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Abstract

The University of Amsterdam (UvA) and the Netherlands Organisation of Applied 
Scientific  Research  (TNO),  developed  the  RoboJeep:  a  test  platform  for 
autonomous navigation in structured and unstructured terrain. The primary goal of 
any autonomous land vehicle is to make a distinction between drivable and non-
drivable terrain. For this we have develop a stereo vision based obstacle detection 
system that can be used to detect positive and negative obstacles during both day 
and night conditions. Furthermore, we have quantitatively evaluated our system 
using a large real-world dataset. The system uses our novel disparity estimation 
algorithm  together  with  triangulation  to  reconstruct  the  three  dimensional 
coordinates of points visible through the stereo camera. Our disparity estimation 
algorithm is robust against a low signal-to-noise ratio making it suitable for night-
time usage. It is based on a fine-to-coarse  disparity selection scheme using a stereo 
image pyramid. Disparity selection is based on our disparity validity metric that 
reflects the reliability of a disparity estimate. This allows rejection of estimates 
from higher resolution levels in the pyramid and replacing them by estimates from 
lower  resolutions  levels  when  needed.  Our  tests  based  on  a  large  and  varied 
collection of day- and night-time images show the benefits  of using our multi-
resolution approach. The used obstacle detection techniques are column based and 
fast.  For  positive  obstacle  detection  we  introduce  some  new  and  promising 
techniques. Our method measures the terrain slope in a robust and efficient manner 
taking the inherent uncertainty in stereo reconstruction  into account. And by using 
hysteresis thresholding the sensitivity to the angle between the slicing plane* and 
the surface normal is minimized. For evaluation we have used a wide range of 
parameter setting and plotted their response in ROC curves. We will show that we 
can reliably detect positive obstacles up to 50 meter during the day and 25 meter at 
night,  without  using  narrow  field  of  view  cameras.  Despite  good  results  with 
positive obstacles, this research points out the difficulties of negative OD. While 
we can detect negative obstacles at acceptable distance during the day and night, 
false  detections  make  reliable  negative  OD  challenging.  Finally,  our  OD 
benchmark datasets, methods, and metrics are the first step towards quantitative 
OD research using large datasets of real-world images. 

Keywords: Stereo vision, Obstacle detection, Autonomous vehicles.

 

* plane defined by optical  centre  of  the  camera and the  current  image-sensor  
column used for slope estimation.
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Chapter 1

Introduction and overview

A vehicle can only travel safely through off-road terrain if it avoids obstacles such 
as trees, rocks and ravines. Autonomous robot vehicles must be able to accomplish 
this without the guidance of a human operator. It relies on obstacle detection (OD) 
algorithms  that  identify  real-world  obstacles  in  the  path  of  the  vehicle.  The 
algorithms described is this thesis have been developed for RoboJeep: a platform 
for autonomous navigation research. RoboJeep is a joint research effort by TNO 
Defence  Security  and  Safety  and  the  Faculty  of  Science  at  the  University  of 
Amsterdam. 

The  goal  of  research related  to  RoboJeep is  to  develop methods that  enable  a 
vehicle to carry out missions autonomously. The vehicle should only use on-board 
resources and must be as reliable as a human operated vehicle. Furthermore, the 
vehicle must be able to carry out its mission in urban (structured) as well as off-
road  (unstructured)  terrain  during  day  and  night.  An  autonomous  vehicle  like 
RoboJeep  can  be  used  for  tasks  that  are  hazardous  to  humans.  Example 
applications can be found in disaster areas or for defence related reconnaissance, 
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Figure 1.1: RoboJeep.



land mine detection and personnel rescue. Also tasks that are considered tedious 
can be carried out  by an autonomous robot  vehicle.  Examples are  construction 
work, agricultural automated harvesting and automated transport. Apart from pure 
autonomous operation the developed methods can also be applicable for assistance 
systems in mainstream cars that enhance traffic safety. To accomplish its goals the 
vehicle must sense its environment and construct an accurate world model.  For 
this, RoboJeep can use a stereo-vision camera, ultra sonic sensors, Laser Imaging 
Detection and Ranging (LIDAR), navigation aids such as an Inertial Measurement 
Unit (IMU) and a Global Positioning System (GPS). Based upon the constructed 
world model the vehicle must be able to reason about possible solutions for its 
tasks and make reliable decisions. To carry outs its decisions Robojeep uses an 
automated gearbox, steering wheel, accelerator and brake pedal. Current focus is to 
develop methods that enhance the environmental awareness of the Robojeep. In 
line with that goal the research described in this thesis focusses on methods that 
improve the obstacle detection capabilities of the RoboJeep.

1.1 Need for obstacle detection improvement
Without  an  accurate  world  model  any  autonomous  vehicle  is  prone  to  make 
mistakes  and  most  likely  will  fail  to  carry  out  its  task.  A  key  part  of  the 
construction of a world model is the incorporation of obstacles. The problem of 
reliable  obstacle  detection  (OD)  for  autonomous  ground vehicles  has  not  been 
completely solved. A considerable research effort  has been put into OD during 
day-time  conditions.  However,  many  solutions  put  restrictions  on  the  type  of 
environment  the  vehicle  can  operate  in.  Solutions  that  allow  reliable  OD  in 
complex environments such as off-road terrain, cities and during various conditions 
such as day- and especially night-time do not exist. The problem is that no solution 
reaches the needed level of performance for save operation for both vehicle and 
environment, including humans. Whereas in most academic classification problems 
a performance level of 95% is considered good, hitting 5 out of 100 obstacles is 
unacceptable. An often used solution is to increase the sensitivity of the system. 
This means increasing the amount of obstacles that are detected at the expense of 
also increasing the amount of non-obstacles detected as obstacles. Although this 
will make the vehicle much safer it will also make it less efficient, because it will 
avoid a lot of false obstacles.  The best performing systems use several LIDAR 
systems  to  scan  the  environment,  Thrun  [60].  While  LIDAR  has  its  own 
disadvantages they are also expensive.  The advantage of using a stereo camera 
system is that besides estimating depth we can also use the obtained images for 
further image analysis. An example is the use of colour or texture based terrain 
classification or finding road signs. 
   It is clear that no autonomous ground vehicle can do without reliable obstacle 
detection. It is also clear that current vision based methods do not reach the needed 
level  of  performance,  especially  during  low  visibility  conditions.  These  two 
observations together show that there is still a lot of work to be done in the field of 
obstacle detection for autonomous ground vehicles.
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1.2 Problem statement
The topic of this study is to investigate the suitability of stereo based OD during 
night-time  conditions  and  compare  it  to  day-time  conditions.  The stereo  based 
obstacle detection system should be able to segment an image into drivable and un-
drivable terrain. For un-drivable terrain we make a distinction between positive and 
negative obstacles.  Positive obstacles are  objects that  extend out  of  the ground 
plane, examples are trees,  rocks and people. Negative obstacles are objects that 
extend into the ground plane, examples are ditches, ravines and holes. The first task 
of the OD system is to reconstruct the 3D coordinates of the terrain in front of the 
vehicle. To accomplish this we will use a stereo vision approach. Next, based on 
this 3D reconstruction we can search for obstacles and drivable terrain alike. The 
constraints to the stereo based OD algorithm are:

1. The algorithm must be applicable for unstructured terrain during day- and 
night-time.

2. The algorithm should be able to detect positive and negative obstacles at 
distances that allow avoidance of the obstacle.

3. The algorithm should be applicable for  real-time implementation in  the 
near future. 

 
As mentioned earlier, the first task is to reconstruct the 3D properties of the scene 
in front of the vehicle, for this we rely on stereo vision. At the beginning of the 
research it was already clear that literature about stereo vision during low-visibility 
condition such as during the night is limited. As a consequence, thorough research 
into methods that increase the robustness of stereo vision systems are required. 
Furthermore, quantitative OD evaluation over large datasets is not the standard in 
the  OD  research  community.  To  our  knowledge  review  papers  that  compare 
different OD approaches in a true quantitative way over a large real-world dataset 
do not exist. This makes it very challenging to get insight into the performance 
differences and applicability of existing OD methods. As an effect considerable 
amount  of  work  has  to  be  dedicated  to  record  datasets  and  find  suitable 
performance methods and measures.

13



1.3 overview report
Our report  starts  with an introduction into the existing work from the research 
community. In chapter 2, the focus is on disparity estimation, obstacle detection 
and stereo geometry.  Here we will  also discuss  the difficulties of  robust  scene 
reconstruction using stereo vision and the inherent limitations of stereo based OD. 
In chapter 3 we present our solutions to robust scene reconstruction and obstacle 
detection. We will  also relate our methods to existing work from the literature. 
Furthermore,  we present  the recorded benchmark dataset  and the measures and 
methods used to evaluate our system using various configurations and conditions. 
Chapter  4  presents  the  obtained  result.  We  first  focus  on  scene  reconstruction 
performance. Next, we describe the OD results for our day- and night-time dataset. 
In Chapter 5 we present our conclusions. Finally, in chapter 6 we give potential 
topics for further research. 
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Chapter 2

Related research

In this chapter, methods are discussed for obstacle detection with stereo vision as 
well as related research from literature. In section 2.1, 2.2 and 2.3 we focus on 
computational stereo. First, we will present the geometrical aspects of stereo vision 
in section 2.2. Next in section 2.3, we describe the latest research into disparity 
estimation. Then, in section 2.4 the focus is on obstacle detection. In section 2.5 we 
discuss the limitations of stereo based obstacle detection and possible solutions. 
Finally, in section 2.6 we conclude the literature overview and present our research 
directions.

2.1 Stereo Vision
The goal of stereo vision is to recover the three-dimensional (3D) coordinates of 
real-world points seen through a  binocular  camera system. A binocular  camera 
system consists of two cameras mounted on a baseline, see figure 2.1. In general 
there are two techniques for 3D reconstruction using a binocular camera system. 
There is active stereo and passive stereo also known as computational stereo. With 
active  stereo  we can  control  the  convergence between the  two cameras.  When 
estimating the depth of an object an active stereo system tries to centre the object in 
both images by modifying the convergence between the cameras. If the object is 
centred we can compute its 3D position by triangulation based on the binocular 
camera parameters and the convergence between the two cameras. With passive 
stereo systems the convergence between the camera is fixed. 3D reconstruction is 
now based on finding corresponding point pairs. A corresponding point pair consist 
of two image points belonging to one real-world point, one in the left camera and 
one  in  the  right  camera,  see  figure  2.1.  Given  the   image  position  of  the 
corresponding points of a world point in both images and the  binocular camera 
parameters we can calculate its 3D coordinates. In this thesis we only focus on 
passive stereo. The process of passive stereo sketched above will be described in 
more detail in the next sections. Section 2.2 describes the geometrical background 
of binocular camera systems.  We will describe how to obtain the binocular camera 
parameters as well as how to reconstruct 3D coordinates given two correspondence 
points. The problem of finding corresponding point pairs for every point visible in 
both cameras,  the so called correspondence problem, is discussed in section 2.3.
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2.2 Multi view geometry and Passive Stereo
The  computer  vision  field  that  deals  with  understanding  and  modelling  of  the 
geometry of multiple cameras is called multi-view geometry. In the last decades 
the theory and methods have reached a mature level. The book written by Hartley 
and Zisserman [17]  gives  an excellent  in-depth information about  the topic.  In 
following sections we confine ourselves to a brief overview of theory and methods 
that apply to passive stereo. 

The process of  passive stereo can be subdivided in four components.  First,  the 
binocular camera system has to be calibrated. By stereo calibration we obtain the 
parameters  of  the  binocular  camera  system.  Secondly,  based  on  the  obtained 
binocular camera parameters we rectify the images taken by the camera system. 
Rectification will transform the images as if they were taken by an ideal binocular 
camera system, see figure 2.1. Thirdly, we have to find the points pl  and pr  that 
correspond to the same physical point  PW for every point visible in both images. 
Fourthly, once we have found the points  pl  and  pr  we can use their horizontal 
image  coordinates  to  find  the  disparity  d between  them.  Using  the  disparity 
together with the rectified binocular camera parameters we can compute the 3D 
coordinates of PW relative to OV. In our case OV is the centre of the vehicle. In the 
coming  sections  we  will  go  deeper  into  the  process  sketched  above.  First  we 
present  the  geometrical  model  of  single  camera and binocular  camera systems. 
Then undistortion,  rectification,  depth  estimation  and  depth  uncertainty  will  be 
discussed in more detail.
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Figure 2.1: Binocular camera model.
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2.2.1 Camera model 
The  model  of  a  single  camera  can  be  subdivided  in  its  internal  and  external 
properties  also  known  as  intrinsic  and  extrinsic  parameters.  The  intrinsic 
parameters describe how a point is projected on the image plane  I. The extrinsic 
parameters give the position of the camera's focal point  OC according to a world 
reference frame.  The extrinsic  parameters  consist  of  two parts.  First  a  rotation 
matrix R which describes the rotation between the world coordinate system and the 
camera  coordinate  system.  Second  a  translation  vector  T that  describes  the 
translation  between   the  world  coordinate  system  and  the  camera  coordinate 
system. The relation between the world coordinates and the camera coordinates for 
a given point is then described as.

(2.1)

Where  P w are  the  coordinates  Pw x Pw y Pw zT  of  point  P in  the  world 
coordinate system and  P c are the resulting coordinates  P c x Pc y Pc z T  in the 
camera coordinate system. After the point is transformed to the camera coordinate 
system projection can be applied. We first describe the pin-hole camera model, see 
figure 2.2. The pin-hole model is a linear, thus distortion free, model for projection 
three-dimensional points to a two dimensional (2D) image. It tries to capture the 
process of light falling trough a lens onto an imaging plane. The lens is modelled 
as one single point OC, that is the pin hole through which all light falls. The line 
through  OC perpendicular to the imaging plane  I is known as optical axis.  The 
length from OC to I which is the focal length is written down as f (note that in the 
formulas we assume the focal plane to be in front of the optical centre hence the 
positive  f). The image coordinates  pi x of  pi y can be computed from the camera 
coordinates of P using:

(2.2)

And the x and y coordinates of P relative to OC can be computed from the image 
coordinates pc  (when pcz is known) using:

(2.3)

The Pin-hole camera is a simple and straightforward model for image projection. 
Almost all real camera systems come equipped with a glass lens instead of a pin-
hole. Lens projection can add several types of distortions to the images. These have 
to be removed before the pin-hole model can be applied.  To do this we use a more 
complex camera model as described by Zhang [66], and estimated its parameters 
for  the used camera by means of  camera calibration,  Heikkilä and Silvén [19]. 
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Camera calibration is usually performed using a plane on which several markers 
are printed. The size of the plane and relative position of these markers is known 
beforehand.  By  taking  several  images  of  this  calibration  plane  under  various 
orientations and extracting the image coordinates of the markers we can estimate 
the projection parameters of the used camera. Once we have the parameters of the 
complex model we can define a transformation from the complex model to the Pin-
hole model. This transformation can be applied to the images and hence they will 
appear as if they were taken by a Pin-hole (linear distortion free) camera. This 
process is usually referred to as undistortion. In the next page we describe the used 
complex camera model and its parameters. In all other sections we will assume that 
the used cameras behave according to the pin-hole model. 
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Figure 2.2: Pin-hole camera model.
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The used camera model model calculates the image projection in three stages. First 
the normalized (f = 1) image coordinates are calculated with the formula  below.

(2.4)

Then radial distortion defined by the parameters k1 and k 2 is applied using: 

(2.5)

Where r is the radius from the image centre point oi. The possible effects of radial 
distortion are shown in figure 2.3. Finally the distorted image coordinates are un-
normalized using:

(2.6)

Here cc x and cc y model the coordinates of the principal point. The principal point
Oi is the projection of the optical centre OC onto the imaging plane I. The  focal 
length is modelled by  f x and f y.
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2.2.2 Epipolar geometry
Epipolar  geometry  refers  to  the  geometry  of  two  cameras.  It  builds  upon  the 
geometrical  model  of  a single camera as  described in  section 2.2.1 and adds a 
rotation and translation that describes the relative position and orientation between 
the two cameras. The general set-up of a binocular camera system is shown in 
figure 2.5. A photo parallel camera system, see figure 2.4, is a set-up where the 
optical axis of both camera's are parallel to each other. Furthermore, the baseline 
connecting the two optical points runs parallel to the image lines in both imaging 
planes.  Searching for  corresponding points is  less  difficult  when using a  photo 
parallel system. However, it is very difficult to align two cameras manually so that 
they are exactly photo parallel. 
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Figure 2.4: Photo parallel binocular camera system.
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By  means  of  stereo  calibration  we  can  estimate  the  stereo  parameters  of  the 
binocular  camera  system.  Using  these  parameters  we  can  construct  a 
transformation from the used binocular camera system to a photo parallel binocular 
camera  system.  Applying  this  transformation  to  the  images  i.e.  epipolar 
rectification will transform the images as if they were taken by a photo parallel 
camera system. In the text below we explain the process and benefits of stereo 
calibration and epipolar rectification. First we will introduce a number of terms. 
The  epipoles b l and  br are the points of intersection of the  baseline  b,  the  line 
joining the optical centres  Ol, and O r, with the image planes  I l and I r. Thus, an 
epipole is the projection, in one camera, of the optical centre of the other camera. 
The epipolar plane is the plane defined by  PW and the optical centres  Ol and O r . 
The epipolar lines  ep l and epr are the straight lines of intersection of the epipolar 
plane with the image planes I l and I r. It is the projection in one camera of a ray 
through the optical centre and image point in the other camera. All epipolar lines 
intersect at the epipole (except for photo parallel stereo cameras, in this case the 
epipoles are at infinity)

By  calibration  of  the  stereo  camera  rig  we  obtain  the  intrinsic  and   extrinsic 
parameters of both cameras. For stereo calibration we can use a similar method as 
described  in  section  2.2.1.  The  intrinsic  parameters  describe  how  points  are 
projected onto the imaging planes of both cameras. It includes parameters such as 
the  cameras  focal  length,  principal  point  and  the  lens  distortion. The  extrinsic 
parameters describe the transformation from the right cameras coordinate system to 
that  of  the  left  one.  It  is  composed  of  a  rotation and a  translation. Using this 
information we can find the epipoles in both images by computing the intersection 
of  the  baseline  with  both  imaging  planes.  If  we  want  to  search  for  the 
corresponding point of pl in I r we know it must lay on the epipolar line epr in I r. 
To find the epipolar line we compute the  intersection of the imaging plane  I r with 
the epipolar plane defined by pl, Ol and b l. So the benefit of camera calibration is 
that it  simplifies the search of corresponding points from a 2D search to a 1D 
search along the epipolar lines. By epipolar rectification of the images the epipolar 
lines will become parallel to the image lines. Therefore, we only have to search 
along the same horizontal scan-line in  I r to find the corresponding point of  pl. 
Furthermore, we know that the point pr must lay left of the image coordinates of 
pl in  I r.   Epipolar  rectification first  transforms the projection matrices of  both 
cameras to the pin-hole model (un-distortion) where the focal length will be the 
same for both cameras. The next step is to cancel out the orientation difference 
between the  imaging planes of  both cameras making them co-planer.  Then the 
offset  between  the  vertical  positions  of  the  focal  points  is  removed.  All  that 
remains is a horizontal offset between the optical centres e.g. the baseline. Finally, 
the transformations used for epipolar rectification can be used to warp the images. 
This  will  cause the  image to  appear as  if  they were taken by a  photo parallel 
camera system.
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2.2.3 Depth estimation & 3D reconstruction
The geometry needed for the stereo reconstruction of image points is explained in 
this section. It assumes the pin-hole model and that the cameras are in a photo-
parallel set-up. Images from real cameras can also be used if they are un-distorted 
and rectified first. To reconstruct the 3D coordinates of image points we first need 
to obtain its distance from the camera. Once the distance is obtained we can use 
formula 2.3 to calculate the other coordinates.

