halve. In other words, when using boundaries such that zero is positioned at either one third
or two third between those boundaries, zero will alternate between one third and two third, and
would never end up at a boundary.

A consequence of this method is that it places constraints on the camera input boundaries.
For instance, if the real camera boundaries are —a and a, then one is forced to use boundaries —2a
and a or —a and 2a to position zero at one third or two third between the boundaries. However,
this will not influence any aspect of performance or memory consumption due to the split and
merge algorithm. Since some parts of the input space will receive no learning patterns at all, they
will never be split. If one would be concerned about the fact that the camera input dimensions
will be relatively large compared to the joint input dimensions due to the enlargement, one could
just enlarge the joint input boundaries as well.

Chapter 3

Neural Network Approaches

Previously reported methods for approximating the eye-hand mapping function include feed-
forward networks, Kohonen networks and the Nested Network Method. The results will be briefly
discussed; for a more detailed discussion on these methods and their results can be found in [?].

3.1 Non-nested approaches

Below follows a description of results achieved with feed-forward and Kohonen networks. These
methods have only limited facilities implemented to adapt to changes in F.

3.1.1 Feed-forward networks

Using a feed-forward network trained with conjugate gradient back-propagation containing 25
hidden units the results depicted in figure ?? were achieved. As can be seen from the figure, the
distance of the end-effector and the target will average around 4 millimeter after 8 steps towards
the target position per trial. Arjen Jansen’s figures show that increasing the number of hidden
units to 45 does not have any significant positive effects. Using one feed-forward network with
hidden units is not a satisfactory solution to approximate F since a higher precision is desired. A
major problem with the network used here is that it can not cope with the large input space and
complexity of F.

3.1.2 Kohonen networks

Another approach investigated by [ref to Ritter & Martinetz] make use of Kohonen networks. A
detailed discussion of Kohonen networks can be found in [?] and [?]. In short, Kohonen networks
consist of a lattice of neurons, forming a topologically correct map of the input space. Each
neuron in the lattice represents and approximates a fixed subspace. The simulation results are
slightly better than those using the method as described in section ??. Figure ?? show results
achieved using a 7 X 7 X 7 x 7 x 7 Kohonen network. It can be seen that the network needs more
trials before the point is reached at which the distance between the end-effector and the target
position does not improve any further. Although this distance is less than when using the method
discussed in section ?7?, the maximum precision reached after 2 steps still is about 5 millimeter.
This is about the maximum precision that can be attained using this Kohonen network. It took a
Sun SPARCstation 14+ about two days to reach 20,000 trials. Although expanding the Kohonen
network with more neurons would result in a better approximation of F, it would cause the
run-time to become unreasonably long.

16

3.2. THE NESTED NETWORK METHOD 17

distance (cm) distance (cm)
9 9
8 8
7 7
6 6
5 5 1
4 1 4r
3 3
2 2
2 2
1 1F
MWM_A”MB
e Nl 8

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
trial trial

25 hidden units 45 hidden units

Figure 3.1: Feed-forward networks containing 25 and 45 hidden units. The distance between the
end-effector and the target object in cm. are shown after 1, 2 and 8 feedback steps. Using a
feed-forward network containing 45 hidden units does not show any significant positive effects.
Both plots are smoothed using the average of 50 points. From: [?].

3.2 The Nested Network Method

The use of a single neural network in the previously described methods has many disadvantages.
When a feed-forward network with hidden units is used, the network will quickly learn and adapt,
but the quality of the approximation of F is not satisfactory. Using Kohonen networks results in
a more precise approximation of F, but it takes longer to train it. Therefore, a different approach
has been developed which combines the fast learning performance of the feed-forward networks
with subdividing the input space as used in Kohonen networks; the Nested Network Method. It
uses a tree structure as was described in section ?7.

3.2.1 Attaching bins to the tree

A bin represents a subspace of F at the finest possible granularity that can be attained with
a tree having maximum depth D. It represents a subspace Un[p] that is also represented by a
leaf node N[D]. Since leaf nodes also represent subspaces of all its ancestors it is convenient to
attach bins to the leaves of the tree. If learning patterns for Unp4 have to be collected, learning
patterns residing in bins attached to leaves N[D] such that Unp) C Unyg) are collected recursively.
This can be achieved by for example a depth-first travel through the appropriate subtree since all
learning patterns that reside in bins that are attached to the leaves of the subtree belong to the

18 CHAPTER 3. NEURAL NETWORK APPROACHES

distance (cm)

401
35 H

ol

25 K

20

10 |

=

2

T T e
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
trial

Figure 3.2: Kohonen network; Results of a 7 x 7 x 7 x 7 x 7 network. The precision after a gross
move (1) and a fine move (2) is displayed. This plot is smoothed using the average of 50 points.
From: [?].

subspace the subtree represents. This mechanism enables the system to retrieve learning patterns
of a particular subspace without excessive computational overhead.
Since learning patterns are stored in bins at depth D, all nodes representing subspaces

fE UN[D] C UN[D—l] cC...C UN[l]

are created if they do not yet exist. The only function of nodes that are created on such occasion
is to provide a path to a bin attached to a leaf node at depth D. These nodes are called virtual
nodes. Virtual nodes do not contain an approximator, and the creation of a virtual node is not
regarded to be a split. However, if at some point in time a virtual node receives an approximator,
it will be called a split.

As soon as the first learning pattern is created, a path to the bin in which the learning pattern
has to be stored is calculated, and a number of virtual nodes are created, one less than the
maximum depth of the tree (since the root node already exists and is not a virtual node). After a
while, when many learning patterns are stored, fewer virtual nodes for each learning pattern have
to be created on the average because many virtual nodes and bins will already exist. See figure 77
for an example of a binary tree with virtual nodes and bins.

Virtual nodes and bins provide a convenient way to store and retrieve learning patterns from
a computational point of view. However, this method has a significant drawback concerning
memory requirements. The number of bins required will never exceed the number of learning
patterns created during the learning process (see also section ??). The number of required virtual
nodes however will be higher. Experimentally it has been established that 1,500 trials require
about 50,000 virtual nodes to be created. Since each virtual node takes up about 500 bytes of
memory, roughly 25 megabytes of memory are required to accommodate virtual nodes alone.

3.2. THE NESTED NETWORK METHOD 19

root
depth 0
depth 1
N
\
75N
depth 2)
7/
/7 \
/ \
/ \\
/
KN
depth 3) v)
\1,
\
\ \
\ \
NN
depth 4 S
t | |
q) P \ ” \ ;,

8, 8 8 8
Figure 3.3: An example of a binary tree with virtual nodes and bins. Normal nodes are drawn

with solid lines, virtual nodes are drawn with dashed lines. Pointers that point to a virtual node
are also drawn with dashed lines.

3.2.2 Training of approximators

Feed-forward networks can be incrementally updated. This means that if a feed-forward network
receives a new learning pattern, it does not have to reset all weights of the neurons and relearn
its network from scratch. Training a feed-forward network is computationally very expensive. On
a Sun SPARCstation 20/51, during training a single feed-forward network with 5 hidden units a
speed of only ten learning patterns per second is reached. Therefore, the networks are trained with
back-propagation after each step of a trial, which is relatively cheap. After each trial, however,
each network that has received a learning pattern will be relearned to regain a more optimal
representation of its subspace. It is relearned with the most recently added learning pattern of
every bin in its subspace.

3.2.3 Results

Using the Nested Network Approach, a precision of 1 millimeter after three feedback steps can
be achieved after about 1,200 trials. The precision for three feedback steps will not improve any
further. After 1 feedback step, the distance between the end-effector and the target object is 30
millimeter when 2,000 trials have passed. It creates about 1,800 networks and 8,000 bins within
2,000 trials.

Chapter 4

The Nested Perceptron Approach

In the Nested Perceptron Approach the same split-and-merge algorithm has been used as in the
Nested Network Approach. The Nested Perceptron Approach uses a tree-structure as described
in ??7. Instead of a feed-forward network with hidden units however, its approximators consist
of single-layer perceptrons. A detailed description of perceptrons will be given in this chapter.
Bins are linked to the tree in a different way; virtual nodes have become obsolete, which reduces
memory requirements. These issues will be thoroughly discussed.

4.1 Perceptrons

The disadvantage of using a feed-forward network as approximator is that it is a very expensive
method from a computational point of view. The reason for this is that in order to retain an
optimal representation for an ever growing set of learning patterns, the approximator is relearned
after trials in which new learning patterns were added. Since every learning pattern is also learned
to all ancestors of a node, the number of approximators that has to be relearned is considerable
when the number of nodes and learning patterns become large (e.g., after 1,000 trials). Relearning
nodes that received new patterns then takes several hours even on a Sun SPARCstation 10/31.
This gave rise to a suggestion of Groen [?], to use a single-layered perceptron instead of a feed-
forward network to implement an approximator.

4.1.1 General least squares

A perceptron attempts to fit a hyperplane to a set of known points in that hyperplane using linear
interpolation. The method used by us uses a generalisation of linear regression, a method that fits
one-dimensional data to a straight line.
Let us consider a set of N data points (z;,v;). We want to fit these points to a straight-line
model
y(z) =azr+b

by varying a and b. The uncertainty associated with each measurement y; is called o; and is
assumed to be known. To measure how well the model agrees with the data, the following chi-
square merit function is used:

x2(a,b) = i (“‘7_”)2 (4.1)

4.1. PERCEPTRONS 21

This equation is minimized to determine a and b. In our case, all data points generated are correct
since only correct Af values

(A0:, Aby, ABs) = F(i)

are generated, i.e., the data points are part of F. Therefore, all o; values are equal and for
convenience set to 1. Another distinction is the dimensionality. A best fit of a hyperplane is wanted
that approximates a multi-dimensional set of data points rather than a set of one-dimensional data
points. The perceptrons have to deal with a set of N data points (z14,...,Zni,y;) that we want
to fit in an n dimensional plane

y(@1...2n) =121+ -+ anzn +b (4.2)

The y value of equation (??) represents a desired A8 value for one of the joints of the robot. The
input vector, describing the input retrieved from the camera ¢ = (¢, ¢y, ¢;) and the robot position
(02,03) represent 1, ...,z5. The Af values of three joints are wanted, so three equations similar
to equation (?7?) exist, one for each joint. The equations differ in the values of (a4,...,as,b),
which describe the individual hyperplane of a joint.

Equation (??) is rewritten to represent n dimensional data; the chi-square merit function
equals

N
X(ay ...an,b) = Z(yZ —b—aiTy; — — ApT;)? (4.3)
=1
This equation is minimized to determine
Q1y.-.yQp,b.
At its minimum, derivatives of x2(ai, ..., an,b) vanish:
N
x>
0= -y = —2;(% —b—a1T1i — - — anTni)
R (4.4)
x>
0= 5,.= 2 D (@jilyi —b— a1y — -+ — Ann;))
J =1

with 1 < 7 < n. These conditions can be written down in a convenient form if the following sums
are defined.

N
S = 1
=1
N
Se; = Z Tji 1<j<n
=1
N
Sejer =Y @jiwki 1<j, k<n

<
I
-

N
I
&

<
I
-

o

<
I
-

Sziy zjy; 1<j<n

22 CHAPTER 4. THE NESTED PERCEPTRON APPROACH

With these definitions equation (??) becomes

S, =bS+aS,, +eootanSs,
Sz1y = bsﬂh + alSz1z1 + 4+ anSa:lz"
Szzy = bsﬂw + alSzzéh +--+ anSa:zz"

Szny = szn + Uzlsz"zl +---+ anSz"zn

These are n + 1 equations with n + 1 unknowns ay,...,a,,b. If n will be assumed to be 5, i.e.,
the dimensionality of F, then the above equations are equivalent to the matrix equation

Se. Se, Ses Se, Se; S a s,

Szlzl Szlzg S$1$3 SZ1Z4 51115 Szl as Szly

Szlzz 52222 S-’Bz-’Ba SZ2Z4 51215 Swz as — Szzy (4 5)
Sm1z3 Szgzg Sm3m3 Sz3z4 Sz3z5 Sz3 as Szgy)
Sw1w4 Szzéu Sm3m4 Sz4z4 Sahﬂs Sﬂu as Sz4y

Smws Szzzs Sm3m5 Sz4z5 Swsws st b sty

This equation is solved using the LU-Decomposition technique. This technique manipulates the
matrix such that solving the equation is possible using back substitution, which can be performed
efficiently. Decomposing an N X N matrix requires %N 3 executions of a multiply and an add
instruction. Once the matrix has been decomposed, solving becomes a complexity O(N?) opera-
tion using back-substitution. For a more detailed discussion of the LU-Decomposition technique
refer to [?, Section 2.3]. The main advantage of the LU-Decomposition method is that back-
substitution can be used with arbitrary right-hand sides in the equation. This proves to be very
useful considering that there are three joints and therefore three equations similar to (??). The
equations of each joint only differ in the produced y value, which is part of the right-hand side
of (??) only. The matrix itself remains the same for each joint, since no y values are to be found
in the matrix. The three equations can be solved by decomposing the matrix once and performing
back-substitution three times, once for each joint.

