
Large Scale Gaussian Mixture Modelling using a

Greedy Expectation-Maximisation Algorithm

J.R.J. Nunnink

May 19, 2003



Contents

1 Introduction 4

2 Training Gaussian Mixtures 6

2.1 Gaussian Mixtures . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Gaussian Mixture Model . . . . . . . . . . . . . . . . . 6
2.1.2 Model Quality . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Expectation-Maximisation Algorithm . . . . . . . . . . . 7
2.2.1 Log-likelihood Optimisation . . . . . . . . . . . . . . . 7
2.2.2 Free Energy . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Lower Bound Maximisation . . . . . . . . . . . . . . . 9
2.2.4 Time Complexity . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 EM Variants . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Greedy EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Component Insertion . . . . . . . . . . . . . . . . . . . 12
2.3.2 Sparse Incremental EM . . . . . . . . . . . . . . . . . 13
2.3.3 Time Complexity . . . . . . . . . . . . . . . . . . . . . 14

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 EM using a kd-tree . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . 17

2.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Chunky EM 18

3.1 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Splitting Boxes . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Sufficient Statistics . . . . . . . . . . . . . . . . . . . . 19

3.2 Chunky EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Shared Responsibilities . . . . . . . . . . . . . . . . . 20
3.2.2 Partition Size . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Time Complexity . . . . . . . . . . . . . . . . . . . . . 22

3.3 Greedy Chunky EM . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Chunky Insertion . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Sparse Incremental Chunky . . . . . . . . . . . . . . . 23
3.3.3 Time Complexity . . . . . . . . . . . . . . . . . . . . . 26

1



4 Experimental Results 27

4.1 Generating Data Sets . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1 Model Initialisation . . . . . . . . . . . . . . . . . . . 27

4.2 Shared Responsibilities . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Normal vs Chunky EM . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Greedy EM vs Chunky Greedy EM . . . . . . . . . . . . . . . 30

5 Conclusion 34

2



List of Figures

2.1 Example of the construction of a 4-component Gaussian mix-
ture. Each ellipse corresponds with one component. . . . . . 12

4.1 Examples of data sets generated by a 5-component Gaussian
mixture with different amounts of component separation. . . 28

4.2 Examples of k-means initialised Gaussian mixtures. . . . . . . 28
4.3 Differences in Kullback-Leibler divergence between optimal

and suboptimal shared responsibilities in terms of partition
size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Experimental results comparing the regular and the chunky
EM, showing the influence of different parameters on speedup
(left) and negative log-likelihood on the test set (right) of the
generating mixture (black), the converged mixture of regular
EM (light), and chunky EM (dark). . . . . . . . . . . . . . . . 31

4.5 Experimental results comparing chunky greedy and non-chunky
greedy EM. On the left is the speedup and on the right the
negative log-likelihood on the test set, with the generating
mixture (black), the converged mixture of regular greedy EM
(light), and chunky greedy EM (dark). . . . . . . . . . . . . 33

3



Chapter 1

Introduction

An important task in data analysis is to search and identify clusters of
data items. These clusters can be used for a number of purposes, such as
classification of new data or for predicting missing data. Data clustering
methods can also be used as learning algorithms when applied to partially
labelled data, where each found cluster corresponds to a class.

The task of clustering algorithms is to fit a model to the data. A useful
and popular class of models are Mixture models which are convex combina-
tions of basic model components [8]. Typically these components are Gaus-
sian density functions, because often data is locally Gaussian distributed,
in which case the data set can be assumed to have been generated by a
hypothetical Gaussian mixture. The task is then to find the parameter of
that generating mixture.

Because of their probabilistic nature, Gaussian mixtures are in principle
preferred over models that cut a data set in discrete parts. In most AI
applications where a new data item needs to be classified, it is more desirable
to calculate the probability that this item belongs to certain clusters than
to assign it to only one cluster.

The most popular algorithm for training a Gaussian mixture is the
Expectation-Maximisation (EM) algorithm [5]. Among its advantages are
its easy implementation, no need to set extra user-defined parameters, and
guaranteed monotone increase in model quality. There are also some down-
sides, however, the most important of which are its high dependency on
initialisation and computational complexity, which is linear with respect to
the size of the data set.

Over the past years several improvements of the EM algorithm were
proposed to counteract those problems. One of them is a generalisation of
the EM algorithm, based on the variational free energy in statistical physics,
that justifies several useful variants [11]. Also, some improvements aimed
at lowering the computational cost by working with groups of data items
instead of the items themselves [9] (In [1, 6, 10] this method is applied to

4



the k-means algorithm). Finally, a greedy version of EM was proposed,
which deals with the initialisation problems of EM, thus resulting in higher
quality models [13, 14]. This greedy method, however, is computationally
more expensive.

In this thesis I will describe an algorithm that combines these improve-
ments, thus being able to handle large data sets, by keeping the computa-
tional cost low, while producing high quality models with every run of the
algorithm.

In Chapter 2, I will explain Gaussian mixture models and the various
EM algorithms. Then, in Chapter 3, I will describe a new algorithm that
combines the strengths of the various EM variants. The experimental results
obtained by running the new algorithm are displayed in Chapter 4. Finally in
Chapter 5 are the conclusions about the performance of the new algorithm.

5



Chapter 2

Training Gaussian Mixtures

2.1 Gaussian Mixtures

2.1.1 Gaussian Mixture Model

Finite mixture models are models that consist of a weighted sum of basic
model components. Thus a mixture model fk with k components is defined
as:

fk(x) =

k
∑

s=1

πsφs(x; θs), (2.1)

where φs is the s-th component parameterised by θs, and πs is the mixing
weight of the s-th component. The mixing weights must satisfy

∑k
s=1

πs = 1
and πs ≥ 0.

Gaussian mixture models are those mixture models where the basic com-
ponents are multivariate Gaussian density functions, defined by:

p(x; θ) = (2π)−d/2|C|−1/2 exp

[

−
1

2
(x − m)>C

−1(x − m)

]

, (2.2)

where x ∈ IRd, and θ represents the parameters m and C, which are re-
spectively the mean and the covariance matrix of the density function and
where the | · | operator denotes the determinant of a matrix.

The Gaussian density function is especially useful for modelling clustered
data that is normally distributed. Note that for example sensory noise is
typically Gaussian distributed. Therefore such data sets can be assumed to
have been generated by a Gaussian mixture, whose parameters we want to
find. When generating a data set corresponding to a model, each component
generates a cluster of points that is positioned and shaped according to the
parameters of that component, and the relative number of points belonging
to each cluster would depend on its mixing weight.

6



2.1.2 Model Quality

So assuming that a data set is generated by a certain Gaussian mixture, the
task is to fit a model to this data, in other words to estimate the parameters
of the generating mixture. For this it is necessary to have some notion of
the quality of the model with respect to the data set. A standard way to do
this is to look at the likelihood that the data set was actually generated by
the model itself, in other words to what extent the distribution of the data
corresponds to the model.