First note that distances  P L z and  P R z are equal and that the difference between 
P L x and P R x is equal to b, which leads to:

(2.7)

The depth of PW relative to OL can be computed with:

(2.8)

Once all 3D coordinates are calculated using formula 2.3 we can transform the 
coordinates  from  the  left  camera  coordinate  system  to  the  vehicle  coordinate 
system using:

(2.9)
Where  Rv describe  the  rotation  between  the  left  camera  frame  and  vehicle 
coordinate frame and T v the translation between them.
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Figure 2.6: Stereo geometry.
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2.2.4 Uncertainty in depth estimation
In the previous sections we have assumed that the projections onto the imaging 
plane can be described by points. In reality imaging planes work with pixels which 
have a certain size. Pixel size causes a minimum and maximum bound on depth 
estimation,  as  can  be  seen  in  figure  2.7.  The  effect  of  pixel  size  on  depth 
uncertainty  can  be  minimized  using  sub-pixel  disparity  estimation,  which  is 
described in section 2.3.14. In the text below we describe the influence of a points 
distance from the camera, base line width, focal length and pixel size on depth 
uncertainty.

Given the disparity d  between two corresponding points pl and  pr, the minimum 
and maximum depth can be computed with: 

(2.10)

The influence of the pixel width  x  on the difference between the maximum and 
the minimum depth  P z can be modelled with:

(2.11)

Finally the influence of P z on  P z can be computed with:

(2.12)
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Figure 2.7: Uncertainty in depth.
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2.3 Disparity estimation
As discussed in section 2.2 reconstructing the three dimensional properties of a 
scene requires finding correspondence points and the disparity between them.  In 
this section we look into the field of stereo algorithms. We will restrict the meaning 
of the term stereo algorithms to techniques that enable disparity estimation from 
stereo image pairs taken by a binocular camera system, seen figure 2.1. A stereo 
image pair consists of one image from the left  camera together with one image 
from the right camera. It is assumed that both images are  taken at the same time. 
Furthermore,  both  images  from  the  stereo  image  pair  have  rectified  epipolar 
geometry  according  to  the  intrinsic  and  extrinsic  parameters  of  the  binocular 
camera system, see section 2.2.2. 

The key issue that stereo algorithms try to solve is the construction of a disparity 
image d x , y . This boils down to finding for each point  x , y  in the image of one 
camera one corresponding point in the image from the other camera. Once we have 
two corresponding points from a rectified stereo image pair  the disparity value 
d x , y  can be obtained. For instance if I l h ,w  and I r k , ware correspondence 
points  in  a  rectified  stereo  image  pair  then  d h , w=h−k .  The  search  for 
correspondence points is one of the key research topics in machine vision and is 
known as the correspondence problem. When the stereo image pair is rectified the 
search complexity is O  H W 2 . This is because the epipolar lines are co-parallel 
and thus we only have to search in one image line for a corresponding point. In 
practice we do not have to search the whole line in the reference image. Usually a 
maximum bound is set on the disparity between correspondence points. In this case 
the search complexity if reduced to  O  H W Maxd . Apart from the search space 
complexity  there  are  other  aspects which make the correspondence problem so 
difficult. Points on image patches with bad signal to noise ratio are usually prone to 
errors.  Bad signal to noise ratio can be caused by the absence of texture. Repetitive 
textures on the other hand, pose difficulties due to the great similarity between 
subregions in the texture. Also the difference in camera gain and bias, perspective 
distortion and occlusions make the search challenging. Because the literature on 
night-time stereo is very scarce we focus on general disparity estimation. The last 
section of this chapter, 2.3.16, deals with night-time stereo. For a general overview 
of recent research into disparity estimation we refer to Brown et al. [8], Scharstein 
and Szeliski [53]. For a overview and analysis of techniques that can be used for 
autonomous vehicles we refer to van der Mark and Gavrila [41].
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2.3.1 Notation
We will look into stereo algorithms that have as output a disparity image d x , y   
with respect to a reference image. Without loss of generality we will take the left 
image of the stereo image pair to be the reference image I l and the right image to 
be the matching image I r.  d x , y  will give as output a disparity value for pixel 
I l  x , y  in  the  reference  image.  The  output  of  d x , y   means  that  given  the 
position   x , y  in the reference image, the physical point that is associated with 
I l  x , y  can be found at position I r  x−d x , y  , y  in the matching image. At the 
same time the output of d x , y   is directly related to the depth of an image point, 
as discussed earlier in section 2.2.3. 

2.3.2 Dense and sparse stereo
A method that tries to estimate a disparity value at every location in the reference 
image is called dense stereo. If the number of locations is limited to certain image 
features for instance edges, the method is referred to as sparse stereo. Sparse stereo 
was popular during the early days of machine vision when computation power was 
limited. Nowadays dense stereo has become feasible at real-time frame rates and 
receives most interest. In the remainder of this thesis we will focus on dense stereo.
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Figure 2.8: Disparity Space Image.
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2.3.3 Disparity space image & Disparity estimation
Central to stereo algorithms that produce a disparity map d x , y  is the notion of a 
disparity space image (DSI)  also known as disparity search space or  correlation 
space. A  DSI  x , y , d ,  see figure 2.8, gives for every position in the reference 
image and a certain disparity a similarity measure. The similarity measure given by 
DSI  x , y , d  is the confidence that the point  I l  x , y  and I r  x−d , y  relate to the 
same physical  point.  Estimating  disparity  using  a  DSI  basically  involves  three 
steps.  With  some  methods  these  steps  are  clearly  separated.  Other  methods 
combine steps together and even can use several iterations of them. The first step is 
to fill  the DSI with the output of a single pixel similarity function  S for every 
possible value for x, y and d. 

The function S tells us how much a pixel from the left image is similar to a pixel in 
the right image. Single pixel similarity is not always distinctive enough. So the 
next step is to aggregate the output of the similarity function. 

Where K x , y , d  gives a set of coordinates inside the DSI that can influence the 
similarity value of DSI  x , y , d . For instance this can be done by using a fronto-
parallel 4-connected summing filter e.g.  K(x,y,d) = [(x,y,d), (x-1,y,d), (x+1,y,d),  
(x,y-1,d), (x,y+1,d)]. The effect is that neighbouring pixels influence each others 
similarity  value and eventual  will  influence each others disparity estimate.  The 
third step is to estimate for every point  I l  x , y  the best value for  d so that the 
overall  disparity  map  matches  the  true  disparity  most  likely.  This  is  done  by 
optimizing for d over the DSI. 

A distinction can be made between optimizations methods based on the portion of 
the DSI they take into account when optimizing the disparity for a given pixel. 
Local methods optimize the disparity for a pixel solely based on its DSI column. 
Scan-line methods optimize the disparity for a pixel based on its DSI slice. And 
global optimization methods optimize the disparity for a pixel based on the entire 
DSI cube.  In sections 2.3.4 up to 2.3.9 we will discuss the filling of the DSI with 
the output of a similarity function. Then in sections 2.3.10 up to 2.3.13 we describe 
optimization methods to extract the disparity image from the DSI. Finally, section 
2.3.14 and 2.3.15 provide post-processing methods and methods to estimate the 
quality of the found disparity on a pixel by pixel basis.
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2.3.4 Similarity computation
In order to find correspondence points in a stereo image pair we must be able to 
compare candidate points. Comparing candidate point is done by using a similarity 
measure  S  x , y ,d . The outcome of this similarity measure tells us how much a 
given point in the reference image is similar to the point in the matching image. A 
distinction can be made between similarity measures that operate in the feature 
domain, Grimson [15], Labayrade and Aubert [29], measures that operate in the 
frequency domain, Jones and Malik [23], and measures that operate in the intensity 
domain.  The  most  used  intensity  based  similarity  measures  will  be  discussed 
below. 

Intensity based
Over the years, a large collection of intensity based similarity measures have been 
proposed. For more information and a quantitative comparison between various 
intensity based similarity measure for computational stereo we refer to Banks and 
Corke [1], Roma et al. [51]. Most intensity based methods compute the similarity 
in  a  rectangular  shaped region around the  pixel  of  interest.  These  methods are 
referred to as window matching or block matching techniques. 

The  classical  statistical  method  for  determining  similarity  is  Zero  Mean 
Normalized Cross Correlation (ZM-NCC) also known as correlation coefficient. 
When using ZM-NCC with a  correlation window of height  M =2Ch1 and 
width  N =2Cw1.  We can compute ZM-NCC in the following manner:

(2.13)

C l is the average intensity in a window centred around I l x , y with dimension 
MxN.  And C r is  the  average  image  intensity  in  a  window   centred  around 
I r x−d , y with dimension MxN. ZM-NCC normalizes both in the mean and in 
the variance making it relative insensitive to radiometric bias and gain. Often a 
computational simplification is used called Normalized Cross Correlation (NCC). 

(2.14)

NCC only normalizes in variance and not in the mean thus only compensating for 
radiometric gain. We know from the correlation theorem that a correlation between 
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f  and  h in  the  spatial  domain is  the  same as  a multiplication in  the  frequency 
domain between F* and H. where F* is the the complex conjugate of F. And F and 
H are the Fourier transforms of f and h. While it is not straightforward to apply this 
for normalized correlation, like ZM-NCC and NCC, approaches exist for efficient 
computation  of  ZM-NCC and NCC that  make use  of  this  correlation theorem, 
Lewis [34]. 

Because of the computational load of ZM-NCC and NCC other intensity based 
similarity measures are often used for real-time systems. The basis for many of 
these more efficient  intensity  based similarity  measures are  Squared Difference 
(SD) and Absolute Difference (AD). The use of AD is preferred because it requires 
less computation and memory. 

(2.15)

(2.16)

Using AD and SD the difference of a larger support region can be computed. The 
most common ones are Summed Squared Difference (SSD) and Summed Absolute 
Difference  (SAD). Also normalized variations of SAD and SSD can be used.

(2.17)

(2.18)

Window matching  measures  like  SAD and SSD can  usually  be  separated  in  a 
single pixel similarity computation step and an aggregation step making them more 
efficient. The efficiency is gained by reusing and thereby reducing computations. 
This is achieved by using running block sums and Single Instruction Multiple Data 
(SIMD) instructions for cost aggregation, van der Mark and Gavrila [41].

One  of  the  latest  additions  to  intensity  based  similarity  measures  comes  from 
Birchfield and Tomasi [3]. They propose a similarity method that is proven to be 
insensitive  to  image  sampling.  The  measure  does  not  use  the  intensity  values 
themselves but instead uses a linear interpolated intensity functions surrounding 
the  pixels.  They note  that  the time needed to  compute  the  measure  is  only 10 
percent more that that of SAD. Using this measure it is possible to find the optimal 
disparity  (maximum  similarity)  with  sub-pixel  accuracy.  Note  that   sub-pixel 
accuracy can also be obtained by interpolating the similarity values inside the DSI 
instead, section 2.3.14.
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2.3.5 Pre processing
The problem with un-normalized measures like SSD and SAD is that  they are 
sensitive to radiometric distortion. Doubling the image intensities will double the 
dissimilarity. To overcome this problem we can filter both images with a Laplacian 
of Gaussian (LoG) filter, see figure 2.9. The LoG kernel is a zero sum kernel so the 
response of LoG filtering is zero on patches with equal intensity. Filtering with a 
LoG kernel makes the matching less sensitive to the intensity values themselves 
and more sensitive to the relative difference in local intensity values around a given 
pixel.  

Pre-processing steps that truly work with the relative ordering of intensity values in 
a window shaped regions are the Rank and Census transforms, Zabih and Woodfill 
[65].  The Rank transform of a pixel is defined as the number of pixels in a sub 
region  around  the  pixel  that  have  a  smaller  intensity.  When  an  image  is  rank 
transformed  we  can  use  regular  difference  metrics  like  SAD  to  compute  the 
difference between image regions.

(2.19)

The effect of the Rank transform as a pre-processing step is the elimination of 
sensitivity of radiometric gain and bias. Furthermore the authors claim that because 
the values are much more compressed the measure is more robust against outliers 
e.g. due to noise. An other benefit of Rank is that its output of a HxW window only 
takes log2 H∗W  bits. So a 16x16 Rank transformed window can still be encoded 
using  an  8-bit  unsigned  integer.  A  drawback  of  the  method  is  that  a  lot  of 
discriminative information is lost. This is because the relative ordering of all pixels 
around a point is encoded in one single value.  Zabihand and  Woodfill [65] also 
propose a variation of the rank transform, called the Census transform. 
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The Census transform not only captures the number of pixel smaller than the centre 
pixel but also their location. This location is encoded in a bit string. The Census 
distance is then computed as the hamming distance (the number of bits that differ) 
between the Census transform of two regions. A Census transformed window of 
HxW takes HxW-1 bits. So a 16x16 window would require 255 bits. This points out 
the main disadvantage of Census, it is very hard to optimize for processing on a 
standard CPU.  In order the compute Census efficiently the use of programmable 
logic devices such as Field Programmable Gate Array's (FPGA's) are needed. 

Banks and Corke [1], compare the performance of Rank and Census matching with 
those of correlation based difference metrics. Their results indicates that rank and 
census methods perform comparably to standard metrics and are more robust to 
radiometric distortion and occlusion. For many of the test scenes, the difference 
between NCC and census  matching  was  between 5  and  9  percent  of  the  total 
number  of  pixels.  Unfortunately  they  did  not  measure  the  influence  of  LoG 
prepossessing on  standard  intensity  based measures  like  SAD. Furthermore the 
performance was based on the number of pixels for which a disparity estimate was 
found. The actual value of the disparities was not used because the lack of disparity 
ground truth.
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2.3.6 Similarity Aggregation
The quality of the found similarity measure is strongly influenced by the size and 
shape of the aggregation window. On one hand the aggregation window must be 
large  enough  to  be  distinctive  from  other  windows.  On  the  other  hand  the 
aggregation window must be small enough to only cover pixels at equal disparity, 
so perspective distortions are minimized. This problem is illustrated in figure 2.10. 
Similarity aggregation tries to capture the real-world relations between  pixels. The 
performance difference between various disparity matching approaches is mainly 
due  to  the  way  they  establish  this  relation  between  pixels  and  change  the 
aggregation accordingly. Measures that use a fixed aggregation window  like SSD, 
SAD and NCC are especially sensitive to the chosen window size, see figure 2.11. 
A large window size is more robust to noise but tends to dilate object edges in the 
image. On the other hand, a small window size can find depth disparity boundaries 
very  precisely.  However,  it  is  more  sensitive  to  noise,  especially  when  image 
intensity variation is low. So the best window size and shape is a trade off and is 
based on local  image characteristics.  In the literature several techniques can be 
found to estimate the best shape and size of the aggregation window. First, we will 
list them here and in the next sections we will look into them more closely.
1) Adaptive aggregation windows.
2) Multi-resolution & Multi-scale.
3) Iterative aggregation.
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Figure 2.10: Reference window (left) Correct matching window (middle) Chosen 
matching window (right).

In the reference image we have a marble background with a black textured square  
in front of it, the reference window is shown as a white square (left). The pixel  
position associated with the reference window is visible in all images. Due to the  
projective distortion, the matching window at the correct disparity in the search  
image contains a part of the foreground object (middle). Because in contrast to the  
reference window the matching window contains pixels from different objects (and 
depth) the matching difference will be high. In stead of a clear minimum at the  
correct  position,  a  faulty  matching  window  that  only  contains  the  marble  
background will  result in a better similarity value (right).
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Figure 2.11: Effect of aggregation window size.
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2.3.7 Adaptive aggregation windows
In the past years, the focus has been on finding techniques that find the optimal 
aggregation window size and shape for a given region in both the reference and 
matching images. The problem with finding the optimal window size and shape is 
that it depends on the image variance and disparity variance in the window. Unlike 
image variance, the disparity variance can not be known beforehand. While it is 
more intuitive to think of cost windows relative to the original stereo image pair, 
adaptive aggregation methods usually work on the data inside a DSI. 

The first structural approach to solve this problem was presented by Okutomi and 
Kanade [24] [25]. Their approach tries to find the optimal window size and shape 
by measuring the image variance and estimating the variance in disparity for a 
given window. Due to the computational load they limit the window shape to be 
rectangular  with  controllable  height  and  width.  The  key  to  their  approach  is; 
modelling uncertainty over the computed disparity. This uncertainty depends on 
the disparity variation  and the image variation within a window. In this manner 
they can obtain the window size that locally minimizes the uncertainty over the 
computed disparity. The algorithm works in an iterative fashion starting with an 
initial  disparity  estimate  and  further  refining  the  estimate  until  convergence. 
During  each  iteration  and  for  each  pixel  the  matching  widow starts  as  a  3x3 
rectangle. In the next steps the optimal window shape is found by expanding the 
window in  a  greedy manner.  When for  all  pixels  the  window with  the  lowest 
uncertainty in its disparity estimate is found the disparities are updated and a new 
iteration is started. 

The  method  has  two  disadvantages.  Firstly  it  requires  a  large  amount  of 
computational  power.  Secondly  it  only  refines  an  initial  disparity  estimate. 
However, the authors state that in some cases they can use an initial estimate for d 
of  0  when  using  a  coarse-to-fine  scheme.  The  exact  conditions  for  the  initial 
estimate are unknown. Furthermore, it is unclear if the success of the method is 
mainly  from the  iterative  approach  or  from their  window selection  scheme.  A 
limitation of this approach is that it restrict itself to rectangular windows. As the 
authors  state,  it  would be possible to extend the  window growing scheme in a 
pixel-by-pixel manner. This way arbitrary windows of various shapes and sizes can 
be formed. 

A variable window technique that does facilitates windows of arbitrary shapes and 
sizes is presented by Boykov et al. [5]. The presented technique forms windows in 
a pixel by pixel manner. Their technique is based upon a plausibility measure. For 
every pixel in the reference image they construct a set of disparity values D which 
are plausible. The construction is based on the intensity of the reference pixel and 
the  intensities of  candidate  matching pixels.  Next,  for  every plausible  disparity 
values d ∈D, they grow a window starting at the reference pixel so that the window 
is the maximum connected set of all neighbouring pixels for which d is plausible. 
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Finally, they select that d for which the grown window is largest. This ensures that 
the chosen disparity value is most plausible in the neighbourhood of the reference 
pixel. 

The drawback of these methods is that they are all computational expensive. To 
overcome this problem other methods use a finite set of predefined sub-windows. 
From this set of sub-windows we can construct a matching window that is most 
appropriate for the region around a reference pixel. The benefit of this approach is 
that it can be implemented as an adaptive summing block filter in the DSI. Which 
makes  it  possible  to  use  running-block  sums  for  efficient  computation  of  the 
similarity values. 

Bobick and Intille [4], Fusiello et al. [13], Kang et al. [25] use windows where the 
matching pixel can be at different locations inside the matching window and not 
necessarily the centre. Hirschmüller et al. [20], was able to develop a method that 
runs in real-time. The effect of this approach on the disparity search is illustrated in 
figures 2.12.  For all sub-windows a correlation measure is computed. The final 
correlation measure is the sum of the three best matching sub-windows (given in 
red). By using the three best matching sub-windows we can find the disparity more 
precise as when using the complete matching window. 
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Figure 2.12: Multiple windows.

We have the same situation as in figure 2.10. However now because the matching  
window can select amongst smaller sub-windows it is able to come closer to the  
true disparity then when using a fixed window. 