4.1.2 Incremental property

From equation (??) it can be seen that the matrix and the right-hand side consist solely of sums.
A property of the sums used here is that they can be updated incrementally. The subscript of a
sum S indicates what value has to be added to S to update it. For instance, to update sum S,
for learning pattern ¢ one would perform

Szpwq [Z] = Swpwq [7'] + TpiZqi

This is called an incremental update of S, .,. Consequently, updating the entire matrix and the
right-hand side can be done at relatively little computational cost.

4.2 Attaching bins to the tree

As was mentioned in section 7?7 the Nested Perceptron Approach and the Nested Network method
each use a different method to attach bins to the tree. The former used virtual nodes to create
a path to a leaf in the tree, and attached a bin at that leaf. The advantage of this method is
that patterns are always stored in the correct place, since their leaf represents exactly the same
subspace as which the bin represents. Consequently, the bins do not have to be moved during

4.2. ATTACHING BINS TO THE TREE 23

the learning process. Retrieving patterns for a particular subtree can then simply be done by
recursively searching that subtree for bins; any bin found will contain patterns that belong to the
subspace that the subtree represents.

The drawback of this method is, as was noted earlier, the huge amount of memory resources it
requires. Virtual nodes may take up as much as 25 megabytes of memory during one run of only
1,500 trials. Since it was expected that the usage of perceptrons would require a deeper tree to
establish the same precision as the neural network approach, the memory requirements for virtual
nodes would have become unreasonably large. Also, using a perceptron as an approximator as
opposed to a feed-forward network as was previously done, it was expected that more trials, and
hence more learning patterns and bins would have to be created to reach the same precision as
was attained with feed-forward networks. This would lead to a larger tree and even more memory
consumption.

It is clear from this that a way had to be found to store patterns such that on the one hand
virtual nodes would be no longer required, and on the other hand to avoid the need of large
amounts of computational resources to search and store learning patterns. A typical run of 1,500
trials creates as much as 40,000 bins, holding about 50,000 patterns. This called for the search of an
approach that can handle these amounts of bins and patterns in a manner that keep computational
resources as well as memory requirements at an acceptable level.

The problem has been solved in the following way. Each learning pattern [= (;,f) has to be
stored in a bin having a unique identification

(b1, ba, ..., bp) (4.6)

where b is a branch number and D is the maximum depth of the tree. (See also section ??). The
general idea of the solution is that a bin with identification {(by, b2, ..., bp) should always be linked
to the deepest existing node N[d], representing a subspace

Uy ,bs,....00) € UN[d] (4.7)

Note that for any given tree, exactly one node applies. To accomplish this, the following actions
are taken when a learning pattern has to be stored:

e Calculate the identification of the bin that should receive the learning pattern I (using 2),

e Descend the tree, starting at the root node and following the branch numbers
(b1, ba,...,bp) until a leaf node N[i] is encountered,

e Sequentially search the linked list of bins connected to N[i] for a bin that has the same
identification as the learning pattern. If such a bin is not found, create it and link it to the
end of the list of bins that is connected to NJi],

e Store the pattern in the found or newly created bin.

A split can only occur if, among other things, enough patterns exist for the to be created subspace
(see section ?7). Since bins have to be linked to the deepest possible node that represents a space
which the bin represents a subspace of (see equation (?7)), there will be bins that have to be
moved after a split occurred. These bins are searched and linked to the newly created node by
rearranging pointers of the single linked list of bins. This process will hence be referred to as
bin-sinking. See figure 7?7 for a visualisation of this process. The consequence of this method is
that the list of bins for any given node will always be relatively short. For instance, at the point
that a node has been entirely split (i.e., all its subspaces are represented by a child node), the list
of bins connected to that node is empty, since all bins have been moved to the child nodes. It will

24 CHAPTER 4. THE NESTED PERCEPTRON APPROACH

@ (b)

(©

Figure 4.1: Bin-sinking; moving bins after a split. Consider node A that is going to be split (a).
A linked list of bins is attached to this node, they represent subspaces of node A. The gray bins
in (a) lie inside the subspace that will receive a new node B. Those bins have to be linked to the
new node B. This is done by rearranging the pointers to the bins appropriately (b). The result is
depicted in (c).

never receive a bin in this situation as a consequence of the way learning patterns are stored (see
above).

Collecting learning patterns in order to determine if a node N[d] needs to be split at one of its
subspaces Un(44+1] C Un1q), can be done by searching the list of bins linked to N [d] and selecting

learning patterns | € Un[g41]- This can be done as follows. As noted above, every bin has a
unique identification {by, b, ...,bp). For bins linked to node N[d], a node at depth d, applies that
bi,...,bq are identical. To find bins that represent subspace Un[441] only bat1 has to contain
the correct branch number of the subspace. The list of bins connected to N[d] can therefore be
searched very quickly for bins representing Ujgy1)- In addition to the fact that the list of bins will
never be very long because of bin-sinking, the computational cost for retrieving patterns for any
given subspace is very low, as well as the computational cost for searching a particular bin. This
is important because these actions occur very often, the latter every time a learning pattern is
stored.

When a merge of a node occurs, all bins are moved back to the parent node. More precisely,
the list is linked to the end of the list of bins of the parent node. See figure ?? for a visualisation
of this process.

It should be clear from both figures 7?7 and ?? that bins are not actually moved, but that
only pointers are rearranged. This also helps to keep the computational cost very low.

4.2.1 Using multiple perceptrons for one approximator

The incremental property of perceptrons (see section ?7) has one major disadvantage. The
implementation of perceptrons as described there will not discard any learning pattern it has
learned. Gradually, individual learning patterns will have less and less influence on the output of
an approximator. At the time a very large number of learning patterns have been learned to any
given approximator, additional learning patterns will hardly have any effect on the output of that
approximator. This is caused by the sums in equation (??) which become very large. Adding a
new learning pattern to large sums will have only little influence on the solution; ay,as,...,a,,b

4.2. ATTACHING BINS TO THE TREE 25

(b)

©

Figure 4.2: Moving bins after a merge. Consider node B that is going to be merged (a). Its bins,
colored gray for convenience, are moved back to the parent node of B by just linking them at the
end of the list of bins connected to node A (b). Lastly, node B is deleted (c).

will hardly change when the sums in equation (??) are very high. More precisely, the change in
the solution approaches zero when S approaches infinity.

The consequences of these observations are disastrous when minor chances in F occur. If
changes in F are sufficiently small so that the approximator is not merged, but still produce a
considerable error, then it would take a very large number of learning patterns for the approximator
before it enhances its performance and adapt to the change in F. However, it would never adapt
entirely since it does not discard those now invalid learning patterns it learned prior to the change in
F. Therefore a facility that would gradually discard older learning patterns is necessary. There are
several different ways to accomplish this. One could for instance introduce an « that would define
how quickly old learning patterns are forgotten. This a would adapt the sums in equation (??)
such that the influence of older patterns on the solution will gradually diminish. Another approach
is to store the n most recently arrived learning patterns for any node, and subtract those learning
patterns one by one from the moment n + 1 patterns have been taught to a perceptron, such that
a perceptron will represent the n most recently arrived learning patterns. The downside of this
approach is that many learning patterns will have to be stored which places great demands on
Memory resources.

The solution chosen was to simply create a multiple number of perceptrons for each approxi-
mator. The user can specify how many perceptrons an approximator should use and the maximum
number of learning patterns a perceptron may contain. These two parameters define how quickly
learning patterns should be discarded, as will be explained below. The benefits of this approach
are first of all a modest increase of memory and computational cost. A perceptron takes only a
few additions and multiplications to add a learning pattern, and the solution only has to be com-
puted for one perceptron. Secondly, using multiple perceptrons creates the possibility to detect
changes in F by calculating and examining the solution of each of the perceptrons. If this solution
suddenly shows large changes, this may be reason to believe that a change in F has occurred. In
the current implementation however this beneficial characteristic of multiple perceptrons has not
yet been exploited.

It may be helpful to take a look at figure ?? before reading the following explanation of
perceptrons. Let p be the number of perceptrons per approximator and let ¢ be the maximum
number of learning patterns p may contain. The perceptrons are linked to the node by a circular
linked list. When the learning process starts, only the first perceptron of an approximator receives
learning patterns. As soon as q/p patterns have been learned to the first perceptron, the next
perceptron also starts receiving learning patterns. At that point, two perceptrons are updated

26 CHAPTER 4. THE NESTED PERCEPTRON APPROACH

simultaneously. However, the solution represented by (a1, as, as, a4, as,b) of equation (?7) is still
being calculated using the first perceptron. After every g/p patterns, a new perceptron starts to
receive learning patterns for the first time. After ¢ patterns have been trained to an approximator,
all p perceptrons are receiving learning patterns. At that point, the first perceptron is being
cleared, and the second perceptron will be used to calculate the solution for the approximator.
Because of this switch to the new perceptron, ¢/p learning patterns are discarded, since the
second perceptron started to receive learning patterns after ¢/p patterns had been taught to the
first perceptron. The first perceptron that just has been cleared, and which contained ¢ learning
patterns, will start receiving new learning patterns.

With this mechanism, the user can manipulate the pace in which learning patterns should be
discarded, and how many at a time. An ideal situation exists when p = ¢ since then for every new
learning pattern that arrives, an old learning pattern is discarded. However, this is not feasible
regarding the memory and computational cost this would take for large a q. Furthermore, it has
been experimentally established that a p of below 20 always suffices, even for a large q.

The consequences are that when a minor change in F occurs, the approximator will have
adapted to the new situation after at most ¢ learning patterns have been trained to that approxi-
mator.

4.3 Avoiding the Input Adjustment Method

Using the input adjustment method is a convenient way to estimate correct points in F as long
as the error is linear. It is possible to avoid the input adjustment method and replace it by
a method which can also handle systems that have a non-linear error. Also, this replacement
is more general and elegant than the input adjustment method, which inherits problem specific
elements. However, the this replacement also has some drawbacks which will be discussed also.

4.3.1 Modifications concerning learning patterns

Recall that a learning pattern [consists of a camera output vector ¢, a current robot state, and a
target vector &

I'=(7,1) = (ca,y, cz, 09, 03; Ay, Ay, Abs)

The desired delta joint values ¢ are equal to the delta joint values actually generated. In order
to produce a correct learning pattern, the input is adjusted such that ¢ represents the desired
movement from the adjusted input vector and the target position.