We define the log-likelihood L, given the parameters θ and the data set
X = {x1, . . . ,xn}, as:

L(θ) = log p(X)

= log
∏

x∈X

k
∑

s=1

p(x, s)

=
∑

x∈X

log

k
∑

s=1

p(x, s),

=
∑

x∈X

log

k
∑

s=1

p(x|s)p(s), (2.3)

where p(s) is the prior distribution over the components, also known as
the mixing weights. Note that independence of the data points is assumed
and therefore the likelihood of the data set is equal to the product of the
likelihoods of the data points.

Fitting the model to a data set is now the same as maximising (2.3)
with respect to the parameters θ and the mixing weights πs. However it is
a complex function so this maximisation cannot be done easily.

2.2 The Expectation-Maximisation Algorithm

2.2.1 Log-likelihood Optimisation

Optimisation of the log-likelihood could be done by a gradient descend
method, so by calculating a linear or quadratic approximation of the log-
likelihood function (2.3) around the point of the current parameter values,
and then changing the parameters to values that increase the log-likelihood
according to the approximated gradient, i.e. by taking a step up on the
log-likelihood surface.

A problem for that method, however, is that the gradient gives little
information about the surface around the current point and therefore one
does not know how large the step should be, because taking too large steps
might make you miss optimal states while taking too small steps could make

7



convergence very slow. Another problem is that one doesn’t have a notion
about the reliability of the approximation, so one could be taking steps in
the wrong direction and never find out.

Another method is to choose a lower bound on the log-likelihood that is
easier to optimise and use that lower bound to find the optimal parameters.
The Expectation-Maximisation (EM) algorithm by Dempster et al. [5] is
such a method that iteratively maximises a lower bound with respect to the
parameters and a probability distribution over the components.

2.2.2 Free Energy

I will now first describe a variational version of the EM algorithm as proposed
by Neal and Hinton [11] and then show that the well-known regular EM
algorithm is a special case of it.

Neal and Hinton propose a lower bound F on the log-likelihood that uses
a distribution Q, which gives for every data point x a distribution qx over the
components s. They are also called the responsibilities of the components
for the data points. F can be derived in the following way, starting with
Bayes’ Rule. All probabilities are assumed given the current parameters:

log p(x, s) = log p(s|x) + log p(x)

log p(x) = log p(x, s) − log p(s|x) + log qx(s) − log qx(s). (2.4)

Eqx
(·) will denote the expectation with respect to the distribution qx over the

components. Note that Eqx
log p(x) = log p(x) because p(x) is independent

on qx. Furthermore H is the entropy of a distribution, defined by:

H(qx) = −
∑

s

qx(s) log qx(s) = −Eqx
log qx(s),

and DKL is the Kullback-Leibler divergence, which is a measure of the dis-
tance between two distributions and is defined by:

DKL(qx ‖ p(s|x)) =
∑

s

qx(s) log
qx(s)

p(s|x)
= Eqx

log
qx(s)

p(s|x)
. (2.5)

Using these three definitions we can now rewrite (2.4) to:

log p(x) = Eqx
log p(x, s) − Eqx

log p(s|x) + Eqx
log qx(s) − Eqx

log qx(s).

= Eqx
log p(x, s) + DKL(qx ‖ p(s|x)) + H(qx). (2.6)

And thus we get the two equivalent definitions of Fx:

Fx(Q, θ) = log p(x; θ) − DKL(qx ‖ p(s|x)) (2.7)

= Eqx
log p(x, s; θ) + H(qx). (2.8)

8



From now on I will refer to F as the free energy of a mixture, after the
(negative) variational free energy used in statistical physics that is analogous
to F . Note that Fx is the free energy of the mixture for one data point
x. To get that of the whole data set one can simply sum over all points,
F =

∑

x
Fx.

The first composition (2.7) of this definition is in fact equal to the log-
likelihood minus the Kullback-Leibler divergence, and since this divergence
is always non-negative it is thus immediately clear that F is in fact a lower
bound on the log-likelihood.

2.2.3 Lower Bound Maximisation

The EM algorithm consists of two parts, an E-step that maximises F with
respect to the responsibilities Q given the current parameters, and an M-
step that maximises F with respect to the model parameters θ, given the
responsibilities found in the E-step. Continually repeating these two steps
will eventually converge the model parameters to a (local) maximum of the
free energy.

For the E-step we will use the first decomposition (2.7) of F . Since
only the divergence term of that equation depends on qx and since that
term has negative influence on F , we only need to minimise the Kullback-
Leibler divergence between the responsibilities and the posterior distribution
over the components p(s|x). The divergence is always non-negative and its
minimum value is 0 and this occurs when the distributions between which
the divergence is calculated, qx and p(s|x), are exactly equal c.f. (2.5). Thus
in the E-step we set qx equal to the posterior p(s|x), which can be calculated
with:

p(s|x) =
πsp(x; θs)

fk(x)
, (2.9)

where fk(x) is the likelihood of x under the entire mixture.
The M-step uses the second decomposition (2.8) of the free energy. In

this decomposition the entropy term does not depend on θ, so maximising
F with respect to the parameters means maximising the expectation, with
respect to the Q found in the E-step, of the joint log-likelihood. This max-
imisation can be carried out by calculating the first order derivative and
setting it to zero. This gives the well-known update equations:

π′
s =

1

n

n
∑

i=1

qi(s), (2.10)

m
′
s =

1

nπ′
s

n
∑

i=1

qi(s)xi, (2.11)

C
′
s =

1

nπ′
s

n
∑

i=1

qi(s)xix
>
i − m

′
sm

′>
s . (2.12)

9



An important feature of the free energy is that the E and M-steps do
not necessarily have to optimise it in every step. In fact, any responsibility
and parameter update step that increases F will let it move towards a local
maximum, which is the task of the algorithm. This means that the responsi-
bilities do not have to be set equal to the posterior distribution in the E-step
and that not all model components s need to have their parameters updated
in every M-step.

Neal and Hinton [11] prove that any local maximum F(Q∗, θ∗) of the
free energy is also a local maximum L(θ∗) of the log-likelihood and therefore
when this algorithm converges it has in fact also found a (local) maximum of
the log-likelihood. It is easy to see that for any given θ there is a Qθ, equal
to the posterior distribution, for which F(Qθ, θ) = L(θ). In particular for
any θ∗ that maximises the log-likelihood there is a Q∗ such that F(Q∗, θ∗) =
F(Qθ∗ , θ

∗) = L(θ∗). If there is a local maximum of the log-likelihood at θ∗

then that means there is no θ† nearby for which L(θ†) > L(θ∗) and since Qθ

changes continuously with θ this means that there is no θ† and Qθ† nearby
for which F(Q†, θ†) > F(Q∗, θ∗), in other words the free energy then also
has a local maximum at θ∗ and Q∗.

2.2.4 Time Complexity

The main computation that has to be done by the algorithm is calculat-
ing the likelihood p(x|s; θs) of a data point for a component. Each E-step
requires that calculation for each of the n data points and each of the k
components in order to compute all the responsibilities. Summing the re-
sponsibilities over all data points in the M-step has to be done for each of
the k components. So the number of computations per iteration of EM is
O(nk). Note that I disregard the dependence on the number of dimensions,
since it is not relevant to the discussion in this thesis.