2.3.8 Multi-resolution & Multi-scale
Multi-resolution and multi-scale have strong resemblance with adaptive windows. 
Adaptive windows try to find the optimal cost window size and shape for stereo 
matching.  Multi-resolution  and  multi-scale  approaches  try  to  find  the  optimal 
matching granularity of the image itself for all pixels in the image. Multi-resolution 
uses a fixed cost window size and uses multiple copies of the image at various 
resolutions, which can be visualized as an image pyramid, see figure 2.13. The 
traditional multi-resolution approach is an iterative coarse-to-fine method, O'Neill 
and Denos [48], Yang and Yuille [63], Yang et al. [64] and Roma et al.[51]. It first 
performs  a  full  disparity  estimate  for  the  highest  level  in  the  image  pyramid 
containing the lowest resolution. It then performs a disparity estimate one level 
down in the image pyramid where the result of the higher layer guides the disparity 
estimation  process  of  the  current  layer.  Thus  the  layers  containing  the  lower 
resolutions provide the  robustness and the layers containing the higher resolutions 
provide  the  accuracy.  A  well  known  problem  with  this  approach  is  error 
propagation from the higher layers towards the lower layers. Because of the fact 
that the higher levels (lower resolutions) contain less information small  objects 
might be overlooked and occlusions may be missed. These faulty estimates can 
propagate  all  the  way  down to  the  lowest  level.  Causing  errors  that  could  be 
avoided if the guidance of the higher layers was ignored. 

Multi-scale  approaches,  Witkin  et  al.  [62]  are  very  similar  to  multi-resolution 
approaches. But instead of using an image-pyramid, multi-scale approaches use a 
scale-space, Witkin [61], Lindeberg [35],  Koenderink [26]. A scale-space can be 
seen as  an image pyramid where the resolution stays the same but each level is 
filtered with a Gaussian filter. The variance of the Gaussian kernel is increased for 
higher levels in the pyramid. One of the benefits is that by using a discrete set of 
Gaussian kernels at various scales a contentious scale-space can be approximated. 
Also tracking of features is easier because the resolution is equal at all levels. The 
drawback is that it is usually less efficient than multi-resolution approaches.
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Figure 2.13: Multi-resolution disparity estimation.



2.3.9 Iterative aggregation
Iterative  cost  aggregation  or  diffusion  is  the  process  of  applying  a  fixed 
aggregation window on a filled DSI for a number of iterations. The number of 
iterations can be fixed or can be changed locally on a per pixel basis. For instance 
we can apply the following 4-connected Gaussian aggregation window (or update 
rule):

(2.19)
Here,   controls  the  speed of diffusion.  A benefit  of  such an update  rule over 
traditional  window based aggregation is  that  the  influence pixels  have on each 
other decreases according to the distance between them (of course the same can be 
accomplished  by  using  scale-space  approaches  or  multiplying  values  inside  an 
aggregation window with a Gaussian kernel). With diffusion an important question 
is how many iterations to use for any given pixel.  Scharstein and Szeliski [54] 
experimented with three approaches of diffusion. Their first approach is based on a 
membrane model. Basically it uses the same update rule as above with an extra 
term to ensure that the new cost value does not deviate to much from the original 
coast value. Their second approach uses the update rule above with a local stopping 
criteria  based on  the  validity  of  the  candidate  disparity  estimate.  The disparity 
validity measure used is based on the cost values inside a DSI column. For any 
given column they calculate its Winner Margin (WM), which is the normalized 
difference between the DSI column minimum and the second best minimum (see 
section 2.3.15). Then they apply the update rule above and again they measure the 
WM. If the WM decreased, they restore the old value and terminate the diffusion 
process  locally  otherwise  they  continue.  Their  third  approach  uses  a  Bayesian 
model for disparity matching. Their model consist of two parts. The first part is the 
prior  model  that  captures  the  expected  disparity  smoothness  in  the  scene.  The 
second part is the data model which captures the intensity difference between the 
pixels in the stereo image pair. Each DSI column is represented with a probability 
function.  Diffusion  lets  the  column  probability  functions  influence  each  other 
based  on  the  prior  model  and  the  actual  intensity  differences.  From the  three 
approaches  the  Bayesian approach works  remarkably better  than the  other  two 
approaches. However, parameter choice is crucial especial the ones concerning the 
prior model which captures the expected disparity smoothness. The local stopping 
criteria and the membrane model had almost equal performance. Finally Scharstein 
and  Szeliski  believed  their  local  stopping  criteria  approach  could  be  improved 
using better validity measures instead of Winner Margin.
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2.3.10 Disparity estimation & optimization 
In the previous sections we have described the filling of a DSI with the output of a 
similarity measure. The next task is to extract the most representative disparity map 
from this DSI. This can be regarded as a cost minimization problem. The cost C of 
a candidate disparity map is the sum of its local cost C l  and its global cost C g , 
see formula 2.20. The local cost is computed from the similarity values inside the 
DSI. A low cost means a high level of similarity. The global cost is made up of 
penalty terms computed from the candidate disparity map. For instance, we can 
associated  high  cost  with  large  disparity  jumps  in  the  disparity  map.  Usually 
penalty terms are only computed for neighbouring pixels in the disparity map. The 
global term is used to enforce smoothness of the disparity map.

(2.20)

The problem of disparity estimation then becomes finding the disparity map d with 
minimal cost from all possible candidates D.

(2.21)

The set of all possible candidates can be extremely large. For an image with size 
HxW and  a  maximum  allowed  disparity  of  Maxd  the  search  space  contains 
Maxd

H W  possible candidates. It is clear that computing the cost for all possible 
candidates is not practical. The task of disparity estimation can be seen as an ill-
posed problem. We can only solve this ill-posed problem efficiently by limiting the 
search space and the output of our algorithm. These constraint are based on scene 
specific knowledge and assumptions about the influence that neighbouring pixels 
can have on each other. In the next sections we will describe different optimization 
methods.
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2.3.11 Local Optimization
local optimization techniques only use a pixel's DSI column to estimate disparity. 
The basic thing we can do is to select that disparity with the lowest associated cost 
in the DSI column i.e. Winner Takes All (WTA). This method only optimizes the 
local  term  of  formula  2.20  and  neglects  the  global  (smoothness)  term.  Local 
optimization methods can be computed extremely fast and are in favour for real-
time systems. While smoothness is not enforced by the global term it usually is 
enforced using other techniques. Fore example by using cost-aggregation in the 
DSI, neighbouring pixels can still have some influence on each others disparity 
estimate (with scan-line or global optimization methods cost aggregation is usual 
an integral part of the optimization process itself). Also disparity post-processing, 
see section 2.3.15, can help to enforce the smoothness constraint.

2.3.12 Scanline optimization
Scanline optimization finds the disparity for a pixel depending on its entire DSI 
slice. The technique most often used is  to represent the DSI slice as a Markov 
Random Field (MRF). A MRF is basically a 2D extension of a Markov chain, see 
figure 2.14. With Markov chains each node is only dependent on a limited number 
of its predecessors. With MRF's a node is only dependent on a limited number of 
its neighbours. MRF based disparity estimation can be done by finding an optimal 
path through the MRF using dynamic programming, Cox et al. [10], Bobick and 
Intille [4].  The  low computational  load  of  dynamic  programming  makes  it  an 
option for real-time systems,  Kraft and Jonker [28]. We can model a DSI slice 
with a MRF in the following way. Each pixel in the DSI slice is modelled as a 
node,  so  we  have  WxMaxd  nodes  per  slice.  Each  node  in  the  MRF  has  an 
associated cost  Costw ,d . Finding the optimal disparity for each pixel in the scan 
line involves two steps. First a forward cost aggregation step is performed. During 
this step the cost associated from a pixel can be influenced by a limited set of its 
neighbours, see figure 2.15. Second a disparity trace back step that finds the lowest 
cost path through the MRF. 
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Figure 2.14: DSI based MRF  with disparity path (grey and black 
nodes). 
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Lets assume we want to compute the disparity for image line l and use right-to-left 
matching. Then S w ,d  is the dissimilarity between I r w ,l   and I l wd , l  , this 
value is  stored in  pixel  (w,d) in  the  DSI  slice.  Also let  Cdiscontinuty  be the  cost 
associated with a discontinuity and Cocclusion  the cost of an occlusion. Their actual 
values are usually heuristically determined. The process starts with a clean MRF 
with as many nodes as there are pixels in the DSI slice. We start at the most left 
column  w=1  and set the cost of all nodes to the corresponding similarity values 
from the DSI slice.  

Then we start visiting all other DSI columns sequentiality. We visit all nodes in a 
column by column manner, starting at the bottom  d = 0 and ending at the top 
d =Maxd ,  until we reach the most upper right node. When we visit a node we 

apply the following update scheme:

We choose the minimum cost value of the three possible previous nodes. Also, the 
index of the node that supplied the minimal value is stored. Then during the trace 
back step we simply select that node from the last column with the lowest cost and 
follow the path using the indices's stored during the cost aggregation step. Bobick 
and Intille [4], use a similar technique and extend it by using ground control points. 
Ground control points are MRF nodes which are enforced to be on the path the 
disparity trace back step takes through the MRF. Ground control points can be high 
confidence matches. But  they can also be edges in the intensity image. A well 
known artefact of dynamic programming is the streaking effect, see figure 2.16. It 
can be caused by favouring the match transition over the occlusion transition. This 
points  out  the  difficulty  of  choosing  the  right  costs  associated  with  the 
discontinuity and occlusion transitions. The effect can be minimized by enforcing 
inter scan-line consistency, Ohta and Kanade [44].
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2.3.13 Global optimization
Almost all global optimization methods are based on Markov Random Fields. Now 
we model each pixel in the disparity map as a node and its possible disparities as 
node states. This way we can enforce intra and inter scan-line consistency. Finding 
the  optimal  disparity  map  now  becomes  a  task  of  finding  an  optimal 
(state)membrane  through  the  MRF.  Usually  this  is  done  using  Graph-Cut 
algorithms, Boykov et al. [6] ,  Kolmogorov and Zabih [27] or belief propagation, 
Sun et  al.  [57].  The results  obtained with methods using global  MRF disparity 
optimization are among the best performing techniques. The drawback is that the 
optimization methods involved are computational expensive and are therefore not 
suitable for real-time systems.  While one can argue that the computational burden 
will pose no problem in a few years time. There is still a problem with the selection 
of parameters these methods need. These parameters encapsulate prior knowledge 
about the scene such as its smoothness. For the benchmark images of Scharstein 
and Szeliski [53] these parameters can be held constant. For a driving vehicle the 
scene can drastically change, from a flat  dessert landscape to a rocky mountain 
pass for example. This causes the need for changing the parameters according to 
the  properties  of  the  scene.  To  the  best  of  our  knowledge,  methods  that  can 
estimate the proper parameters settings for global disparity optimization for every 
possible stereo pair have not been proposed.
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Figure 2.16: Effect of parameter choice on DP (original stereo pair fig. 2.11).



2.3.14 Sub-pixel accuracy
As mentioned earlier,  sub-pixel  disparity  estimation can be obtained using two 
methods. First, we can interpolate the pixels in the image itself and compute the 
cost using sub-pixel displacements, Birchfield and Tomasi [3]. Secondly, we can 
interpolate the cost values inside the DSI, see figure 2.17. For local optimization 
the cost column is shown below. The points are the computed cost values with 
pixel accuracy. By fitting a curve through these points we can acquire a minimum 
with sub-pixel accuracy. Usually we first find the minimal cost value with pixel 
accuracy i.e. d. Next we fit a parabolic curve through the point left Cd −1 and right 
Cd 1 of the minimum C d. Then we find the minimum of this curve with sub-pixel 
accuracy using formula 2.22. It is common to use a sub-pixel bound which limits 
the allowed deviation between the pixel accurate and sub-pixel accurate estimates. 
Using sub-pixel accuracy can reduce depth uncertainty, section 2.2.4. 

(2.22)
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Figure 2.17: Sub-pixel accuracy (triangle), pixel accuracy d = 4.
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2.3.15 Quality of disparity Estimate
An important aspect of any stereo algorithm is determining the quality of the found 
disparity estimates. For this we must construct a measure that reflects how likely it 
is that the found disparity matches the true disparity. This confidence or validity 
measure indicates how much we can trust the found estimate.  The measure can be 
used  to  reject  estimates  if  necessary.  However,  it  also  can  guide  the  disparity 
search itself, Scharstein and Szeliski [54]. Banks and Corke [1] give an overview 
of  used  validity  measures  an  compare  their  effectiveness.  Basically,  validity 
measures can be subdivided in three categories. There are measures that are based 
on the disparity estimates themselves, there are measures that work on the image 
intensity values and measures that work on the computed cost values. Below we 
will describe some examples of each category. 

disparity based
A common method to reject bad disparity matches is the left-to-right consistency 
check. What it enforces is that when matching from left to right we must obtain the 
same disparity output as when matching from right to left. Pixels for which the left-
right estimate differs from the right-left estimate are said to be faulty and therefore 
discarded. Another frequently used method is that of blob filtering Matthies et al. 
[38]. Blob filtering segments the image. The connectivity between pixels is based 
on their disparity difference. A pixel will be grouped to one of its neighbours if its 
four connected and the disparity difference is lower than a certain threshold. This 
way we obtain image segments in which the disparity is smooth. Next we remove 
segments with a pixel count smaller than a threshold. Finally disparity smoothness 
can also be enforced on a per pixel basis. We can use disparity median filtering or 
set a maximum disparity difference that a pixel can have from its neighbours. With 
the measures above the confidence measure and the process of disparity rejection 
are integral parts of each other and can hardly be separated. 
 
Intensity based
Intensity  based  measures  reject  disparity  estimates  for  image  regions  with  bad 
signal  to  noise  ratio.  For  example  image regions  with  no  texture  are  likely  to 
produce bad matches. We can use the variance in intensity or the difference in the 
minimum and maximum intensity value as an estimate for the signal to noise ratio. 
An other metric often used is Moravec’s ‘Interest Operator’ [42].
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Cost metric based 
The  most  used  validity  measures  is  the  winner  margin  WM 1,  Scharstein  and 
Szeliski [54] or related methods WM 2, Hirschmüller [20]. Both are based on the 
values in the DSI column for a given image location. The winner margin is the 
normalized  difference  between the  cost  values  of  the  best  match  Cmin and  the 
second best match Cmin2 in a DSI column. 

(2.23)

(2.24)

(2.25)

The problem with WM 1 and WM 2 is that the minimal coast value can be between 
two pixels. In that case the best and second  best match in the DSI column will be 
vary close to each other, see figure 2.17. This will result in a poor winner margin 
while the actual found minimum is correct.  This is why  Mühlmann et al.  [43] 
argue it is better to use the third best match Cmin3 together with the best match, see 
WM 3.  According  to  Banks  and  Corke [1],  left-to-right  consistency  checking  is 
most effective on occluded regions. Whereas intensity and cost based measure are 
more effective  at  removing estimates  from bland  image areas.  Because ground 
truth data was not available for their stereo image pairs quantitative analyses were 
lacking.  Unfortunately, apart from the paper by Banks and Corke [1] there is little 
research into the effectiveness of different  validity measures. 
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2.3.16 Night-time Stereo
The  methods  discussed  so  far  were  all  intended  for  generic  stereo  images. 
Unfortunately the published literature on Night-time stereo is very limited, almost 
all of the work can be traced back to the  Jet Propulsion Laboratory of NASA. 
Owens  and  Matthies  [49]  investigated  the  suitability  of  passive  night  vision 
cameras  for  stereo vision.  CCD cameras  equipped with third  generation image 
intensifiers  and  various  cooled  and  un-cooled  thermal  imaging  cameras  where 
tested. First they looked into several hardware issues such as  signal to noise ratio, 
exposure time and synchronization options. Next the possible use of these cameras 
for night-time stereo was investigated. Using the cameras, false stereo image pairs 
of  various  night-time  scenes  were  created.  A  false  stereo  pair  consists  of  two 
images taken by the same camera from exactly the same location right after each 
other.  One  of  these  images  is  shifted  horizontal.  So  the  disparity  is  constant 
throughout  the  entire  image.  Their  standard  disparity  estimation  technique  was 
applied to the false stereo image pairs. Because the ground truth disparity is known 
the variation in estimated disparity can be measured. High variation in estimated 
disparity indicates poor performance. Also the percentage of pixels that passed the 
left-to-right consistency check was measured. Their results pointed out that only 
the cooled and un-cooled thermal camera systems reached acceptable performance. 
The best performance (variation 0.06 and coverage 99.9%) was obtained with a 
cooled thermal imaging camera. The image intensifiers did not nearly reach the 
needed level of performance. We have to note that the objective of their research 
was to investigate the suitability of different cameras and compare them against 
each other. The performance on the false stereo pairs, hardly is an indication of the 
true disparity estimation performance. In an other publication, Matthies et al. [39] 
and Bellutta et al. [2], the comparison between several night-time camera methods 
was  based  on  obstacle  detection.  The  result  were  promising  but  substantial 
quantitative results were lacking. 

Apart  from  hardware  issues  such  as  sensor  sensitivity,  exposure  time  and 
synchronization  options  there  are  more  fundamental  problems  for  night-time 
stereo. Using thermal imaging the contrast in the image is based on the relative 
difference  in  temperature  between  various  objects  in  the  scene.  This  relative 
temperature  can  change  during  the  night.  For  instance  a  rock  can  have  good 
contrast just after sunset. But as the rock cools through the night it will reach a 
temperature near that of the surrounding soil. This causes low contrast between the 
rock and the soil  making the rock hard to detect.  For other approaches such as 
active lighting, contrast and exposure time is an important issue. Because the light 
is emitted from few positions on the vehicle we have strong directional lighting. 
This directional lighting and the lack of ambient light sources  can cause strong 
highlights on objects which can change according to the camera position. Further- 
more because the light is directional we have shadows in regions otherwise lit by 
ambient light. This contrast between highlights and shadows makes it difficult to 
have a good signal to noise ratio throughout the entire image. Exposure time is an 
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important aspect as well. Increasing the exposure time increases the signal to noise 
ratio but will also cause motion blurring. To the best of our knowledge no existing 
work on appropriate disparity estimation techniques for low visibility conditions 
such as during the night have been published.
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2.4 Obstacle detection algorithms
So far we have described various methods that enable 3D reconstruction of points 
seen  through  a  binocular  camera  system.  The  next  step  is  to  use  this  3D 
information to detect obstacles in front of the vehicle. Obstacle detection (OD) is 
the task of  distinguishing drivable terrain from un-drivable terrain.  Most of  the 
existing OD systems rely on stereo vision or LIDAR to estimate the geometrical 
properties of the terrain in front of the vehicle. Based on the estimated geometrical 
properties of the terrain we can search for possible obstacles. There is a difference 
between OD for structured terrain and unstructured terrain. With structured terrain 
such as highways and urban roads we assume that the terrain is relatively flat, this 
is called the flat world assumption. Often methods for structured terrain look for 
the road or ground surface first. Then the height of image points can be compared 
against the ground plane. Image points with a height that deviates from the ground 
plane  more  than  a  certain  threshold  will  be  labelled  as  an  obstacle.  With 
unstructured  terrain  the  flat  world  assumption  is  not  always  possible.  Most 
methods for unstructured terrain therefore first detect obstacles without any ground 
plane assumption. Once the obstacles have been found, the ground plane can be 
computed as well. Methods that work for unstructured terrain can also be used for 
structured terrain. The other way around is not straightforward. In this chapter we 
will look into OD methods that have been used in unstructured terrain. Most OD 
approaches found in the literature can be categorized in four classes:  

1) Column based slope analysis
2) 3D clustering
3) V-disparity
4) Elevation maps and Voxel maps

In the coming section we will describe each approach in more detail. Detection of 
an obstacle is  only helpful if  it  is  done in time so that the vehicle can stop or 
change its path. The time a vehicle needs to stop depends on its speed and the 
friction between its tires and the ground. Formula 2.26, Matthies and Rankin [40], 
relate the distance D it takes to stop the vehicles to its current speed v.  

