
Face Detection and Pose Estimation Using Part-Based Models

Markus Heukelom

Master’s Thesis

Artificial Intelligence,

Multimodel Intelligent Systems

July 2005

Supervised by

Dr. ir. B.J.A. Kröse

Dr. J.J. Verbeek

Intelligent Autonomous Systems
University of Amsterdam





This thesis, ”Face Detection and Pose Estimation Using Part-Based Models”, is submitted in
partial fulfilment to the requirements for the degree Master of Science in
Artificial Intelligence at the University of Amsterdam.

Date:

Author’s signature: Supervisor’s signature:





Contents

1 Introduction 1

1.1 Application domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Concern of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 3D face pose estimation from a planar model 5

2.1 Relation between the model plane and its image . . . . . . . . . . . . . . . . 5

2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Initial estimate of the pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Computing the homography H . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Retrieving the pose from the homography H . . . . . . . . . . . . . . 8

2.4 Optimizing the initial pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Performance under six poses . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Performance under increasing depth . . . . . . . . . . . . . . . . . . . 14

2.5.3 Qualitative test: real images . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Part acquisition 21

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Sift features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Sift feature consistency on faces . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Detecting parts: descriptor matching . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Detecting parts: modelling the descriptor . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Detecting the parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Face detection & pose estimation 37

4.1 The spatial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Modelling the appearance . . . . . . . . . . . . . . . . . . . . . . . . . 39



iv

4.2 Estimating the pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Finding the best hypothesis using A* . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Estimating the model parameters . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 Detecting faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.3 Detecting the face and estimating the face pose . . . . . . . . . . . . . 46
4.5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusion 53

5.1 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Estimating the descriptor MoG parameters 55

A.1 Isotropic covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 Independent covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.3 Probabilistic PCA covariance matrix . . . . . . . . . . . . . . . . . . . . . . . 56
A.4 Computing an eigen-decomposition from little data . . . . . . . . . . . . . . . 57
A.5 Computing the posterior probabilities with high dimensional data . . . . . . . 57

B Sift matching results 59

C Estimating the affine pose 61



Chapter 1

Introduction

The topic of this thesis is face detection and face pose estimation. We propose a method to
detect the face and, simultaneously, estimate its pose from images acquired with a calibrated
camera. The approach is novel in the way it combines techniques from computer vision and
recent developments in object detection using planar models. An overview of the system is
presented in Fig. 1.2. The method is tested on different data sets, providing a proof of concept
of the applicability of the approach.

1.1 Application domain

Considering possible applications of face pose estimation is not the main concern of this thesis,
and so we suffice to say that knowing the pose of the face is important in many applications,
including human-computer interfaces, video database indexing and face recognition. Philips
Research has recently demonstrated [16] a new consumer product named iCat (Fig. 1.1),
which provides natural human-like interaction intended to help in daily tasks such as sending
messages, accessing daily information, selecting your favorite music, photos and video or even
guarding your home. Being able to locate and estimate a person’s face can greatly improve
the feel of human-like interaction, for example by turning the iCat’s head towards the person
it is interacting with, and only obeying to voice commands when looked at.

Figure 1.1: Philips’ Icat



2 Introduction

1.2 Concern of the thesis

Before the pose of a face can be estimated, the face region needs to be detected in an image.
This poses a problem, because successful face detectors, such as presented in [17], [20], [21],
are not invariant to rotation. As a result we cannot simply apply such a detector to find
the face region and subsequently estimate its pose (provided we have a method to do this),
because faces under rotation will simply not be detected. As a work-around, we could learn a
face detector for a discrete set of poses, which is done by Viola et al. [22] as an extension to
the face detector developed by the same authors in [21]. Although the speed and detection
rate is unprecedented, this approach is unsatisfactory in the sense that it effectively treats
different views of the same object as different object classes, which has a somewhat unnatural
appeal and, moreover, requires separate training data for each ’orientation’ class. Another
solution would be to use a highly controlled environment in order to make the detection of
the face under varying rotation much easier. For example, in the work by Ji et al. [8] a
special (near-infrared) illuminator is used so that the pupils are easily detected, which are
used to track the face. The pose of the face is subsequently estimated from an ellipse fitted
on the face boundary. The disadvantage of this approach is that depending on a controlled
environment makes the applicability of the method much more constrained.
We therefore propose a different method, based on recent developments in object recognition
by parts. In recognition by parts, an object is composed of parts and shape, where parts

are image patches, detected by appropriate detectors, and shape describes spatial relation
of the parts. The method we propose makes use of the Sift detector developed by Lowe
[13], and a planar spatial part model, which is used to both detect and estimate the face
pose. Our approach is inspired by recent developments in object class recognition, such as
the approaches presented by Fergus et al. [3], Helmer et al. [7], Weber [23], where the shape
is modelled in a way that is invariant to object scale and object location. By extending this
to affine invariance, we are able to detect faces under any rotation and scale, which makes it
possible to integrate face detection and pose estimation. For the pose estimation we require
the camera calibration matrix to be known.

1.3 Outline of the thesis

We start (chapter two) with describing how the estimation of the face pose is carried out
when model - image point correspondences are known. The pose consist of a three dimen-
sional rotation matrix and translation vector relating the face coordinate frame to the camera
coordinate frame. Because we use a planar model of points, this poses a minor problem as
conventional techniques from computer vision require correspondences between the image and
a three dimensional object model in order to retrieve the objects pose. A planar model of
points and their corresponding image points are related by a homography, from which we
use to estimate an initial pose. The Levenberg-Marquardt iterative optimization routine is
employed to improve the initial pose.
Chapter three deals with facial part acquisition, explaining the advantage of the Sift de-
tector for this purpose and our investigations to test its applicability to our problem. The
appearance of the Sift feature in preselected areas of the face is modelled using a mixture of
Gaussians (MoG). A Bayesian classifier is used to obtain a set of candidate features for each
part, when provided with a new image.



1.3 Outline of the thesis 3

Chapter four deals with finding the best candidate from the candidates sets for each part.
Each such matching is called a hypothesis. The best hypothesis is found by employing shape
constraints implemented by means of a spatial model. Because searching through the full
hypothesis space is intractable, heuristic search in the form of A* is applied, which greatly
reduces the number of explored hypotheses. In the experiments we put all the pieces together,
to show how faces in realistic images are detected and how the face pose is estimated when
the camera calibration matrix is known.
Finally, chapter five concludes the thesis and discusses the advantages and disadvantages
of the proposed method, together with some directions for future research to improve the
performance of the method.



4 Introduction

Figure 1.2: Architectural overview of the proposed method.



Chapter 2

3D face pose estimation from a

planar model

This chapter treats 3D face pose estimation using a planar model of points describing the
relative position of face features. The aim is to estimate a three dimensional rotation matrix R
and a translation vector t, indicating the pose of the face with respect to the camera. In short,
estimation of the pose consists of two phases. First, an initial estimate is computed from a
homography, which describes the mapping between the planar model points and image points.
The second phase consists of optimizing the initial estimate of the pose using the Levenberg-
Marquardt (LM) nonlinear optimization routine. Estimating the pose of a planar model from
a homography is well known, for example see [25]. The approach we used to optimize the
initial estimate, is (to the author’s knowledge) not reported in literature, however, using LM
to solve computer vision related problems is extensively used and often reported, such as in
[6], from which many of the ideas in this chapter stem. In this respect the described method
is not a novel approach, but merely a report of its application to the solution of the problem
we seek to solve. The method is tested on synthetic data to get an idea of the accuracy we can
expect, and on some real-world images to provide a qualitative measure on the applicability
of the method in real-life.

2.1 Relation between the model plane and its image

We start we some notation. A 2D point is denoted by x = [x, y]>. A 3D point is denoted
by X = [x, y, z]>. We use x̃ to denote the homogeneous form of x which has an additional
last element w̃: x̃ = [x̃, ỹ, w̃]>, and X̃ = [x̃, ỹ, z̃, w̃]>. The cartesian form is retrieved from its
homogeneous form by dividing through w̃ and removing the last element: x = [x̃/w̃, ỹ/w̃]>.
The homogeneous form is constructed from the cartesian form by setting w̃ = 1 as last
element: x̃ = λ[x, y, 1]>; we may chose any scale λ 6= 0 due to the fact that homogeneous
coordinates are defined up to scale.