2.2.5 EM Variants

Several variants of the free energy maximisation algorithm are possible based
on the extent to which the responsibilities are updated. The regular EM
algorithm as proposed by Dempster et al. [5] can now be seen as special case
or variant. In regular EM the E-step calculates the posterior distribution
over the components and uses this to update the model components in the
M-step. This is the same as setting the responsibilities always equal to
p(s|x) in the E-step, which means the divergence term is always made 0 and
F(Q, θ) is always equal to L(θ) after the E-step. The lower bound F always
increases, unless it has already converged.

Another possible variant would be incremental EM, which doesn’t up-
date the complete responsibilities in the E-step, by calculating them for only
part of all data points. It leaves the responsibilities for the other data points

10



unchanged or even sets them to some predetermined value, a uniform dis-
tribution for example. This is justified as long as it leads to an increase of
the total free energy. Note that the total free energy is the sum of the free
energy of each data point, and that Fx will stay unchanged for those points
that haven’t got their responsibilities updated. Fx will increase for the data
points that do have updated responsibilities, since those responsibilities are
closer to the posterior distributions, resulting in a smaller divergence term
in the first decomposition (2.7) of Fx. Thus the total free energy will never
decrease. I will discuss an incremental variant in more detail in Section 2.3.2.

Also possible is sparse EM, which does a limited E-step by updating the
responsibilities for each data point of only a certain number of the compo-
nents and leaving the rest relatively unchanged, making sure the respon-
sibilities still sum to 1 for each data point. Since the responsibilities qx

for each data point are optimised for the updated components, the overall
responsibilities will not get worse, so Fx will never decrease.

2.3 Greedy EM

One of the main problems of the EM algorithm is the simple fact that one
needs to initialise the algorithm with a Gaussian mixture. Accordingly, the
resulting mixture after convergence, and thus the log-likelihood, depends
heavily on the choice of the initial mixture. Most often the algorithm gets
stuck in the first local maximum it reaches. The usual solution for this is to
run the algorithm several times using different starting mixtures. The hope
is that the best local maximum will yield a log-likelihood close to the global
maximum within several tries.

Another problem is that one often doesn’t know how many clusters the
data set contains. The number of components in the initial mixture will
then be very difficult to choose.

Recently Vlassis and Likas [14] proposed a greedy approach, which aims
at avoiding these two issues. Based on theoretical work by Li and Barron [7]
they use an algorithm that builds the Gaussian mixture model component-
wise starting with a 1-component mixture. After having converged a mixture
fk they add a new component and then use the EM algorithm to converge to
an optimal fk+1, and so on. Fig. 2.1 shows an example of the construction
of a Gaussian mixture using greedy EM.

This does require more work because you have to do EM until conver-
gence for every intermediate mixture. But this gets compensated by the fact
that this algorithm is much better at finding a (near) global maximum of
the log-likelihood, and therefore the algorithm has to be run only once. Also
is initialisation much easier since the optimal parameters of a 1-component
mixture can be found trivially. Finally there is no need to guess the number
of clusters, and thus the number of components. The algorithm can be ter-

11



(1) (2)

(3) (4)

Figure 2.1: Example of the construction of a 4-component Gaussian mixture.
Each ellipse corresponds with one component.

minated whenever optimally adding a new component no longer leads to an
increase in free energy. Looking at the sequence of mixtures can even give
us a notion of optimal number of components, by using for example cross
validation.

2.3.1 Component Insertion

The important issue in greedy EM is the search for and insertion of the
optimal new component. Vlassis and Likas did this by considering every
data point as a candidate for insertion, giving them standard parameters
and looking at the resulting log-likelihood if they were to be inserted.

There are some points of criticism on this method of searching, however.
Firstly, the number of computations used is quadratic in the number of data
points, since you have to compute the log-likelihood of every data point for
every candidate. When working with large data sets this is unacceptable.
Secondly, the choice for the candidates’ parameters is not guaranteed to be
good and might lead to bad modelling of certain areas of the data space.

Verbeek et al. [13] come with an improvement of the insertion procedure.
They propose to look at the current mixture fk and generate only a certain
number of m candidates per component. This is done by randomly splitting
the data points that ‘belong’ to a component, i.e. those points for which
that component has highest responsibility, in two groups. Calculating the

12



mean and covariance of these groups give the parameters for two candidates.
This splitting of the ‘parent’ component is repeated until m candidates are
generated. Then for each of these km candidates, instead of immediately
comparing them, they do a number of sparse incremental EM steps first
and then compare the resulting log-likelihoods. This avoids the dependency
on initial candidate parameters, since they are changed to optimal values
anyway. It also uses less computations than [14], because the number of
candidates depends on the number of components and not on the number
of data points. I will discuss sparse incremental EM in the next section, and
its time complexity in Section 2.3.3.

2.3.2 Sparse Incremental EM

For the insertion step of the greedy algorithm we do sparse incremental EM
steps for each candidate component. For that we treat the mixture fk+1 as
a 2-component mixture, with one component being a new candidate φ and
the other being the old mixture fk:

fk+1 = αφ + (1 − α)fk. (2.13)

Furthermore when updating we keep the old mixture fixed and only update
the parameters of the new component and the mixing weight α.

Since we only update the parameters of the new component, only the
responsibilities of the new component are needed. These responsibilities will
probably be very small for the points lying far from the new component, and
since every candidate is generated from an existing parent component time is
saved by updating the new component’s parameters using only those points
which the parent component ‘owns’, i.e. for which it has highest responsi-
bility. We set the responsibilities for all other points to a predetermined
distribution, one that gives responsibility 0 to the new component and 1 to
the old mixture. The resulting error is relatively small and the closer the
responsibilities of the new component for the points outside its area are to
0, the closer Q gets to the posterior distribution and the tighter the lower
bound gets. Because Fx is optimised for the points that belong to the par-
ent component, F will never decrease. Therefore this sparse incremental
version of EM is justified.

Let φpar be the parent component of the new candidate. Now define
a subset A of the data set X that consists of all points that give highest
responsibility to the parent component:

A = {x ∈ X : φpar = arg max
s

qx(s)}.

The update equation for the E-step can be calculated by setting the first
derivative of (2.7) with respect to the responsibilities to 0. The responsibil-

13



ities, of the new component φ and for the points x ∈ A only, become:

qx =
αφ(x; θk+1)

(1 − α)fk + αφ(x; θk+1)
. (2.14)

Maximising the parameters of the new component only in the M-step using
the responsibilities found in the E-step and the fact that ∀x /∈A : qx = 0
gives the following update equations:

α′ =
1

n

∑

x∈A

qx, (2.15)

m
′
k+1 =

1

nα′

∑

x∈A

qxx, (2.16)

C
′
k+1 =

1

nα′

∑

x∈A

qxxx
> − m

′
k+1m

′>
k+1. (2.17)

For more details see Verbeek et al. [13].