(2.26)

Here  us the friction coefficient, g is the gravitational acceleration, T r is the total 
reaction time and B is a safety bound. For typical off-road operations these values 
are  =0.65 m / s2,  T r=0.25 s,  B=2 m and of course  g=9.81m / s2.  This formula 
tells  us  at  which  distance  we  absolutely  have  to  detect  an  obstacle  for  save 
avoidance when driving at a certain speed. For instance when driving at 30 kph the 
save detection distance is about 10 meters.
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2.4.1 Column based analysis
An approach often used for positive obstacle detection in unstructured terrain is 
image-column based analysis. Three important steps can be distinguished. Firstly, 
for each image column the slope at each pixel is determined. Then two separate 
thresholds are applied. One on the measured slope and the other on the height 
displacement over which the slope was measured. The next step is  to filter the 
obstacle map according to specified obstacle criteria. The effect is that for instance 
small obstacles, that most likely are false alarms, will be discarded. The advantage 
of this approach is that is it relatively fast and can run in real-time. 

The terrain slope at  a  given pixel  I h ,w is  defined as the local  difference in 
height  dY divided by the difference in depth dZ. To measure  dY and dZ we need 
two points in the scene  Pv

1 and  Pv
2 given in the vehicle coordinate system, see 

figure 2.18. The projection of Pv
1 onto the imaging plane is given by I h ,w. The 

projection of Pv
2onto the imaging plane is given by I h−S , w. The difference in 

image height between I h ,w and I h−S , w is called pixel step size and denoted 
by  S. For each pixel in the image we must choose an appropriate  S. If we have 
chosen  S we can establish the image points  I h ,w and  I h−S , w.  Using the 
vehicle coordinates Pv

1 and Pv
2 of the chosen pixels I h ,w and I h−S , w we can 

calculate the terrain slope by:

(2.27)

The difference in most column based obstacle detection methods is in the way they 
choose S. 
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Figure 2.18: Columns based slope estimation.
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In this section we will focus on an approach presented by Matthies et al. [37] [38] 
[39] Their method assumes that positive obstacles resemble a vertical step in height 
on an other wise flat ground plane. Their algorithm  visits every pixel  I(h,w),  for 
which a depth estimate was found and assumes it is the start of an object of height 
H.  They  convert  H to  a  pixel  displacement  S and  use  I(h,w) and  I(h-S,w) to 
compute the difference in estimated height dY and depth dZ. Because dZ and dY are 
highly correlated the decision rule is only based on dY. Namely; If the difference in 
height at the given pixel exceeds a threshold t, label the whole section from I(h,w) 
to I(h-S,w) as a positive obstacle. Finally the positive obstacle map is filtered with 
a blob-filter.  The connectivity criterion is 4-connected and blobs are rejected if 
their size in pixels is less than a threshold value. In their early publication, Matthies 
et  al.  [37],  the  conversion  between  H and  S was  done  based  on  a  flat  world 
assumption. More precisely, they assumed the depth in each horizontal scan-line is 
the same. Thus the pixel displacement S caused by an obstacle of height H is also 
the same for every horizontal scan-line (where S is large at the bottom of the image 
and small at the top). This way a table was created which gave for each horizontal 
scan-line one value for S. From later publications, Matthies at al [39], Bellutta et al. 
[2], it seems likely that they extended the algorithm to uses a relative displacement 
S that depends on H and the estimated depth of I(h,w). 

The problem with column based methods method is that the true slope of a positive 
object can be greater than the measured slope. This caused by the fact that the 
plane defined by O, I(h,w) and I(h-S,w) can intersect with the object under various 
angles. When the surface normal of the object is parallel to the slicing plane the 
slope will be correctly estimated. In the situation that the surface normal deviates 
from the slicing plane the estimated slope can be considerable less than the true 
slope,  see  figure  2.19.  An approach  that  tries  to  overcome this  shortcoming is 
discussed in section 2.4.2. 
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Figure 2.19: Influence of viewing angle on estimated slope. Estimated slope is less  
than true slope(left), Estimated slope is equal to the true slope (right).
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The detection of negative obstacles is inherently more challenging than for positive 
obstacles. This is caused by the fact that the negative obstacle itself is not always 
visible.  Only  a  depth  discontinuity  in  the  range  profile  of  an  image  column 
indicates  its  presence.  To  show  the  intrinsic  differences  between  positive  and 
negative obstacle detection we will look into their geometry. A good indication 
about an obstacle's detection is the angle   it creates at the sensor, Matthies and 
Rankin [40]. When, the distance to the object R is relatively large compared to the 
height of the sensor above the ground plane H, the angles  and  will be small. 
Hence  we can  use  small  angle  approximation  to  find  their  value.  For  positive 
obstacles we find ≈H −h /R and  p≈ H /R  and therefore

(2.28)

For negative obstacles we have  ≈ H / Rw  and n≈H /R  therefore

(2.29)

This shows that for positive obstacles the angle p  decreases with a factor 1/ R  as 
the range increases. For negative obstacles the angle n  decreases with a dominant 
factor  1/ R2 . This points out that reliable detection of negative obstacles requires 
significant  more  image  resolution  than  what  is  needed  for  positive  obstacles. 
Narrow field of view (FOV) stereo camera systems mounted on a pan tile unit are 
often used for the special purpose of negative obstacle detection,  Matthies et al. 
[38] [39] and Bellutta et al. [2]. This allows the system to focus on small parts of 
the terrain with a high resolution.  
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Figure 2.20: Positive obstacle.
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We will now describe a negative obstacle detection method proposed by Matthies 
et al. [38]. Their approach searches for the near-side of a negative obstacle in the 
following manner. For a given image point Pv

3   they fit a line through points below 
it  in  the  same  image  column.  In  this  manner  the  local  ground  plane  can  be 
obtained. Based on this local ground plane the expected depth of the image point 
above Pv

3  can be computed. If the measured depth of Pv
4  and the expected depth 

Ev
4  deviates more than a threshold, Pv

3  is labelled as a negative obstacle.  

In  a  later  publication,  Matthies  et  al.  [39],  they  adapted  their  approach  in  the 
following manner. The ground plane is based on a fit though  Pv

3  and all image 
points below it in the same image column. Next they fit a line starting from Pv

3  to 
the apparent bottom of the ditch. If the angle between the two line segments is 
greater than a threshold and the width (distance from Pv

3  to Pv
4 ) of the candidate 

negative obstacle exceeds a threshold,  Pv
3  is labelled. When this is done for all 

image  points  the  initial  negative  obstacle  map  is  filtered  using  a  blob  filter. 
Because the  candidate  negative obstacles  are  horizontal-line  image features  the 
connectivity criterion is 8-connected. The blobs are rejected when their horizontal 
image width is lower than a particular threshold. Finally in a publication from the 
same research group, Bellutta et al. [2],  an extra criterion was added. Apart from 
the just described negative obstacle detection they also demand the detection of a 
vertical edge k on the far far side of the negative obstacle. Where the height of k 
must be larger than a depth dependent threshold. 

It  is  generally  understood  that  negative  obstacle  detection  is  one  of  the  most 
challenging tasks for autonomous land vehicles.  Geometrical approaches as just 
described have some fundamental shortcomings. In a recent publication by JPL, 
Matthies and Rankin [40], negative obstacle detection during night-time conditions 
is enhanced using thermal imaging. It is based on the fact that negative obstacles at 
night have characteristic  thermal signatures.  This is caused by the fact  that  the 
bottom of a negative obstacle stays considerable warmer during the night than the 
surrounding terrain. While the usage of their approach is primarily during the night 
they state that modelling solar illumination has potential to extend it to day-time 
conditions.
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Figure 2.22: Negative obstacle detection.
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2.4.2 3D Clustering
A recent method for positive OD  uses clustering of pixels that are likely to belong 
to an obstacle, Talukder et al. [58] and Manduchi et al. [36]. This clustering is 
based on the  3D coordinates of  the pixels.  However,  regions of  interest  in the 
image are exploited to make it computational efficient. The technique is based on 
so called compatible points. Compatible points are defined as:

Definition 1: Two surface points p1 and p2 are called compatible with each other 
if they satisfy the following two conditions:
1) their difference in height is larger than H min  but smaller than H max

2) the line joining them forms an angle with the horizontal plane larger than max .

Definition 2: Two points p1 and p2 belong to the same obstacle if:
1) they are compatible with each other, or
2)  there exists a chain of compatible point pairs linking p1 and p2.

Definition one is used to find isolated obstacle points. Where H min  and H max  are 
both  defined  in  meters  and  represent  the  granularity  at  which  we  search  for 
obstacle points.  The slope an object must have to be considered an obstacle is 
defined with  max . Definition 2 is used to group obstacle points together. In this 
manner we find isolated obstacles for which we can estimate their height,  width or 
depth. This is useful for discarding false detections and for reasoning about terrain 
traversability. The naive way to find all obstacle point would be to compare if the 
conditions  for  compatibility  are  met  for  every  point  pair.  This  would  require 
O  N 2−N   operations. Where  N is the number of points in the image for which 
range has been estimated. The ingenuity of their technique lays in the fact how they 
reduce the search complexity. Given a point together with all compatible points 
forms two truncated cones in 3D space, as can be seen in fig 2.23. The projection 
of these cones are two triangles in the image.  This means that if we know the 
depth of the point under investigation we can compute the projection of the two 
truncated cones which are the two triangles. Thus we only  have to search in the 
regions  defined  by  the  two  triangles  for  compatible  points.  Because  the  OD 
considers triangular image areas instead of columns  it is less sensitive to the angle 
between the surface normal and the optical axis. While this is an improvement over 
column based analysis, also the increase in computational load is significant. Even 
near real-time frame-rates were not achieved despite a c/c++ implementation on 
modern computer hardware while using a 320x240 image resolution. 
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The assumption is made that the vehicle has zero roll and pitch. Of course this is a 
very brittle assumption in off-road terrain. The authors mention that when using an 
IMU to estimate the vehicles roll and pitch the process of forming the truncated 
triangles can compensate for the vehicle misalignment. However, in their current 
work they use truncated triangles that are slightly bigger than would be justified by 
their  used thresholds.  This way the  system is  more robust  against  the vehicle's 
orientation.
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Figure 2.23: Truncated cones approach. Truncated cones are projected 
to two triangles in the image. red terrain is compatible with Pv
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2.4.3 V-Disparity
The V-disparity obstacle detection technique proposed by Labayrade, et al. [30]  is 
based  on  a  V-disparity  map,  see  fig  2.24.c.  A  V-disparity  map  basically  is  a 
collection  of  disparity  histograms,  one  for  each  scan  line.  A  V-disparity  map 
accumulates pixels for every horizontal scan-line and every possible disparity value 
in the disparity map. Every V-Disparity bin holds the number of pixels coming 
from that particular line and with that particular disparity. In the V-disparity map 
2.24.c below the brightness of a pixel  <d,v> relates to the amount of pixels that 
had a disparity d at the horizontal image line v in the disparity map 2.24.b. A V-
disparity map allows us to find dominant features in the disparity map based on 
their disparity.
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 Figure 2.24: Original image (a), Disparity map(b), V-Disparity map(c), Hough 
transform(d), V-Disparity with extracted ground plane (green) using Hough 

transform(e).
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The construction of a V-disparity map can be done very fast. It requires that every 
pixel in the disparity is visited once and accumulated in the corresponding bin, this 
can be done in  O(HW) operations. The next step is to estimate the ground plane. 
Labayrade et al. [30] model the ground plane as a succession of parts of planar 
planes. These planes manifest themselves in the V-disparity map as a piecewise 
linear curve.  This piecewise linear curve can be found using Hough transform, 
Hough [21]. The search can be speed up and made more reliable by reducing the 
parameter search space to predefined road orientations. Once the road profile has 
been found we know for every image column the disparity associated with the 
road. It is then straightforward to mark pixels that deviate from this road disparity 
more than a certain threshold. Finally, the marked pixels can be filtered to form 
consistent patches relating to obstacles in the scene.  Work by  Broggi  et al.  [7] 
shows that  it  is  possible  to  use  the  V-disparity  method in  unstructured terrain. 
However, the pictures they present come from desert scenes where the ground is 
relatively flat compared to other outdoor scenes. Research into the applicability of 
V-Disparity based OD (especially for negative obstacles) under a wide range of 
terrain types is to our knowledge still an open issue. 
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2.4.4 Elevation maps & Voxel-based representation
The idea behind OD approaches  using  elevation  maps,  Hebert  [18],  and voxel 
maps,   Lacaze   [31],  is  that  the  world  is  subdivided  in  discrete  regions.  For 
elevation maps these are two dimensional squares and for voxel based methods 
these are three dimensional cubes. We can label each discrete region be it a square 
or a cube with certain properties. For instance, elevation maps assign each square 
with an estimated height. In voxel based methods each cube is assigned a label that 
reflects its solidity. Note that elevation maps and voxel maps are in principal not 
obstacle detection methods. They only offer a data structure in which a sensed map 
of  the  world  can  be  stored.  Based  on  this  map  we  can  reason  about  terrain 
traversability. Basically this is done by placing a 3D model of our vehicle in the 
world model and verifying that all four wheels are touching the ground. Because 
the functionality of these methods is much more than just obstacle detection they 
also require considerable more computations. A more fundamental challenge is that 
traditional elevation maps or voxel maps are isometric meaning that each cell in the 
data structure represents the same size in the world. Sensory input  from stereo 
vision or LIDAR typically has high resolution near the sensor and less resolution 
further  away.  This  makes  using  isometric  data  structures  for  storing  stereo  or 
LIDAR sensory output suboptimal.  Considerable research has been dedicated into 
efficient data structures, Samet [52], and special purpose data structures Lalonde et 
al.  [32].  Another  challenge  arises  from  the  fact  that  the  world  models  these 
methods create are usually accumulated over a lager time span. This causes the 
need for tracking the movement of the vehicle. When there are imprecisions or 
uncertainties in the movement of the vehicle according to the world, the world 
model  itself  may become inconsistent.  Techniques  that  deal  with tracking of  a 
vehicle's movement and at the same time build a world model are referred to as 
Simultaneous Localization And Mapping (SLAM). SLAM is a popular topic in AI 
research and has received a great deal of interest, Thrun et al. [59]. However, the 
topic is not considered in this literature overview.
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2.5 Limitations and Solutions
As the figures below illustrate, stereo based geometrical obstacle detection has its 
limitations. The problems shown are inherent and can only be solved using other 
techniques that enable us to increase the perceived scene semantics. Objects can be 
concealed by vegetation like tall grass. While a human might detect small patches 
of the rock through the grass, the disparity estimation will be biased towards the 
contour of the vegetation. This will cause the OD system to assume no obstacle is 
present. On the other hand, vegetation like tall polls of grass can also cause false 
detections. Again, a human will recognize the tall poll of grass but the OD system 
is limited to the estimated geometrical slope of the scene. Negative obstacles pose 
some difficulties by the fact that they are not always visible. Most of the time we 
can only mark terrain features where negative obstacles are likely. The true nature 
of the negative obstacle can only be established from close range. Furthermore, 
negative objects filled with water pose some interesting difficulties by themselves. 
Several methods exist to increase the knowledge about objects in the scene (in the 
forth coming section we focus on passive measuring methods and neglect active 
ones such as LIDAR and RADAR).
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Figure 2.25: Limitations of stereo based OD.



2.5.1 Colour based terrain classification
A method to increase the knowledge about an object is looking at its colour. The 
colour of an object perceived trough a camera depends on several factors. Aspects 
such as the reflectiveness properties of the surface, the intensity and the chromatic 
composition of the light source play an important role. Research shows that robust 
colour based terrain classification requires invariance to the light source intensity 
an  chromaticity,  Jansen  et  al.  [22],  Bellutta  et  al.  [2].  In  outdoor  terrain  the 
chromaticity of the light source is mainly dependent on the weather conditions that 
influences the sun light.  However, the ambient light chromaticity can also vary 
locally in the scene through the interplay of light beams reflecting of coloured 
surfaces in the terrain. 

The method proposed by Jansen et al. is based on a maximum likelihood classifier 
using Gaussian Mixture Models (GMMs). First for every image in their train-set a 
GMM is estimated. These GMMs are used to find sets of images that have the 
same  environmental  state.  By  dividing  the  train-set  set  over  these  states, 
environmental  specific GMMs for different  terrain types can be trained. In this 
manner they can model the different  chromatic properties due to environmental 
effects on different terrain types. A pixel can then be compared against the mixture 
models of all  terrain types under all  environmental states using their maximum 
likelihood classifier. In this manner they can reliably distinguish between terrain 
types based on its colour under a wide variety of outdoor illumination conditions. 

Of course, the drawback of using colour based classification is that it can not be 
used at night when the scene is lit by a mono chromatic light source, such as near 
infra-red  LEDs,  or  seen  through  thermal  imaging  camera's.  It  is  known  that 
vegetation  can  have  a  distinctive  response  in  the  near  infra-red,  Elachi  [12]. 
Matthies et al. [38] suggest that this can be exploited for vegetation classification. 
However, their proposed method relies on the difference in the reflectiveness of 
foliage in the red band versus the reflectiveness in the near infra-red band. They 
measure both by using band pass filters for red light and one for near infra-red light 
in front of their cameras. A clear distinction in pixel intensity is highly correlated 
to the pixel being part of foliage. Robust foliage detection using mono chromatic 
light for autonomous land vehicles is to our knowledge still an open issue. 
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2.5.2 Texture based terrain classification
A more suitable method during night conditions might  be texture based terrain 
classification.  For  a  overview and comparison  of  existing  texture  classification 
methods we refer to Randen and Husoy [50]. A method that is applicable for real-
time  implementation  is  presented  by  Laws  [33].  Laws'  approach  to  texture 
classification  is  filtering  the  image  with  special  texture  detection  filters.  For 
instance filters for vertical bars, horizontal bars, waves, spots etc. can be used. Next 
the filter response can be accumulated for a support region and be normalized. 
Normalisation  will  make  the  filter  response  independent  from the  local  image 
intensity. Finally for each pixel the texture filter responses can be stored in a vector 
for subsequent classification. 

Texture  classification  usually  suffers  from scale  and  orientation  problems.  The 
same object will have a texture at different image scales when seen from different 
distances. Objects, like grass polls, can have the same texture but with different 
orientations. Here also the vehicles angle is an important aspect. The scale problem 
and orientation problem make it difficult to use textures based terrain classification. 
Unfortunately the ability to detect fine textures such as grass requires large image 
resolution at intermediate distances. The scale problem can be solved when we 
know the depth of objects, Olson [46] [47]. Olson constructs a depth dependent 
scale  space  by  mapping  the  measured  depth  of  a  pixel  to  a  continuous  scale 
parameter. Each pixel is then convolved with a Gaussian kernel of the appropriate 
scale. To speed up the calculation time the continuous scale space is approximated 
by  convolving  with  a  discrete  set  of  Gaussian  kernels  and  interpolating  their 
results. Scale dependent edge detection can be performed by using a set of discrete 
derivatives  of  Gaussian kernels.  Similarly we can detect  other features such as 
texture using a discrete set of appropriate kernels at various scales. The orientation 
problem is more difficult. Even when the vehicles roll is known we still must use 
texture kernels at various orientations. To the best of our knowledge also reliable 
texture based terrain classification for autonomous vehicle is still an open issue.
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2.6 Research direction
Night-time obstacle detection requires robust techniques for both stereo matching 
and obstacle detection. The goal of this research is to find, improve or develop 
suitable methods. In the text below we will give the research directions we have 
chosen based on our literature study.