6 3D face pose estimation from a planar model

The pinhole camera model describes the relation between a 3D point X and its projection
onto the camera image plane, x:

x =

[

x̃/w̃

ỹ/w̃

]

, x̃ =






x̃

ỹ

w̃




 = KP X̃, (2.1)

where matrix P = [R t] is composed of the rotation and translation, transforming the
position of X in world coordinate system to the camera coordinate system. Because let the
world coordinate frame coincide with the camera coordinate frame, P expresses the pose with
respect the camera. Matrix K models the pinhole camera and is called the camera (intrinsic)
calibration matrix, given by

K =






sx k x0

0 sy y0

0 0 1




 , (2.2)

in which (x0, y0) are the coordinates of the principal point (which is the intersection of the
camera’s optical axis with the image plane), sx and sy the scale factors in image x and y axes,
and k the skew factor. Throughout this chapter, we assume that K is known. We work with
a left-handed camera frame, meaning that the camera ’looks’ into the negative Z-axis.

As mentioned in the introduction, our aim is to estimate P in Eq. (2.1) using a planar

model. Without loss of generality, we align the model plane parallel with the xy-plane of the
camera coordinate system at z = 0, writing X̃n = [u, v, 0, 1] for each model point xn = [u, v]>.
Let ri denote the ith column of R, a model point x = [u, v]> then relates to an image point
x′ = [x, y]> by:

x̃′ = K [ r1 r2 t ]
︸ ︷︷ ︸

H






u

v

1




 = Hx̃, (2.3)

which follows from Eq. (2.1) due to the zero in X̃ at the third entry. Note that this equation
uses the homogeneous form of both the model and image point. The difference with Eq. (2.1)
is that P = [r1 r2 t] is now a 3× 3 matrix instead of 3× 4. The calibration matrix K is also
of size 3× 3, so the relation between the model plane and the image plane is a 3× 3 matrix,
which we denote with H. The ’output’ of Eq. (2.3) is in homogeneous form, however that we
observe cartesian coordinates: x′. Dividing by w̃ = h>

3 x̃, where h>
i denotes the ith row of H,

we obtain the cartesian coordinates:

x′ =
1

h>
3 x̃

[

h>
1 x̃

h>
2 x̃

]

, with H = [h1 h2 h3 ]> = K[r1 r2 t]. (2.4)

Note that although r3 is removed in this equation it can be found unambiguously from the
cross product of r1 and r2, due to the required orthogonality between the columns of a rotation
matrix.



2.2 Problem statement 7

2.2 Problem statement

Given we have N model - image point correspondences, we want to retrieve P using Eq. (2.4).
Because of noise we can, however, not expect that there is a pose for which this relation holds
exactly for all correspondence pairs. This noise may stem from our particular acquisition
process, such as the error introduced when obtaining the image points by hand, or from
inaccuracy of the detector we might employ to automatically obtain these points, as is done
in chapter three. The noise can also be a result of inaccuracy of our model. For example,
using the pinhole model, we observe error in the position of the image points due to lens
distortion as noise, although is a result of the lack of expressing lens distorting using the
pinhole model.

We therefore define the true pose to be the one which minimizes the distance between
the expected position given by Eq. (2.4) and observed position yn. We must also ensure
that K−1hi are valid columns of a rotation matrix, ie. they should have unit norm and their
inner product should be zero. The problem for estimating the pose using a planar model is
therefore stated by:

argmin
R,t

f(R, t), f(R, t) =
∑

n

∥
∥
∥
∥
yn −

1

h>
3 x̃n

[

h>
1 x̃n

h>
2 x̃n

]∥
∥
∥
∥

2

, (2.5)

such that i, j ∈ {1, 2} : [K−1hi]
>[K−1hj] =

{
1 if i = j

0 if i 6= j
, (2.6)

where ||.||2 denotes the squared Euclidian distance, and H = [h1 h2 h3 ]> = K[r1 r2 t].
To the best of the authors knowledge, there is no closed form solution to this problem.

Therefore, we take a different approach. First, we estimate a general 3 × 3 matrix H, that
is, we drop the constraints on the first two columns of this matrix, Eq. (2.6). A general,
nonsingular, 3 × 3 matrix H is known as a homography, so this reduces the problem to
finding a homography between the image and model points. From the homography we then
retrieve an (initial) estimate of the pose P = [R t]. Because the constraints are dropped in
estimating the initial pose, there is reason to believe that the found pose is not the optimal
solution for our problem statement. For this reason, the second step consists of optimizing
the initial estimated using the Levenberg-Marquardt (LM) optimization scheme.

The rest of this chapter is organized as follows. We start with describing how the ho-
mography between the model and image points is computed, and how the initial pose is
subsequently retrieved from the homography. In Section 2.4, we give a short review of the
LM procedure, and proceed with explaining how to the routine is applied to the optimization
of the initial pose. The accuracy of the methods (before and after optimization) is tested
experimentally and discussed in Section 2.5. We end with a conclusion in Section 2.6.

2.3 Initial estimate of the pose

As said, the initial pose is obtained by estimating a general 3×3 linear map between the point
correspondence. A non-singular, 3× 3 matrix operating on homogeneous planar coordinates,
is called a homography. The difference between a homography and H is that the first has
eight degrees of freedom (dof) and the latter only six. A 3 × 3 matrix has nine entries, but



8 3D face pose estimation from a planar model

because homogeneous coordinates are defined up to scale, the homography is also defined up
to scale, and so it has nine dof minus one for scale. H has six dof, because it is constructed
from K (which is assumed to be known and therefore has zero dof), r1, r2 and t. r1 and r2

fully specify R, which is specified by three angles, so together with the three entries of t, H
has 6 dof.

2.3.1 Computing the homography H

A homography between planar point correspondences can be computed as follows. Suppose
we have N image - model correspondences, yn = [xn, yn]> and xn = [un, vn]> respectively.
We want to satisfy the relation

yn =
1

h>
3 x̃n

[

h>
1 x̃n

h>
2 x̃n

]

(2.7)

as good as possible for each point pair. We may rewrite this equation as

[

h>
1 x̃n

h>
2 x̃n

]

−

[

xnh
>
3 x̃n

ynh
>
3 x̃n

]

= 0.

Writing H as a vector h = [h>
1 h>

2 h>
3 ]>, allows us to obtain a system of 2N linear

equations and nine unknowns, Ah = 0, with

A =












u1 v1 1 0 0 0 −u1x1 −v1x1 −x1

0 0 0 u1 v1 1 −u1y1 −v1y1 −y1

...
...

...

uN vN 1 0 0 0 −uNxN −vNxN −xN

0 0 0 uN vN 1 −uNyN −vNyN −yN












. (2.8)

We seek h which minimizes ||Ah||. The trivial solution h = 0 to the system Ah = 0 is of
course of no interest. Because H, and so h is defined up to scale, we need to minimize ||Ah||
under the constraint ||h|| = 1. The solution to this problem is well known from linear algebra
theory [2]: h is the last column of V corresponding to the smallest singular value, where
A = UDV > is the singular value decomposition of A.

2.3.2 Retrieving the pose from the homography H

Let H = [ h1 h2 h3 ] be a full (that is 8 dof) homography. In order to obtain the initial
pose, we set

r1 = λ1K
−1h1

r2 = λ2K
−1h2

r3 = r1 × r2

t = λ3K
−1h3

(2.9)

with λ1 = 1/||K−1h1||, λ2 = 1/||K−1h2|| due to the required unit-length of the columns of ma-
trix R. For λ3 we take the average between the inverted norms of r1, r2: λ3 = (λ1+λ2)/2. Due



2.4 Optimizing the initial pose 9

Figure 2.1: Image points (red) can be the result of two model positions (green).

Objective Estimate initial pose P

Input model points xn, image points yn, camera calibration matrix K.

1. Form matrix A using xn, yn (Eq. (2.8)).

2. Form H from the last column of V , where A = UDV T is the svd of A. Set
H ′ = −H.

3. Determine P and P ′ using resp. H and H ′ (Eq. (2.9)).

4. if P34 ≥ 0 return P , else return P ′.

Figure 2.2: Algorithm to estimate an initial pose P using a planar model.

to the unconstrained form of H and because of noise, the so-computed matrix Q = [r1 r2 r3]
does not in general have orthogonality between its columns, which is a required property of
a rotation matrix. The solution is to find the best rotation matrix R to approximate the
estimated matrix Q. The optimal solution is achieved by setting

R = UV T ,

where Q = UDV T is the singular value decomposition of Q. A derivation of this result can
be found in [25].
Because H is defined up to scale, −H is also a solution of (2.4). As a result we also have
two possible extrinsic matrices P and P ′. A geometric interpretation of these two solutions
is given in Fig. 2.1. To determine which of these is the correct one, we can simply examine
the value of the z-coordinate of the translation vector t. Since the face can only be seen by
the camera if it was in front of it, z should be less than zero (remember that we are looking
into the negative z-axis). Fig. 2.2 summarizes the algorithm.