2.3.3 Time Complexity

The total number of computations needed for the km sparse incremental EM
searches is O(mn) because in each E-step on average n/k responsibilities
have to be updated, and since the likelihoods of the data points for the
old mixture fk were already computed during previous EM steps only the
likelihoods of the n/k points for the new component need to be calculated.
The number of main computations in the M-step is of the same order since
n/k responsibilities need to be summed for each of the km candidates.

Complete EM takes O(nk) computations as I have explained in Sec-
tion 2.2.4. Suppose the maximum number of components used is k. If
complete EM is carried out between insertion steps then the total number
of computations for the entire algorithm is O(nk2+nkm). If complete EM is
not carried out between insertion steps then that number becomes O(nkm).
Note that this is a factor m more than regular EM, however as said pre-
viously greedy EM doesn’t need to be run multiple times as regular EM
does. Also m does not need to be large. There are theorems that allow us
to compute values for m such that the best candidate is guaranteed with
high probability to be among the, say, best 5% of all possible candidates per
component [13].

2.4 Related Work

Recently other methods for improving or speeding up the regular EM al-
gorithm were proposed. Among these were several methods that split the
data set in a number of groups, analysed the data in these groups prior

14



to running EM and then during EM only used the results of the analyses,
also called sufficient statistics, to optimise mixture log-likelihood. These
methods are actually clustering groups of points rather than clustering data
points. These methods have the advantage that the number of computations
no longer depend directly on the number of data points, but on the number
of groups of data, which is very useful for applications that involve large
data sets. Trade-offs between the quality of the result of the algorithm and
the speed are also possible.

2.4.1 EM using a kd-tree

One such method I will decribe further is proposed by Moore [9]. It uses
a kd-tree (see Bentley [2]) to store the sufficient statistics of the data. An
kd-tree is a binary tree in which every node corresponds to a subset of the
data set. The points in a node get split into two parts according to some
criterion and these two parts are the points that correspond to the two
children nodes, which then get split in two, and so on.

In [9] the points themselves are not stored in the tree, only some statistics
about the points. For a particular node b those are the number of points |b|,
centroid 〈x〉b and ’covariance’ 〈xx

>〉b, with the latter two defined as:

〈x〉b =
1

|b|

∑

x∈b

x (2.18)

〈xx
>〉b =

1

|b|

∑

x∈b

xx
>. (2.19)

Note that this covariance is not the real covariance of the points in a node.
To get the real covariance we would first have to subtract the centroid from
all points. For this algorithm only 〈xx

>〉b is needed however.
The nodes are split in two through the middle along their widest dimen-

sion, with dimension width defined as the largest distance in that dimension
between any two points from the node. Note that nodes are thus always
split axis-aligned, leading to hyperrectangular boxes bounding all points in
a node.

When performing an iteration of the EM algorithm, the parameters need
to be updated using (2.10)-(2.12). It is clear that the only values needed for
this are

∑

x∈X
qx(s),

∑

x∈X
qx(s)x and

∑

x∈X
qx(s)xx

> for each compo-
nent s. We can approximate these values from a node of the tree using the

15



following equations:

∑

x∈b

qx(s) ≈ q(s)|b|, (2.20)

∑

x∈b

qx(s)x ≈ q(s)|b|〈x〉b, (2.21)

∑

x∈b

qx(s)xx
> ≈ q(s)|b|〈xx

>〉b, (2.22)

where all terms on the right hand side are stored as sufficient statistics in
the node and q is an approximation of the responsibility of all points in the
node.

The algorithm begins by computing these values for the root node, since
that node corresponds to the entire data set. To compute these values for
any particular node it can also get the values from the two children nodes
and sum those, since

∑

x∈X
qx(s) =

∑

b

∑

x∈b qx(s) where b are the children
nodes. Therefore, a choice needs to be made at each node whether it should
be an end node, for which the approximation q is computed. If it is not
an end node then its children’s values are computed and summed. The
deeper we go into the tree, the smaller the boxes become, and the better
the approximation becomes. So we need a criterion for the number of end
nodes.

Moore [9] lets the choice of when to stop going deeper into the tree,
summing children nodes’ values, depend on the difference between the max-
imal and minimal possible values for the responsibilities. In other words,
when for all components the theoretically highest and lowest responsibility
for any possible point in a node are ‘close’, then it is not necessary to go any
deeper, since then the approximation q is guaranteed to be accurate. This,
however, requires some complex computations. I will explain the reason for
this criterion below.

Moore calculates the approximation of the responsibility in the following
way:

q(s) = p(s|〈x〉b) =
πsp(〈x〉b|s)

fk(〈x〉b)
. (2.23)

In other words, the responsibility of a component for the points in a node is
approximated using the responsibility for the centroid of a node. Of course
the responsibility of the centroid does not tell us anything about the optimal
approximated responsibility for the points in a node. This means that the
deeper one goes in the tree the better the approximation becomes, because
the responsibility will vary less in smaller nodes and therefore the responsi-
bility of the centroid will probably be closer to the true responsibility.

This is why the criterion mentioned above that all possible responsibil-
ities in a node need to be ‘close’ together in order to stop descending the

16



tree is very important, since only then the approximation q is guaranteed to
be accurate, i.e.

∑

x
qxx ≈ q

∑

x
x.

2.4.2 Time Complexity

This algorithm consists of two parts, building the tree and doing EM it-
erations. Building the tree requires O(n log n) computations, because on
every layer of the tree a distance has to be calculated (for the splitting crite-
rion) for every data point. There are O(log n) layers and O(n) data points.
Building the tree needs to be done only once though, so this building time
is not that important. Doing one EM iteration does not cost time linear in
the number of data points anymore. The number of times in each E-step
that the likelihood p(〈x〉b|s) has to be calculated is once for each end node
and each component, so O(kB) when B is the number of end nodes in an
iteration.

2.5 Motivation

As I discussed above the free energy generalisation of the EM algorithm
opens possibilities for a number of different, but justified, methods that
can have certain trade-offs between quality and speed without breaking the
conditions necessary for guaranteeing at least no decrease in model quality
w.r.t. F by doing EM steps. Furthermore greedy methods can ensure good
results with every run while using only few extra computations. Finally,
methods that use cached sufficient statistics based on geometric partitioning
of the data space can give significant speed-ups, avoiding time complexity
linear to the size of the data set, while paying only little with respect to
quality, making these methods very useful for large scale applications.

This of course raises the question if these latter two algorithms can
be combined to give an algorithm that is capable of handling large data
sets, while avoiding some of the normal problems of EM, by using a greedy
scheme. In the next chapter I will describe such a method and show that it
indeed has the expected qualities.

17



Chapter 3

Chunky EM

In this chapter I will describe an algorithm that uses a partitioning of the
data set to speed up the EM algorithm, and in particular the greedy EM.