In the  computational  stereo literature  the  best  performing stereo algorithms are 
based on optimization of a Markov Random Field defined over the values in the 
DSI. These methods require complex optimization algorithms like graph-cut. The 
drawback of complex disparity optimization methods is that their results is heavily 
influenced by several optimization parameters.  These parameters depend on the 
scene visible in both images, and reflect assumptions over the scene prior to stereo 
matching.  Because  the  terrain  in  front  of  a  mobile  vehicle  can  display  large 
variations,  think  of  an  expanse  of  grass  or  a  rocky mountain  pass,  one  set  of 
parameters will not suffice. To our knowledge, the problem of obtaining the correct 
parameter  values  automatically  from  only  image  data  has  yet  to  be  solved. 
Therefore there are two arguments against using these more complex optimization 
methods. First, they are computational intensive and difficult to implement for real-
time  frame-rates.  Secondly,  optimization  parameters  are  crucial  for  good 
performance and are hard to estimate from the image data alone. Less complex 
methods like  dynamic programming can be implemented in  real-time,  however 
there  remains the  problem of parameter  choice  (streaking).  The just  discussed 
drawbacks of Markov Random Field disparity optimization approaches put them of 
the list of possible improvements. A well known method to increase the robustness 
of stereo matching at a modest computational load is the use of image pyramids. 
Practically all disparity estimation methods that are based on image pyramids, or 
comparable approaches like scale-space, work in a coarse-to-fine manner. A well 
known  disadvantage  of  coarse-to-fine  approaches  is  that  of  error  propagation. 
Errors made at the coarse scale propagate to the finer scales. We think it is more 
intuitive  to  work in a  fine-to-coarse manner.  Basically,  our  idea is  to only use 
coarse information when needed. This idea is supported by research showing that 
fine-to-coarse  depth  disambiguation  plays  a  role  in  the   human  visual  system 
Hanspeter et al. [16],  Smallman [56]. Retaining or replacing disparity estimates 
calls for the use of a measure that indicates the correctness of a disparity estimate. 
Based on this disparity validity measure we keep or reject estimates and replace 
them by estimates based on coarser information. Therefore, this approach stands or 
falls by the ability of the validity measure to distinguish between good and bad 
disparity  estimates.  The  current  validity  measures  do  not  provide  reliable 
classification between good and bad stereo matches. Therefore finding a validity 
measure that can be used to distinguish bad from good matches is a key topic for 
our research.
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For  obstacle  detection  in  unstructured  terrain  there  are  four  possible  solutions: 
column based analysis, V-disparity, 3D clustering or using techniques that work 
with map based representations. Map based representation e.g. elevation maps and 
voxel maps require tracking of the vehicle's position and pose and building a map 
representing the terrain around the vehicle. As mentioned earlier these methods are 
computational intensive and obstacle detection is only a part of their applicability. 
When using stereo vision and when only obstacle detection is required, we believe 
that other methods are more suitable. V-disparity methods, Labayrade et al. [30,] 
are  promising,  however  their  usage  in  unstructured  terrain  still  poses  some 
difficulties. Especially retrieving the parameters of a piecewise linear model of the 
terrain  using  Hough  transforms  [21]  is  not  straightforward.  We  believe  that 
investigating  methods  that  allow reliable  OD using  V-disparity  estimation  is  a 
research topic in itself and is beyond the scope of this study. Another promising 
technique is  presented by Talukder  et  al.  [58].  It  overcomes the sliceing plane 
problem  of  column  based  approaches  by  using  efficient  3D  clustering. 
Unfortunately, despite their efficient implementation real-time frame-rates have not 
been  achieved.  Based  on  the  observations  mentioned  above  we  will  choose  a 
column-based approach for measuring the slope of the terrain and thereby detecting 
obstacles. We think that significant improvements can still be made for column 
based approaches. For these improvements we will look at some key concepts of 
the method presented by Talukder et al. [58] and possibly modify them for column 
based slope analysis. The one fundamental problem that remains is that of the angle 
between the sliceing plane and the surface normal, see section 2.4.2. Therefore, one 
of our key research topics will be finding methods that overcome the sliceing plane 
problem for column based approaches in a computational efficient manner.
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Chapter 3

Approach

In this chapter we describe the proposed obstacle detection system and the choices 
that let to its design. Section 3.1 gives a bird's eye view of the system. In section 
3.2 our disparity estimation algorithm will  be described. The obstacle detection 
methods are discussed in section 3.3. Finally, in section 3.4 we describe the test 
platform and the datasets together with the metrics we used  for evaluation. 

3.1 System overview 
As can be seen in figure 3.1, the system is made up of three parts; rectification, 
disparity estimation, 3D reconstruction and obstacle detection. The stereo camera 
system provides a stereo image. This stereo image will be rectified first and then 
used to create a dense disparity map. The disparity map is used together with the 
rectified stereo camera's parameters to reconstruct the 3D coordinates for every 
point in the disparity map. The 3D coordinates are used to estimate terrain slope 
and find depth discontinuities. Then, positive and negative objects can be extracted 
by using thresholds on the found slope, depth, height and width of the candidate 
objects.  Rectification and 3D reconstruction are discussed in sections 2.2.2 and 
2.2.3. The disparity estimation and the obstacle detection techniques, which are 
both novel methods, will be described in the next sections. 
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Figure 3.1: System overview.

Figure 3.1: System overview.



3.2 Disparity estimation
The developed stereo algorithm uses a fine-to-coarse multi-resolution technique, 
see  figure  3.2.  Multi-resolutions  approaches  make  disparity  estimation  more 
robust.  Furthermore by using our novel fine-to-coarse scheme we do not suffer 
from  error  propagation  usually  associated  with  coarse-to-fine  approaches.  The 
input to the algorithm is a rectified stereo image pair from which a stereo image 
pyramid is created. Each level in the stereo image pyramid is Rank transformed to 
compensate for radiometric distortion. Next the algorithm creates a dense disparity 
map for each level in the stereo image pyramid independently from each other. 
Then it combines disparity estimates from each level in the disparity pyramid to 
form  one  dense  disparity  estimate.  The  combining  of  the  different  disparity 
estimates from the different resolutions is based on our confidence measure. This 
measure reflects the quality of each estimate in the disparity image pyramid. In the 
text below we briefly describe the disparity estimation process. In the following 
sections the important steps of the stereo algorithm are discussed more thoroughly. 
Section 3.2.1 deals with the used single- resolution stereo algorithm. Section 3.2.2 
deals with the computation of the confidence measure.  In section 3.2.3 we describe 
how  the  estimates  from  the  different  resolution  are  combined  based  on  their 
confidence. Finally in section 3.2.4  we motivate our choices. 
 
Down Sampling
We construct an image pyramid for both stereo images. 

Pre-processing
To make the image more robust against noise and radiometric distortion we pre-
process the images in the image pyramids using the Rank transform, section 2.3.5. 

Single level disparity estimation
For each pyramid level, we estimate a dense disparity map. The single level stereo 
algorithm is described in section 3.2.1.

Edge strength
Edge strength maps are also computed for each pyramid level.  These maps are 
obtained by convolving the images with derivatives of a Gaussian kernel. 

Confidence
The  confidence  measure  is  computed  using  the  local  deviation  in  disparity 
estimates and relating it to the edge strength. The computation of the confidence 
measure is discussed in section 3.2.2

Up  sampling
The resolution of each disparity and confidence pyramid image is restored to the 
original  image  size.  This  facilitates  the  subsequent  confidence  based  disparity 
selection.
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Confidence based level selection
We select the disparity estimate with the highest confidence in a level by level 
manner. Disparities from lower levels are favoured over those higher up in the 
pyramid, because they represent higher resolution estimates. The confidence based 
level selection is discussed in section 3.2.3

Post processing
Finally, we apply blob filtering on the disparity map followed by median filtering, 
both are discussed in section 2.3.15.

The core of our disparity estimation technique is the novel disparity confidence 
estimation  technique.  We  believe  that  by  using  our  confidence  measure  it  is 
possible  to  reliable  detect  errors  in  the  disparity  map  and  replace  them  with 
estimates based on coarser information. This can improve the resulting disparity 
estimate.  Currently, we create an image pyramid first and then compute disparity 
for all pixels and all levels in the stereo image pyramid before selection. While this 
allows for proof of concept of the novel confidence based fine-to-coarse approach 
it  is not the most efficient implementation. However, we think it  is  possible to 
improve on efficiency using the following scheme. First only perform the disparity 
estimate at  full  resolution.  Then determine which pixels need estimates from a 
coarser scale based on their confidence. Next only interpolate those pixels that are 
needed for the disparity estimation process at the coarser level. Subsequent perform 
disparity  estimation  only  for  those  pixels  and  apply  the  process  again.  In  this 
manner redundant computations are avoided. Furthermore, it allows the system to 
adaptively balance its computational load based on the quality of the images. 
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Figure 3.2: Steps in our disparity estimation algorithm.



3.2.1 Single resolution stereo algorithm
For  each  level  in  the  image  pyramid  we  use  a  real-time  disparity  estimation 
process, van der Mark and Gavrila [41]. We will briefly describe the algorithm 
using the taxonomy of  Scharstein and Szeliski [53].

Cost measure
The used cost measure is the Absolute Difference (AD). The benefits are that it can 
be computed fast and efficient, both on intensity values and on Rank transformed 
intensity values.  More information on cost  measures and pre-processing can be 
found in section 2.3.4 and 2.3.5 respectively.

Cost aggregation
We used a five sub-window approach for aggregation cost values between pixels. 
We found that using a sub-window approach reduces object edge dilation in the 
disparity estimate. Furthermore it also is a fast adaptive window method suitable 
for real-time implementation. (Note that when we speak of cost window size we 
mean the total size of the five overlapping sub windows.). Cost aggregation was 
the topic of section 2.3.6.

Cost minimization
For finding the actual disparity estimate we create a DSI and use the winner takes 
all  optimization  scheme  with  left  right  consistency  checking.  Also  sub-pixel 
accuracy  is  obtained  by  interpolating  the  cost  values  inside  the  DSI.  More 
information on DSI and cost minimization can be found in section 2.3.10.

Post processing
The disparity estimates are then processed using blob filtering followed by median 
filtering. Both are discussed in section 2.3.15. Finally the disparities are rescaled to 
compensate for the reduced image size.
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3.2.2 Quality of disparity estimate
The basis  for  the  novel  fine-to-coarse approach is  our confidence measure that 
reflects the quality of the found disparity estimate. The matching values within the 
search range used to find the estimate are often also used to asses its quality.  A 
classic example of this is Winner Margin, see section 2.3.15. This is the normalized 
difference between the best and second best match. After some initial experiments 
it  was clear  that  for  our purposes  DSI based confidence measures  like  Winner 
Margin  were  not  performing  adequate.  This  is  caused  by  the  fact  that  these 
measures ignore the local support for the actual disparity estimate. In other words a 
disparity estimate  surrounded by pixels with the same disparity estimate is more 
likely to be correct regardless of a low winner margin.

We use the assumption that disparity over object surfaces will be smooth. Large 
disparity  jumps  will  only  occur  near  object  borders  or  near  faulty  disparity 
estimates. These assumptions imply that in a small image region the amount in 
difference between the disparity estimates is low. It is expected to be high near 
object  borders  or  faulty  estimates.  The  first  step  is  to  measure  the  disparity 
deviation in a rectangular shaped window. We experimented with three methods to 
represent disparity deviation. The first one was standard deviation. The second one, 
the number of different rounded disparity estimates. Finally we used the average 
absolute difference relative to the centre pixel of the window. We found the third 
one most intuitive because it relates the deviation according to the centre pixel. 
Furthermore  it can be computed fast and it  behaves linear with the amount of 
disparity noise. This makes setting threshold values more intuitive.  

When the local disparity deviation is computed,  the next step is to find  pixels with 
a high deviation which belong to faulty estimates.  We do this  by subtracting a 
scaled edge map from the scaled deviation map. The idea behind this is that high 
deviation can be compensated by a strong edge.  In  other words,  a  strong edge 
likely relates to an object border and can cause high disparity deviation. Also, a 
high disparity deviation without  the presence of a strong edge,  and thus object 
edge, violates our smoothness assumption and has to be faulty. The assumption 
that strong edges only occur near object borders is not always correct. Strong edges 
can also occur inside an object.  Therefore, such an edge on an object's  surface 
seems to violate our assumption. However, this does not always result in ignoring 
faulty estimates, because the signal to noise ratio of the intensity edge is high. As a 
result the disparity estimation process most likely was able to find a good match. 
The used technique incorporates both the fact that disparity jumps can occur near 
regions with high edge strength and the fact that regions with low edge strength 
and thus low image variance are likely to produce bad matches. 
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The whole process can be summarized as follows. Let  Disp be the disparity map 
computed from  I l and I r which are the left and right images of one particular level 
in the stereo image pyramid. And let Cheight and Cwidth be the height and width of the 
cost window used during the single scale disparity estimation. The first step is to 
calculate the edge strength in the intensity image. For this we filter  I l with the 
normalized derivative of a Gaussian kernel. This kernel has strong response near 
intensity edges. The derivative of the 1D Gaussian kernel is given by:

(3.1)

Then  E x is  the  convolution  (M =3)  of  I l with  h  x  in  the  horizontal  image 
direction. 

(3.2.a)

And E y is the convolution of  I l with h  x  in the vertical image direction.

(3.2.b)

We compute the edge strength  by using formula 3.3 with  h=⌊C height 0.5 ⌋ and 
w=⌊C width 0.5 ⌋.  The resulting edge strength map is  scaled to  the  unit  interval 
[0..1] by dividing through its highest value.

(3.3)

The next step is to compute the local deviation in disparity using formula 3.4 with 
h=⌊C height 0.5 ⌋ and  w=⌊C width 0.5 ⌋. Also the deviation map is rescaled to the 
unit interval by dividing through its highest value.

(3.4)

Finally, we compute the confidence for every valid pixel in the disparity image by 
using formula 3.5 (we used =1 for our experiments).

(3.5)

For every pixel without a disparity estimate set the confidence to -1. Finally we can 
rescale the confidence map so that its values are in the range between  0 and 1. 
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3.2.3 Confidence based Multi-scale
We  now  describe  the  method  that  combines  the  disparity  estimates  from  the 
different  levels  in  the  stereo  image  pyramid.  In  multi-scale  approaches  it  is 
common to start at the top level of the stereo image pyramid (lowest resolution) 
and let the resulting disparity estimate guide the disparity estimation process one 
level down. The advantage of this approach is that it limits the search space on 
higher resolution levels. However, errors made at the top level are also propagated 
to the lowest level. In contrast to the often used coarse-to-fine approaches we use a 
fine-to-coarse selection scheme. It starts at the highest resolution level and from 
there works its way to the top of the pyramid. This process is described in more 
detail in the text below.

Let Dispn be the disparity map resulting from level n in the stereo image pyramid 
and  Conf n is its accompanying confidence map.  n=0 is the lowest level in the 
stereo  image  pyramid  and  n=N is  the  highest.  First  all  disparity  maps  and 
confidence  maps  are   resized  to  the  original  resolution.  Then  the  following 
selection scheme is applied where  is an appropriate threshold. For a given image 
point <x,y> in Disp0 check if its confidence Conf 0 x , y  is higher than . When it 
is keep the disparity estimate Disp0  x , y . If not go one level higher in the image 
pyramid. Again check if the new disparity estimate  Disp1 x , y  has a confidence 
Conf 1 x , y  higher than . If it is use Disp1 x , y  as the final estimate. If not go 
one  level  higher  in  the  image  pyramid  and  apply  the  just  described  selection 
method again. The scheme is applied until an estimate is found with a confidence 
higher than  or if we reached the top of the image pyramid. If no estimate with a 
confidence higher than  was found mark it as invalid.
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3.2.4 Motivation and Discussion
The field of computational stereo is large and still growing. The question arises if it 
was necessary to  come up with a new disparity estimation process instead of using 
an existing method. As discussed earlier, literature on stereo algorithms which are 
applicable for low visibility conditions is limited. Usually, additional hardware is 
used to increase visibility instead of making the algorithm itself more robust. With 
our approach we tried to construct a multi-resolution stereo matching method that 
is robust against low visibility conditions and does not suffer from coarse-to-fine 
error propagation. The key of our method is our disparity validity measure.  Our 
validity  measure   balances  intensity  edges,  signal-to-noise  ratio  and  the  final 
disparity  smoothness.  All  of  which  have already been  used  separately in  other 
disparity estimation methods before. Bobick and Intille [4] use intensity edges as 
ground control points that must be visited by the dynamic programming algorithm 
that create an optimal path through a DSI slice. This way they try to avoid the 
streaking effect,  usually  associated with  dynamic programming based  methods. 
Signal-to-noise ratio is  used by Kanada and Okutomi [24] [45] to estimate the 
appropriate  matching  window  size.  Marovec's  interest  operator  detects  image 
patches  with  low  signal-to-noise  ratio  and  discards  their  disparity  estimates. 
Disparity  smoothness  is  the  basis  for  many  optimization  methods  and  post-
processing  steps  like  blob  filtering  and  median  filtering.  The  strength  of  our 
validity measure is that it weights several aspects to form one indication about the 
correctness of a disparity estimate.
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3.3 Obstacle detection system
The developed obstacle detection system uses geometrical properties of the scene 
to distinguish between drivable and un-drivable terrain. Positive obstacle detection 
is based on the local terrain slope. For an image point I h ,w the terrain slope can 
be obtained  by looking at the depth and height profile for points in the same image 
column. By grouping pixels with a terrain slope above a certain threshold we can 
identify regions that likely belong to positive obstacles. Measuring the height of the 
grouped points and using a depth dependent threshold further refines our positive 
obstacle search. Our positive OD approach differs from other approaches in the 
way we choose the image neighbourhood for terrain slope estimation. Furthermore, 
instead of using a single slope threshold we use multiple thresholds in a hysteresis 
process. Grouping of positive obstacle points is not based on image coordinates 
alone. Their estimated depth is taken into account as well. For negative obstacles, 
we look at the depth differences between pixels in the same image column. These 
differences are corrected for the inherent uncertainty in depth estimation. If  the 
uncertainty corrected difference exceeds a threshold, we mark the respective pixel 
as  a  possible  negative  obstacle.  Again,  negative  obstacles  are  grouped and  the 
clusters are evaluated based on their width using a depth dependent threshold. One 
of the benefits of our approach is that we can use terrain measurements (dZ dY) for 
detecting both positive and negative obstacles. This reduces the computational load 
of the system. An overview of the developed OD system is given below. In the 
coming sections we describe the system in more detail.
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Figure 3.3: Obstacle detection  system overview, 
positive obstacles left column, negative obstacles right  

column.
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3.3.1 Column based slope estimation
As discussed  earlier  the  choice  is  what  pixel  step  size  S to  use  for  the  slope 
measurement. A small pixel step size will measure the slope at a scale to fine for 
our purposes. A large pixel step size will miss terrain features that are of interest. 
Using a fixed pixel step size will inevitably cause the problems mentioned above. 
This forces us to use a pixel step size that is dependent of the depth of an image 
point. The intuition is that we want to keep the difference in height for the slope 
measurement constant throughout the scene. By using a larger S for pixels nearby, 
the slope estimates becomes more robust against small irrelevant terrain features. A 
smaller S for pixels further away causes the slope estimation not to miss relevant 
terrain obstacles. Instead of using a fixed pixel step size  S we use a fixed height 
step size S m  given in meters. This insures that we estimate the slope at the same 
scale throughout the terrain. Using a height step size S m  the pixel step size S can 
be calculated with formula 3.6. Where f  is the focal length of the used camera and 
 y  is the vertical pixel size, both in meters.

(3.6)

The next question is how to apply S. We can let S extend downwards or upwards. 
The figures below show that the right choice in using a positive or negative pixel 
step size depends on the local geometry of the obstacle around Pv

1. 
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Figure 3.4: Downward estimated slope



In figure 3.4 the downward slope, using Pv
2 ' , will supply the most intuitive value. 

In the case of figure 3.5 the upward slope, using Pv
2 ' ' , will give the most intuitive 

value. To automatically choose between the downward and upward slope we use 
the following scheme. For a pixel I h ,w calculate the pixel offset S according to 
its estimated depth using formula 3.6. Then estimate the terrain slope upward using 
I h−S , w with formula 3.7 and downward using I hS , w with formula 3.8. In 
this  way we obtain both a  downward and upward estimated slope.  Finally,  we 
choose the slope estimate that has the maximum absolute value, formula 3.9. 