2.4 Optimizing the initial pose

As mentioned, the Levenberg-Marquardt (LM) optimization procedure is used to optimize
the initial estimate of the face pose. We start with a brief discussion of LM, followed by its
application to our optimization problem.



10 3D face pose estimation from a planar model

The LM algorithm is a optimization scheme, used to find a set of optimal parameter val-
ues, represented by vector p, for a (nonlinear) function f(p) such that a desired output value
fdes is best approximated. Note that in our case fdes = 0 (we have a scalar valued function).
As a means to an end, the optimization is performed by updating an initial set of parameter
values iteratively by adding an increment to p at each step: p ← p + 4p such that the
error function ||ε||2 = ||f(p) − fdes||

2 is decreased. The increment vector 4p is computed
using an update equation. In order to explain how LM works, we first consider two other
update equations: Gauss-Newton and gradient-descent, to which the LM update equation is
closely related. A derivation of these update equations, which explains why they lead to a
reduction of the error function, is given in [6]. Let J denote a linear mapping represented by
the Jacobian matrix J = ∂f

∂p
evaluated at p, and ε = f(p) − fdes the error of the current set

of parameter values. The update equation for Gauss-Newton and gradient descent are given
by:

Gauss-Newton :
4p = −(J>J)−1J>

ε. (2.10)

The main property of the this update equation is that if the error function ||ε||2 is close
to being quadratic in p, this method will converge fast to the minimum value. Because
it is based on the assumption that f is locally linear, it can lead to an increase in the
error when this assumption is not met.

gradient-descent :
4p = −λJ>

ε. (2.11)

The negative gradient −J>
ε is the direction of the most rapid decrease of the cost

function. The strategy of minimizing ε by moving iteratively into the negative gradient
direction, is therefore known as gradient descent. The parameter λ controls the length
of the step. λ is typically decreased if the error is not reduced, and vice versa. In
this way, the method guarantees that the error is never increased. However, gradient
descent by itself is not a very good minimization strategy, typically characterized by
slow convergence due to zig-zagging.

The Levenberg-Marquardt method is essentially a Gauss-Newton method that transitions
smoothly to gradient descent when the going is tough. It uses the property of fast convergence
for Gauss-Newton, and if this fails, automatically falls back to gradient-descent. In order to
do this, it uses the following update equation:

Levenberg-Marquardt :
4p = −(J>J + λI)−1J>ε. (2.12)

If p← p+4p doesn’t lead to a reduction in the error, λ is increased by a factor of 10 and the
step is repeated, until the error is decreased. As soon as the error decreases, λ is decreased
as well by a factor of 10, and the next step done. This process is repeated until the percentile
reduction in error is less than some constant ρ.
To understand the reasoning behind this method, consider what happens for different values
of λ. When λ is very small, the method is essentially the same as Gauss-Newton. As a result,
if the error function ||ε||2 is close to being quadratic around p, this method will converge fast



2.5 Experiments 11

to the minimum value. On the other hand when λ is large, we get (J>J + λI) ≈ λI, and
so 4p ≈ −λ−1J>

ε, which is approximately the one given by the gradient-descent method.
Thus, the LM algorithm moves seamlessly between Gauss-Newton iteration, which causes
rapid convergence in the neighborhood of the solution, and a gradient descent approach,
which will guarantee a decrease in the cost function when the going is difficult. As λ becomes
larger and larger, the length of the increment step 4p decreases and eventually it will lead
to a decrease of the cost function ||ε||2.

However, no matter how fast any nonlinear optimization scheme is, is has the clear dis-
advantage that it does not guarantee to find the globally optimal solution, if it finds a better
solution at all. The solution very much depends on the initial estimate, and the LM opti-
mization routine can get stuck easily in a local optimum. To test whether the optimization
by the LM algorithm actually leads to a significant improvement in the pose estimate, exper-
iments were conducted on synthetic data to measure this behavior, which are described in
Section 2.5.

In order to apply LM to our optimization problem, we use the function as defined in
Eq. (2.5) with desired value fdes = 0, but with a different parameterization to reformulate the
constraints. Any 3D rotation matrix R can be constructed using three angles, describing the
(ordered) rotation around three different axes. This is called a Euler angles representation
of a rotation matrix. In particular, we form R by rotation of α degrees around the x-axis,
followed by β degrees around the y-axis and finally by γ degrees around the z-axis:

R(α, β, γ) =






cγ cβ −sγ cα + cγ sβ sα sγ sα + cγ sβ cα

sγ cβ cγ cα + sγ sβ sα −cγ sα + sγ sβ cα

−sβ cβ sα cβ cα




 , (2.13)

where c, s stand for cos and sin, respectively. Together with three parameters for the trans-
lation vector t, we have six parameters in total: p = [α, β, γ, tx, ty, tz]>. This means that
f : R6 →R1.

From the initial estimate of the pose, however, we get the rotation matrix R only. This
means we need to extract the angles from R, which can be done in the following way:

α = atan
R32

R33
β = asin(−R31) γ = atan

R21

R11
. (2.14)

The Jacobian of f was formed by numerical differentiation. We used a value of ρ = 0.1%.
The initial value for λ was found empirically. Fig. 2.3 summarizes the LM algorithm applied
to our problem.

2.5 Experiments

To obtain insight in the performance of the method described in the last section we performed
several experiments. First of all, we want to confirm whether the LM optimization really
improves the pose estimation. Second, we are interested in the performance with respect to
the amount of noise in the image points and with respect to the amount of points in the
model. We expect that the pose estimation is significantly better when more model points
are used, and significantly worse when the amount of noise is increased. We created synthetic
test data to measure this performance, results are in Section 2.5.1. In Section 2.5.2, we picked



12 3D face pose estimation from a planar model

Objective Optimize initial pose P , using Levenberg-Marquardt optimization

Input model points xn, image points yn, camera calibration matrix K, initial pose
P0, stop condition ρ.

1. Form initial parameter vector p = [α, β, γ, tx, ty, tz] using Eq. (2.14).

2. while ((ε− ε
′)/ε < 100ρ)

(a) compute Jacobian J at p

(b) set ε = f(p), p′ = p− (J>J + λI)−1J>
ε, ε

′ = f(p′)

(c) while (||ε′||2 > ||ε||2)

i. set λ = 10λ

ii. set p′ = p− (J>J + λI)−1J>
ε, ε

′ = f(p′)

(d) set p = p′, λ = λ/10.

3. Form t and R from p using Eq. (2.13).

Figure 2.3: Algorithm to optimize the initial pose P .

two poses and a model with 16 model points, in order to investigate how well the orientation
and translation is retrieved under different distances from the camera, and different amounts
of added noise. Finally, we experimented with real images, to get a feeling of the performance
in a real-life setting. The results of these experiments are described in Section 2.5.3.

2.5.1 Performance under six poses

Aim of this test is to investigate to what extent the LM algorithm improves the initial estimate.
At the same time we want to get some insight into what accuracy we can expect with different
amounts of noise and different numbers of model points.

We selected six poses, the orientations of which are depicted in Fig. 2.4, together with an
example of pose six with nine model points and added Gaussian noise of σ = 5 pixels in the
image coordinates. The green arrows show the viewing direction of the face, which coincides
with the normal of the model. The orientation of the faces is not intuitively expressed using
Euler angles, therefore we use the direction of the normal of the model plane to indicate the
orientation of the model. The directions for each pose, together with their accompanying
Euler angles are given in Tab. 2.1. The distance to the camera was fixed at 500 mm. We
use these particular poses because we believe they represent some of the more common poses
a face is viewed under for a system like the Icat. Note that due to similarity, the results of
the mirrored set of these poses will be the same. To obtain a realistic setting, we use the
calibration matrix estimated for the real camera, used in Section 2.5.3 to acquire images for
real-world experiments. The parameters of this camera are given in Tab. 2.1. We define the
error in the estimated orientation by the angle θ between the true normal, and the estimated
normal of the model plane. The error is averaged over 25 runs and is plotted in Fig. 2.5 and
Fig. 2.6 for the described poses.