3.1 Partitions

Let us first describe a convenient way of denoting a partition of a data set.
Since the versions of EM described in the previous chapter that use a kd-tree
only add the sufficient statistics from the leaves of the tree, one could look
at those leaves as disjoint subsets of the data set that together contain the
entire data set.

When X = {x1, . . . ,xn} is the data set let B be a partition of the data
set:

B = {b1, . . . , br}, (3.1)

where each box b is given by:

b = {xk, . . . ,xl}, (3.2)

such that
b1 ∪ . . . ∪ br = X , (3.3)

and
∀i6=j : bi ∩ bj = ∅. (3.4)

Let expanding or refining a partition be defined as increasing the number
of boxes in that partition. Analogous to the kd-tree described previously
this means splitting the points in a box in two groups, resulting in two new
boxes that replace the old box in the partition. Note that going deeper in a
kd-tree can be seen as refining a partition.

18



3.1.1 Splitting Boxes

In Moore’s method [9] nodes or boxes were split axis aligned, and through
the middle of their widest dimension. While this is quite fast and easy to
do, it also has a disadvantage. Often the data and its clusters will not be
axis aligned. This can lead to poor partitions, because one easily gets largely
empty boxes with only few points. The less the points in a box are uniformly
distributed the worse any approximation based on sufficient statistics will
be. This means partitions will be unnecessarily large before they can be
used. This problem will only get worse when working on higher dimensional
data spaces, since the clusters will be even less axis aligned, resulting in
more emptiness in boxes.

Therefore a better splitting method is one based on the orientation of the
points themselves. Calculating the covariance of all points in a box provides
us with a notion of this orientation. If we then take the largest eigenvector
of this covariance matrix we get the main orientation of the cluster of points
in a box. Splitting the box using a hyperplane perpendicular to the middle
of that eigenvector will result in better partitions since large data clusters
are better split up into smaller chunks. One could look at this as performing
a recursive Principal Component Analysis on the data, a technique used in
combination with kd-trees to limit its decrease in performance with high
dimensional spaces. [12]

One might ask why Moore didn’t use this splitting method. This is
because his criterion for determining whether or not to go deeper in the tree
needs hyperrectangular axis aligned boxes. The algorithm I will describe
does not need this, however, and therefore splitting along the eigenvector is
a preferable choice.

3.1.2 Sufficient Statistics

For our algorithm we also use the sufficient statistics instead of the points
themselves. Because the splitting method described above does not depend
on the model, but only on the data set which never changes, it is possible
to calculate all statistics before doing EM. We will store in each box b the
same statistics as Moore, namely the number of points |b|, centroid 〈x〉b and
‘covariance’ 〈xx

>〉b, with the latter two defined as:

〈x〉b =
1

|b|

∑

x∈b

x (3.5)

〈xx
>〉b =

1

|b|

∑

x∈b

xx
>. (3.6)

Note again that (3.6) does not compute the real covariance of the points
in a box, for which we would need to subtract the centroid from each data
point first.

19



3.2 Chunky EM

As above the goal is to increase the total free energy F of the model, which
is the sum of the free energy for each data point x:

Fx(Q, θ) = log p(x; θ) − DKL(qx ‖ p(s|x)) (3.7)

= Eqx
log p(x, s; θ) + H(qx). (3.8)

This is done by calculating the optimal responsibilities Q for the given pa-
rameters θ and then updating the model parameters using this Q:

π′
s =

1

n

n
∑

i=1

qi(s), (3.9)

m
′
s =

1

nπ′
s

n
∑

i=1

qi(s)xi, (3.10)

C
′
s =

1

nπ′
s

n
∑

i=1

qi(s)xix
>
i − m

′
sm

′>
s . (3.11)

3.2.1 Shared Responsibilities

The idea of chunky EM is to assign the same responsibility to all points in
a box b of a partition B. If we call this responsibility qb, and using the fact
that the total free energy is also equal to the sum of the free energy Fb for
each box in the partition, the free energy equation for a box b can be written
as:

Fb(Q, θ) =
∑

x∈b

[log p(x; θ) − DKL(qb ‖ p(s|x))] (3.12)

=
∑

x∈b

[Eqb
log p(x, s; θ) + H(qb)]. (3.13)

The update equation for the responsibilities can be found by setting the
derivative of (3.12) with respect to qb to 0:

qb(s) =
πs exp 〈 log p(x|s)〉b

∑

s′ πs′ exp 〈 log p(x|s′)〉b
. (3.14)

Here 〈 · 〉b = 1

|b|

∑

x∈b(·) denotes the average over all points in a box b.
The update equations for the parameters can be calculated by setting

20



the derivative of (3.13) with respect to θ to 0:

π′
s =

1

n

∑

b∈B

qb(s)|b|, (3.15)

m
′
s =

1

nπ′
s

∑

b∈B

qb(s)|b|〈x〉b, (3.16)

C
′
s =

1

nπ′
s

∑

b∈B

qb(s)|b|〈xx
>〉b − m

′
sm

′>
s . (3.17)

Note that for these updates only the stored sufficient statistics and qb are
needed.

It is clear that main computation for (3.14) is that of 〈 log p(x|s)〉b. If we
would have to do this by computing the log-likelihood of every data point
then we would gain nothing over regular EM. However, it is possible to
rewrite the average:

〈 log p(x|s)〉b =
1

|b|

∑

x∈b

log p(x|s) =

−
1

2

[

d log 2π + log |Cs| +
1

|b|

∑

x∈b

(x − ms)
>
C

−1
s (x − ms)

]

=

−
1

2

[

d log 2π + log |Cs| + m
>
s C

−1
s ms + 〈x>

C
−1
s x〉b − 2m>

s C
−1
s 〈x〉b

]

=

−
1

2

[

d log 2π + log |Cs| + m
>
s C

−1
s ms + Trace{C−1

s 〈xx
>〉b} − 2m>

s C
−1
s 〈x〉b

]

,

where Trace{·} is the sum of the diagonal elements of a matrix. With this
it is possible to calculate the optimal average responsibility of a box fast
using the cached sufficient statistics. From (3.14) it is also clear that when a
partition is refined so much that each box contains only one data point, the
equations are equal to those of regular EM, since then exp 〈 log p(x|s)〉b =
p(x|s).

3.2.2 Partition Size

The last issue that needs to be solved is the question of which partition to
use during the EM steps. It is clear that the finer the partition gets the closer
the shared responsibilities get to the real responsibilities, thus resulting in
a better approximation and better convergence. However, a finer partition
also means more computations for each EM step, because (3.14)-(3.17) have
a computational cost linear in the size of the partition, which we would like
to avoid.

The method we will be using for this is to start with a relatively coarse
partition, converge the model using this partition, and then refine the parti-
tion and converge again, and so on. The idea behind this is that, because of

21



the optimal shared responsibilities, a coarse partition will still guarantee no
decrease of the free energy. Note that this is not true for Moore’s method.
Therefore it is possible to do fast EM steps with coarse partitions, pushing
the model roughly towards a maximum, which will be reached using finer
partitions.