In order to avoid adjusting the input, we add another vector, d which represents the z, y and z
values retrieved from the camera image frame after movement ¢, as opposed to & which represents
the z, y and z values before movement. With this additional vector, an alternative learning pattern
can be constructed:

f: (Zt—) = (CzaCy5027927035dzady5dz;A615A02:A03)

This is a valid learning pattern, since it describes a camera output vector & before movement,
a robot position 65,03 before movement, a camera output vector d after movement, and the
movement itself, Af. Informally, it describes what movement should be made to change the
camera output vector from ¢ to d for a given robot position. The goal of the system is to have

-

d = (0,0,0), i.e., to have the end-effector at the target position:

N(Cm,cy702702703707070) - Ag

4.3. AVOIDING THE INPUT ADJUSTMENT METHOD 27

current

00

Perceptron: 1 2 3 4 5 Perceptron: 1 2 5
Patterns learned: 200 0 0 0 0 Patterns learned: 401 201 1 0 0
@ (b)
Perceptron: 1 2 3 4 5 Perceptron: 1 2 3 4 5
Patterns learned: 1000 800 600 400 200 Patterns learned: 1 801 601 401 201
(© (d)
Perceptron: 1 2 3 4 5 Perceptron: 1 2 3 4 5
Patterns learned: 201 1 801 601 401 Patterns learned: 451 251 51 851 651

© ®

Figure 4.3: Example of multiple perceptrons linked to a node. This example uses p = 5 and
q = 1000, i.e., 5 perceptrons which can contain at most 1,000 learning patterns. The word
‘current’ in the picture denotes which perceptron is used to calculate the solution for A/. The initial
1,000/5 = 200 learning patterns will be taught to the first perceptron only (a). Learning patterns
201 up to 400 are taught to perceptrons 1 and 2, learning patterns 401 to 600 to perceptrons 1, 2
and 3, (b) and so on. Learning patterns 801 to 1,000 finally will be taught to all five perceptrons,
but the solution is still being calculated using the first perceptron, since it has not exceeded the
limit of 1,000 learning patterns yet (c). However, at learning pattern 1,001 perceptron 1 is cleared,
and the solution will be calculated using perceptron 2, which has learned 801 patterns at that point
(d). When 1000 learning patterns have been taught to perceptron 2, it is cleared and the solution
will be calculated using perceptron 3 (e). Finally, (f) pictures some moment in time in which
perceptron 4 is in use.

28 CHAPTER 4. THE NESTED PERCEPTRON APPROACH

The system is asked to produce a movement such that d= (0,0,0). After the movement, d is
measured again, and the learning pattern will be altered: the three zeroes will be replaced with
the actual d in order to produce a correct learning pattern, which can then be trained to an
appropriate approximator.

4.3.2 Partially implicit subspace assignment

This method increases the dimensionality of F from five to eight since there now are eight inputs.
Nevertheless, the maximum number of children of a node can remain 2% = 32. Since three
dimensions have been added to the input space, one might expect that the maximum number of
children of a node would become 28 = 256. This is not necessary, since the input patterns that
are fed to A have a fixed d = (0,0,0). For this reason approximators only need to represent
subspaces that intersect with d= (0,0,0) which is only true for 32 of the 256 possible partitions.
The learning patterns that are created however have an arbitrary d that need to be represented
in order to be able to interpolate for d= (0,0,0). Therefore the root node not only represents
the entire input space, but also every d that can possibly be generated. Since nodes at deeper
levels generally show improved representation of a subspace, the generated error will be lower.
This translates into learning patterns that will have d closer to (0,0,0), since ||d|| is equivalent to
the distance between the position the end-effector actually reached and the desired position. This
property can be used in a beneficial way by narrowing the input space of d implicitly for nodes at
deeper levels by adjusting the boundaries such that they will be closer to (0,0,0). Mathematically,
consider the situation in which the root node represents the entire input space and (f(x,y,z) is
bounded by
—ay <dy < ag; —ay<dy<ay; —a,<d;,<a,

For an approximator at depth d applies that it will represent vectors d that are bounded by
—an? < dp < a;n?; —aynd <dy < aynd; —ant<d, <a,n? 0<n<l1

Informally, the boundaries around zero for some node N|[d] are narrowed by a constant amount n
for node N[d+1]. It is referred to as implicitly narrowing the input space as opposed to explicitly,
because it is not clear from the branch numbers of a node what the boundaries around (0,0, 0)
for a particular node at depth d are. They are implicitly defined by the depth of that node. In
addition to that, it is implicitly true that every of the 32 partitions intersect with d= (0,0,0).
The narrowing constant, n, is user-definable.

4.3.3 Modifications concerning branch numbers

Using the discussed scheme to represent the eight dimensional F called the need for a modification
in the way branch numbers of learning patterns and bins are assigned. Recall that the identification
of bins and learning patterns consists of branch numbers which describe a path to a leaf in the
tree (see section ?7). Since the root node represents the entire input space, every possible learning
pattern and bin can be represented by the root node. The method used to build the tree as
described in section ?? has the property that all nodes at some depth d will together cover the
entire input space. The introduction of the partially implicit assignment of input space combined
with the narrowing constant n has as a consequence that the aforementioned property does no
longer apply for any n < 1. Consider a learning pattern le Uniq and a node N[d + 1] such that

UnNia+1] C Ung)- Assume that for n =1 applies le Un[d + 1]. The situation now can occur that

for some n < 1 holds that f¢ U]'V[d+1] C Un[d+1)- Such learning patterns can never reach a node
at depth d + 1. If n = 1 every learning pattern can end up at the maximum depth D in the tree.

4.4. PROBLEMS WITH THE SPLIT AND MERGE ALGORITHM 29

If n = 0, just to take the other extreme, only the root node can represent learning patterns. There
would never occur a split, since nodes at a depth > 1 represent subspaces of the input space of
size zero.

It should be clear from this that a special case concerning branch numbers had to be introduced
to represent the possibility that none of the partitions of a node N[d] applies for a learning pattern
levU N[d]> and consequently, there does not exist a branch number such that leU Nia+1] C Unta)-
This has been solved by assigning a special type of branch number which actually does not represent
a valid branch number, but instead indicates that no branch number applies. This type of branch

will be denoted by b. Recall that an identification of a bin or learning pattern has been defined as
(b1,ba,...,bp)
For the learning pattern I mentioned earlier, applies:
(b1,b2,...,b4,bas1,---,bp)

Note that as soon as there does not exist a subspace for some learning pattern leU N[q] at depth
d + 1, branch numbers d + 1... D will contain b. While there are 32 partitions numbered from 0
to 31, by definition the number 32 has been assigned to represent b.

Since every learning pattern is stored, so are learning patterns that have reached the maximum
depth they can possibly reach in the tree. These are learning patterns with identification

(b1,ba,...,b4,ba11,...,bp) (4.8)

that have reached depth d in the tree. For instance, a learning pattern that can never reach depth
1 in the tree looks like

(b1,ba...,bp)

These learning patterns are stored in the appropriate bin, even though they could just as well been
thrown away, since they will never be used again. However, for simplicity, they are not. Every bin
can hold a maximum number of learning patterns. If a bin is full and a new learning pattern has
to be stored in that bin, the oldest learning pattern will be discarded in favor of the new learning
pattern. Because of this mechanism, the number of learning patterns as in equation (??) that
are stored for any node at depth d will be at most the number of learning patterns one bin can
maximally hold, which is typically less than 10, a very low number. In other words, the number
of unused learning patterns stored by the system will be at most the number of nodes created
multiplied by the maximum number of learning patterns a bin can hold. This slight waste of
memory is bearable.

4.3.4 Consequence on performance

Not using the input adjustment method and increasing F to eight dimensions has consequences on
the precision and performance of the system. In the first place, a perceptron now consist of 9 x 9
matrix, which uses more computational resources to solve as well as larger memory requirements
to store (see also section ??). Secondly, approximating an eight dimensional input space is much
more difficult as approximating a five dimensional one. In chapter ?? these differences are tested.

4.4 Problems with the split and merge algorithm

While testing the relative and absolute merging algorithms it appeared that those methods have
very limited usability, despite their seemingly straightforward, sound and simple definition. To

30 CHAPTER 4. THE NESTED PERCEPTRON APPROACH

understand why this is the case, one should keep in mind that the one and only goal of merging
parts of the tree is to fully recover from a change in F and regain the same precision of the
approximation of F as was accomplished prior to the change in F. This recover should take place
in as few trials as possible. In the following sections a closer look will be taken at how the tree
is split up during the learning process, and how it is broken down when a change in F occurs.
Throughout this section it should be kept in mind that many user-definable parameters influence
the behavior of the merge algorithm. In some cases directly, like the split error, the relative merge
error and the absolute merge error, as well as the number of learning patterns that is used for
averaging the error. In other cases indirectly, like the number of matrices that a perceptron consists
of, and the number of learning patterns that a matrix can contain (as explained in section ?7).

4.4.1 Behavior of the split algorithm

The split algorithm was designed such that parts of the input space that are hard to approximate
are split more often than parts of the input space that are easy to approximate. However, parts of
the input space that receive a relatively large number of learning patterns will also be split more
often. This happens because of the fact that the more learning patterns a particular subspace
receives, the more likely it is that parts of that subspace are found that produce a high enough error
for a split. Stated otherwise, one could say that if a subspace receives relatively many learning
patterns, that subspace is examined more thoroughly than other spaces. Hence it is likely to
find subspaces with a relatively high split error. For the particular case of the eye-hand mapping
function, one will find parts of the input space that represent an area that lie close to the center
of the image frame, or more precisely, close to ¢ = (0, 0,0) to be split relatively often. This part of
the input space receives most learning patterns, because the robot will visit this part of the input
space almost each trial as soon as the system has been trained sufficiently, since it then is able to
approach the target position closely at every trial.

4.4.2 Merging nodes wrongly

At all cost it should be avoided that parts of the subtree are merged wrongly, i.e., merged before
a change in F. The performance of the system almost always drops considerably when nodes are
merged wrongly anywhere in the learning process. The system builds a tree consisting of about
250 up to 350 nodes within 1,500 trials. A merge throws away complete subtrees, because of the
nature of the merge algorithm. It is assumed that as soon as a node has been found that has a
parent performing better, not only the child node itself but also its children perform worse than its
parent. It therefore will seriously damage the accuracy if for instance at any point in the learning
process 30 nodes are just thrown away wrongly. It can take hundreds of trials before these nodes
are restored again. If nodes are being merged wrongly every once in a while during the learning
process before a change in F has occurred, the performance of the system will never even come
close to its maximal potential.

4.4.3 Limitations of the absolute merge algorithm

Let us look more closely at the absolute merge mechanism. Every approximator has an efficiently
implemented bookkeeping mechanism that incrementally updates the average error over some
user-definable number of learning patterns. It is necessary to take an average, typically over the
300 to 500 most recently arrived learning patterns, in order to avoid outliers in the error. Would
this not be done, or would the number of learning patterns that is used for the average be too low,
the error becomes susceptible to peaks of individual learning patterns which could cause a node
to be merged wrongly.

4.4. PROBLEMS WITH THE SPLIT AND MERGE ALGORITHM 31

Each time a learning pattern arrives in a node, the absolute error of that node is updated to
reflect the current situation. However, in fact the actual error in all approximators instantly jump
to a higher value at the very moment F changes, but it takes a considerable number learning
patterns to detect this due to the averaging. Since all learning patterns are propagated from a
leaf in the tree upwards to the root, the root will receive all learning patterns, while deeper levels
in the tree will receive much less patterns. Consequently, when F changes dramatically, the error
in the root node will significantly raise, and this will happen more quickly than in any other node.
The root node will therefore be likely to be the first node to produce an error that is higher than
the treshold value that is used to decide if an absolute merge should be executed. As soon as the
root node is being merged, the entire tree will be thrown away and the system will learn from
scratch. This demonstrates the limited usability of the absolute merge algorithm, since it is only
useful to detect a major change in F. It can not be used to detect minor changes, since the height
of the treshold value should be such that it is only exceeded when a major change occurs. It
is not possible to lower the treshold value such that it would also detect minor changes because
the absolute error fluctuates quite a bit. It is very undesirable when the entire tree would be
merged wrongly in the middle of the learning process, just because an unfortune fluctuation in
the absolute error in the root node makes it exceed the treshold value. In addition to this, the
system should be designed such that it can recover from minor changes without having to relearn
F from scratch. The bottom line is that the absolute merge mechanism is only useful to detect a
major change in F.

4.4.4 Limitations of the relative merge algorithm

Now let us look at the relative merge mechanism. The idea behind it seems simple and straight-
forward as well: just merge a node if one of its ancestors performs better. This is based on the fact
that nodes at deeper levels should have a better representation of their subspace than nodes at
higher levels, since nodes at deeper levels represent a smaller area of the subspace. Differently put,
nodes at higher levels receive more learning patterns than nodes at deeper levels and are therefore
able to adapt more quickly to a minor change in F than nodes at deeper levels. One would expect
to see a relatively high error in nodes at deeper levels and a relatively low error in nodes at higher
levels shortly after a minor change in F. There are two ways to implement the merge algorithm
that uses these properties, which are the wrong way and the very wrong way. The very wrong way
is to compare absolute errors of a node and its ancestors and merge that node when its absolute
error is higher by some treshold value as its ancestor node. This is obviously wrong since it is
not be true in general that nodes at deeper levels show a lower error than nodes at higher levels.
For instance, a child node of some node N[d + 1] may be assigned to a relatively difficult part
of the input space. Although its parent node N[d] also has to approximate Unjg41) C Unja, it
approximates a much larger part of the input space that may be not so hard to approximate.
Therefore it is not unlikely that in some cases a node at a deeper level shows an higher average
absolute error than one of its ancestors, caused because it has to represent a difficult part of the
input space. The aforementioned scheme would cause nodes that happen to represent difficult
parts of the input space to be merged, which obviously is a very undesirable effect.