2.5 Experiments 13

0 50 100 150 200 250 300
0

50

100

150

200

Example: pose 6, σ = 5

true image points
image points + noise

Figure 2.4: Left: the six poses used for the synthetic test. Right: an image example of a
synthetic test result, for nine model point, noise level 5. The black arrow indicates the true
normal, green the initial estimate, and blue the estimated normal after optimization.

pose direction α β γ

1 [0 0 1]> 0◦ 0◦ 0◦

2 [1 0 1]> 0◦ 45◦ 0◦

3 [2 0 1]> 0◦ 63◦ 0◦

4 [0 1 1]> −45◦ 0◦ 0◦

5 [1 1 1]> −45◦ 35.3◦ −15◦

6 [2 1 1]> −45◦ 54.7◦ −24◦

camera parameters

sx 516

sy 515

x0 183

y0 116

k 0.42

Table 2.1: The Euler angles accompanying the six different poses (left) and the camera
parameters (right).



14 3D face pose estimation from a planar model

Results and discussion

From the results we conclude that the LM algorithm significantly improves the result estab-
lished by the initial pose estimate, in particular when the amount of noise in the image points
is not that large.

The only exception is pose one, where the model plane is parallel with the image plane, ie.
the pose contains no orientation. A striking feature of this result is that at the error is actually
slightly increased by the LM algorithm at 81 model points, although not that much. At first
sight, this seems an odd result, because the algorithm can only decrease an error function, not
increase. To see why the error is increased, note that LM minimizes the Euclidian distance
between the expected image points and the measured image points, while the error depicted
in the results is the angle between the true normal and the estimated normal. As a result, LM
can minimize its error function, while the actual pose estimate is worsen in terms of angles
between the normals. Because of the small effect and incidental occurrence, we conclude that
the slightly worse result in pose one for the LM algorithm is just a contingency. Note that
pose estimation of pose one is significantly worse than the others. We were unable to pinpoint
an exact cause of this result.

Another (remarkable feature of the) result is that after about 30 points, the increase in
accuracy of the estimated orientation becomes less significant. This is particularly evident
in pose four, five and six at noise level σ = 5. For noise level σ = 10 there is not much to
conclude about the increase in accuracy with increasing number of points; the graphs show
improvement, but the line is to bumpy to make any claims at a finer level. At noise level
σ = 1 there is no significant improvement in the estimated orientation, which is due to the
fact that their is not much to improve.

2.5.2 Performance under increasing depth

The second synthetic test was performed to get some insight on the accuracy of the estimated
pose (both translation and rotation) in relation to the distance to the camera, for a model
with 16 points. We use this relative small amount of points, because we expect that not many
consistent facial points can be found. The results for pose one and pose six are shown in
Fig. 2.7. The results for the other poses are not shown, because they are approximately the
same as pose six, and so do not provide any extra insight.

Results and discussion

There are some strange hick-ups in the estimation of the translation of pose six. There is
no good explanation for those hick-ups, but the accompanying estimated orientations are not
good either. An explanation could be that of the 25 runs there were a relatively high number
of bad initial estimates, which the LM algorithm could not improve much. However, because
the estimated orientation is really bad for these depths as well, it is not very interesting to
find out what exactly causes these hick-ups, so we did not further investigate it. Note that
the estimation of the pose of the face up to about 20 degrees is still usable in practice (it
gives a good indication of the viewing direction), so this particular configuration is usable for
distance up to 80 centimeters from the camera with a fair amount of noise σ = 5.

Although the results provide useful information on reasonable boundaries for the appli-
cation of the proposed methods, a second line of thought on the results does realize that
increasing the depth is effectively the same a increasing the noise. To see this note that



2.5 Experiments 15

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 1, init. est.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 1, LM opt.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 2, init. est.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 2, LM opt.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 3, init. est.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 3, LM opt.

σ = 1
σ = 5
σ = 10

Figure 2.5: Error in the estimated orientation for pose one, two and three, for different
numbers of model points and three levels of noise. Left graphs show the error after the initial
estimate, right the estimate after optimization using the LM algorithm.



16 3D face pose estimation from a planar model

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 4, init. est.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 4, LM opt.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 5, init. est.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 5, LM opt.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 6, init. est.

σ = 1
σ = 5
σ = 10

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

# model points

er
r.

 θ

pose 6, LM opt.

σ = 1
σ = 5
σ = 10

Figure 2.6: Error in the estimated orientation for pose four, five and six, for different numbers
of model points and three levels of noise. Left graphs show the error after the initial estimate,
right the estimate after optimization using the LM algorithm



2.5 Experiments 17

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

400

450

distance to camera (mm)

tr
an

sl
at

io
n 

er
r.

 (
m

m
)

pose 1: error in estimated translation

σ = 1
σ = 5
σ = 10

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500

4000

distance to camera (mm)
tr

an
sl

at
io

n 
er

r.
 (

m
m

)

pose 6: error in estimated translation

σ = 1
σ = 5
σ = 10

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

45

50

distance to camera (mm)

er
r.

 θ

pose 1: error in estimated orientation

σ = 1
σ = 5
σ = 10

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

distance to camera (mm)

er
r.

 θ

pose 6: error in estimated orientation

σ = 1
σ = 5
σ = 10

Figure 2.7: Error in the estimate pose after optimization using the LM algorithm for a model
with 16 points under increasing depth, and different levels of noise. Top graphs show the
error in the estimated translation for pose one and pose six. Bottom graphs show the error
in estimated orientation for the same poses. Note that the scale of the y-axis differs.



18 3D face pose estimation from a planar model

the overall scale of the image model is inversely proportional to distance from the camera,
due to the perspective projection of the pinhole camera. On a smaller scale, the same level
of noise distorts the perspective information to a relative larger degree. So, increasing the
distance from the camera is effectually the same as increasing the relative noise in the image
coordinates.

2.5.3 Qualitative test: real images

To get some feeling of how the method performs on real-world images, an final experiment
was conducted with a simple model of face points and images of a face under different poses.

The model was created by measuring the relative position of six facial points directly on
the face. The resulting model is depicted in the top image of Fig. 2.8. Corresponding points
of the model in each image where marked by hand for four images of the author under differ-
ent poses, shown below the model. The camera was calibrated using the method presented in
[25], which also provides a reference to an implementation of the method by the same author.
The parameters of the camera intrinsic matrix were already given in Tab. 2.1. Fig. 2.8 shows
estimated poses of the face in each image.

Results and discussion

Although only six model points are used, the result is fairly good. As expected from the
results of the synthetic tests, the estimated orientation of the frontal face image is less good
than the estimation of the pose of the faces under more rotation. In this case, however, there
is also an obvious cause: the corners of the mouth (point one and two) are slightly higher than
normal due the smile. This flattens observed vertical scale of the image points somewhat,
and biases the estimation towards inclination in the pose.

2.6 Conclusion

We have shown how the pose, consisting of the position and orientation of the face is estimated
as using a planar model of points. In order to do so, an initial estimate of the pose is computed
from the homography relating the model and image points, which is accordingly optimized
using the Levenberg-Marquardt optimization routine. The results from the experiments show
that moderately good result can be achieved even with a small number of model points. Up
to 30 points the accuracy of the estimated pose is improved if the noise in the image points
is not to high; adding more points does not improve the result much. We showed that frontal
poses are less accurate estimated than that of a face under out of plane rotation. Tests on
real-world images show that face pose estimation is possible using a small amount of model
points. For the used camera, we therefore expect to be able to estimate the face pose up to
about 800 mm from the camera, although the accuracy this depends on the particular pose
of the face, and, of course, on the amount of noise in the image points.

Now that we have shown how to estimate the pose of the face using a planar model, we
need to acquire the facial parts representing the model parts and a method to detect them.
This is dealt with in the next chapter, where part acquisition and detection is done using the
Sift detector. Chapter four uses the result from this chapter together with the result from
the next chapter to automatically detect faces in images and to estimated the face pose.



2.6 Conclusion 19

−100 −50 0 50 100
−100

−50

0

50

100

1 2

3 4
5 6

Figure 2.8: Top image: the model plane with six points. Rest: estimated poses.



20 3D face pose estimation from a planar model



Chapter 3

Part acquisition

The question we investigate in this chapter is how to detect facial points. In the previous
chapter the points were marked manually; here we’re in pursuit of their automatic detection.
From here on we will refer to the facial points as parts. No matter how their detections takes
place, it will be rare that no false positives will be returned. Each part detector therefore
returns a set of candidates for that part, out of which we have to select the right one. The
next chapter describes how a geometric constraint in the form of a spatial part model can be
employed for this purpose. Curious readers (or hasty) can peek ahead to the next chapter.
This chapter mainly describes the our investigations to select the facial parts and how to
detect them.