(3.7)

(3.8)

(3.9)
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Figure  3.5: Upward estimated slope.
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3.3.2 Uncertainty corrected gap estimation
Negative obstacles are detected by looking for depth jumps in the depth profile of 
an image column. Based on Pv z

1 , S m and the height of the camera above the ground 
Ch we can calculate the expected depth jump  EdZ  if we assume a flat ground 
plane (see figure 3.6 and formula 3.10). The expected depth difference EdZ can be 
compared against the actual found depth difference dZ. 

(3.10)

  

The role of uncertainty in the depth estimates should also be considered. For robust 
detection of negative obstacles we want to use the minimum bound on the found 
dZ. We can do this by using the formula 2.12 from section 2.2.4 which is reprinted 
below for convenience.

Where  x is the horizontal pixel size, f  is the focal length of the used camera and 
b is the baseline width. Using this uncertainty we can compute a minimum bound 
for dZ using:

(3.11)

For detecting negative obstacles, we can compare the uncertainty corrected depth 
jump dZ '  against the expected depth jump EdZ. For instance, if ⋅EdZdZ ' we 
can mark the pixel as belonging to a negative obstacle. Here   is an appropriate 
threshold 
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3.3.3 Hysteresis based thresholding
Other obstacle detection systems often rely on constant threshold values. We argue 
that the use of a single threshold is not favourable in practice. Due to the fact that 
our depth estimation will contain noise, especially during low visibility conditions, 
the use of hysteresis thresholding is in our opinion a better solution. In a pixel 
labelling task hysteresis  uses  thresholds to  distinguish between seed pixels  and 
grow pixels. Seed pixels will always be labelled. A grow pixel will only be labelled 
if there is a n-connected path of grow pixels to a seed pixel.

For  positive  obstacle  detection,  we use  hysteresis  thresholding in  the  following 
way.  Every  pixel  with  a  positive  dY and  a  slope  within  the  range  of
[T O

grow T O
seed ∪[T P

grow  T P
seed  will be marked as a grow pixel (light grey). And all 

pixels within the range of [T O
seed  ∞∪[T P

seed  ∞ will be marked as seed pixels 
(dark grey). For all seed pixels we perform simple morphological opening with a 
small square kernel (3x3), Gonzalez and Woods [14], to find consistent patches of 
seed pixels.  These seed pixels  will  be  marked as  positive  obstacles.  The grow 
pixels will only be marked as a positive obstacle if there is a 4-connected path of 
grow pixels to a seed pixel. These connected grow pixels can be found efficiently 
using region filling, Gonzalez and Woods [14].

For negative obstacles we apply a similar scheme. Every pixel with a negative dY
and  a  uncertainty  corrected  depth   difference  dZ ' in  the  range  of 
[T N

grow EdZ  T N
seed EdZ  will be marked as a grow pixel. And all pixels with dZ ' in 

the range of [T N
seed⋅EdZ  ∞ will be marked as seed pixels. Note that for a given 

pixel  the actual  threshold depends on the expected depth jump as described in 
section 3.3.2. Again, the seed pixels are processed with morphological opening and 
we use region filling to find grow pixels that are connected to seed pixels.
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Figure 3.7: Hysteresis based thresholding



3.3.4 Grouping and Obstacle refinement
We refine our initial (after hysteresis thresholding) obstacle map by measuring the 
height of positive obstacles and the width of negative obstacles and compare them 
against depth dependent thresholds. In order to measure these dimensions, we first 
have to group the initially found object pixels together. 

For  positive  obstacles,  grouping  of  pixels  is  done  by  taking  both  their  image 
coordinates and depth values into account. An obstacle pixel can only be grouped 
to its 8-connected neighbours. Furthermore, it can only be grouped if the depth 
difference between the two pixels is smaller than two meters. To prevent obstacle 
cluttering  over  the  ground  plane  we  perform  morphological  opening,  with  a 
horizontal bar kernel (7x3), on the initial obstacle map. The result of the grouping 
process  is  a  labelled  obstacle  map.  For  each  obstacle  in  the  obstacle  map we 
measure its height and compare it to a depth dependent height threshold. To make 
the  measuring  of  the  obstacle  height  more  robust,  against  outliers  in  the 
reconstructed pixel coordinates, we use its projected height in pixels O height

'  instead 
of its estimated height O height in meters. The depth dependent height threshold for 
positive obstacles has the form:

(3.12)

where  P controls  the  steepness  of  the  exponential  curve  and  P controls  the 
minimum obstacle  height.  O depth is  the  average  depth  of  the  obstacle.  We  can 
convert this height from meters to pixels using the formula below ( y denotes the 
vertical pixel size). 

(3.13)

Finally a positive obstacle passes the height check when T height
' OdepthOheight

' . For
=0.6 and varying  both functions are plotted below. We choose an exponential 

function  because  its  steepness  is  easily  controlled  with  one  parameter  i.e.  P. 
Furthermore an exponential curve captures the fact that uncertainty in depth grows 
non-linearly  with  the  distance  as  well  as  the  fact  that  small  objects  at  large 
distances are less significant for path planning. 

Figure 3.8: Depth dependent height threshold in meters (left) and pixels (right).

75

T height O depth=p
Odepth− p

T height
' O depth=⌈

f T height O depth
 y  f Odepth 

⌉



For  negative  obstacles  we  perform a  similar  scheme.  First  the  initial  negative 
obstacles are squeezed to one pixel thick lines. For every vertical image column in 
a negative obstacle we only keep that pixel that is closest to the negative obstacle's 
edge. We find this pixel by searching for the maximum depth jump between a pixel 
and is upper neighbour. The search range starts at the lowest obstacle  pixel in the 
image column and ends at the highest obstacle pixel in the image column extended 
with  the  pixel  step  height  (used  during  slope  estimation).  The  next  step  is  to 
segment the negative obstacle map in separate obstacles. In contrast with positive 
obstacles, grouping of pixels is only based on image coordinates and not on depth 
values.  A width criteria  is  used to  discard false  negative  detections.  Again the 
minimum width is calculated with an exponential curve:

(3.14)
and can be converted to pixels with:

(3.15)

Finally,  a  negative  obstacle  passes  when its  width in  pixels  exceeds  the  depth 
dependent threshold i.e.  T width

' OdepthOwidth
' .

3.3.5 Post processing
The post  processing  methods  applied  mainly  increase  the  visual  quality  of  the 
obstacle  map.  Negative  obstacle  pixels  are  dilated with a  small  (9x9)  diamond 
shaped kernel. This causes the one-pixel thick lines to become more visible in the 
image. As we shall see in section 3.4.5 this has little influence on their evaluation. 
For positive obstacles we look at their vertical image columns. Every pixel that has 
a pixel above and below it in the same image column from the same object, will 
also be marked as belonging to that positive obstacle. Note that positive obstacle 
segmentation is based on image and depth connectivity. For visualization purposes 
however  every  positive  object  is  coloured  blue.  So  obstacles  that  seem to  be 
connected in the obstacle map might not belong to same obstacle at all.
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3.3.6 Motivation and Discussion
Column based OD techniques are often used because of their low computational 
needs. As we described in section 2.4.1 there are some drawbacks when using these 
approaches. Instead of using more computational demanding methods like that of 
Talukder [58] (section 2.4.2), we tried to find efficient improvements over standard 
column based OD. In the coming text we describe our potential contributions to 
existing column based methods.
 
Firstly, we use a depth dependent step-height. From the publications by researchers 
at JPL, see section 2.4.1, we know that they were using variable step-heights for 
slope measurement. The size of their step-heights was based on the expected depth 
of the given image row while assuming a flat surface in front of the vehicle. If they 
adopted their approach to use step-heights dependent on the actual measured depth 
on a per pixel basis is unclear from their later publications. However we do know 
that in work from Talukder [58], the image projection of the truncated cones does 
depend on the estimated depth on a per pixel basis. Secondly, we use the maximum 
of the forward and backward estimated slope. We did not find this approach in 
other publications. However, again a similarity can be drawn between the Talukder 
approach which uses triangles below and above the point under investigation. This 
image point is labelled if one of the pixels, in the cones above or below, passes 
certain thresholds. Thirdly, objects are rejected based on depth dependent height 
(for positive obstacles) or width (for negative obstacles) thresholds. We use this 
approach  because  small  obstacles  at  large  depth  are  less  significant  for  path 
planning and most likely are false detections. While one can argue this is not the 
task of the OD system, we believe that it can reduce the false detection rate prior to 
path  planning.  Finally,  column  based  slope  analysis  is  sensitive  to  the  angle 
between the surface normal and the plane defined by focal point and the image 
column, see section 2.4.1. We use hysteresis thresholding to tackle this problem. 
Hysteresis thresholding has become a text-book method, Davies [11], to increase 
classification accuracy. However we did not found it in the literature concerning 
column based OD.
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3.4 Evaluation, system, methods and metrics 
In this section, we describe the manner in which we evaluated the developed OD 
system. First  in section 3.4.1 we look into the hardware used during our tests. 
Section 3.4.2 gives insight in the recorded datasets and the way they are processed 
to form ground truth. Then in section 3.4.3 we describe some challenges when 
evaluating obstacle detection systems. And finally in section 3.4.4 and 3.4.5  our 
methods and metrics used for evaluation the obstacle detection methods will be 
presented.

3.4.1 Test set-up
The goal of our research is to investigate the suitability of night-time stereo based 
OD.  TNO's  RoboJeep  see  figure  1.1  and  3.9  provides  a  research  platform for 
autonomous vehicle research. To illuminate the scene in front of the vehicle during 
the night we use near infra-red Light Emitting Diodes (LED's). Near infra-red is 
preferred  over  traditional  light  bulbs  because  of  reduced  signature.  The  used 
cameras with the specification below are used to construct  a stereo set-up.  For 
keeping  track  of  the  vehicle  movement  and  position  we  used  an  Inertial 
Measurement Unit (IMU) and Global Positioning System (GPS). The LIDAR and 
SONAR also  visible  on  figure  3.9  were  not  used  for  this  research.  Using  the 
described set-up we  have a  low-cost  and  low signature  solution  for  night-time 
conditions.  The specification of the used camera and IR lamp are given below.

1) 36 Watt LED near infra-red (880 nm) emitter (Profiline TV6899).
2) Two digital  camera's  using  CMOS imaging  chips  with  a  resolution  of 

640x480 running at 30 fps with automatic gain control between 62 dB and 
110  (Aglaia INKA NSC LM9618) .
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Figure 3.9: Test set-up.



3.4.2 Dataset and labelling
Using the system described in section 3.4.1 we recorded over 40 GB of day and 
night-time  images.  From  these  recordings  we  manually  selected  140  daytime 
images (the day-time dataset) and 140 night-time images (the night-time dataset). 
Time synchronization was used to associate GPS data to each recorded camera 
image. By matching the GPS data and by visual inspection, we selected for every 
frame in the daytime dataset a comparable frame in the night-time dataset. 

All 140 images from both our daytime and night-time dataset have been manually 
labelled. The labelling is pixel based and consist out of four classes. The positive 
obstacle class is coloured blue, the negative obstacle class given is coloured  red, 
the  drivable class is coloured green and the  ignore class  is coloured black. The 
labelling of positive obstacles is straightforward. We simply labelled each pixel of 
all objects in the scene that we considerer a positive object. Note that we do not 
only label that part of the object that has a slope above a certain threshold. Instead 
we label  the whole object  starting from the local  ground plane to  the top.  For 
negative objects we choose to not only label the exact edge but also a region above 
and  below it.  The  reason  for  this  is  that  it  is  not  realistic  to  demand the  OD 
algorithm to find the precise location of negative object edges with pixel precision, 
especial during the night at  greater distances. The real thickness of the labelled 
edge will depend on the depth of the negative object in the picture. 
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Figure 3.10: Test terrain, 1 big gap 2 concrete wall, 3 Rock pile, 4 Holes, 5 Sand 
plane, 6 Trunks. 
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The greater the depth the thicker the labelled edge. Much effort has been put in to 
make sure that the thickness of the labelled edges is comparable between day and 
night-time images. The ignore class is used for objects or group of objects at large 
distances. By labelling a pixel with the ignore class it is excluded from evaluation. 
Of course this class is used with great restraint. Everything left in the image is 
labelled as drivable. In the next section we briefly present our dataset. 

1 Big gap sequence
This sequence contains 40 images both during the day and night taken while the 
vehicle was driving to a approximately 6 meter wide and 4 meter deep gap. The 
rectified images are shown below together with their ground truth label maps.
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Figure 3.11.a: Day-time frame 20. Figure 3.11.b: Night-time frame 20.

Figure 3.11.c: Day-time label 20. Figure 3.11.d: Night-time label 20.



2 Concrete wall sequence
This set contains 20 day and night images taken while the vehicle was driving over 
an expanse of tall grass past a concrete wall.

 2 Rock pile sequence
This set contains 40 day and 40 night images taken while the vehicle was driving 
towards a pile of rocks.

4 Holes sequence
This set contains 20 day and 20 night images taken while the vehicle was driving 
through an expanse of grass covered with traversable holes.
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Figure 3.12.a Day-time frame 4. Figure 3.12.b: Night-time frame 4.

Figure 3.13.a: Day-time frame 38. Figure 3.13.b: Night-time frame 38.

Figure 3.14.a: Day-time frame 18. figure 3.14.b: Night-time frame 18.



5 Sand plane sequence
This set contains 10 day and 10 night images taken while the vehicle was driving 
over a sand plane towards a sand dune.

6 Trunks sequence
This set contains 10 day and 10 night images taken while the vehicle was driving 
towards a pile of trunks.
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Figure 3.15.a: Day-time frame 1. Figure 3.15.b: Night-time frame 1.

Figure 3.16.a: Day-time frame 1. Figure 3.16.b: Night-time frame 1.



3.4.3 Evaluation of obstacle detection
We need a metric that can be used for absolute and relative comparison between 
OD systems. With absolute we mean it should be able to give insight in how well 
the system would perform perform under realistic conditions. For our application, 
this is the ability to navigate the vehicle safely through rough terrain. With relative 
we mean the ability to fairly compare different systems with each other. A reliable 
and efficient way to evaluate the system would be to couple it to a path planning 
simulator. The simulator renders photo-realistic stereo imagery used by the system 
to compute the obstacle maps. The path planner can then find a path around the 
found obstacles. The found path and the optimal path can then be compared, for 
instance based on travelling distance. Using such a simulator is within the reach of 
modern technology. However, it would require substantial effort to construct such 
a system. Especially realistic modelling of camera influences, rough terrain and 
vehicle dynamics will require considerable attention. An other approach is to use 
real-world images. In this manner the data itself is as realistic as possible; however, 
evaluation becomes more challenging. A straightforward scheme would be to use 
evaluation  based  on  a  pixel  based  classification  problem.  The  figures  below 
illustrate that pixel-based evaluation has some great disadvantages.

System A: true positive rate = 0.68 System B: true positive rate = 0.49
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Figure 3.17: Scene. Figure 3.18: Ground truth.

Figure 3.19: Obstacle map system A Figure 3.20: Obstacle map system B.



The question is which system performed best.  System A has a true positive rate of 
0.68. System B has a true positive rate of 0.49. Based on these measures we could 
conclude that system A out performs system B. However, system B might be more 
appropriate  because it  can detect  obstacles further away from the vehicle.  This 
simple example illustrates why we think it is more appropriate to use the surface 
that  pixels  represent  instead  of  the  pixels  themselves.  The  problem  with  this 
approach is that the surface which a pixel represent is based on its depth. And 
while the ground truth class of a pixel is available its ground truth depth is not. 
This forces us to use the estimated depth together with the ground truth labelling to 
compute the ground truth surface of a pixel. The details of our evaluation method 
are described in the next sections.

3.4.4 Positive obstacle evaluation
We  propose  a  positive  obstacle  evaluation  method  not  based  on  the  pixels 
themselves  but  on  the  surface  that  those  pixels  represent.  In  this  section,  we 
describe the quantities used to evaluate our system. We make a distinction between 
vertical pixels (positive obstacles) and horizontal pixels (drivable terrain). Figure 
3.21 and 3.22 show the (gross)  simplifications  of  camera geometry and terrain 
geometry we used for calculating the surfaces of vertical and horizontal pixels. We 
note that the purpose of the coming formulas is solely to provide quantities for 
evaluating our OD system in an efficient manner.  
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Figure 3.21: Vertical surface

Side view

Top view



We  compute the surface of a vertical pixel using formula 3.16, 3.17 and 3.18. The 
pixel's  estimated depth  PVz  is  used to compute its  real-world height Pheight and 
width Pwidth .

(3.16)

(3.17)

(3.18)

Here   x  is  the  horizontal  pixel  size  and   y  is  the  vertical  pixel  size.  The 
horizontal surface S horizontal  is computed with:

(3.19)

where Pwidth
'  and P z  can be computed with:

(3.20)

(3.21)
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Figure 3.22: Horizontal surface.

Side view

Top view
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Let D be a set of pixels then their total horizontal surface can be computed with: 

(3.22)
And the their total vertical surface with: 

(3.23)
We  now  describe  how  we  use  these  formulas  to  compute  our  performance 
measures. Let  I n be the  nth image in the dataset,  G n is its ground truth obstacle 
map,  D n is the computed depth map and O n is its computed obstacle map. These 
maps are used to fetch the ground truth label of a pixel, Pground truth ,  its obstacle 
classification label, P label  and depth  PVz .  The value  for  a  pixel's  label  can  be 
Positive,  Negative,  Drivable or  Ignore.  Now let  Cn be the set of pixels with a 
estimated depth larger than MinD and smaller than MaxD in the nth image. 

Changing the value for  MinD and  MaxD allows us to measure performance  at 
different distances from the vehicle.  D ground truth drivable

n  is the set of  pixels that were 
labelled as drivable in the ground truth image,

and D ground truth positive
n  is the set of  pixels that were labelled as positive obstacle in the 

ground truth image.

Dtrue positive
n  are  the  pixels  in  image  I n that  were  correctly  classified  as  positive 

obstacle pixels,

 
and  D false positive

n  are the  pixels that  were wrongly classified as positive obstacle 
pixels.

These sets can be used to find the true positive and false positive rates over a set of 
N images as follows:

(3.24)

(3.25)
The ground truth surfaces are computed according to a fixed set of day-time depth 
maps together with the ground truth obstacle maps. The depth maps are computed 
using our disparity estimation method discussed in section 3.2. We choose these 
depth maps  because they have the highest percentage of valid depth estimates. 
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D ground truthdrivable
n ={P ∣P ground truth=Drivable ∧ P∈Cn}

Cn={P ∣ MinDPVzMaxD , P∈ I n}

D ground truth positive
n ={P ∣ Pground truth=Positive ∧ P∈Cn}

Horizonatal  D=∑
P ∈D

S horizonal P

Vertical  D =∑
P∈D

S vertical P 

Dtrue positive
n ={P ∣ Pground truth=Positive ∧ P label=Positive , P∈Cn}

D false positive
n ={P ∣P ground truth=Drivable ∧ P label=Positive , P∈Cn}

True Positive Rate=
∑

1nN
Vertical  Dtrue positive

n 

∑
1nN

Vertical D grount truth positive
n 

False Positive Rate=
∑

1nN
Horizontal D false positive

n 

∑
1nN

Horizontal  D grount truthdrivable
n 



3.4.5 Negative obstacle evaluation
To  use  a  surface  based  evaluation  approach  to  get  inside  into  the  real-world 
applicability of an OD method requires a large evaluation dataset. Otherwise depth 
errors made can influence the ground truth surfaces significantly. Unfortunately 
our dataset only contains one sequence with a single negative object. This is why 
we  considered  using  another  method  to  measure  the  true  negative  rate  of  our 
system. The true negative detection rate is based on the percentage of an obstacle's 
length that is correctly classified. Here, we measure the obstacle length in pixels. 
For  a  given  image  I n in  our  big-gap  sequence  we  measure  the  length  of  the 
negative obstacle in pixels Ln based on the ground truth map G n. Then we find all 
pixels in the computed obstacle map O n that were correctly classified as negative 
obstacle i.e.