Several methods are possible for choosing the amount of refinement. A
simple, low cost method would be to refine each box once before applying
EM. This might lead to unnecessary expansion, however, and therefore a
better, but more costly, way would be to expand the boxes whose refine-
ment will lead to the best increase of the free energy. This increase can be
calculated by comparing a box’ optimal shared responsibilities to those of
its children boxes.

Several choices can be made for when to stop expanding. One could for
example look at the increase in free energy after expansion, and stop when
this increase is below a certain convergence threshold. Setting an upper
limit to the partition length is also possible.

3.2.3 Time Complexity

In every E-step of the algorithm the responsibilities for each box and each
component need to be calculated, requiring O(kB) computations, where B
is the total number of boxes comprising the partition. Note that calculating
〈 log p(x|s)〉b for one box requires about as much work as calculating p(x; θs)
for one data point x. If data partitions are implemented using a kd-tree then
building the tree requires O(n log n) computations, but only needs to be done
once.

3.3 Greedy Chunky EM

As discussed in the previous chapter there are several reasons for using a
greedy method, namely, (i) there is no dependency on parameter initialisa-
tion, and (ii) no prior knowledge about the number of clusters is needed.

The greedy algorithm consists of two parts, converging a k-component
model and inserting a new component leading to a k + 1-component model.
These two parts are repeated until adding components no longer improves
the model quality or some other model complexity measure that uses for
example a test set. The convergence of a k-component mixture model is
done with the chunky EM described in the previous section. The insertion
procedure is somewhat different from the non-chunky version and I will
discuss it below.

22



3.3.1 Chunky Insertion

In the component insertion step, greedy EM [13] as described in the previous
chapter divides the data points in groups which have highest responsibility
for a particular component. The chunky version divides the boxes in the par-
tition k disjoint subsets, where each subset is comprised of boxes that have
highest average responsibility for a model component. It then also randomly
splits these subsets in two parts, from which two candidate components are
created. This is repeated until m candidates are generated for each of the k
components. These km candidates are then trained using sparse incremen-
tal chunky EM steps, explained in the next section. The component that
will be inserted into the mixture is the trained candidate that results in the
highest free energy.

The initial parameters of the candidates, except for the mixing weight
α which is set to half the mixing weight of the parent component, are not
trivially found, because we do not want to look at all data points, but only
at the boxes and the sufficient statistics stored therein. Suppose we have
a partition B, that got divided into k subsets, and that one such subset
A got split into two subsets A1 and A2. These two subsets will both gen-
erate a candidate, which will need an initial mean and covariance. This
mean and covariance must be the mean and covariance of the points in the
corresponding boxes.

For example, for group A1 we can write:

m =
1

|A1|

∑

x∈A1

x =
1

|A1|

∑

b∈A1

∑

x∈b

x =
1

|A1|

∑

b∈A1

|b|〈x〉b, (3.18)

where |A1| is the total number of points in the boxes in A1, and:

C =
1

|A1|

∑

x∈A1

(x − m)(x − m)>

=
1

|A1|

∑

b∈A1

∑

x∈b

[

xx
> − xm

> − mx
> + mm

>
]

=
1

|A1|

∑

b∈A1

|b|
[

〈xx
>〉b − 〈x〉bm

> − m〈x〉>b + mm
>
]

=
1

|A1|

∑

b∈A1

|b|〈xx
>〉b − mm

>. (3.19)

Both m and C can be calculated without requiring the data points them-
selves.

3.3.2 Sparse Incremental Chunky

In the insertion part of the greedy chunky algorithm we have to decide which
new component to insert. Logically this decision should be made based on

23



the increase in total free energy after the new component is fully inserted
in the existing mixture. To get a notion of the increase we will perform
a certain number of sparse incremental EM steps on the new mixture. At
this moment we are only interested in finding the best candidate and not in
training the model.

In sparse incremental EM we treat the mixture as a 2-component mix-
ture, with the first component being the candidate component and the sec-
ond component being the old mixture:

fk+1 = αφ + (1 − α)fk. (3.20)

The old mixture parameters are kept fixed and only the parameters mk+1

and Ck+1 of the new component and the mixing weight α are updated.
Since we only update the parameters of the new component only the

responsibilities of the new component are needed. Similar to Section 2.3.2,
these responsibilities will probably be very small for the boxes lying far from
the new component, and since every candidate is chosen from an existing
parent component we can save time by updating the new component’s pa-
rameters using only the boxes in A for which the parent component has
highest responsibility, as described in the previous section. We set the re-
sponsibilities for all other boxes to a predetermined distribution, one that
gives responsibility 0 to the new component and 1 to rest of the mixture.

So suppose we want to insert a new candidate component φ into a current
mixture fk, we have a partition B of the data set and φ comes from parent
component φpar. We have selected a subset A of B:

A = {b ∈ B : φpar = arg max
s

qb(s)}.

We want to maximise the free energy F for each box b, given by:

Fb(Q, θ) =
∑

x∈b

[log p(x; θ) − DKL(qb ‖ p(s|x))] (3.21)

=
∑

x∈b

[Eqb
log p(x, s; θ) + H(qb)]. (3.22)

Because we consider fk+1 to be a 2-component mixture we can write
qb as the responsibility of the new component and thus (1 − qb) as the
responsibility of the old mixture for a certain box b.

Inserting (3.20) into (3.22) gives:

Fk+1

b =
∑

x∈b

qb log(αφ(x)) + (1 − qb) log((1 − α)fk(x)) + H(qb)

=
∑

x∈b

qb[log φ(x) + log α] + (1 − qb)[log fk(x) + log(1 − α)] + H(qb).

24



Since Fk
b is a lower bound on

∑

x∈b log fk(x) we can replace the latter, giving
the following formula for the free energy of a box:

Fk+1

b ≥ qb

[

∑

x∈b

log φ(x) + |b| log α

]

+(1 − qb)
[

Fk
b + |b| log(1 − α)

]

+ |b|H(qb). (3.23)

Expectation Step

In the E-step we maximise our lower bound on F k+1

b by optimising qb for
each box. We can compute the optimal qb by setting the derivative of (3.23)
with respect to qb to 0. This gives:

∑

x∈b

log φ(x) + |b| log α −Fk
b − |b| log(1 − α) − |b| log qb + |b| log(1 − qb) = 0,

which we rewrite to:

qb =
α exp 〈 log φ(x)〉b

(1 − α) exp(Fk
b /|b|) + α exp 〈 log φ(x)〉b

, (3.24)

where 〈 log φ(x)〉b is the average log-likelihood of the points in the box under
the new component which we can compute fast using cached statistics (see
Section 3.2.1).