3.1 Problem statement

To detect parts in images, we need to decide which type of detector is most appropriate for
our problem. Generally speaking, detectors fall into one of two categories: special purpose
detectors, learned to detect specific intensity patterns, and more general purpose detectors
which are used to find salient (interesting) features in an image. An example of the first type
is template matching, where the similarity between a part template and an image region is
measured. Typically, the image region is of the same size as the template. A simple and
often used similarity measure is normalized cross correlation [15]. Examples of this type
of matching applied to the detection facial points is found in [1], [14], where templates are
created for the eyes, nostrils and nose from the respective regions in training images. As
remarked in [1], this type of detector results in many false positives, and often true positives
are missed as well. Another drawback of this approach is that the selection of parts is based
solely on our intuition as experts of face detection. This might bias the selection process
towards parts which may be easily detected by humans, but sub optimal in combination with
in the computational models used in computers. A third drawback of template matching is
its sensitivity to object scale and rotation, and lighting conditions.

Instead of template matching, or other forms of special purpose detectors, we may use
saliency or interesting point detectors. Many computer vision tasks rely on this type of
detectors, and a lot of research is committed to the development of such detectors which are
invariant to scale and rotation. These type of detectors do not find regions for which they
are specially trained, but instead respond to regions which are in some respect interesting
(salient). The term ’interesting’ refers here to the property of the region to be (relatively)



22 Part acquisition

easily detectable by the same detector under different scale and/or orientation. The most
famous of these interesting point detectors are the Harris corner detector [5], the entropy
based detector by Kadir and Brady [9] and Lowe’s Sift detector [12]. The first detects point
at a single scale, the latter two detect point at different scales.

The rest of this chapter is devoted to the use of Sift features to acquire and detect facial
parts. The reason we have chosen Sift features for this purpose, is that the Sift detector
is, by construction, invariant to scale, in-plane rotation and to a lesser degree out-of-plane
rotation. This is a useful property, because it allows to use the same part model to detect
the facial feature under different scale and rotation. Because our aim is to estimate the face’s
pose, we must be able to detect the facial parts under different scale and rotation and using
the Sift features this is greatly simplified. We also experimented with the entropy detector
by Kadir and Brady, but it turned out to be very slow, compared to the Sift detector and
yield much worse results. Finally, the Harris detector yielded too many point detections on
the face (especially in the eye-region). As a result, selecting good facial features, consistent
across different images, was intractable to do by hand.

In order to understand how and to what extent the Sift-detector can be used for face part
acquisition and modelling, there are two main questions we need to answer. First, how many
consistent Sift-features are found on a human face? With consistency we refer here to the
presence of a feature in the same region of a face across different images of the same person
and across different persons. A high presence rate is important to ensure we have enough
detected parts per image to detect our object. Sift feature consistency for faces is investigated
in Section 3.3. Secondly, how can we find the particular face parts among all features returned
by the detector? What performance can be expected from this part detection? We consider
two detection methods: the matching method proposed in [13], discussed in Section 3.4 and
detection based on modelling the part descriptors using a mixture of Gaussians, discussed in
Section 3.5. We start with brief discussion on the workings of the Sift detector in Section 3.2.

3.2 Sift features

For an extensive treatise on Sift features dealing with all its intricacies and some applications
we refer [13]. The material covered here provides a technical outline of the Sift procedure,
sufficient to understand its application in this thesis.

The Sift (Scale Invariant Feature Transform) feature detector, developed by Lowe [13],
finds interest regions, called features or keypoints, located at peaks in the difference of
Gaussian function convolved with the image in scale space. In other words, they are lo-
cated in regions and at scales where there are large intensity gradients in all directions when
compared to neighboring scales and location. Fig. 3.1 provides a graphical interpretation of
the procedure. Aside of determining which regions of the image are interesting, there is also
the question of how to represent this region. The approach developed by Lowe is to first
blur and resample the region at the appropriate scale and then transform it into a region of
gradients. From here, the region is divided into m×m patches. Each patch is then described
as a k-bin histogram of image gradients, see Fig. 3.2. The advantage of such a representation
is that it is invariant to global brightness changes, rotation and scale, and somewhat invariant
to affine distortions.

In our experiments we use the Sift detector implemented by Z. Zivkovic at the University
of Amsterdam, which is based on original code provide by Lowe [11]. This implementation



3.2 Sift features 23

Figure 3.1: For each octave of scale space, the initial image is repeatedly convolved with
Gaussians to produce the set of scale space images shown on the left. Adjacent Gaussian
images are subtracted to produce the difference-of-Gaussian images on the right. After each
octave, the Gaussian image is down-sampled by a factor of 2, and the process repeated. Image
taken from [13].

Figure 3.2: A feature (keypoint) descriptor is created by first computing the gradient magni-
tude and orientation at each image sample point in a region around the feature location, as
shown on the left. These are weighted by a Gaussian window, indicated by the overlaid circle.
These samples are then accumulated into orientation histograms summarizing the contents
over 4×4 = 16 subregions, as shown on the right, with the length of each arrow corresponding
to the sum of the gradient magnitudes near that direction within the region. The figure on
the right shows a 2x2 array of gradient histograms using 8 bins, resulting in a 32 dimensional
descriptor. The experiments in this thesis use a 4 × 4 = 16 array represented by histograms
of 8 bins, resulting in 128 dimensional descriptors. Image taken from [13].



24 Part acquisition

Figure 3.3: Sift responses for a sample image of the pose date set (left) and the bioid data
set (right).

is restricted to k = 8 bins and 4 × 4 = 16 patches, resulting in an 128-dimensional image
descriptor. Fig. 3.3 shows the Sift response for a sample image for the pose and bioid data
set described in the next section.

3.3 Sift feature consistency on faces

Before committing ourselves to Sift features, we investigated to what extent the features de-
tected by the Sift-detector return consistent regions among faces. We recognize two categories:
(i) consistency between different persons, and (ii) consistency between different poses for the
same subject. The first category is a measure of the general applicability of using Sift features
to detect faces. The second category gives an idea of the applicability of the Sift detector for
face pose estimation. To measure the consistency of both categories, we have hand labelled
facial features in three different data sets, which are described below. Consistency is then
simply measured as the percentage of images in which the feature was present.

3.3.1 Experimental setup

For each image, we have hand-labelled one feature corresponding to a certain region of the
face, or none if there were no such feature. Examples of face regions used are the pupil, corner
of the mouth, etc. We tested on three data sets, indicated with ’yale’, ’bioid’, and ’pose’, all
of which contain only intensity images.

pose The pose data set contains 60 images of size 320 × 240, each showing the face of one
subject (the author) under different poses. The set is build from 3 takes of 20 images
each, where the face pose in each image ranges from -45 to 45 degrees ’spinal’ rotation.
Additionally in take 1, 2, 3 the face has inclination of respectively -30, 0 and 30 degrees.
The number of Sift feature is about 150 per image.

yale This is a subset of the Yale Face Database B [4]. For each of the 10 subjects in this
database pictures are taken under different lighting conditions and 8 different poses.
Poses 1, 2, 3, 4, and 5 are about 12 degrees ’spinal’ rotation with respect to pose 0,
while poses 6, 7, and 8 were about 24 degrees. For the conducted experiment we used



3.4 Detecting parts: descriptor matching 25

the images under frontal light only, and cropped the image such that it contained only
the face area. Each image (80 in total) is of size 301 × 241 with on average 150 Sift
features.

bioid The BioId Face DB (www.humanscan.de), consists of 1521 images with a resolution of
384 × 286 pixels, from which we took every fifth image. Each image in this set shows
the frontal view of a face of one out of 23 different test persons. The pictures are taken
in an loosely controlled office setting. In total this set contains 304 images. The number
of Sift-feature responses range from 100 to 600 per image.

Using the bioid data set we measure inter-person consistency of facial parts. The pose data
set is used to measure the consistency under different poses. Finally, the yale data set contains
different persons as well as different poses, so this is a measure of the both categories at once.

3.3.2 Results and Discussion

The results of the consistency experiments are found in Tab. 3.3.2. The pose data set shows
good results for different poses (same person), but it should be noted that the imaging con-
ditions for this set where highly controlled. The imaging conditions under which the images
of the bioid data set were acquired are more realistic and a significant drop in consistency for
this data set is observed. This decrease is also a result of more difference in face appearance
caused by the fact that there are different persons in the images.