From this set we only take one pixel per image column:

Then the true negative rate over a set of N images is defined as:

 (3.26)

Note  that  this  is  a  pretty  straightforward  method  for  evaluating  negative  OD 
performance. We use it because we have only one sequence with a single negative 
obstacle. Furthermore we roughly know the ground truth distance to the negative 
obstacle  in  every  frame.  This  allows  us  to  get  insight  in  the  negative  OD 
performance at various distances. This in contrast to positive obstacles were the 
ground truth distances are not always known. For the false negative rate we use a 
similar approach as for the false positive rate.  However before we compute the 
horizontal surface we dilate the false detections with a  rectangular kernel. This is 
done because false negative detections are small lines only a few pixels in length. 
By dilating these pixels, the measure reflects the negative effect on the vehicles 
expected  performance  more  realistic.  Thus  let  O' n be  the  obstacle  map that  is 
formed by dilating the negative obstacle pixels in  O n with a rectangular kernel. 
Dilation only has effect on pixels labelled as drivable in the ground truth map G n. 
Then P label

' is the label associated with pixel P in the dilated obstacle map  O' n. The 
false negative rate over the whole dataset is then given by:

(3.27)
where  D false negative

n  are the dilated pixels that were wrongly classified as negative 
obstacle pixels i.e.
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False Negative Rate=
∑

1nN
Horizontal  D false negative

n 

∑
1nN

Horizontal  D grount truthdrivable
n 

D false negative
n ={P ∣P ground truth=Drivable ∧ P label

' =Negative , p∈Cn}

Dtrue negative
n ={P ∣P ground truth=Negative ∧ P label=Negative , P∈ I n}

Unique P , G =∀ P ' : P '∈G∧Pwidth
' =Pwidth : P heigth

' Pheigth

L truenegative
n ={P ∣Unique  P , Dtrue negative

n  , P∈Dtrue negative
n }

True Negative Rate= 1
N ∑

1nN

L truenegative
n

Ln
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Chapter 4

Results 
In this chapter we present the results of our research. Our disparity estimation and 
obstacle detection techniques have been compared against existing methods. We 
evaluated for both day and night-time conditions using a wide range of parameter 
settings. In the first section of this chapter we focus on depth estimation. We will 
look into the depth coverage, depth uncertainty, depth dilation and the performance 
of our novel  disparity validity measure. The second section deals with obstacle 
detection. We investigate the true detection rate and compare it against the false 
detection rate for positive and negative obstacles during day and night conditions. 
Furthermore, we evaluated obstacle detection using a maximum obstacle distance 
of 5, 10, 25, 35 and 50 meter from the vehicle.

4.1 Depth estimation
In this section we describe the depth estimation results using the novel multi-scale 
technique and compare it to a single-scale method. The single scale method uses  a 
5-window approach, see section 2.3.7. Each of the five windows has a size of 5x5 
pixels and the five windows together form a window of 11x11 pixels. We use the 
sum  of  the  three  best  matching  windows  to  compute  the  similarity  value. 
Furthermore,  we  use  left-right  consistency  checking  with  a  maximum allowed 
difference of ten pixels. Optimisation is done using the winner takes all (WTA) 
approach  with  sub-pixel  accuracy.  A  sub-pixel  bound  of  1  pixel  is  used.  The 
disparity map is filtered using a blobfilter with 0.5 disparity threshold and minimal 
blob size of 5 pixels. The novel multi-scale approach uses a single scale approach, 
with the just described parameters, for each of its stereo pyramid levels. The size 
reduction between the pyramid levels is 65% using bi-linear interpolation. The base 
level of the stereo pyramid uses a left-to-right check tolerance of 10 pixels. For 
each successive level this tolerance is reduced with 2 pixels. After the disparity 
estimation is completed, the disparity map is used to reconstruct the 3D coordinates 
of all points with a valid disparity estimate. The variable parameters are the type of 
preprocessing step and the base resolution. We experimented with LoG and RANK 
preprocessing and measured their effect for the day-time and night-time datasets. 
For the single scale approach we tested the performance using the full (640x480) 
and half (320x240) resolution. 
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4.1.1 Depth coverage
We first present the depth coverage of our tested methods. The depth coverage is 
the  percentage  of  pixels  which  are  not  rejected  from the  final  disparity  map. 
Rejection  is  based  on  the  left-to-right  consistency  check  and  disparity  blob 
filtering.  For our multi-resolution approach disparity estimates are also rejected 
based on their disparity confidence. We evaluated over our 140 day-time and 140 
night-time images. In the table below the different parameter configurations for our 
disparity estimation methods are given. Figure 4.1 presents their depth coverage 
results.
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Figure 4.1: Pixel depth coverage.
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Test name Dataset Base resolution Preprocessing Pyramid levels

1 Day Multi RANK FS Day 640x480 Rank transform 4

2 Day Multi LoG FS Day 640x480 LoG convolution 4

3 Day Single RANK FS Day 640x480 Rank transform none

4 Day Single LoG FS Day 640x480 LoG convolution none

5 Day Single RANK HS Day 320x240 Rank transform none

6 Day Single  LoG HS Day 320x240 LoG convolution none

7 IR Multi RANK FS IR 640x480 Rank transform 4

8 IR Multi LoG FS IR 640x480 LoG convolution 4

9 IR Single RANK FS IR 640x480 Rank transform none

10 IR Single LoG FS IR 640x480 LoG convolution none

11 IR Single RANK HS IR 320x240 Rank transform none

12 IR Single  LoG HS IR 320x240 LoG convolution none

Table 4.1: Disparity test settings.



The first  thing to note is the positive influence of applying the Rank transform 
compared to LoG filtering as a preprocessing step. Especially during night time 
conditions the Rank transform shows an increase of at least 10 percent compared to 
LoG  filtering.  While  LoG filtering  is  frequently  used  in  approaches  from the 
literature,  this  test  suggest  Rank transform might  be more appropriate.  Another 
interesting aspect is the performance gain during night conditions due to the novel 
multi-scale method. Again we see a 10 percent increase in depth coverage between 
the multi-scale and single-scale approaches. By using the single-scale approach at 
full  resolution we do not  reach an acceptable  coverage level  during night-time 
conditions. Most likely this is due to the fact that the five 5x5 matching windows 
do not contain enough distinctive intensity variation. If the single-scale approach is 
applied  to  half  resolution  images  then  only  by  using  Rank  preprocessing  we 
achieve an acceptable coverage level. Below we show night-time disparity maps 
created with the various approaches. 
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figure 4.2: Night-time disparity maps for a concrete wall.
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4.1.2 Depth Uncertainty
Another  aspect  of  our  multi-scale  approach  is  the  possible  decrease  in  depth 
uncertainty due to the use of higher resolutions. As discussed in section 2.2.4 depth 
uncertainty is a function of baseline width, focal length and the disparity error size 
(i.e. pixel size). Using half of the initial resolution effectively doubles the pixel size 
and thus increases depth uncertainty. In figure 4.3 we present the influence of the 
multi-scale approach on depth uncertainty. The benefits of the multi-scale approach 
is  that  it  will  take  estimates  from  different  resolutions.  Some  estimates  will 
originate from the base of the image pyramid (highest resolution) having minimum 
uncertainty.  Other  estimates  will  originate  from lower  resolutions  having  more 
uncertainty. The question arises how much each pyramid level contributes to the 
disparity  map.  For  several  configurations  we  plotted  the  percentage  of  pixels 
coming  from the  four  different  levels  in  the  stereo  image  pyramid.  Again  we 
evaluated over 140 day-time and 140 night-time images

During day-time conditions the majority of the estimates come from the base of the 
stereo image pyramid (maximal resolution) and consequently have minimal depth 
uncertainty.  During night-time conditions the base of  the stereo image pyramid 
contributes 60% for Rank preprocessing and 52% for LoG preprocessing. This is 
consistent  with  the  coverage  levels  of  the  multi-scale  and  single-scale 
configurations at full resolution, see figure 4.1. The benefits of our fine-to-coarse 
method is that it allows us to increase the depth coverage of the single-scale full 
resolution approach to an acceptable level (50% to 86%). Also single-scale half 
resolution approaches reach acceptable depth coverage levels. However with the 
multi-scale  approach  60%  of  its  estimates  come  from  the  base  of  the  image 
pyramid. Consequently, the overall depth uncertainty is much less when using our 
multi-scale approach then when using a single-scale approach at half resolution.
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Figure 4.3: Pyramid level selection.
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4.1.3 Depth dilation
The  figures  below  illustrate  the  depth  dilation  effects  on  day  and  night-time 
images.  Depth  is  mapped from dark  blue  (near)  to  light  blue  (far).  No colour 
indicates that no reliable depth estimate was found. The scene consist of a large 
ditch with some bushes in front of it. The far side of the ditch can be seen in the 
middle of the image.
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Figure 4.4: Depth dilation effects.
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We can see depth dilation errors near objects edges are more severe for night-time 
images. Regardless of disparity estimation methods used, the dilation is significant. 
The effect is most likely caused by using directional lighting in a combination with 
window based matching. Objects near to the vehicle receive more light and thus 
have  more intensity variation. Objects further away receive less light and therefore 
will have less intensity variation. As discussed in section 2.3.6. block matching 
based disparity estimation is biased towards the depth of objects that have the most 
distinctive intensity variation. During day-time conditions the effect of the light 
source on intensity variations between objects far and near to the vehicle can be 
neglected. We observed that during day-time conditions the depth of the far side of 
the ditch is sometimes favoured over the depth of the near side of the ditch. During 
night-time conditions the bushes in front of the ditch clearly have more intensity 
variation  than  the  far  side  of  the  ditch.  This  causes  the  disparity  estimation 
algorithm to favour the disparity of the bushes. From our observations is seems that 
objects appear larger during the night than they do during the day. The effect of the 
novel multi-scale method is also clearly visible in the images. While it can boost 
the depth coverage to an acceptable level it will also increase the depth dilation 
errors.  This  is  a  fundamental  problem when  using  lower  resolutions  for  block 
matching. 

4.1.2 Disparity validity measures
Our fine-to-coarse disparity estimation method is based on the ability to distinguish 
between good and bad matches.  In this  section we compare  traditional  validity 
measures, see section 2.3.15, against our novel validity measure that is based on 
local disparity deviation and edge strength in the images, see section 3.2.2. We 
investigate their suitability as input for a threshold process. For this we performed 
disparity estimation on the Cone benchmark dataset [53] for which the ground truth 
disparity  is  exactly  known.  To  make  the  process  more  challenging  we  added 
Gaussian white noise with zero mean and a variance of 0.75⋅10−3 (image intensities 
are between 0 and 1), see figure 4.6. We used the same methods as discussed in 
section 3.2.1. However no post processing was applied, except for the left-to-right 
consistency check. ROC curves were plotted for several threshold values in the 
range  of  0  up  to  1.  The  ROC  curves  plot  the  true  negative  rate  (bad  pixels 
discarded  correctly)  against  the  false  negative  rate  (good  pixels  discarded 
wrongly). For a given test we apply a threshold on the disparity validity measure 
and thereby divide the estimates in good and bad matches. The estimates that are 
labelled as bad are compared against the ground truth. If the difference between the 
disparity estimate and the ground truth disparity is equal or larger than 20% the 
estimate is regarded as faulty and its removal is assumed to be a correct choice. If 
the difference was smaller  than 20% the estimate  was correct  and thus  a good 
estimate was discarded wrongly. In this manner we can measure the true negative 
and false negative rates for different threshold values, see figure 4.5. 
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While we tested only on one image and used a disparity tolerance of 20%, the 
performance difference is unmistakable. Clearly, the novel validity measure is a 
better indication for the correctness of the disparity estimate. In figure 4.6 up to 4.9 
, we see the effect of applying a threshold that discards 70% of the bad matches for 
the different validity measures. The validity maps are plotted for the range 0 bad 
(blue) to 1 good (red). The difference between the different validity measures is 
clearly visible.  As can be seen, the cost based approaches have more difficulty 
distinguishing between bad and good matches. Using these measures in our fine-to-
coarse disparity estimation approach would not achieve acceptable performance. 
With our novel validity measure we can make a more reliable distinction between 
bad  and  good  matches.  This  ability  is  the  corner  stone  of  our  fine-to-coarse 
disparity estimation method. It should be noted that cost based validity measures 
are widely used. However, our results show that their performance is not optimal.
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Figure 4.5:Validity based thresholds.
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Figure 4.6: Original with noise (left), Unfiltered disparity estimate (right).

Figure 4.7: Novel validity measure (right), Filtered disparity map at 70% error  
reduction (right).

Figure 4.8: Winner Margin third best (left), Filtered disparity map at 70% error  
reduction (right).

Figure 4.9: Winner Margin second best (left), Filtered disparity map at 70% error  
reduction (right).



4.2 Obstacle detection
In this section we examine the influence of different disparity estimation methods 
and  OD parameters  on  OD performance.  We  evaluated  our  obstacle  detection 
method as described in section 3.4. Day- and night-time results for positive and 
negative obstacles will be compared against each other. And while the results are 
mainly quantitative we also try to show the real-world applicability of the different 
approaches.

4.2.1 Parameter summary
In this section we summarize the OD parameters that are used for evaluating the 
system. In total we have experimented with 40 different OD configurations. We 
first show the parameters that were fixed during all test runs.
P=0.10 Controls the steepness of the exponential height threshold curve for 

positive obstacles.
P=0.6  Controls minimum obstacle height ( 1−P ) for positive obstacles. 
N=0.15  Controls the steepness of the exponential width threshold curve for 

negative obstacles.
N=0.6 Controls minimum obstacle width ( 1−N ) for negative obstacles. 

For more information regarding this parameters we refer to section 3.3.4.

For the step height, see section 3.3.1, we experimented with four different values:
S meters=[0,15 0,30 0,45 0,65] .  For  each  step  height  we  also  investigated  the 

influence  of  the  hysteresis  thresholding  using  10  different  configurations  for 
positive and negative obstacles, see table 4.2. For positive obstacles we start with a 
regular threshold (seed and grow threshold are the same) and then for each test we 
lower  the  grow  threshold.  For  negative  obstacles  we  do  the  same  but  also 
experiment  with  increasing  the  seed  threshold.  The  hysteresis  parameter 
configurations are given below.
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Conf. T O
seed T O

grow T P
seed T P

grow T N
grow T N

seed

1 -0.10 -0.10 0.75 0.75 1.25 1.5

2 -0.10 -0.10 0.75 0.65 1.5 1.5

3 -0.10 -0.10 0.75 0.45 1.5 2

4 -0.10 -0.10 0.75 0.30 2 2

5 -0.10 -0.10 0.75 0.15 2 3

6 -0.10 -0.10 0.75 0.10 2.5 3

7 -0.10 -0.10 0.75 0.05 3 3

8 -0.05 -0.05 0.75 0.10 2 4

9 -0.05 -0.05 0.75 0.05 3 4

10 -0.05 -0.10 0.85 0.5 4 4

Table 4.2: Hysteresis test settings.



To efficiently plot the performance of each configuration we used the following 
testing scheme. For all tests we start with a step height of 0.15 and run experiments 
with all 10 hysteresis configurations in table 4.11. Next we use a step height of 
0.30 and again run experiments with all 10 hysteresis configurations. And so on 
until we used a step height of 0.65 with hysteresis configuration 10. In total we 
have 40 different OD parameter configurations. For each setting we plot a marker 
in a ROC curve. The first  parameter  setting is  plotted with a black maker.  All 
consecutive parameters are plotted using markers with decreasing grey levels. The 
obtained plots do not allow for precise comparison between several configurations. 
However,  they  do  show  the  general  influence  of  different  step  heights  and 
hysteresis thresholds. As an example we plotted the ROC curve in figure 4.10. 

We emphasize that any hard conclusions on the OD performance can not be made 
from this image due to the high depth uncertainty at 100 m. We only show this 
figure to illustrate the effect of the OD parameters and how the coming plots can be 
interpreted. What we effectively see is that by using a greater step-size we reduce 
the false detection rate of positive obstacles. However, the true detection rate will 
be  lowered  as  well.  By using  hysteresis  thresholding  we  can  increase  the  true 
detection rate at a modest increase of the false detection rate (see configuration 31 
up to 40). This makes hysteresis a powerful tool to boost the performance when 
using larger step heights. The effect of hysteresis thresholding and different step-
heights will be made more clear in the coming sections.
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Figure 4.10: Example ROC curve. 
Marker 1 up to 10: Step height = 0.15m 
Marker 11 up to 20: Step height = 0.30m 
Marker 21 up to 30: Step height = 0.45m 
Marker 31 up to 40: Step height = 0.60m 

For the ten markers in each set the hysteresis threshold values can 
be found in table 4.2.
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20
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40



4.2.2 Positive OD day-time
In this set of tests we used our day-time data. The figures below show ROC curves 
for different disparity estimation  and positive OD configurations. We evaluated for 
terrain up to 50 meter away from the vehicle. Keeping in mind that estimated depth 
is used to realize this 50 meter range. Nevertheless, the results are encouraging. 
The ROC curves primarily allow comparison between methods. Conclusions about 
how the vehicle would perform using one such method is harder. First, we might 
not have to reach a true detection rate of  100%. If some small patches are not 
detected does not mean the path planner will be influenced by it. Similarly a true 
detection rate of 90% does not mean that 10 out of hundred objects are missed. It 
does indicate that on average 90% of an obstacle's surface is correctly classified. 
Secondly, zero false detection rates might not be necessary. In our experience false 
positive detections pop up for a period of one or two frames and do not reappear at 
the same place consistently. Based on our experience, we assume that save and 
efficient operation of a vehicle requires a true positive rate of at least 0.85 and a 
false positive rate less than 0.1 for our performance measures. Thus we demand 
that on average 85% of an obstacle's surface is labelled correctly. and that at least 
90% of the drivable surface is available for path planning.
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Figure 4.11: Positive OD day-time.



The influence of the different disparity estimation configurations on daytime OD 
performance is minimal. The multi-scale method has a slight better false detection 
rate  than  the  single-scale  method.  Most  likely  this  is  due  to  the  higher  depth 
accuracy near obstacle boundaries achieved by using the full-resolution images. In 
the  curves  from figure  4.11  we  again  see  the  same  effect  of  step  height  and 
hysteresis thresholding on positive OD as in figure 4.10. Effectively, a higher step 
height reduces false detections but also lowers the true detection rate. The loss in 
true detection rate can be compensated by appropriate hysteresis thresholding. The 
possible effect of using different step-heights and hysteresis settings are discussed 
in the next sections.
 

4.2.3 Effect of Step-height
In the plots from figure 4.11 we already saw that the smaller step heights (darker 
dots) have significant more false detections than the larger step heights (whiter 
dots).  In  figure  4.12  we  illustrate  the  effect  of  using  different  step-heights  for 
positive OD detection. Pixels classified as a positive obstacle are coloured blue. 
Clearly, small step heights produce many false alarms on the grass polls in the 
terrain. Increasing the step height increases the coarseness at which we look at the 
terrain and thereby reduces false detections. Eventually the step-height becomes 
too large and (part of) obstacles will be missed.   
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Figure 4.12: Effect of different step heights. 0.15 m(a), 0.30 m(b), 0.45 m(c),  
0.60 m(d).

a b

dc



4.2.4 Hysteresis slope thresholding
The graphs in figure 4.11 also show that using a smaller step height can reduce the 
true detection rate significantly. Small obstacles are the cause of this because their 
edges are not detected. A powerful tool to boost the performance when larger step 
heights are used, is hysteresis thresholding. The figures below illustrate the effect 
of hysteresis slope thresholding. Initially, the object patches that exceed the regular 
slope  threshold  are  too  small  to  pass  the  object  size  thresholds  (fig.  4.13.a). 
Therefore the object (pile of rocks left of the road) is not be detected. When we use 
hysteresis thresholding and start lowering the grow threshold these object patches 
will grow in size and pass the object size threshold, (fig. 4.13.b, 4.13.c).  If we 
lower the grow threshold too much we will get false detections(fig. 4.13.d).