An enhancement of this scheme is the relative merge mechanism as described in section ?7.
This mechanism avoids the problems just mentioned by selecting learning patterns that belong
to Upn[q) and calculate the error those patterns produce in their ancestors. Using this scheme, it
can no longer occur that a node N[d + 1] is merged wrongly just because it is compared with its
parent node N|[d] that happens to produce a lower error for its input space Unjq D Unta+1], While
it might still produce an higher for Uy[q41]- Now with this problem out of the way, the relative
merge still does not work satisfactory. In order to understand this, it is necessary to comprehend
many of the details of the behavior of the error.

32 CHAPTER 4. THE NESTED PERCEPTRON APPROACH

Consider the situation in which a change in F occurs, for instance because one of the links is
elongated by 10 centimeters. Assume that this change in F occurs at a moment when the tree
is built up out of more than a hundred nodes, i.e., when the learning process is well on its way.
Ideally, one should see the following behavior. Since nodes at higher levels receive many learning
patterns, they will recover first from this change in F. As soon as nodes at higher levels are
recovered, the lower levels in the tree are merged because their error will remain higher than the
error at the higher levels. This happens because the lower levels receive fewer learning patterns
and therefore will not be able to adapt to a minor change in F as quickly as nodes at higher levels.
The behavior should have the effect that nodes which adapt quickly are not merged, while nodes
that do not adapt quickly are merged. The idea behind this is that the system should fall back to
a more coarse approximation of F when a small change occurs and will gradually rebuilt its fine
approximation by rebuilding the deeper levels of the tree. This scheme is better than throwing
everything away and start learning from scratch, since the latter will require more trials, because it
also has to rebuild the coarse approximation. After a small change in F, the coarse approximation
adapts itself to the new situation in only a few trials because of the many learning patterns higher
levels in the tree receive.

Unfortunately, this ideal behavior described above will not be achieved. As described previ-
ously, the relative merge error is a treshold value. If the performance of a child node N[d + 1] is
significantly worse than its parent node N|[d] for the same part of the subspace, the child node is
merged (see also equation (??)). The relative merge error should be such that nothing is merged
as long as no change in F occurs. This may sound trivial, but it is not. Because of the linear inter-
polation algorithm that is used, any perceptron will have an optimal representation of its learning
patterns that have been taught to it. There can not exist a better least-mean-square solution for
those learning patterns. Hence, it impossible that a parent node has a better representation of
all learning patterns in a child node than the child node itself. There will never be a moment
in the learning process where a parent node produces a lower error for all learning patterns of
a child node than the child node itself, since the child node has calculated the optimal solution.
This remains true even after any change in F. Would all learning patterns of a child be used to
decide which node produces the lowest error for those patterns, the child node would always win,
and consequently no relative merged would ever be executed. Therefore, in order for the relative
merge be able to work, the error of a subset of learning patterns is selected. This subset consists
of the n most recently arrived learning patterns that have arrived in the child node. The average
error is calculated for the child node, which is the error of that child node, as well as for the parent
node, which is the error of the parent node when it approximates the subspace of its child node.
Using this scheme, the property that nodes at higher levels adapt more quickly to a change in F
than nodes at deeper levels can be exploited. Consider what happens when a minor change in
F occurs. Although the child node will still represent all of its learning patterns better than the
parent node by definition, it might not do so for the n most recently arrived learning patterns.
After the minor change in F, the parent node will adapt itself more quickly to the new F since it
receives more learning patterns. Even though these patterns are from different subspaces as that
of a particular child node, they help adapting the parent node to the change in F. Any child node
will receive less patterns and will not be able to adapt as quickly as its parent node. At a certain
point, when n most recently arrived learning patterns that belong to the subspace of some child
are both propagated through the child as well as through the parent, the parent might show lower
error than the child and the child node can be merged.

The chance that a node is merged wrongly using this scheme might be very small, but it is far
from neglectable. It is not impossible for a parent node to represent the most recently n learning
patterns of its child node better than the child node itself. The chance may be small, but with
the many nodes that a tree consists of, and the many learning patterns that are created, it occurs.

4.4. PROBLEMS WITH THE SPLIT AND MERGE ALGORITHM 33

That is why a treshold value was introduced, called the merge error (e, in equation (?7)). This
treshold value should prevent that nodes are merged when no change in F has occurred, which
should be avoided at all cost, as was explained in section ??. However, at the same time this
treshold value can prevent a subtree from being merged even when a merge would be appropriate.
This behavior will show some very undesirable effects. Again, consider a parent-child node pair.
Suppose F has been altered some trials earlier, and the parent node starts to produce a lower
error for the learning patterns of the subspace of its particular child, but not low enough for the
child to be merged. The error in the child node will rise above the split error for many parts
of its subspaces, and the child node will start splitting up where possible. The effect is that
the number of nodes after a small change in F suddenly starts to raise considerably. Consider
the possibility that this child node resides at a fairly low level in the tree and receives only few
learning patterns. In that case, it will not be split for other parts of its subspace for there might
not exist enough learning patterns within that subspace in order to split it (section ??). When
the system requests a joint displacement for that particular part of the input space, a huge error
can be expected to be generated, the robot will probably move well away from the target if it
was already close. After a minor change in F, a considerable number of pieces of input space
that show this unwanted behavior will emerge, making the approximation of F rather unreliable.
One could propose to just learn on until this kind of nodes have regained their normal precision,
relying on the adaptive nature of multiple perceptrons. This however will take an unreasonable
number of trials and learning patterns, since those nodes often reside at low levels in the tree and
receive only few learning patterns. Also, because of the change in F, notably link elongation, it
is possible that a node moves from a frequently used part of the input space, for instance near
the center of the camera image frame, to a part of the input space that is much less used and
hence receives very few learning patterns, if at all. Such node can be considered to never regain
its original precision again. Yet, it does still exist and can spoil a trial if the system happens to
need feedback from that subspace. In other words, the usability of the relative merge algorithm
the way it is implemented suddenly appears to be quite limited as well.

4.4.5 Another wrong way to implement merge

A different approach to detect something in F has happened, is monitoring the error of different
levels in the tree. As long as no change in F has occurred, one expects to see the average error go
down when the tree is descended. After a change in F, one expects the average error to rise when
the tree is descended, because the higher levels adapt more quickly to the change in F. However,
the latter expectation will never become reality. Instead, the error at higher levels do raise some,
but almost never become higher than the error of the root node. The error in the lowest levels
of the tree remain almost as low as they already were. It will not raise because the lowest levels
will create new nodes that will draw the average error down even before it has the chance to raise
much. The mid-levels of the tree however show a considerable rise of the error. Unfortunately,
not much can be done with this information, since it can not be decided which nodes should be
merged and which nodes should not. It is only helpful for detecting something has happened to
F.

4.4.6 An alternative way to implement merge

With detailed insights on the deficiencies of the seemingly simple merge algorithms described
above it is clear that a different approach is needed to detect changes in F. One of the main
problems of the merge algorithms lie in the fact that it uses information that is very local, while
a change in F affects all nodes in the tree at once. For what the relative merge algorithm is
concerned, the performance of only a parent-child pair is measured at some moment in time, using

34 CHAPTER 4. THE NESTED PERCEPTRON APPROACH

local information available to the parent and the child, consisting of the error they produce for a
common part of some subspace. It does not take advantage of a very important piece of a priori
knowledge, which is that when F changes, all nodes will perform worse simultaneously. At the
very moment some change in F occurs, it can safely be assumed that virtually all learning patterns
that the system has stored have become worthless because they no longer represent data points in
F. These learning patterns will be called invalid learning patterns, as opposed to wvalid learning
patterns that represent a data point in F. Directly after a change in F, most learning patterns
become invalid, while learning patterns created after the change in F now are valid patterns. Most
nodes in the tree will suddenly produce a higher error since they have been trained with invalid
learning patterns. The most obvious way to take advantage of this is to monitor the error globally
instead of locally. It will take several hundreds of learning patterns before a change in F can be
discovered in order to rule out the possibility that outliers in the error were just coincidences. If
the system would be able to pinpoint at what moment some change in F occurred and also keeps
track on when nodes and learning patterns are created, it is possible to discriminate between valid
and invalid learning patterns. In order to be able to do this, one will need to sequentially number
learning patterns. It will then also be possible to identify perceptrons that have been trained with
valid learning patterns only. These perceptrons should become the current perceptron for any
node, possibly skipping perceptrons that have also been trained with invalid learning patterns.
Nodes that receive very little learning patterns and therefore are unable to adapt to the change
in F should be merged, without regard of the error they produce. Obviously, nodes created after
the change in F should not be merged no matter how little learning patterns they receive, since
they have been trained with valid learning patterns only.

The main difference with the approach sketched above with regard to the approaches that have
been investigated is that the former uses the fact that all nodes will suffer at the same point in
time from a change in F. It is unnecessary to decide if a node should be merged on basis of local
information. It even is undesirable since learning patterns are needed to detect a change in F has
occurred, and it will take quite a while before all nodes in the entire tree have received enough
patterns to be able to detect that change in F. By using global information in combination with
information about when nodes and learning patterns have been created, it should be possible to
completely recover from any change in F.

Chapter 5

Performance of Nested
approaches

Concerning the performance of the robot system, several different aspects can be regarded. These
include precision, computational cost, memory cost and adaptivity. All of these categories will
be discussed in this chapter. Also a look will be taken at the limitations of the system that will
surface when adaptivity is discussed.

To facilitate a direct comparison between the Nested Perceptron method and the Nested Net-
work method, both are discussed side by side. The implementation of the Nested Network method
has undergone some changes that affect its computational cost and memory requirements. These
changes will be discussed next.

5.1 Modifications to the Nested Network approach

As was discussed in chapters 7?7 and ?? the implementations of the tree structure differ. While
the Nested Network approach uses virtual nodes to create a path to a leave and its bin, the Nested
Perceptron approach does not. The Nested Perceptron approach however has been implemented
such that the Nested Network approach can use the same tree structure, making virtual nodes
obsolete. This modification only affects memory requirements.

Other modifications have been made concerning the Nested Network approach which reduce
the computational cost. When a bin is created, it receives a unique identification consisting of
D branch numbers, where D denotes the maximum depth of the tree. That bin will only receive
learning patterns belonging to its subspace. For trees with large D, the bins will represent only a
very small portion of the total input space. The chance that a particular bin receives a learning
pattern decreases dramatically if D increases. For example, bins typically receive only 1.7 learning
patterns on the average when D = 8. Recall that when some network A is retrained using the
Neural Network approach, the most recently added learning pattern of all bins of the subspace
represented by A are collected and learned to A. The number of learning patterns collected for
the root node consequently is exactly as high as the number of bins in the entire tree. Training
the root node with such high numbers of learning patterns would delay the learning process in an
unacceptable way. Also, it is not necessary to train a network with such high numbers of learning
patterns in order to obtain a good representation of its subspace. Therefore the number of learning
patterns that are taught to any node can be reduced to a user-definable number. The learning
patterns of a subspace are chosen randomly.

35

36 CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

In order to lower the cost of the Nested Network approach even more, networks are only
retrained after a trial if the network received at least a user-definable minimum number of new
learning patterns. Previously, networks were retrained after a trial even if only one new learning
pattern had been received during that trial.

During the testruns these user-definable parameters have been chosen such that they do not
influence the precision in a noticeable negative way, at the same time reducing the computational
cost as much as possible.

5.2 Parameters influencing system behavior

As has probably become clear, the user can define parameters that influence many aspects of
the behavior of the system. Although the general aspects of behavior like tree-building and how
learning patterns are handled etc. are fixed, there are about 50 user-definable parameters that
have direct influence on the performance of the system. These parameters are listed in section ??.
The reader is encouraged to take a look at that section to better understand the values these
parameters have been given when the performance of the system has been measured. It should
be noted that it is not trivial to set each of the parameters such that the system shows optimal
performance. This can be regarded to be a serious drawback.