Maximisation Step

In the maximisation step we optimise our bound F k+1

B =
∑

b∈B Fk+1

b by
computing new parameters for the new component based on the qb found
with (3.24). Using (3.23) we can write:

Fk+1

B ≥
∑

b∈B

qb

[

∑

x∈b

log φ(x) + |b| log α
]

+
∑

x∈B

(1 − qb)
[

Fk
b + |b| log(1 − α)

]

+
∑

b∈B

|b|H(qb) (3.25)

We can now use our approximation to set the responsibility of the new
component for all boxes outside A to 0, like in [13]. In other words:

∀ b /∈A : qb = 0

Combining (3.25) and (3.3.2) gives:

Fk+1

B ≥
∑

b∈A

qb

[

∑

x∈b

log φ(x) + |b| log α
]

+
∑

b∈B

(1 − qb)
[

Fk
b + |b| log(1 − α)

]

+
∑

b∈A

|b|H(qb) (3.26)

25



Setting the derivative of (3.26) with respect to α to 0 gives:

∑

b∈A

qb|b|
1

α
−

∑

b∈B

(1 − qb)|b|
1

1 − α
= 0,

thus

αk+1 =

∑

b∈A qb|b|

N
, (3.27)

where N is the total number of data points.
Setting the derivative of (3.26) with respect to mk+1 to 0 leads to:

∑

b∈A

qb

∑

x∈b

(−C
−1

k+1
x + C

−1

k+1
mk+1) = 0,

∑

b∈A

qb(−
∑

x∈b

x + |b|mk+1) = 0,

and

mk+1 =

∑

b∈A qb|b|〈x〉b
∑

b∈A qb|b|
(3.28)

Setting the derivative of (3.26) with respect to Ck+1 to 0 gives:
∑

b∈A

qb

∑

x∈b

(−Ck+1 + (x − mk+1)(x − mk+1)
>) = 0,

thus

Ck+1 =

∑

b∈A qb

∑

x∈b(x − mk+1)(x − mk+1)
>

∑

b∈A qb|b|

=

∑

b∈A qb|b|〈xx
>〉b

∑

b∈A qb|b|
− mk+1m

>
k+1. (3.29)

It is clear that the parameters of the new component now only depend
on the boxes in A and that the sparse incremental EM steps use time based
on the size of A.

3.3.3 Time Complexity

If B is the size of the partition, then sparse incremental chunky EM requires
the update of on average B/k responsibilities in the E-step, so the total
number of computations required for the km candidates for each EM loop
is O(mB). As explained above, complete chunky EM requires O(Bk) com-
putations. Suppose the maximum number of components used is k, then if
complete chunky EM is done between insertion steps the total number of
computations for the entire algorithm is O(Bk2+Bkm). If complete chunky
EM is not done between insertion then that number becomes O(Bkm). This
is a factor m more than non-greedy chunky EM, however as said previously
greedy chunky EM doesn’t need to be run multiple times as chunky EM
does. As above, building a kd-tree requires O(n log n) computations.

26



Chapter 4

Experimental Results

4.1 Generating Data Sets

As mentioned earlier the EM algorithm can be applied on data that is as-
sumed to have been generated by a Gaussian mixture. Therefore, I will
conduct my experiments on data that has been artificially generated from
a random Gaussian mixture. For these data sets several parameters can be
specified.

These are the number of data points n, the number of dimensions d, the
number of components k of the generating mixture, and for each component
the mixing weight π, mean m, and covariance matrix C. In all experiments
n, d, and k are set to a specified number, while the component parameters
are randomly chosen. These component parameters can be constrained by
the component separation c [4], given by:

∀i6=j : ||mi − mj|| ≥ c
√

max {Trace(C i),Trace(Cj)}. (4.1)

In other words, the amount of separation specifies the minimum distance
between component means based on the size of their covariance matrix.
See Fig. 4.1 for examples of data sets with different amounts of component
separation.

4.1.1 Model Initialisation

All EM algorithms need to be initialised with a mixture model. For the
greedy variants, which are initialised with a 1-component mixture, the start-
ing model is trivially found, since the mean and covariance of the only com-
ponent are simply the mean and covariance of the complete data set, and its
mixing weight is of course 1. The non-greedy EM versions, however, need
to be initialised with a k-component mixture, and since the end result of
EM depends heavily on its initialisation, the choice for the starting mixture
requires some care.

27



c = 1 c = 2 c = 3

Figure 4.1: Examples of data sets generated by a 5-component Gaussian
mixture with different amounts of component separation.

Figure 4.2: Examples of k-means initialised Gaussian mixtures.

Therefore, I will use the k-means algorithm for initialisation. First, k
data points are randomly selected from the data set. Then the data set is
divided in k subsets, which are also known as Voronoi Regions (VR), where
each VR consists of the points that are closest to one of the selected data
points. Finally, the k model components’ means and covariance matrices
are set to the means and covariance matrices of the points in the k VRs,
and the mixing weights are set to the proportion of the data points in each
VR.

Fig. 4.2 shows some examples of random model initialisations. Each
ellipse corresponds to a model component, and the size and shape of the
ellipse to its covariance.

4.2 Shared Responsibilities

An important part of the described improvements of the chunky EM al-
gorithm is the computation of the optimal shared responsibility instead of
taking the responsibility of the centroid of a box p(s|〈x〉b) as the shared re-
sponsibility [9]. The optimal shared responsibility maximises the free energy
better, in other words, the divergence term in (3.12) will be smaller.

In the following experiment I will compare the quality of the two ap-
proximations in terms of partition coarseness. First, 20 data sets of 5000
points were generated from random 20-component Gaussian mixtures in 10

28



1 2 3 4 5 6 7
0

2

4

6

8

10

12x 10
4

K
L 

di
ffe

re
nc

e

tree depth

Figure 4.3: Differences in Kullback-Leibler divergence between optimal and
suboptimal shared responsibilities in terms of partition size.

dimensions with a separation of 2. Then, for each data set a 20-component
Gaussian mixture was initialised using k-means. Finally, the shared respon-
sibilities were computed by using both approximations, (2.23) and (3.14),
for different partition sizes.

We will compare the approximations by comparing the Kullback-Leibler
divergence between the shared responsibilities and the posterior distribution
over the components. Fig. 4.3 shows the divergence difference between the
optimal shared responsibilities and using the responsibility of the centroid.
Each unit on the horizontal axis corresponds to going one level deeper in
the kd-tree, which is equivalent to refining each box in the partition once,
thereby doubling the size of the partition.

The figure clearly illustrates that our approximation performs better
when using coarser partitions, which is what we expected. This validates
our approach of starting EM with a coarse partition and refining it during
convergence.

4.3 Normal vs Chunky EM

In this section I will describe experiments to determine the influence of the
number of data points, the number of dimensions, the number of compo-
nents, and the amount of separation on the difference in speed and quality
between regular EM and chunky EM.

The default data set in these experiments consists of 10,000 points in 2
dimensions generated from random 10-component Gaussian mixture with a
separation of 3. From the same random mixture we also generated a test
set of 1000 points to compare log-likelihoods. We then initialised a mixture
using k-means and applied both regular EM and chunky EM to it. For

29



each experiment we recorded the log-likelihood of the generating mixture
for the test set, and for both algorithms the total number of basic floating
point operations needed for convergence, and the log-likelihood of the final
mixture on the test set.

Fig. 4.4 shows the averages of those values after repeating the experiment
20 times. The results show that chunky EM in general is faster than regular
EM, and that this speedup is at least linear with respect to the number of
data points, which the theory predicted.