Together, we believe the experiments indicate that the Sift detector provides enough
consistency on faces to be applicable to facial part detection, and therewith to face detection
and to face pose estimation. In the next section we proceed with method for detecting the
face parts among all features found by the detector in an image.

The second question we want to answer in this chapter is how we can find the right
parts among all features returned by the Sift detector. We investigated two methods to
accomplish this. The first involves the descriptor matching method as presented together with
the Sift detector in [13], described in the next section. It turned out that this method yields
unsatisfactory results on faces, and this section can be skipped without loss of continuity.
Section 3.5 presents the second approach, where the descriptor is modelled in a probabilistic
sense using a mixture of Gaussians, in which each mixture component represents a part.

3.4 Detecting parts: descriptor matching

In [13] Sift features are used to find objects in a large database of images. An object is
represented by an example image of the object segmented from the background. Features are
matched based on the Euclidian distance between feature descriptors from the image and the
database. To reduce the number of false detections, the matching between descriptors takes
actually place by measuring the ratio of Euclidian distances of the closest neighbor and second
closest neighbor to the descriptor. The feature is only matched to the closest neighbor, if the
second closest neighbor is far enough away. The rationale behind this method is that for false
matches, there will likely be a number of other false matches within similar distances due
to the high dimensionality of the descriptor space. The method rejects all matches in which
the distance ratio is greater than 0.8. This number was found empirically, by comparing
the probability density functions over the distance ratio for correct matches against incorrect



26 Part acquisition

part no. pose (%) yale (%) bioid (%) face region

1 82 19 67 right eye

2 97 91 70 right pupil

3 100 56 51 top nose bridge

4 93 43 54 left eye

5 100 96 48 left pupil

6 48 82 80 chin

7 98 41 77 forehead

8 68 90 56 left cheek

9 80 93 57 right cheek

10 72 85 83 tip of the nose

11 60 38 40 right of left eye brow

12 65 68 49 left right eye brow

13 85 58 50 center upper lip

avg 80.6 66.2 60.2

Table 3.1: Feature consistency for the three data sets, measured as the percentage of images
with a feature in the appropriate face region.

matches, see Fig. 3.4. The matching method returns either an index to the matched feature
in the scene, or a zero if the match is not available

3.4.1 Experiments

Initially we were interested in using the method described above to match parts. The reason
for this is that if this method provides reasonable results, it would be a very powerful method
to find facial parts in a new image, by using a single (for example frontal) image of a face as
model. To test the matching method, three experiments were conducted. First we repeated
the example Lowe gives in [12], (Verification test). A second experiment tests the matching
method on a planar object with different in- and out-of-plane rotation (Planar test). The last
experiments tests the matching method on faces from the Yale Face Database B (Yale Face
test).

Verification test

To verify the implementation and to see if we get the same results as Lowe, we repeated the
example Lowe gives in [12]. In this example three objects, segmented from the background
and in parallel with the image plane, are matched against a scene containing a constellation
of the same objects. In the scene, the objects occlude each other and have undergone out-of-
plane rotation. In Tab. 3.2 the matching for the three objects in a scene are depicted. The
top row shows the sift responses for each object. The second row shows the scene. If an
object feature matches to a scene feature, the scene feature is depicted with the same color
as the object feature. Note that if there were false matches, these would be seen as scene



3.4 Detecting parts: descriptor matching 27

Figure 3.4: Probabilities of the ratio distances (closest/next closest), for correct and incorrect
matches. Figure taken from [13].

features in an object color, located anywhere but on the corresponding object. In order to
obtain ground truth on the performance of the matching method, we would have needed all
[object feature, scene feature]-correspondence pairs, which were not available. However, by
visual examination of the results we can still gain useful insight. The precision for this setting
is (probably) moderately high. It is not at all perfect: for example the lowest red scene
feature is a false positive, as is the highest green one. Closer inspection reveals even more
false positives. (Note that there are also some large features, present in both the model and
the scene that are not matched, while one would expect so, because of their high resemblance.
An example is the largest feature in the white area above ’basmati’.)

Planar test

A second test was done on a planar object, under different in- and out-of-plane rotation. This
experiment was merely conducted to test wether the matching method yields approximately
the same result as Lowes example, but on our own images. This was done to test whether
Lowes example was just a (good) result for a particular situation, or applies in general. The
result is in favor of the latter situation, and is found in Appendix B, Tab. B.1. The second
reason this experiment was conducted, was to investigate the behavior of the matching method
with increasing out-of-plane rotation. As expected, the method performance degrades rapidly
with increasing out-of-plane rotation. This is not surprising, because the Sift detector itself
is not invariant to perspective distortion.

Yale Face test

A third test was conducted to investigate the behavior of the Sift detector and matching
method on faces. We were interested to see which regions of the face are returned by the Sift
detector and how the matching method behaves in this case. The yale data set described
above, was used for this purpose. For each of the ten subjects in this database, pictures



28 Part acquisition

object 1 object 2 object 3

scene

Table 3.2: Sift feature matches for images and scene. Images from [12].

are taken under different lighting conditions and eight different poses. For the conducted
experiment we used the images under frontal light only. Appendix B, Tab. B.2 shows results
for three persons under poses 1 and 2, in which the faces have undergone about 12 degrees
’spinal’ rotation relative to the frontal pose, pose 0, and poses 6 and 8, which are under 24
degrees spinal rotation. Note that in many images the pupil areas are consistently returned
as sift features, as are the cheeks and mouth corners. The matching method does find some
feature correspondences, however, this happens only when the images are very much alike.
Pose 8 hardly shows any matches. Clearly, the matching method of [13] is not robust enough
for our application.

3.4.2 Results and discussion

We confirmed that the matching methods as presented in [13] give useful results on planar
objects. However, on faces, the method does not yield usable results. We have seen that
some feature pairs, although clearly corresponding to the same part (for example the left
eye), were not matched. Another drawback of the method is that is does either provide a



3.5 Detecting parts: modelling the descriptor 29

best match, or nothing if the method believes there is no reliable match. We would prefer
a method returning candidate matches accompanied with confidence measure. The reason
for this is that we can select, for example, the best two candidates for each part in a new
image and let a spatial model, described in the next chapter, decide which of two is the right
one. The face is very symmetric in nature, so it may not be uncommon that a ’left eye’-part
matches first to a ’right-eye’-feature and secondly to the correct ’left-eye’-feature, with only
a slight decrease in probability. It is the responsibility of the spatial model to determine the
true best candidate among all others by means of geometric constraints on the parts relative
canonical locations for the object class. This is treated in the next chapter.

3.5 Detecting parts: modelling the descriptor

In the previous section we concluded that the fast matching method proposed in [13] does
not perform well enough to find facial parts. In this section we are therefore concerned
with modelling the descriptor of the features in statistical sense, by estimating a mixture of
Gaussians (MoG) of the features descriptors, to obtain a (hopefully) better detection rate,
and more control over its behavior. The components of this mixture represents the parts
and the background. Because the descriptor is invariant under image rotation and scale by
construction, each mixture components only needs to capture the difference in appearance
between different detections and not the difference in appearance due to different scale or
orientation of observation. Using the MoG, the probability of observing a descriptor af is
given by

p(af ) =
P∑

p=0

p(af |P = p) πp, (3.1)

where πp ≥ 0,
∑

p
πp = 1 are the component priors or mixture weights, and p(af |P = p) =

G(af ; Σp,µp) the Gaussians modelling the appearance. The form of a multivariate Gaussian
probability density function (pdf) is given in Appendix A. In this mixture model, component
0 represent the background, and all other component represent a part. By selecting the fea-
tures for which the posterior is maximal for a certain part, we obtain a set of candidates for
each part.

Because each descriptor is a vector in a 128 dimensional space, estimating the full covari-
ance matrix cannot be done robustly because we have far too little training data to estimate
over 8000 parameters per component. We must therefore restrict the covariance matrix to a
form with less parameters. We consider three types of restrictions: an isotropic covariance
matrix, independent variables assumption, and a probabilistic form of principal component
analysis: probabilistic pca (). We believe it makes sense to use different types of restriction
for the part components and the background component. The reason for this is that we want
the background component to express a more general probability of observing the descrip-
tor, while the part components should be more specific for the probability of the individual
parts. The isotropic covariance matrix is the most restricted form: it does not capture much
of the structure of the data. In contrast, probabilistic pca captures a subspace of the full
data space covering most of the variance in the training data (in our case we require ppca
to explain at least 95 % of the variance). The independent variables is somewhat in between



30 Part acquisition

these two forms. The next paragraphs describe the specific forms is some more detail. The
maximum likelihood estimators for each form applied to our situation and the the estimation
of component priors are found in Appendix A.