5.3 Performance of linear interpolation

In this section a close look will be taken at most of the aspects of performance for the linear
interpolation approach.

5.3.1 Results using the input adjustment method

Next, the results obtained using the input adjustment method are discussed. When the input
adjustment method is used, F consists of 5 dimensions. The results of two runs are showed. The
first run is depicted in figures 7?7 and 77, the second run is depicted in figures 7?7 and ?7.

Figure ?? shows a run of 50,000 trials that took a total of 72 minutes cpu-time on a Sun
SPARCstation 20/51, which amounts to an average speed of 41,400 trials per hour. Figure ??
depicts trial 0 to 3,000 of this run. In order to eliminate peaks in the plots that show the distance
of the end-effector and the target position, the data has been averaged. The number of data points
that is averaged is shown in the title above the appropriate plots. The number of approximators
used is 1,960. This number varies with the value of the split error (see also section ?7). In this
run, a split error of 1-10™* was used. The attainable precision averages to a precision of about
70 pm after 4 feedback steps, which can be considered to be a very good result. The time that
is used per trial is virtually linear. For the initial 200 trials the system needs slightly more time
per trial than for subsequent trials. This is caused because of the following. The system at least
takes 5 feedback steps towards the target position. If however the target position is not within
distance e, subsequent feedback steps towards the target position will be taken. At the beginning
of the learning process, the system will often fail to guide the system to at least distance € within
5 feedback steps. The system will often require all 10 feedback steps for each trial, often without
succeeding to get the target position within distance e. However, when the system’s approximation
of F improves, the target position will often be reached in less than 10 feedback steps which saves
time, since fewer learning patterns will then be created and processed. This also explains the
slight bends in the bins, nodes, memory and patterns plots.

Figure 7?7 also shows a run of 50,000 trials, but for this run the split error has been set to
11072, a value ten times lower as used in the previously discussed run. This was done in order

5.3. PERFORMANCE OF LINEAR INTERPOLATION 37

to determine whether the precision could be enhanced even more. As can be seen, the number of
nodes created (2,427) is somewhat higher, but the precision after 4 feedback steps remains about
the same. However, some improvement has been made with respect to the first feedback step,
which now comes within 15mm of the target, while the run depicted in ??7 has an average distance
of about 24mm after one feedback step. On the other hand, the second step shows about equal
precision, and third feedback step is even inferior. It is unknown how this particular behavior can
be explained. The fourth feedback step shows about the same results as in figure ?7?, just as was
the case with the second feedback step.

The plot of the number of nodes deserves some special attention. Would one solely look at
figure 7?7 one might be tempted to believe that at some point the number of nodes will reach
some upper limit and become constant, or that it will at least gradually raise less quickly. This
intuitively seems to be the correct behavior since the system will gradually split all parts of the
input space that exceed the split error, until all subspaces have an error less than the split error.
Then the number of nodes would not increase any further and the system has learned F at the
desired precision. However, the number of nodes that has been plot in figure ?? shows that it
will not become constant within 50,000 trials, it rather starts rising more quickly instead of more
slowly after trial 25,000. At first hand this seems unlogical, but this behavior can be explained.
First of all, note that this behavior does also occur in figure 7?7, but not as extreme. That run
only differs with this run in the value of the split error that has been used: its split error is ten
times higher. The low split error obviously influences the fluctuations in the growth rate of the
number of nodes. A split error of 1-107° is so low that most subspaces will be split as soon as
enough learning patterns have arrived for these subspaces. Therefore, one should not ask oneself
why the rate of growth concerning nodes increases after it descended. The question rather is why
the rate of growth decreased in the first place. Imagine a situation in which every subspace in the
tree would have equal likelihood to receive a learning pattern, and that the split error is zero, i.e.,
a split would always occur if enough patterns for a subspace exist. Note that the latter is much
like the actual situation, since the low split error will not come into play until the tree has nodes
at depth 7. As long as none of the subspaces has received enough patterns to split, the number
of nodes will remain 1. After a while, some subspace that received enough learning patterns is
the first one to split and create a node at level 1. Other subspaces will now follow soon, since
every subspace has equal likelihood to receive a learning pattern and will hence receive an equal
number of patterns on the average. The frequency at which new nodes are created will therefore
be very low at first, since no or very little subspaces will have received enough learning patterns
to initiate a split. Then, many subspaces will be split in a relatively short time. The frequency in
which nodes are created will rise to a peak. This frequency will descend as more subspaces have
been split. This is because there will fewer and fewer subspaces left at level 1 that have not yet
received a node. On the other hand, nodes at level 1 that have received a sufficient number of
learning patterns will split and create nodes at level 2. Roughly the same scenario will with the
frequency in which nodes are created applies again. At first, few nodes are created at level 2, then
the frequency will rise to a peak, to descend again when most subspaces at level 2 have received
a node. It is this behavior that causes the growth rate to fluctuate. The rate of growth of the
number of nodes in figure ?? decreases at a point where 6 levels in the tree exist, roughly at trial
10,000. It will start rising again at trial 30,000. Shortly before trial 30,000 the first node at level
7 was created. The rise of the growth rate is a consequence of the additional nodes at level 7 that
are created. Now take a very close look at the plot of the number of nodes in figure ??7. Each
time the growth rate starts increasing after decreasing, a new level in the tree had been created
shortly before; level 5 at trial 1,300, level 6 at trial 8,400 and level 7 at trial 40,000. This growth
rate ascends less than the growth rate of the number of nodes plot in figure ??. This is due to the
lower split error.

38 CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

The results of a run with a camera rotation of 90 degrees at trial 1,500 is depicted in figure ?7?.
The system threw away the entire tree at trial 1,504 and started to learn from scratch, pre-
learning included. At trial 1,504 the error in the root node exceeded the absolute merge error
treshold value (set to 0.15), which initiated the merge of the root node. As one might expect, the
precision attained after the first 1,500 trials of this run show great correspondence to the precision
attained at the last 1,500 trials. This should come as no surprise since essentially two separate
runs are depicted. There is one exception, which is for the memory usage. It might seem as if
the system does not free up all memory after a merge. However, the memory used by the system
is measured using Unix system calls. Whenever allocated memory is freed, the total amount of
memory used by the system will remain equal, since the memory is not actually freed, but reserved
for re-use. That is why at trial 1,504 the amount of memory used does not drop to a value near
zero. Between trial 1,504 and 1,800 the freed up memory is re-used, which is why the total amount
of memory used remains constant for those trials. As soon as no more memory can be re-used, the
system will resume to allocate memory. The system has no influence on memory management,
which subject to for instance memory fragmentation. It is believed that due to the allocation of
many small blocks of memory, fragmentation and overhead become significant factors of memory
usage, which is reflected by the memory plot in figure ??7. After 3,000 trials, it uses more memory
than it would when no rotation would have occurred as in figure ??. The ‘time used’ plot shows
that the system uses slightly more time for a trial after the rotation. The system will often not
reach the target within 5 feedback steps when a rotation has occurred, and will therefore often
need to take more than 5 feedback steps towards the target. This is simular to the situation at
the beginning of the learning process. Consequently, it will take more time on the average before
a trial is completed. When the system has learned F sufficiently well to reach the target within 5
feedback steps on most occasions, the system has regained full speed. The glitch in the ‘number
of bins’ plot is caused by a relative merge that happened approximately at trial 1700. This can
be regarded as a fault of the system, since no change in F has occurred between trial 1500 and
1700, so a merge should not have occurred.

The results of a run with a camera rotation of 30 degrees at trial 1,500 is depicted in figure ?7.
As can be clearly seen from the distance between the end-effector and the target position, the
system fails to recover from this change within 1,500 trials. The system did not throw the entire
tree away, but instead used relative merges to get rid of nodes that do not perform well. However,
it does not succeed to do this very well. Only a few relative merges occur, but not enough to let
the system adapt quickly to the change in F. In section ?? it is explained why relative merging
does not work very well.

The results of runs with link elongation at trial 1,500 are depicted in figures ??, ?? and ?77.
As can be seen from figure 7?7, an elongation of link 1 with 10 centimeters does not harm the
performance very much. The effect of elongating link 1 has the effect of lifting the robot with 10
centimeter. The irregularities shown in the ‘3rd step’ and ‘4th step’ plots are caused by peaks.
Since the plots are averaged using an average filter of 50 points, the peaks are spread out over 50
neighbouring points. Apparently, the elongation of this link can be handled by the system very
well. An alternative change in F forced by elongation of link 2 of 10 centimeters on the other hand
is not handled very well. Although the precision after 1 and 2 feedback steps recovers reasonably,
the performance of steps 3 and 4 is crippled and the system is not able to adapt within 1,500 trials.
Note that no relative merge occurred, even though it seems very appropriate. This stresses the
weakness of the relative merge algorithm. In contrast, if link 2 is shortened with 10 centimeters
instead of elongated, the system is able to recover almost entirely. In this run, the relative merge
seems to do something useful after all. It is not known why a relative merge happens here but not
in the previously discussed run. It could very well be a matter of coincidence.

5.3. PERFORMANCE OF LINEAR INTERPOLATION

50

45

40

35

30

25

20

15

10

200

180

160

140

120

100

80

60

40

20

2000

1800

1600

1400

1200

1000

800

600

400

200

1st step (avg. 500) in mm.

10000 20000 30000 40000 50000

trial

4th step (avg. 500) in pm.

10000 20000 30000 40000 50000

trial

Number of nodes

0 10000 20000 30000 40000 50000

trial

3

2.5

1.5

0.5

80

70

60

50

40

30

20

10

60

50

40

30

20

10

2nd step (avg. 500) in mm.

200

180

160

140

120

100

80

60

40

20

10000 20000 30000 40000 50000

trial

Time used in minutes

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

0 10000 20000 30000 40000 50000

trial

Memory usage in Mb

350000

300000

250000

200000

150000

100000

50000

0 10000 20000 30000 40000 50000

trial

39

3rd step (avg. 500) in pm.
_WI T " " "

10000 20000 30000 40000 50000

trial

Number of bins

0 10000 20000 30000 40000 50000

trial

Number of patterns

0 10000 20000 30000 40000 50000

trial

Figure 5.1: Results of learning F using the input adjustment method and a split error of 1-107*

40

50
45
40
35
30
25
20
15
10

200
180
160
140
120
100
80
60
40

20

2500

2000

1500

1000

500

1st step (avg. 500) in mm.

CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

2nd step (avg. 500) in mm.

30T 200
180
2.5
160
140
2
120
1.5 100
80
1
60
40
0.5 f-modomme b
L 20
I R B o I R o
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
trial trial
4th step (avg. 500) in pm. Time used in minutes
‘ ‘ ‘ ‘ 100 350000
300000
250000
200000
150000
100000
50000
o e T 10 o e e
I R B o I R B o
10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
trial trial
Number of nodes Memory usage in Mb
90 ‘ ‘ ‘ - 600000
80
500000
70
60 400000
50
300000
40
30 200000
20
100000
: : : : 10
I R B o o
10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

0

trial

trial

3rd step (avg. 500) in pum.

10000 20000 30000 40000 50000
trial

Number of bins

0

10000 20000 30000 40000 50000
trial

Number of patterns

0

10000 20000 30000 40000 50000
trial

Figure 5.2: Results of learning F using the input adjustment method with split error 1-107°

5.3. PERFORMANCE OF LINEAR INTERPOLATION

100

80

60

40

20

0.8

0.6

0.4

0.2

350

300

250

200

150

100

50

1st step (avg. 50) in mm.

0 500 1000 1500 2000 2500 3000

trial

4th step (avg. 50) in mm.

0 500 1000 1500 2000 2500 3000

trial

Number of nodes

0 500 1000 1500 2000 2500 3000

trial

2nd step (avg. 50) in mm.

0 500 1000 1500 2000 2500 3000

trial

Time used in minutes

0 500 1000 1500 2000 2500 3000

trial

Memory usage in Mb

0 500 1000 1500 2000 2500 3000

trial

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

18000

16000

14000

12000

10000

8000

6000

4000

2000

35000

30000

25000

20000

15000

10000

5000

Figure 5.3: Enlargement of figure ??. Results of learning F using the
and split error 1-107%

41

3rd step (avg. 50) in mm.