If we look at the ROC curves in figure 4.11 we see that hysteresis can boost the 
true positive detection rate from 70% up to 90% while increasing the false positive 
detection  rate  by  10%.  Improving  true  detection  rates  while  keeping  false 
detections at an acceptable level is crucial for vehicle performance. Later on, we 
will see that this is even more important during night-time conditions.
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Figure 4.13: Effect of hysteresis thresholding, 0.75-0.75(a) 0.75-0.25(b) 0.75-
0.15(c) 0.75-0.05(d).

a b

dc



One of the fundamental problems of column based OD is the issue of the angle 
between the plane, defined by the camera's focal point and an image column, and 
the surface normal of an obstacle. When this angle is large the detected slope can 
be significant  less than the true slope,  see section 2.4.1.  Talukder  [58] tries to 
overcome this problem by using 3D point clustering in triangular image regions. In 
figure 4.14 we show that hysteresis thresholding can also be a powerful tool to 
overcome this problem. First, we show the original image 4.16.a with its estimated 
depth map  4.16.b and slope map 4.16.c. Slope is plotted in the range blue(flat) to 
red(steep). The slope map is computed with the method discussed in section 3.3.1 
using a step-height of 0.45 m Due to the viewing angle effect, the slope estimated 
for the brushwood left of the road is less than its true slope. By using a regular 
threshold the brushwood will not be consistently classified as a positive obstacle, 
4.16.d.  However  by  applying  hysteresis  thresholding  the  obstacle  map  will  be 
become more consistent over the obstacles in the scene, 4.16.e  and 4.16.f.
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Figure 4.14: Original image (a), computed depth map (b), computed slope 
map(c), Regular threshold 0.75 (d), hysteresis thresholding [0.5 0.75] (e) and 

[0.25 0.75] (f).
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4.2.3 Positive OD night-time
We now present positive OD performance on our night-time dataset. Figure 4.15 
shows results  obtained when using  Rank preprocessing.  Figure  4.16 shows the 
result  when  using  LoG  preprocessing.  It  can  be  seen  that  performance  is 
unacceptable if all distances up to 50 m are considered. However the ROC plots for 
35 and 25 m show good performance for those distances. 
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Figure 4.15: Positive OD performance night-time using Rank.
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Figure 4.16: Positive OD night-time LoG.



In  the  plots  on  the  previous  pages  we  see  the  influence  of  the  tested  depth 
estimation  techniques  on  night-time  positive  OD.  There  is  a  clear  difference 
between the true detection rate of the single-scale and multi-scale configurations. 
Also  the  choice  between  LoG  and  Rank  preprocessing  has  a  clear  impact  on 
positive  OD  performance.  The  performance  gain  between  depth  estimation 
configurations in true detection rate is about the same as the gain in depth coverage 
for the given configurations. This indicates that the extra depth information found 
using the multi-scale approaches has sufficient quality to increase the detection of 
positive  obstacles.  We  observe  that  only  the  configuration  that  uses  Rank 
preprocessing  and  our  multi-scale  approach  reaches  acceptable  (0.85,  0.1) 
performance levels for obstacles up to 25 m.

The influence of step-height and hysteresis thresholding is consistent with previous 
results. However, now their actual value becomes more crucial.  The tests using 
small  step-heights  have  considerably  higher  false  detection  rates.  Also  the 
influence  of  hysteresis  thresholding  becomes  important  during  low  visibility 
conditions. While it is hard to observe in the plots, a large step height e.g. 0.45 
meter and modest hysteresis thresholding e.g. seed <= 0.75 grow <= 0.30  boosts 
performance to acceptable (0.85, 0.1) levels. 

Figure  4.17  shows  the  night-time  OD  results  for  various  depth  estimation 
configurations. It is the same stereo image pair as used in figure 4.2. What these 
images demonstrate is that increased depth coverage alone does not increase OD 
performance. Depth consistency over the obstacle is also an important aspect. This 
is because positive OD is based on grouping of pixels at equal depth and measuring 
the size of the found candidate objects. If an obstacle is subdivided into smaller 
sub-objects, due to errors or inconsistent depths, these sub-objects might not pass 
the obstacle size thresholds. In section 4.1.3 we have seen that significant dilation 
errors near object borders can occur. We believe that this does not have to have a 
negative effect on positive OD performance as such. It mainly will increase the 
false detection rate.  In the plots in figure 4.15 we can see, that given the right 
parameters, false detections can be kept to an acceptable level. 
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Figure 4.17: Night-time positive OD results, disparity maps (left),  
obstacle maps(right).

IR Single RANK HS OD Result

OD ResultIR Multi LoG FS

IR Multi RANK FS OD Result

OD ResultIR Single LoG HS



4.2.4 Negative OD day-time
Now we turn our attention to negative obstacle detection. In contrast to the good 
results on positive obstacles, negative obstacles pose more challenges, as can be 
seen in the plots below. While we get adequate performance for small distances up 
to 5m, the false detection rate becomes unacceptable at larger distances .
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Figure 4.18: Negative OD day-time.



Before  we  start  analysing  the  results  we  first  note  the  following  aspects.  Our 
dataset only contains one negative obstacle that the vehicle cannot traverse, see 
figure 4.19. This negative obstacle is relatively easy to detect for the following 
reasons. Firstly, the distance between the far-side and near-side is about 6 meters. 
Furthermore, the far-side is higher than the near-side and can be seen clearly even 
from large distances. Finally, the ditch is a few meters deep. Because of these facts 
we believe the true negative detection rates are not as representative as those of 
positive  obstacle  detection.  Nevertheless,  interesting  observations  can  be  made 
from these plots. 

The graphs on the previous page and figure 4.19 clearly show the dilemma of 
choosing an appropriate step-height when detecting negative obstacles. Small step-
heights allow detection of negative obstacles at  greater depths. Notice,  that  the 
darkest markers, from configurations using a small step height, obtain the best true-
detection  rate  for  lager  distances.  However,  due  to  the  ambiguous  nature  of 
negative obstacles a small step-height will also cause a false detection rate that is 
unacceptable. Larger step-heights have a considerable smaller false-detection rates 
for larger distance. For the range of 5 m they perform significantly better. Clearly, 
workable true negative detection rates can also be reached for larger distances. The 
main  difficulty  however  is  the  false  negative  detection  rate  that  can  be 
unacceptably high.
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Figure 4.19: Problem of parameter choice. Using a step height of 0.45 meter 
and a hysteresis threshold of [2.0 3.0] we can detect the negative obstacle (left).  

However, false detections can appear e.g. on top of grass polls (right). 



4.2.5 Negative OD night-time
We now present the negative OD result during night-time conditions. Figure 4.20 
shows the quantitative results obtained using our night-time dataset. In figure 4.21 
and 4.22 we show obstacle maps generated during day- and night-time conditions 
for the negative obstacle in our dataset. 
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Figure 4.20: Negative OD night-time.



For nearby distances we observe a drop in true detection rate. Furthermore, now 
the  smaller  step-heights  seem  to  achieve  better  performance.  For  the  single 
negative obstacle in our dataset, depth dilation plays an important role, see figure 
4.22.  As discussed in section 4.1.3 the bushes on the near-side of the gap will 
appear larger during the night. This will cause the near side of the ditch to appear 
smaller in width, effectively leaving less room for negative obstacle detection. In 
most cases the object will be detected. However, the width of the object is less than 
during  day-time  conditions.  Because  the  lack  in  negative  obstacle  detection  is 
compensated by the increase in positive obstacle size, the effect on the operation of 
the vehicle can be minimal (for this particular negative obstacle). Furthermore, it 
seems that the position of the negative obstacle is located less precise during night-
time conditions. It is shifted upwards (see fig. 4.22 at 10 m) by the depth dilation 
effect on the negative obstacle's near-edge. When it is shifted downwards (see fig. 
4.21) it is usually caused by the lack of depth estimates at the negative obstacle's 
near-edge. As with day-time conditions, acceptable true detection rates during the 
night can be achieved for this negative obstacle. Again it is the false detection rate 
that makes the real-world usability troublesome. 
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Figure 4.21:Problem of parameter choice. Using a step height of 0.45 meter 
and a hysteresis threshold of [2.0 3.0] we can detect the negative obstacle (left).  

However, false detections can appear e.g. on top of grass polls (right). 
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Figure 4.22: Result with OD configuration 5 using Rank Multi-scale (from top 
to bottom: 50m 30m 10m 5m).
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Chapter 5

Discussion & Conclusion
This research has  shown that  it  is  possible to  reliably detect  positive  obstacles 
during  day  and  night  conditions  using  stereo  vision.  We  have  quantitatively 
evaluated the performance of our system over a large real-world dataset. Obstacle 
detection (OD) at night requires robust depth estimation which we achieve by our 
fine-to-coarse disparity estimation procedure. Our fine-to-coarse approach does not 
suffer from traditional coarse-to-fine error propagation and is based on the ability 
to  make  a  distinction  between  good  and  bad  stereo  matches.  An  important 
contribution is our disparity validity  measure. Which, in contrast to traditional 
cost-based measures is able to reliably distinguish between good and bad stereo 
matches. The detection of positive and negative obstacles can be done robustly by 
depth dependent  slope measurement and obstacle thresholds. The application of 
hysteresis thresholding is a powerful tool for boosting OD performance without 
significant increase in the computational load. In the next sections we will discuss 
our results in more detail.

5.1 Depth estimation
Our  novel  fine-to-coarse  disparity  estimation  processes  makes  it  possible  to 
achieve  acceptable  high-quality  disparity  coverage  levels  during  day  and  night 
conditions. The performance has been measured over a large real-world dataset 
showing an increase in depth coverage and decrease in depth uncertainty. We have 
shown that it can be used during the night when the scene is illuminated by a 36 
Watt IR spotlight. Of course, results obtained rely heavily on the intensity of the 
IR-emitters. Increasing their wattages would improve performance. However, the 
goal  of  this  research  is  to  investigate  the  performance  during  low  visibility 
conditions. The use of a single light source with limited output is typical for low 
visibility conditions. Currently we have no implementation of the novel system that 
runs in real-time. However, we believe that the novel method can run real-time due 
to the following reasons. First, the multi-resolution approach is based on a single-
resolution approach that has been proven to run real-time. The overhead is only 
based on the fine-to-coarse level selection, bi-linear interpolation and computation 
of the novel disparity validity measure, which can be performed fast. Apart from 
the fast  fine-to-coarse  level  selection,  there  are  no  computational  dependencies 
between the levels in the stereo image pyramid making parallelization a powerful 
option. Also the ability to adaptively balance the computational load based on the 
visibility conditions make it appropriate for use in autonomous systems. 
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Our tests show that cost-based disparity validity measures are poor predictors of 
the correctness of a disparity estimate. Our novel validity measure that balances 
intensity  edges,  signal-to-noise  ratio  and  the  final  disparity  smoothness 
outperforms these approaches The advantage of our method is that it  combines 
intensity and disparity information into one value in an intuitive way. Firstly, it is 
based on the assumptions that disparity on an object's surface is smooth. Secondly, 
object borders are likely to cause disparity jumps. And thirdly, object borders often 
result  in  intensity  edges  which  represent  a  positive  signal  to  noise  ratio.  The 
strength of our validity measure is that it considers all these assumptions to form 
one indication about the correctness of a disparity estimate.
 
LoG filtering is an often used pre-processing step. This research points out that in 
the case of depth estimation for autonomous land vehicles Rank preprocessing is 
the better option. While Census might even work better, a Rank transform window 
of 16x16  can still be represented by 8 bits. This allows every disparity estimation 
system that uses 8-bit grey-scale as input to incorporate the Rank transform. While 
Census is more challenging to implement for real-time processing.
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5.2 Obstacle Detection
To our knowledge this is the first research effort that investigates obstacle detection 
on a large real-world data-set in a true quantitative way. The results show that 
positive obstacle detection during low visibility conditions requires reliable depth 
estimation. Our novel multi-resolution stereo matching approach can provide this 
robustness through acceptable depth coverage and low depth uncertainty.  

The positive obstacle detection method itself  poses little  fundamental problems. 
The  only  factor  on  its  performance  is  the  quality  of  the  estimated  disparity. 
Trivially, if no reliable disparity estimated is found, no obstacles can be detected. 
This aspect  is  inherently  linked with geometrical  based obstacle  detection.  The 
benefits  of  our  approach  is  its  ability  to  increase  true  detection  rates  without 
increasing  false  detection  rates.  For  this  we  use  depth  dependent  slope 
measurement  and  hysteresis  thresholding.  When  the  angle  between,  the  plane 
defined by the optical axis and the image column, with the surface normal is large. 
Hysteresis thresholding can be a powerful tool to increase the performance  Which 
makes it an alternative for more computational demanding approaches like that of 
Talukder [58].  Increasing performance would most  likely require  3D reasoning 
about terrain traversability.  Also extracting more semantic knowledge about the 
terrain and its objects is an interesting prospect.

We have shown that our method can detect negative obstacles at modest range 
during  day  and  night  conditions  without  the  use  of  narrow  FOV  cameras. 
Furthermore, it does not rely on line fitting as used by Matthies et al. [38]. Instead 
it looks for suspicious (uncertainty corrected) depth jumps, which can be done fast 
and  efficient.  Having  said  that,  we  must  accept  the  fundamental  drawbacks  of 
geometrical based approaches for negative obstacle detection. The main difficulty 
we encountered  is unacceptable false detection rates. We found that on flat terrain 
the false detections are minimal.  However,  on bumpy terrain with for  example 
stretches of grass polls false detections occur often. Based on the pure geometrical 
input, the algorithm can not distinguish between a true negative obstacle and a false 
detection.  Discarding  false  detections  most  likely  will  require  obtaining  more 
contextual information of the local and global terrain as well as learned knowledge. 
We also note that unfortunately our results were obtained on one abundantly clear 
negative  object.  The  performance  on  less  obvious  negative  obstacles  is  not 
comparable and most likely not as good.
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5.3 Evaluation
This research makes a first step towards an efficient and reliable OD evaluation 
benchmarking  environment  for  the  research  community.  We  quantitatively 
evaluated day and night-time performance for different OD approaches on a large 
real-world dataset. In our opinion this is the only manner in which conclusions can 
be made about the performance of the wide range of existing OD methods. Because 
the lack of existing benchmark datasets and evaluation methods, substantial work 
was dedicated to setting up a benchmark environment. In the future we hope to 
improve both our datasets and our evaluation methods to come to an even more 
reliable and effective benchmarking environment for the OD research community.

Most  researchers  present  qualitative  results  in  the  form  of  object  label  maps. 
However, to truly compare different techniques amongst each other using different 
configuration  and  settings  requires  quantitative  evaluation.  Initially  we 
experimented with pixel based labelling and classification. As discussed in section 
3.4.3 this evaluation method favours systems which only classify large object close 
to the vehicle. As an alternative we tried object based labelling and classification. 
The main problem with this scheme is the labelling of objects in the scene due to 
cluttering. Labelling every bush over a stretch of undergrowth is a daunting task. 
Furthermore labelling the whole stretch of undergrowth as one single object will 
not  give  good insight  into the performance.  Finally we used our surface based 
evaluation.  It  allows  for  efficient  labelling  only  using  three  classes  (positive 
obstacle,  negative  obstacle,  drivable  terrain  and  ignore).  Also  surface  based 
performance  measures  give  a  good  indication  of  the  performance  differences 
between methods.
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Chapter 6

Future work
To reach the performance needed to effectively use autonomous land vehicles for a 
wide  range  of  scenarios  still  requires  substantial  research.  In  this  chapter  we 
present some possible topics for further research that are related to our research 
described in this thesis. 

6.1 Disparity estimation & Information Fusion
As we have described in section 2.5 disparity is only one source of information for 
an autonomous vehicle. Also, other image modalities like colour and texture  grasp 
valuable information about the scene and its objects. Most likely we will need all 
these  image  modalities  to  form  an  environmental  model  that  is  reliable  and 
comprehensive enough for effective autonomous vehicle operation. Often disparity 
estimation, colour based classification and texture based classification are seen as 
separate  problems.  We  argue  that  a  lot  of  performance  can  be  gained  by 
exchanging information at early stages when solving these (traditionally separated) 
problems. For instance texture based terrain classification requires using filters at 
various scales and orientations. As research shows, Olson [47], the distance to an 
object can be used to select the appropriate texture-filter scale. This reduces the 
amount of filters that have to be used,  which simplifies and enhances the task of 
texture  recognition.  On the  other  hand incorporating texture  information in  the 
disparity  estimation  process  can  increase  the  quality  of  the  disparity  map,  see 
figure 6.1. Here we used texture to segment the intensity image. This segmentation 
together  with  the  disparity  map  is  used  to  enhance  the  disparity  estimation. 
Especially  the performance gain on vertical  poles is  interesting.  During further 
research we would like to investigate the potential of using texture segmentation to 
enhance  disparity  estimation  results.  Also  using  depth  information  to  enhance 
texture based obstacle classification (e.g. distinguishing between a rock or a grass 
poll) is promising. 
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6.2 Obstacle detection
Significant more research  has to be dedicated to negative obstacle detection. To 
facilitate this we will have to record images from a larger variety of real-world 
negative  obstacles.  It  is  likely  that  using  narrow  FOV  cameras  is  needed  for 
detecting negative obstacles at large distances. We will probably have to accept 
that the true traversability of some negative obstacles can only be obtained at close 
distance. For positive obstacles we hope to lower the false detection rate by looking 
at  other  image  modalities  such  as  colour  and  texture.  Also  methods  that  fit  a 
ground plane after the obstacles have been found can enhance OD performance. 
Methods that obtain and weight information based on more then one frame such as 
SLAM are also promising for off-road OD. Given our benchmark environment it 
would  be  interesting  to  measure  the  performance  of  other  OD  approaches. 
Especially the approach proposed by Talukder et al. [58] and V-disparity methods 
like that of Broggi et al. [7] are interesting. To our knowledge comparing a wide 
range of OD methods in a quantitative way on a large real-world dataset has not 
been done before. Making such a comparison using our benchmark environment 
would be a great help to the OD research community. 
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Figure 6.1: Using texture segmentation to improve disparity estimate. Left image 
of stereo image pair (a) and its texture segmentation (b), disparity map (c), texture 

enhanced disparity map (d).

a b

c d



6.3 Evaluation
The main problem of our surface based evaluation is the lack of surface ground 
truth.  We  experimented  using  estimated  depth  to  compute  the  surface  of  all 
positive objects and non-objects in the scene. The estimated depth of object pixels 
influence their estimated surface. Structural bias in depth estimates can skew the 
results. The correctness of our performance measuring is based on the assumptions 
that if bias occurs it will be on average the same for day and night conditions and 
the same for different depth estimation configurations. If this is not the case the OD 
comparison between various approaches is difficult. If for instance LoG filtering 
has a structural negative bias compared to Rank transforming then this would skew 
the performance measures in favour for Rank preprocessing. This is due the fact 
that pixel at closer depth represents less surface. We tried to get insight into the 
quality and possible biases of the actual depth estimates. We did this by using the 
GPS read-out accompanying the frames and satellite imagery of our test terrain. 
Unfortunately  this  was  not  successful.  Mainly  due  the  imprecision  in  GPS 
coordinates from both the GPS system and the satellite imagery. While we have no 
indication that their exists a structural bias between methods, the only way to truly 
investigate the possible bias in depth estimates requires additional testing. Also 
from  the  aspect  of  obstacle  depth  precision,  measuring  depth  biases  is  an 
interesting topic. 
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