Furthermore, the amount of separation has a positive effect on the speed-
up. This can be ascribed to the fact that when the clusters are better
separated the responsibilities of the points in a cluster will differ less, making
the approximation of the shared responsibilities better.

The reason for the fact that the number of dimensions has a slightly
negative influence on the speedup is the decrease in performance of kd-trees
with high dimensional spaces. The decrease in speedup for data sets with
more clusters is probably caused by the fact that more clusters means that
less points have responsibilities that are close and therefore the partitions
need to be finer in order to make a good approximation.

On average the mixtures converged by chunky EM perform worse than
those found by regular EM, which could be expected, since chunky EM is
after all using an approximation. However, Fig. 4.4 also shows that the
difference is small in comparison to the distance to the log-likelihood of
the generating mixture, even when applied to high dimensional spaces with
many clusters.

4.4 Greedy EM vs Chunky Greedy EM

In this section I will compare the greedy EM algorithm, as described in
Section 2.3 with the chunky greedy EM algorithm, and look at the influence
of the number of data points, the number of dimensions, the number of
components, and the amount of separation on the speedup and log-likelihood
differences.

The default data set consists of 10,000 data points in 2 dimensions drawn
from random 5-component 2-separated Gaussian mixtures, with a test set of
500 points drawn from the same mixture to compare log-likelihoods. Then
both the chunky greedy and the non-chunky greedy EM algorithms were
applied on this data set. This experiment was repeated 10 times and the
averages were recorded.

The results are shown in Fig. 4.5. From the figure it is clear that the
chunky version is always faster than regular greedy and that the speedup is
linear with respect to the size of the data set, which the theory indicated.
Furthermore, the log-likelihoods of both algorithms are practically equal to
that of the generating mixture, which is what we expect from the greedy

30



Number of data points (x1000):

10 20 27 35

5

10

15

20

sp
ee

du
p

# points (x1000)
10 20 27 35

0

1

2

3

4

5

−
lo

g−
lik

el
ih

oo
d

# points (x1000)

Number of dimensions:

2 5 10

3

3.5

4

4.5

sp
ee

du
p

# dimensions
2 5 10

0

5

10

15
−

lo
g−

lik
el

ih
oo

d

# dimensions

Number of components:

10 20 30
2

2.5

3

3.5

4

sp
ee

du
p

# components
10 20 30

0

2

4

6

−
lo

g−
lik

el
ih

oo
d

# components

Amount of separation:

1 2 3 4
2

4

6

8

10

sp
ee

du
p

separation
1 2 3 4

0

1

2

3

4

5

−
lo

g−
lik

el
ih

oo
d

separation

Figure 4.4: Experimental results comparing the regular and the chunky EM,
showing the influence of different parameters on speedup (left) and negative
log-likelihood on the test set (right) of the generating mixture (black), the
converged mixture of regular EM (light), and chunky EM (dark).

31



methods.
The lower speedup for high dimensional data sets can be ascribed to

the use of a kd-tree. Data sets with more clusters and data sets with less
component separation both cause more diverse responsibilities, thus making
coarse partitions perform worse. This explains the loss of speedup for such
data sets.

32



Number of data points (x1000):

2 5 10 20
0

5

10

15

20

sp
ee

du
p

# points (x1000)
2 5 10 20

0

1

2

3

4

−
lo

g−
lik

el
ih

oo
d

# points (x1000)

Number of dimensions:

2 5 8
7

8

9

10

11

sp
ee

du
p

# dimensions
2 5 8

0

2

4

6

8
−

lo
g−

lik
el

ih
oo

d

# dimensions

Number of components:

5 10 15
2

4

6

8

10

sp
ee

du
p

# components
5 10 15

0

1

2

3

4

5

−
lo

g−
lik

el
ih

oo
d

# components

Amount of separation:

1 1.5 2 2.5 3

8

10

12

14

sp
ee

du
p

separation
1 2 3

0

1

2

3

−
lo

g−
lik

el
ih

oo
d

separation

Figure 4.5: Experimental results comparing chunky greedy and non-chunky
greedy EM. On the left is the speedup and on the right the negative log-
likelihood on the test set, with the generating mixture (black), the converged
mixture of regular greedy EM (light), and chunky greedy EM (dark).

33



Chapter 5

Conclusion

I have presented a variant of the Expectation-Maximisation algorithm specif-
ically designed for dealing with large scale data sets, without paying much in
terms of quality. The experiments described in the previous chapter clearly
show that this algorithm is faster than the regular versions and that this
speedup is linear with respect to the size of the data set. The experiments
also show that there is barely any loss in quality even when working with
large or complex data sets.

The theory also shows that the effect of the EM algorithm, namely the
guaranteed monotone increase in model quality with respect to the free
energy, still holds independent of the size of the partition. Therefore one
can use the size of the partition as an easy to implement trade-off between
speed and quality. This is useful when there are, for example, only limited
resources available.

Future work could be done on applying this combination of geometric
clustering and greedy model construction to other applications of the EM
algorithm, such as, for example, the Generative Topographic Mapping [3].

34



Bibliography

[1] K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering
algorithm. In Proc. First Workshop High Performance Data Mining,
1998.

[2] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[3] C. M. Bishop, M. Svensén, and C. K. I Williams. GTM: The generative
topographic mapping. Neural Computation, 10:215–234, 1998.

[4] S. Dasgupta. Learning mixtures of Gaussians. In Proc. IEEE Symp.

on Foundations of Computer Science, New York, October 1999.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal

Statistical Society, 39(1):1–38, 1977.

[6] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman,
and A. Y. Wu. An efficient k-means clustering algorithm: Analysis and
implementation. IEEE Transactions PAMI, 24:881–892, 2002.

[7] J. Q. Li and A. R. Barron. Mixture density estimation. In Advances in

Neural Information Processing Systems 12. The MIT Press, 2000.

[8] G. J. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York,
2000.

[9] A. Moore. Very fast em-based mixture model clustering using mul-
tiresolution kd-trees. In M. Kearns and D. Cohn, editors, Advances in

Neural Information Processing Systems, pages 543–549. Morgan Kauf-
man, 1999.

[10] A. Moore and D. Pelleg. Accelerating exact k-means algorithms with
geometric reasoning. In Proc. of 5th Int. Conf. on Knowledge Discovery

and Data Mining, pages 277–281, 1999.

35



[11] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M.I. Jordan, editor, Learning

in Graphical Models, pages 355–368. Kluwer, 1998.

[12] R. F. Sproull. Refinements to nearest-neighbor searching in k-
dimensional trees. Algorithmica, 6:579–589, 1991.

[13] J. J. Verbeek, N. Vlassis, and B. J. A. Kröse. Efficient greedy learning
of gaussian mixture models. Neural Computation, 15(2):469–485, 2003.

[14] N. Vlassis and A. Likas. A greedy EM algorithm for Gaussian mixture
learning. Neural Processing Letters, 15(1):77–87, February 2002.

36