0 500 1000 1500 2000 2500 3000

trial

Number of bins

0 500 1000 1500 2000 2500 3000

trial

Number of patterns

0 500 1000 1500 2000 2500 3000

trial

input adjustment method

42

100

80

60

40

20

0.8

0.6

0.4

0.2

350

300

250

200

150

100

50

CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm.

1 1 1 1 1 0 L1 L1 1

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial
4th step (avg. 50) in mm. Time used in minutes
‘ 7
| | | | | 0 | | | | |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial
Number of nodes Memory usage in Mb

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial

1.8
1.6
1.4

1.2

0.8
0.6
0.4
0.2

30000

25000

20000

15000

10000

5000

50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

Figure 5.4: Enlargement of figure ??. Results of learning F using the
and a split error of 1-1073.

3rd step (avg. 50) in mm.

0 500 1000 1500 2000 2500 3000
trial

Number of bins

]]]]]
0 500 1000 1500 2000 2500 3000
trial

Number of patterns

0 500 1000 1500 2000 2500 3000
trial

input adjustment method

5.3. PERFORMANCE OF LINEAR INTERPOLATION

100

1st step (avg. 50) in mm.

80

60

40

e

0

500 1000 1500 2000 2500 3000
trial

4th step (avg. 50) in mm.

0.8

0.6 -1

0.4

0.2

0

250

500 1000 1500 2000 2500 3000
trial

Number of nodes

200

150

100

50

0

500 1000 1500 2000 2500 3000
trial

2nd step (avg. 50) in mm.

0 500 1000 1500 2000 2500 3000
trial
Time used in minutes
| | | | |
0 500 1000 1500 2000 2500 3000

trial

Memory usage in MB

0

500 1000 1500 2000 2500 3000
trial

18000

16000

14000

12000

10000

8000

6000

4000

2000

25000

20000

15000

10000

5000

43

3rd step (avg. 50) in mm.

0

500 1000 1500 2000 2500 3000
trial

Number of bins

0

500 1000 1500 2000 2500 3000
trial

Number of patterns

0

500 1000 1500 2000 2500 3000
trial

Figure 5.5: Results of learning F using the input adjustment method; Camera rotation of 90
degrees at trial 1,500 using a split error of 1-107*

44 CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm. 3rd step (avg. 50) in mm.
140
120
100
80
60
40
20
0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
4th step (avg. 50) in mm. Time used in minutes Number of bins
3 8 —_— 20000
I R N S A 18000
2.5
16000
6 b= S
14000
2
EHl I Y A 12000
1.5 4 f= b 10000
. P I T Y SN SR R 8000
: 6000
2 i b
! 4000
0.5 ‘
Y o 2000
. B VA T T N .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
Number of nodes Memory usage in Mb Number of patterns
400 12 e — 45000
350 40000
10
300 35000
8 30000
250
25000
200 6
20000
150
4 15000
100 10000
2
50 : : : : : 5000
. S A R T N .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial

Figure 5.6: Results of learning F using the input adjustment method; Camera rotation of 30
degrees at trial 1,500 using a split error of 1-107*

5.3. PERFORMANCE OF LINEAR INTERPOLATION 45

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm. 3rd step (avg. 50) in mm.
140
120
100
80
60
40
20 TR EETEE IR A A T
B I T O T B I T T B B I T O T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
4th step (avg. 50) in mm. Time used in minutes Number of bins
3 : 6 — 25000
2.5 Y s
20000
2 R A
15000
1.5 3 S
10000
1 2
5000
0.5 T
oL 1 11 PO VA T R T .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
Number of nodes Memory usage in Mb Number of patterns
350 40000
300 35000
30000
250
25000
200
20000
150
15000
100
10000
50 5000
0 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial

Figure 5.7: Results of learning F using the input adjustment method; Elongation of link 1 with
10 centimeters at trial 1,500 using a split error of 1-10~*

46 CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm. 3rd step (avg. 50) in mm.
140 [3 Nl_
120
100
80
60
40
,,,,,,,,,,,, i1
20 ; ‘
P TR TR T P T T N P TR TR T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
4th step (avg. 50) in mm. Time used in minutes Number of bins
3 ‘ T 6 e ——— 25000
2.5 B b=
20000
2 4 fie
15000
1.5 3
10000
1 2 fode b
5000
0.5 1A
S . N
P I TR TR T B VA R T T P VA R T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
Number of nodes Memory usage in Mb Number of patterns
350 —_— 9 —_— 40000
300 S| s
L0 N 30000
250
6 b=t
25000
200 s b A
20000
150 L3 R S A
15000
3 e L
100 10000
2 I
50 PR SR S S 5000
0 o1 1 1 1 .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial

Figure 5.8: Results of learning F using the input adjustment method; Elongation of link 2 with
10 centimeters at trial 1,500 using a split error of 1-10~*

5.3. PERFORMANCE OF LINEAR INTERPOLATION 47

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm. 3rd step (avg. 50) in mm.
140
120
100
80
60
40
20 j oYW A A !
B N T O T B I T T B B I T O T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
4th step (avg. 50) in mm. Time used in minutes Number of bins
3 ‘ 7 - 20000
. 18000
. 6 - [e S
25 He oo
e 16000
5 14000
2 L
R S R S B A N 12000
1.5 10000
3 ot 8000
1
2 [6000
4000
0.5 B 7 U O S
N N 2000
oL 1 11 PO VA T R T .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
Number of nodes Memory usage in Mb Number of patterns
350 40000
300 35000
30000
250
25000
200
20000
150
15000
100
10000
50 5000
0 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial

Figure 5.9: Results of learning F using the input adjustment method; Elongation of link 2 with
-10 centimeters at trial 1,500 using a split error of 1-107*

48 CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

5.3.2 Results without using the input adjustment method

All previously described runs were also done without making use of the input adjustment method.
In these runs, F has a dimensionality of 8 and is therefore harder to approximate. This becomes
immediately clear when figure ??7 is compared to figure ??. The high precision that could be
attained with help of the input adjustment method is not attained here. However, when the split
error is lowered to 1-107° a comparable precision is reached. Apparently, a split error of 1-107*
prevents the system from performing well. The important differences between figure ?? and ??
can be found in the ‘time used’, ‘number of bins’, ‘number of nodes’, ‘memory usage’ and ‘number
of patterns’ plots. Since the system now has to deal with an F of increased dimensionality, the
time used and the number of nodes that are created are higher. The number of bins and number
of learning patterns stored are however lower. The difference between these numbers are caused
by the fact that when the dimensionality of F equals 8, there will exist a class of bins and learning
patterns that only represent subspaces in higher levels of the tree, but can never reach deeper
levels in the tree. Since only one bin for each node is used to store them, those learning patterns
will often be overwritten. See also section ??. The increased number of nodes and the decreased
number of stored learning patterns and bins apparently compensate each other for what memory
usage is concerned, since the ‘memory usage’ plots of ?? and ?? do not differ very much.

The runs depicting camera rotation and link elongation show striking similarity with the same
runs but using the input adjustment method. It is clear that the mechanisms of relative merging
and the adaptive behavior of the system is hardly influenced by the dimensionality of F.

5.3. PERFORMANCE OF LINEAR INTERPOLATION

50

45

40

35

30

25

20

15

10

1000

800

600

400

200

2500

2000

1500

1000

500

1st step (avg. 500) in mm.

10000 20000 30000 40000 50000

trial

4th step (avg. 500) in pm.

10000 20000 30000 40000 50000

trial

Number of nodes

]]]]
0 10000 20000 30000 40000 50000
trial

3

2.5

1.5

0.5

120

100

80

60

40

20

80

70

60

50

40

30

20

10

2nd step (avg. 500) in mm.

1000

800

600

400

200

10000 20000 30000 40000 50000

trial

Time used in minutes

300000

250000

200000

150000

100000

50000

0 10000 20000 30000 40000 50000

trial

Memory usage in Mb

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

0 10000 20000 30000 40000 50000

trial

49

3rd step (avg. 500) in pm.

10000 20000 30000 40000 50000
trial

Number of bins

0

10000 20000 30000 40000 50000
trial

Number of patterns

0

10000 20000 30000 40000 50000
trial

Figure 5.10: Results of learning F without using the input adjustment method using a split error
of 1-1074.

50

35
30
25
20
15

10

200
180
160
140
120
100
80
60
40

20

3500
3000
2500
2000
1500
1000

500

1st step (avg. 500) in mm.

CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

2nd step (avg. 500) in mm.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

10000 20000 30000 40000 50000
trial

4th step (avg. 500) in pm.

140

10000 20000 30000 40000 50000
trial

Time used in minutes

20

10000 20000 30000 40000 50000
trial

Number of nodes

0

10000 20000 30000 40000 50000
trial

Memory usage in Mb

90

0

10000 20000 30000 40000 50000
trial

0

10000 20000 30000 40000 50000
trial

200

180

160

140

120

100

80

60

40

20

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

3rd step (avg. 500) in pm.

10000 20000 30000 40000 50000
trial

Number of bins

0

10000 20000 30000 40000 50000
trial

Number of patterns

0

10000 20000 30000 40000 50000
trial

Figure 5.11: Results of learning F without using the input adjustment method using a split error
of 1-1075

5.3. PERFORMANCE OF LINEAR INTERPOLATION 51

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm. 3rd step (avg. 50) in mm.
100
80
60
40
20
P N T T B oLl 1 1 1 | P N T T B
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
4th step (avg. 50) in mm. Time used in minutes Number of bins
1 : 7 —_— 25000
[J S [T
0.8 20000
5 e Lt L
0.6 D S T R Ss SR 15000 — """ P S ro
0.4 S e 10000
e 2 i S
o2 [S] s
. 1 e - - S LD :,,,,,,J ,,,,,, L
P N T T B B P VA T T N P VA T T N B
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
Number of nodes Memory usage in Mb Number of patterns
350 R ——— 9 e — 40000
300 35000
30000
250
25000
200
20000
150
15000
100
10000
50 5000
0 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial

Figure 5.12: Enlargement of figure 7?7. Results of learning F without using the input adjustment
method and a split error of 1-107%

52

1st step (avg. 50) in mm.

100

CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

2nd step (avg. 50) in mm.

80

60

40

20

0

500 1000 1500 2000 2500 3000
trial

4th step (avg. 50) in mm.

0

500 1000 1500 2000 2500 3000
trial

Time used in minutes

0.8

0.6

0.4

0.2

0

450

500 1000 1500 2000 2500 3000
trial

Number of nodes

0

500 1000 1500 2000 2500 3000
trial

Memory usage in Mb

400

350

300

250

200

150

100

50

0

500 1000 1500 2000 2500 3000
trial

0

500 1000 1500 2000 2500 3000
trial

18000

16000

14000

12000

10000

8000

6000

4000

2000

40000

35000

30000

25000

20000

15000

10000

5000

3rd step (avg. 50) in mm.

0

500 1000 1500 2000 2500 3000
trial

Number of bins

0

500 1000 1500 2000 2500 3000
trial

Number of patterns

0

500 1000 1500 2000 2500 3000
trial

Figure 5.13: Enlargement of figure 7?7. Results of learning F without using the input adjustment
method and a split error of 11073

5.3. PERFORMANCE OF LINEAR INTERPOLATION

100

80

60

40

20

0.8

0.6

0.4

0.2

250

200

150

100

50

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm.