Isotropic An isotropic covariance matrix Σ has only one parameter σ:

Σ = σI. (3.2)

This is the most restricted form of the covariance matrix, because it has only one pa-
rameter. It does not capture any structure of the data, besides global scale. We included
this form of restriction because it effectually degrades the probability measure based on the
Mahanalanobis distance to a probability measure based on the Euclidian distance. Using the
Euclidian distance between to samples is the most basic form of matching.

Independent variables In this case the variation of the individual variables is captured:

Σ = diag(σ), (3.3)

where σ is a vector containing the standard deviations of the individual variables, and ‘diag‘
refers to the procedure of putting the elements of a vector on the diagonal of a matrix. Instead
of just one, this form has 128 parameters. This form can be interpreted in the same way as the
isotropic form, but with the difference that it weights each variable in the Euclidian distance
measure.

Probabilistic PCA Probabilistic principal component analysis (ppca), as proposed in [19]
restricts the covariance matrix to the form:

Σ = σI + WW>, (3.4)

where W is of size 128 × k. This form assumes that the samples for each component lay on
a k-dimensional subspace (k << 128), representing the structural difference in appearance
of the part, and deviate from this subspace according to an isotropic noise model σ2I. This
structural difference in appearance of the part is described by the so-called latent variables.
The assumption behind this model is that each appearance a is generated by

a = Wx + µ + ε, (3.5)

where the latent variables in x are assumed to be independently distributed with unit variance
and with prior p(x) = G(x; 0, I). The noise ε is assumed to be generated by an isotropic
gaussian distribution. We may view the latent variables x as describing the degrees of freedom
in appearance, and the noise as a result of the data acquisition process. The number of
parameters here is the size of W plus one for the isotropic noise. In [19] the maximum
likelihood estimators for this model are derived, which are given here in Appendix A.3. The
advantage of this form for the covariance matrix is that we retain most of the dependency
information (in our case 95 %) between the individual variables of the descriptors, while
significantly reducing the number of parameters. Tab. 3.3 gives the number of principal
components used to capture 95 % of the variance, for the data sets used in the experiments.
The difference in the number of components is explained by the fact that bioid data set



3.5 Detecting parts: modelling the descriptor 31

contains images of different persons, while the pose data set contains images of a single
subject. As a result, there is more variety in the descriptors of the bioid data set parts than
in the descriptos of the pose data set parts.

part bg 1 2 3 4 5 6 7 8 9 10 11 12 13

ppca components

pose 65 8 9 6 11 9 8 6 10 10 11 5 8 10

bioid 65 44 43 36 41 42 44 44 49 47 49 26 34 44

Table 3.3: The number of principal components explaining at least 95 % of the variance for
the bioid and pose data set.

3.5.1 Detecting the parts

Suppose we have P parts in our model. Let p(af |P = p), p = {1, .., P} denote the probability
that the descriptor af of feature f is generated by the component representing part p and
p(af |P = 0) the probability of the descriptor being generated by the background component.
The probability of the descriptor being generated by component p is computed using Bayes’
rule:

p(P = p|af ) =
p(af |P = p)πp

p(af )
. (3.6)

Each feature is now classified by selecting the part which has maximum a posteriori probability
p(P = p|af ). We do not need to compute p(af ) when we just want to select the best part
among the alternatives. It is just a normalization factor to ensure that the p(P = p|af ), p ∈
{0, .., P} sum to unity. However, we do need normalization if we want to compare the posterior
probabilities between different features. We might do this in order to select a subset of the
features classified as a certain part, to ensure that the hypothesis space does not grow too
large when we have many candidates per part. There is practical issue when computing the
posterior probabilities due to the high dimensionality of the data, which is dealt with in
Appendix A.5.

3.5.2 Experiments

We tested the detector described in the last section on the pose and bioid data set, using nine
configurations of the mixture model. The nine configuration include all possible combinations
of the three forms for the covariance matrix, employed to the background component and to
the part components. Each configuration was tested on both the bioid and pose data set using
cross validation, leaving one image out at a time to test on and estimating the parameters
using the rest.

3.5.3 Results and discussion

Performance of the classifiers is expressed through the use of precision and recall:

precision =
true positives

true+false positives
, recall =

true positives

instances of the object class
. (3.7)



32 Part acquisition

Results for the different configurations are shown in Tab. 3.4 - Tab. 3.7. The last row of
each table, indicating the average precision and recall of the part detection, is most interesting,
but note the sometimes huge difference among the individual parts as well the striking zero-
valued entries.

bg component → iso iso iso indep indep indep ppca ppca ppca

fg component → iso indep ppca iso indep ppca iso indep ppca

↓ part

bg 96 100 100 0 83 100 0 0 0

1 65 0 0 73 88 86 73 92 100

2 74 0 0 78 93 86 78 95 97

3 83 0 0 95 97 93 95 97 100

4 71 0 0 91 88 82 91 93 100

5 70 0 0 82 88 82 82 97 98

6 52 0 0 79 90 21 79 90 93

7 81 0 0 83 97 90 83 97 98

8 76 0 0 88 93 66 88 93 98

9 69 0 0 98 96 71 98 98 100

10 72 0 0 93 88 65 93 95 93

11 53 0 0 89 86 69 89 86 97

12 49 0 0 97 92 54 97 92 97

13 45 0 0 96 96 75 96 98 100

avg on parts 66 0 0 88 92 72 87 94 98

Table 3.4: Recall (%) for part detection on the pose data set.

Regarding the pose data set

The independent variables assumption yields the best result for the pose data set, when used
for both the background and the part components (see Tab. 3.4 - Tab. 3.5). Although using
ppca for the part components results in a far better precision (97%!), we observe a significant
drop in recall. Another significant result is that using the isotropic covariance matrix for
the background component, not a single correct part detection is returned when either the
independent or ppca form is used for the part components. This is a unexpected and we were
unable to find a satisfying explanation for this behavior. We conclude that our best option is
to use is the indep/indep combination with the pose data set. With a recall of 92% and an
average presence rate of 80.6% (see Sift feature consistency on the pose data set, Tab. 3.3.2),
we can expect 0.92 × 0.806 × 13 ≈ 9.6 true positives among the part candidate sets.

Regarding the bioid data set

On the bioid data set (Tab. 3.6 - Tab. 3.7) the ppca performs better. Using ppca for both the
background as well as for the part components is the best choice here, as it yields the highest
recall. However, the precision is dramatically low at 8%. Using the double isotropic configu-
ration, a slightly better precision is achieved, leading to a remarkably high recall at 41% as



3.5 Detecting parts: modelling the descriptor 33

bg component → iso iso iso indep indep indep ppca ppca ppca

fg component → iso indep ppca iso indep ppca iso indep ppca

↓ part

bg 98 92 92 0 99 98 0 0 0

1 80 0 0 59 81 98 59 26 70

2 96 0 0 88 81 98 88 29 6

3 56 0 0 58 75 100 58 75 11

4 40 0 0 3 43 100 3 5 9

5 86 0 0 33 68 100 33 20 4

6 83 0 0 2 6 100 2 4 36

7 100 0 0 100 100 98 100 100 3

8 33 0 0 5 35 93 5 13 52

9 61 0 0 22 46 97 22 11 16

10 22 0 0 2 13 97 2 1 12

11 100 0 0 24 21 100 24 13 18

12 83 0 0 5 15 91 5 7 6

13 77 0 0 14 74 95 14 8 7

avg on parts 71 0 0 32 51 97 32 24 19

Table 3.5: Precision (%) for part detection on the pose data set.