1 1 1 1 1 0 L1 L1 1

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial
4th step (avg. 50) in mm. Time used in minutes

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial
Number of nodes Memory usage in Mb
14

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial

1.8
1.6
1.4

1.2

0.8
0.6
0.4
0.2

10000
9000
8000
7000
6000
5000
4000
3000
2000

1000

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

53

3rd step (avg. 50) in mm.
|

0 500 1000 1500 2000 2500 3000
trial

Number of bins

0 500 1000 1500 2000 2500 3000
trial

Number of patterns

0 500 1000 1500 2000 2500 3000
trial

Figure 5.14: Results of learning F without using the input adjustment method; Camera rotation
of 90 degrees at trial 1,500 using a split error of 1-10~*

54 CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm. 3rd step (avg. 50) in mm.
200
150
100
50
0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
4th step (avg. 50) in mm. Time used in minutes Number of bins
6 14 — 12000
5 L2 =/ 10000
10
4 8000
8 A
3 6000
6 b=
2 4000
4 e
1 I I N N 2000
. L P T T T P A T N A
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
Number of nodes Memory usage in Mb Number of patterns
400 o S E———— 18 = — 35000
350 30000
300
25000
250
20000
200
15000
150
10000
100
50 5000
0 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial

Figure 5.15: Results of learning F without using the input adjustment method; Camera rotation
of 30 degrees at trial 1,500 using a split error of 1-10~*

5.3. PERFORMANCE OF LINEAR INTERPOLATION

140

120

100

80

60

40

20

2.5

1.5

0.5

350

300

250

200

150

100

50

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm.

1 1 1 1 1 0 L1 L1 1

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial
4th step (avg. 50) in mm. Time used in minutes
: 9
P R R Lo
7 L

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial
Number of nodes Memory usage in Mb

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial

2.5

1.5

0.5

18000

16000

14000

12000

10000

8000

6000

4000

2000

35000

30000

25000

20000

15000

10000

5000

55

3rd step (avg. 50) in mm.

0 500 1000 1500 2000 2500 3000
trial

Number of bins

0 500 1000 1500 2000 2500 3000
trial

Number of patterns

0 500 1000 1500 2000 2500 3000
trial

Figure 5.16: Results of learning F without using the input adjustment method; Elongation of link
1 with 10 centimeters at trial 1,500 using a split error of 1-10~*

56 CHAPTER 5. PERFORMANCE OF NESTED APPROACHES

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm. 3rd step (avg. 50) in mm.
20 7 3
140
2.5
120
15 |
100 2
80
10 [1.5
60
1
40 5 =
. 0.5
20 oo AR S AR ‘ ‘ ‘ ‘ ‘ :
B I T O T S I T T B B N T O T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
4th step (avg. 50) in mm. Time used in minutes Number of bins
3 ‘ 10 - 16000
oo 9 14000
2.5 HH -0 -
. . . 8
12000
7
2 I
6 10000
15 5 8000
) 4 6000
3
4000
2
0.5 MHAf-- ; : ! ! !
S R A 1 A 2000
oL 1 11 DO VA T W T .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
Number of nodes Memory usage in Mb Number of patterns
400 40000
350 35000
300 30000
250 25000
200 20000
150 15000
100 10000
50 5000
0 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial

Figure 5.17: Results of learning F without using the input adjustment method; Elongation of link
2 with 10 centimeters at trial 1,500 using a split error of 1-107*

5.3. PERFORMANCE OF LINEAR INTERPOLATION 57

1st step (avg. 50) in mm. 2nd step (avg. 50) in mm. 3rd step (avg. 50) in mm.
3
140
2.5
120
100 2
80
1.5
60
1
40
0.5
20 —_— o T !
B I T O T B I T T B B I T O T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
4th step (avg. 50) in mm. Time used in minutes Number of bins
3 ‘ 10 - 25000
9
2.5 R
8 | 20000
7 I
2 —
6 15000 fm it
1.5 -} 5
4 3 10000
1 ;
3 /
: : : : 1 2 f 5000
0.5 [—---i----- RS R RRREE RS !
. S e T
oL 1 11 JO VA T R T P VA T N A
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial
Number of nodes Memory usage in Mb Number of patterns
350 B — 16 — 45000
300 40000
35000
250
30000
200 25000
150 20000
15000
100
10000
50 5000
0 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
trial trial trial

Figure 5.18: Results of learning F without using the input adjustment method; Elongation of link
2 with -10 centimeters at trial 1,500 using a split error of 1-107*

Chapter 6

Conclusion

In this thesis several approaches to solve a high-dimensional eye-hand mapping function have
been researched and compared to each other. All approaches were tested in a simulated robot
environment running on Sun SPARCstations. The robot simulator simulated an OSCAR-6 robot
having 6 degrees of freedom. After fixating and restricting movement of several joints, three
degrees of freedom were left and used in the experiments, sufficient for performing most pick-and-
place operations. The robot has been equipped with joint sensors and a camera. While learning,
the system creates learning patterns which are correct points in the eye-hand mapping function.
The system attempts to build a representation of the function solely by utilizing these learning
patterns. The goaled minimum distance between the end-effector and the target position was set
to half a millimeter.

Early approaches using Kohonen networks, feed-forward networks, as well the Nested Network
method using a high-dimensional tree of feed-forward networks were compared to the Nested
Perceptron method, which builds a high-dimensional tree containing perceptrons. Precision, speed,
adaptivity as well as memory usage were taken into account when measuring the performance of
these methods.

Using a single feed-forward network with 25 hidden units, the goaled precision of one millimeter
could not be attained. It appeared that the eye-hand mapping function was too complex to be
approximated with a single feed-forward network. Raising the number of hidden units to 45 did
not show any positive effects. A 7 x 7 x 7 x 7 x 7 Kohonen network needed about 10,000 trials
to reach maximum precision, which was not anywhere near to the goaled one millimeter either,
although the results were better than when a single feed-forward network was used. However,
the Kohonen networks required considerable computational resources and many trials to raise the
maximum precision. Raising the number of networks is therefore regarded unfeasible, since the
computational cost would become very large.

The performance of the Nested Perceptron method is very well for a non-changing eye-hand
mapping function. The computational resources are thousands of times lower as when using nested
feed-forward networks, while at the same time the precision is extreme: the attainable precision
is a distance of only 70 micron on the average between the target and the end-effector after 3
feedback steps. A speed of 11 trials per second can be maintained on a Sun SPARCstation 20,
which is very fast compared to the Nested Network method. In contrast, a run of 2,000 trials using
nested feed-forward networks in a tree structure took about 50 hours and just barely managed to
approximate the target within one millimeter after 3 feedback steps.

On the area of adaptivity, the results are not very encouraging. The suggested merge algorithms
suffer from theoretical deficiencies. Using multiple perceptrons to enhance adaptivity will not
increase the adaptivity of the system to an acceptable level. Adapting to a minor change in the

58

59

eye-hand mapping function when depending solely on the adaptive nature of multiple perceptrons
takes more trials than it would have when the function was to be learned from scratch. However,
they were invented to be able to adapt to changes in the eye-hand mapping function quickly and
without having to relearn it from scratch. A different merge algorithm has been proposed that
may solve these deficiencies.

In general, one could say that the Nested Perceptron method beats every other method known
thus far when it comes to computational cost and attainable precision. However, the adaptivity of
Nested Perceptron is unsatisfying, despite the usage of the split and merge algorithm. The local
approach of the merge algorithms suffer from great deficiencies that have shown to be unsolvable.
They relay mainly on the faulty premise that it is trivial to decide if a child node performs better
as its parent node. As has been made clear, this is not trivial at all. Subsequent approaches in
dynamically merging subtrees should focus on the detection of an change in F and have the ability
to discriminate between valid and invalid learning patterns. Although this approach has not yet
been implemented, it seems a very sensible approach to solve the problem of lack of adaptivity
that the researched merge algorithms suffer from.

Appendix A

Internals of the Software

The system consists of several programs, which all have been written in the C programming
language under a Unix-environment:

o A low-level program which controls the robot, retrieves camera information and reads joint
angles,

e The robot simulator,

e The logic that learns the eye-hand mapping function F.

In this appendix a closer look will be taken at the latter part of the software, which effectually con-
sists of the tree data structure as well as the Nested Network approach and the Nested Perceptron
approach for solving the eye-hand mapping function F.

A.1 The data files

In order to be able to analyze a run of the system, several measurements are made and stored
in files. The system expects a data directory in the current directory. There are three methods
that can be selected for a run, which are the neural network approach, the linear interpolation
approach using input adjustment, and the linear interpolation approach without using the input
adjustment approach. Depending on which of the three methods has been selected, the data will
end up in respectively data/nnw, data/1inb or data/1in8. The 5 and 8 refer to the number of
inputs that the method uses. The directories are created if they do not yet exist. Since the user
often will run the system multiple times while experimenting with several values in the config
file or testing the system itself, the aforementioned directories contain directories itself, which are
simply numbered 0 to 9 and a to z. Each directory will contain one run, and the directory will
be created if it does not yet exist. Data will end up in a directory that does not yet exist. If
all directories have been used (36 of them for each selected method), then it is time to delete or
rename some of them to make room for new directories.

Each run generates the following 11 plain text files:

60

A.2. THE CONFIGURATION FILE 61

Filename | Description

1step Distance to target position after 1 feedback step
2step Distance to target position after 2 feedback steps
3step Distance to target position after 3 feedback steps
4step Distance to target position after 4 feedback steps
Sstep Distance to target position after 5 feedback steps
nodes Number of nodes in the tree

bins Number of bins in the tree

mem Memory used in kilobytes

patterns | Number of learning patterns stored

abs_err The error for each level in the tree

info General information about the run

Except for info, abs_err and pat_file, all files have the trial number in their first column, the
relative data at the second column, and the passed system time used measured in minutes in the
third column. The abs_err file has the trial number in its first column, and the error of level n in
column n + 1. If no exists for a particular level, the column will be empty.

The info file contains all sorts of information that can be used to analyse general aspects of
the run, most notably the values of all parameters as defined in the config file, average number of
trials per hour, the tree structure shown for each level after learning, and the name of the host
the system ran on.

In addition to these files, one will also find a pat_file. If learning patterns are stored to disk,
the patterns will be stored in this file. Otherwise, the file will remain empty. The neural network
approach also creates a weight file, in which the weights of the feedback networks are stored.
Both pat file and weight file contain data that is not suited to analyze. The data herein is
not stored as plain text.

A.2 The configuration file

The config file contains all user-definable parameters. Prior to a run of the system, the user can
alter any parameter. The order of the entries of in file can be arbitrary. Comment starts with a
#” symbol, blank lines are allowed. If any parameter has been multiply defined or not at all, or
if an unrecognized parameter has been encountered, or if a floating point value has been assigned
to an integer, the system will halt and output an appropriate error message and a line number of
the config file where it found the error. All entries within the config file will end up in the info
file mentioned in the previous section. An example config file is shown below.

For each parameter it will be shown what methods are affected by it.
The order of the entries can be arbitrary.

The configuration file for the robot.

Not all parameters are used by all three methods. The three methods
are:

#

1linb 5 inputs, using input adjustment method

1in8 8 inputs, without using input adjustment method

nnw 5 inputs, using feed-forward networks

#

#

#

+H

First follow the boundaries for the joints and the camera.
[boundaries 0-4: 1inb 1in8 nnw] [boundaries 5-7: 1in8]

62 APPENDIX A. INTERNALS OF THE SOFTWARE

boundary_O0_low -120.0
boundary_O_high 0.0
boundary_1_low 65.0
boundary_1_high 180.0
boundary_2_low -200.0
boundary_2_high 100.0
boundary_3_low -200.0
boundary_3_high 100.0
boundary_4_low -200.0
boundary_4_high 100.0
boundary_5_low -100.0
boundary_5_high 100.0
boundary_6_low -100.0
boundary_6_high 100.0
boundary_7_low -100.0
boundary_7_high 100.0

The minimal distance between the end-effector and the target object.
If the distance becomes less no further feedback steps are taken.

[1in5 1in8 nnw]

min_target_distance 0.05

Unknown [probably nnw]
split_extension 2.0

Relative merge error. If a higher node produces a better result then a
lower node in the tree with a difference of at least this value, the

lower node and its subtree are merged. To date, it has been found

that relative merging does more bad than good. [1in5 1in8]

merge_error 99.05

If the error in a subregion of a node is higher than this value, and a
certain amount of patterns exist for that node, the node is split. The
subregion gets its own node. [lin5 1in8 nnw]

split_error 0.0001

At most this number of steps towards the target are taken. [lin5 1in8 nnw]
feedback_steps 10

The tree will not be split to depths beyond this value. [1in5 1in8 nnw]
tree_depth 8

Rotate the camera at this trial. [1in5 1in8 nnw]
rotate_trial 1500

Rotate the camera this number of degrees at trial rotate_trial.
[nnw 1inb 1in8]
rotate_degrees 90.0

A.2. THE CONFIGURATION FILE

The number of matrices for each node. Higher values consume significantly
more memory. [1inb 1in8]
nr_of_matrices 5

The maximum number of patterns in a matrix. If this number has been reached,
the next matrix will be used. nr_of_matrices / max_pats_in_mat are discarded.
[linb 1in8]

max_pats_in_mat 1000

At least this number of patterns have to be present for a subarea before
it is split. Do not enter a value below 25 here. This avoids peaks that
are caused by nodes generating a movement while being trained with too

few patterns. [lin5 1in8 nnw]

min_pats_for_split 50

At least this amount of movement must be made by the robot if it is to
be regarded as an actual move. This accounts for each joint separately.
[1linb5 1in8 nnw]

minimal_joint_move 0.01

During learning, the error at each depth in the tree is monitored.
This is done to detect if the error suddenly raises. It averages
the error over monitor_ave number of patterns. [1in5 1in8]
monitor_ave 100

If the error of a node becomes greater than this value on the average
calculate over am_error_iters points (see below) an absolute merge is
performed on that node. [1in5 1in8]

am_error_tresh 5.0

At least this number of patterns have to average above am_error_tresh
before an absolute merge is performed on the node. [linb5 1in8]
am_error_iters 50

This parameter is only used if the input adjustment method is disabled.
In that case, the input space has 3 additional dimensions and 8 times
as much partitions in theory. However, only 1 of the additional 7 * 32
partitions is needed: the one that intersects with

(th1, th2, x, y, z, 0, 0, 0)

This way the number of partitions still remains 32, even for 8 inputs.
However, if the tree becomes deeper, the boundaries around the last

3 zeroes are narrowed. They are each multiplied by the factor below.
That way, deeper nodes will approximate a smaller area in the extra

3 dimensions, which enhances the performance. [1in8]
error_area_shrink 0.20

#
#
#
#
#
#
#
#
#
#
#
#

Learning patterns can be either stored to a file or to memory. Storing

(=2}
=~

APPENDIX A. INTERNALS OF THE SOFTWARE

patterns in memory requires large amounts of memory, it however speeds
up the needed run-time considerably for the Nested Perceptron approach.
It does not for the Nested Network approach since that method spends
nearly 100% of its time training patterns to nodes. Be aware that large
runs (> 10000 trials) can cause memory problems. For extra-ordinary long
runs it is therefore recommended to save patterns to a file.

0 = store patterns to file, anything else = store patterns in memory.
[nnw 1in5 1in8]

use_pat_file 0

H o H H H H R

During a run, information about how the tree is build up will be printed
after every depth_info trials. [nnw 1inb5 1in8]
depth_info 5

Print all kinds of info during a run (1), or don’t (0) [nnw 1lin5 1in8]
verbose_output 1

The speed of the robot is defined here. If a slow speed is selected (like
0.1) the robot will move slower to the target position and the system will
have the time to create learning patterns during the movement of the robot.
This results in more learning patterns that are created and could enhance
accuracy. Also useful if the robot easily hits the boundaries of the reach
space. If the robot moves very fast, and a move is generated that violates
one of the boundaries, the robot will not move at all. During the rest of
the trial, the robot would not move either. With slow speeds, the robot
will at least move some. [nnw 1in5 1in8]

robot_speed 10

H o H o O HH

This parameter defines how quickly the robot reaches robot_speed.
[nnw 1inb 1in8]
robot_accel 10

The percentage of patterns that are known in advance that are trained to
the matrices. These patterns are of the form

(th1, th2, 0, 0, 0 [, O, O, 0]) -> (0, O, 0)

Actually this says that if the target position has been reached exactly,
no movement is done. The optional part is required if the input adjustment
method is disabled. [1in5 1in8]

known_pattern_perc 50

#
#
#
#
#
#
#
#

The neural network approach is computationally very expensive. While the
training progresses, more and more patterns are collected for each node

after each trial, that have to be trained. In particular the root-node

collects as much patterns as there are bins, a number which raises very

quickly. nnw_train_limit sets a maximum of number of patterns that should
be learned to a node after each trial. If more patterns are collected for
a node than nnw_train_limit, around nnw_train_limit patterns (sometimes

A.3. DATA STRUCTURES 65

slightly more, sometimes slightly less, but on average nnw_train_limit)
will be trained to that node.

nnw_train_limit 300

Another parameter in order to speed up neural networks. Nodes will only
be updated after at least nnw_train_delay additional patterns have been
added since the last updated. This way, it is avoided that every time a
node receives one or a few new learning patterns, the node is trained

again.

nnw_train_delay 15

The two variables below are used when perceptrons (ie. the matrices) are

turned off and the eye-hand mapping function is approach with feed-forward
networks. [nnw]

wrange 0.1

hidden_units 5

A.3 Data structures

A range of data structures exist to accommodate among others the tree, bins, learning patterns
and matrices. The key data structure is the node which is, as the name implies a node in the tree
(see figure ?7?). To every node in the tree, the following data structures are linked:

e The parent node (except for the root node),

The child nodes,

A circular linked list of perceptrons,

o A single linked list of bins,

e An error monitor,

e An error monitor for each subspace that has not yet received a child.

Each perceptron consists of a matrix containing the sums of the left-hand side of equation (?7),
as well as the right-hand side of that equation: ‘matrix’ and ‘rhs’ respectively. The solution for
the current perceptron, i.e., for AV, is stored in the node data structure itself: ‘solution’. The bin
data structure contains a unique identification ‘bin_id’ which is an array of branch numbers (see
equation (?? and ??). Furthermore, it contains a flag ‘full_flag’ and the number of the next slot to
be filled when a new learning pattern arrives ‘current_pat’ to facilitate wrap around when the bin
is full and to be able to determine the number of learning patterns a bin contains. Lastly, each bin
contains pointers to the patterns itself. These pointers may point to either dynamically allocated
memory or to positions in the pat_file, depending on which method of storage the user has
selected with the use_pat_file entry in the configuration file. ‘child_error’ and ‘abs_error’ point
to error_monitor structures. These data structures very efficiently calculate the average of numbers
that are stored in them using appropriate calls to functions that manage error monitor structures.
‘averagenr’ holds the amount of numbers that should be averaged upon. ‘error_cnt’ holds the
number of the next free slot in the dynamically allocated array ‘errors[average nr]’. ‘error_sum’
holds the sum of these errors. At the point ‘average nr’ numbers have arrived, ‘error_sum’ will be
updated such that it reflects the sum of the ‘average nr’ most recently arrived numbers. To be
able to do so, the most recently arrived ‘average nr’ numbers are stored in ‘errors’.

66 APPENDIX A. INTERNALS OF THE SOFTWARE

Perceptrons

________________ [matrix next_matrix
rhs

solution first bi

) irst_bin :
patterns_trained = . Bins
nr_of_bins ;

\
nr_of_patterns /l !
known_patterns_trained / l'.
index PR

»]
depth e 1 abs_errors / !
N . ! \
nr_of_children o parent_node J \
- error_sum / \

error_count /I ‘:

child_error child_node average_nr /' '.I

i

|

errors
full_flag ’

—— next_bin

current_pat -

pattern_ptrs

Figure A.1: Internal representation of a tree-node. To each node a circular linked list of perceptrons
is linked: ‘current’ points to the perceptron that is currently used to calculate the solution of
N. Also, a singly linked list of bins is connected to the node: ‘first_bin’ and ‘last_bin’ point
to the first and last bin respectively. For each node a maximum of 32 child nodes can exist:
‘child_node[32]’. Each child node has a pointer to its parent node: ‘parent_node’. Also, an error
monitor is connected, ‘abs_errors’, that keeps track of the average error. The error is calculated
for the most recently am_error_iters arrived learning patterns, this parameter has an entry in
the configuration file. If a subspace ¢ has not yet received a child, the average error that a node
generates for that subspace will be stored in an appropriate error monitor: ‘child_error[:]’. A node
also does some bookkeeping: ‘patterns_trained’ revers to the number of patterns that are trained
to the perceptrons connected to it. This number is used to manage the ‘current’ pointer to the
perceptrons. ‘nr_of_bins’ holds the number of bins connected to it, ‘nr_of_patterns’ holds the total
number of learning patterns stored in these bins. ‘known_patterns_trained’ holds the number of
known patterns trained to the perceptrons, ‘index’ is the branch number, ‘depth’ holds the depth
of the tree in the node, and ‘nr_of_children’ finally holds the number of children of the node. The
other data structures displayed are explained in the text.

A.4. COMPLEXITY AND INTERNAL MECHANISMS 67

last_pattern
nr_patterns

first_pattern

input[5|8]
target[3]

next_pattern

Figure A.2: Internal representation of a pattern-list. ‘nr_patterns’ holds the number of learning
patterns, ‘first_pattern’ and ‘last_pattern’ point to the first and last learning pattern respectively,
and a node in this list contains an input vector ‘input’ which is either of size 5 or 8 depending on
the dimensionality of F, and a target vector ‘target’ of size 3, which corresponds to the number
of joints.

Finally, an intermediate pattern list structure exists, which is depicted in figure ??. Functions
to support this structure exist. It is used to store lists of learning patterns that are collected for
various reasons during the learning process and dynamically allocated.

A.4 Complexity and internal mechanisms

The plots of the time used reveal that the number of trials per time-unit is independent of the
size of the tree. The reason for this simply is that there are no recursive routines that walk the
tree. The system has been programmed such that tree-walking is unnecessary. Trivial things
like the number of nodes in the tree as well as the number of bins and learning patterns are
continually updated on a per level basis. As soon as a node receives a learning pattern, several
things happen. First of all, the pattern is stored and the system increases the count of the number
of learning patterns for the level at which the node exists by one. If a bin is needed to hold
that learning pattern, the number of bins is also increased by one for that level, just as well as
the ‘patterns_trained’ and ‘nr_of_patterns’ parameters within the node data structure. Then, the
system checks if the node needs to be split or merged. After all, the new learning pattern may
cause the conditions for a split or merge of some subspace to be fulfilled. None of these actions
require a tree-walk. Also, the number of perceptrons that have to be trained at some moment
in time only depends on the depth in the tree, since each learning pattern will be propagated to
all of its ancestors. It is however more or less independent on the number of nodes in the tree.
Also, training a perceptron consists of updating it and recalculating the solution for each joint,
which are very cheap operations. The time used for training perceptrons takes only about 50% of
the total computational resources used by the system. This excludes time needed for bookkeeping
the several error-structures, storing patterns and checking for split and merge, to name just a
few things. Therefore, the amount of time used per trial is virtually independent of the size of
the tree, which is an asset, since the system will not show any slow down even after as much as
50,000 trials. Would on the other hand feed-forward networks be used instead of perceptrons, the

68 APPENDIX A. INTERNALS OF THE SOFTWARE

increasing number of networks to be trained caused by the increasing depth of the tree becomes
a significant factor, because of the huge amount of computational resources that are needed by
feed-forward networks. Running a system for 50,000 trials with feed-forward networks is estimated
to take about a year even on a Sun SPARCstation 20.

Bibliography

[1]

[2]

[3]

[5]

[6]
[7]

(8]

Arjen Jansen, ”Neural approaches in the approximation of the inverse kinematics function:
A Comparative Study,” University of Amsterdam, Vakgroep Computerarchitectuur, March
1993, Masters Thesis

P. van der Smagt, ”Simderella: a robot simulator for neuro-controller design,” Neurocomput-
ing, Vol. 6, No. 2, 1994, Flsevier Science Publishers.

B. J. A. Krése, P. van der Smagt & F. C. A. Groen, ” A one-eyed self-learning robot manip-
ulator.” In G. Bekey & K. Goldberg (Ed.), Neural Networks in Robotics, Kluwer Academic
Publishers, (1992), 19-28.

A. Jansen, P. van der Smagt & F. C. A. Groen, ”Nested Networks for Robot Control.” In A.
F. Murray, Neural Network Applications. Kluwer Academic Publishers (1994).

T. Kohonen, ”Self-organized formation of topologically correct feature maps,” Biological Cy-
bernetics 43 (1982), 59-69.

T. Kohonen, ”Self-organization and Associative Memory,” Springer-Verlag, Berlin, 1984.

W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, ” Numerical Recipes: The
Art of Scientific Computing,” Cambridge University Press, Cambridge, 1986.

F.C.A. Groen: personal communication

69