well. However, because of the average presence rate at 60.6% (see Sift feature consistency on
the bioid data set, Tab. 3.3.2), a recall of 41% results on average in 0.606 × 0.41 × 13 ≈ 3.2
true positives among the part candidates. As will be shown later, three matched parts or
less leads to a pose which perfectly fits the model part locations onto the image part loca-
tions, paralyzing the ability of the spatial model used in the next chapter to find the optimal
matching. Our only option therefore is to use the ppca form for both the background as well
as part covariance matrices, which results in 0.606× 0.71× 13 ≈ 5.5 true positives among the
part candidate sets. Note that the recall of the background class is in this case 0, meaning
that every detected feature is designated as one of the parts in the model.
The low precision on using the ppca/ppca combination on bioid data is problematic: an aver-
age precision of 8% on average indicates that we can expect about 1/0.08 = 12.5 candidates
per part per image (true+false positives = 1/precision, see Eq. (3.7)). In the next chapter,
a choice from the set of candidates for each part forms a hypothesis, assigning a particular
candidate to each part resulting in a matching between the model and the image. The issue
we face is that the number of hypotheses is exponential in the number of candidates. Al-
though we use heuristics and pruning techniques to search through the hypothesis space, the
computation time needed to find the optimal matching is 20 minutes at maximum and 145
seconds on average, due to the number of candidates for each part. A better classifier, with
at least higher precision on the same recall, would therefore be very useful. However, we leave
this issue for future research, noting that the use of color information could play a significant
role in construction such classifiers. The bioid data set contains intensities images only, so we
would need to construct a new training set for this purpose.
Finally, we note that we reduced the number of features for the bioid data set before clas-



34 Part acquisition

bg component → iso iso iso indep indep indep ppca ppca ppca

fg component → iso indep ppca iso indep ppca iso indep ppca

↓ part

bg 80 100 100 0 45 100 0 0 0

1 48 0 0 48 66 14 48 66 89

2 45 0 0 47 74 35 47 74 89

3 60 0 0 64 76 25 64 76 69

4 45 0 0 47 53 2 47 56 63

5 42 0 0 46 55 39 46 55 84

6 31 0 0 45 29 0 45 37 45

7 61 0 0 61 65 31 61 67 90

8 33 0 0 37 37 3 37 41 89

9 47 0 0 48 45 0 48 52 52

10 29 0 0 29 51 5 29 51 93

11 35 0 0 62 59 14 62 59 41

12 25 0 0 54 79 25 54 79 69

13 27 0 0 45 56 11 45 58 53

avg on parts 41 0 0 49 57 16 48 59 71

Table 3.6: Recall (%) for part detection from the bioid data set.

sification, by pruning every feature with radius smaller than three. From the Sift feature
scale distribution, depicted for the bioid data set in Fig. 3.5, it is clear that this lead to a
great reduction (in practice 30% up to 80%) of the used features and therewith the number of
candidates (remember that not one feature was classified as background using the ppca/ppca
combination).

3.6 Conclusion

We investigated whether the Sift detector, introduced by [13] is applicable for the acquisition
of facial parts, to be used in a planar model. We showed that the detector yields a usable
consistency on preselected facial features. Further, we explained that the, by construction,
insensitivity to scale and rotations, gives the Sift detector a head start as a basis to detect
faces under different scales and rotation using only one model.
We tested whether the matching method proposed in [13] is also applicable to match facial
features between images to find the corresponding facial features, by using one image as a
model. The experiment we conducted shows that this matching method does not perform
well enough when applied to facial features. Moreover, the method lacks control over the
matching process. We also explored a Bayesian detector based on modelling the feature
appearances as a mixture of Gaussians. The mixture model uses one component to represent
each part, and one component for the background. Because of the high dimensionality of
the descriptor vectors, and the relative small amount of training data, we are obliged to
use a restricted form of the covariance matrix. We recognized three forms of restrictions:
the isotropic form, the independent variables, and probabilistic principal component analysis



3.6 Conclusion 35

Figure 3.5: Sift feature scale distribution for all features in the bioid data set (top) and for
hand-marked facial features (bottom).



36 Part acquisition

bg component → iso iso iso indep indep indep ppca ppca ppca

fg component → iso indep ppca iso indep ppca iso indep ppca

↓ part

bg 99 98 98 0 100 98 0 0 0

1 5 0 0 2 3 100 2 2 2

2 41 0 0 36 8 81 36 7 2

3 5 0 0 4 2 70 4 2 15

4 3 0 0 1 1 25 1 1 5

5 8 0 0 5 3 86 5 2 1

6 1 0 0 0 2 0 0 1 17

7 8 0 0 8 5 90 8 4 1

8 2 0 0 1 2 67 1 1 1

9 2 0 0 1 2 0 1 1 2

10 6 0 0 5 2 100 5 1 1

11 50 0 0 2 1 100 2 1 44

12 32 0 0 5 1 80 5 1 3

13 6 0 0 2 1 100 2 1 4

avg on parts 13 0 0 6 3 69 6 2 8

Table 3.7: Precision (%) for part detection on the bioid data set.

(ppca) as introduced by [19]. We tested different combination of the restriction applied to
the background component and the part components. From the results we concluded that
using a least restricted form, ppca, which preserves most of the structure in the data, does
not necessarily lead to better detection performance. Indeed, on the bioid data set using both
the isotropic restriction for both the background component and the part components leads
to a far better performance than expected, although this configuration degrades the Bayesian
detector to detection based on the Euclidian distance of the descriptor in the descriptor space.
However, the recall of iso/iso combination is still too low to be usable, such that our only
option is to use the ppca/ppca combination for the bioid data set. For the pose data set we
will use the indep/indep combination because it yield the best recall, precision combination.
Now that we have shown how candidates for the facial parts are found, we need a method to
find the best combination among the set of candidates for each part, leading to the detection
of the face. This is achieved by means of applying spatial constraints through the use of a
planar model, which is the topic of the next chapter.



Chapter 4

Face detection & pose estimation

In the previous chapter we described the process of selecting and detecting parts of a face.
The output of that process is a set of candidate features for each part. In this chapter we
employ a planar spatial model to find the optimal selection of features for each part from their
respective candidate sets. Such a selection is expressed by a vector called the hypothesis. In
the experiments, we use the MoG Bayesian classifier from the previous chapter to construct
the candidates sets, but the material covered here does not depend on the particular type of
part detectors.

The face can be present in the image under different poses, however the actual pose is
unknown. By defining the spatial model with respect to a reference pose, we are able to
detect the pose and to model the location of the facial features independent of the pose of
the face in the image. The pose is defined as a linear map relating the part location means in
the reference pose to the observed features in the image. In chapter two this linear map was
a perspectivity in order to extract the 3D pose from the image. For reasons explained later,
when searching for the optimal hypothesis we weaken the pose to an affine map. This chapter
is based on work by Burl et al. presented in [1] and by Pham, presented in [14]. The use of
appearance and scale in addition to location to detect objects is discussed in Section 4.1.1.

4.1 The spatial model

We start with some notation. An image is represented by a set F of detected features.
Each feature is represented by its location: F = {x1, ...,x|F|}. The set of candidates for
part p is denoted by Cp. Each candidate c ∈ Cp, c 6= 0 is an index to a feature location
xc ∈ F . For example, suppose we have 43 detected features F = {x1, ...,x43}, then C2 =
{0, 11, 5, 2} denotes that part two has three candidate locations. The zero is used to represent
the situation where the part is not observed (for example, due to occlusion), and is member
of each candidate set. A hypothesis h is an assignment of a candidate to each part from its
respective candidate set. By construction, each entry in this vector corresponds to a part in
the model and the value at each entry is an index to a feature detected in the image. This
means that if h(p) > 0, then h(p) is an index to a feature with location xh(p). The candidate
sets Cp dictate which values are allowed at h(p). We use Cbg to denote the set of background
features. Background features are features not assigned to any part by a hypothesis. So, Cbg
contains all features in F , except those referenced in the current h. Note that while F is
static, Cbg differs for each hypothesis.



38 Face detection & pose estimation

The spatial model describes the spatial distribution of the parts in a probabilistic way:
p(h, L,F) denotes the probability of observing hypothesis h, pose L and feature locations F .
We assume the following dependence structure between h, L and F :

p(h, L,F) = p(h) p(L) p(F|h, L), (4.1)

with p(F|h, L) =
∏

p: h(p)>0

p(xh(p)|L)
∏

f∈Cbg

p(xf |f ∈ Cbg). (4.2)

Note that we assume the location of the parts and background features to be independently
distributed. However, due to the symmetric structure of the face, the position of the parts is in
fact often correlated. For example, when smiling, the left and right corner of the mouth move
simultaneously up or down. However, we do not believe that modelling this interdependence
would drastically improve the model’s performance. The model is further constructed using
the following assumptions, which are discussed in more detail below.

• The pose is defined by an affine linear map L:

L =

[

a11 a12 tx

a21 a22 ty

]

, with reference pose  Lref =

[

1 0 0

0 1 0

]

,

• The location of a part with respect to the reference pose is independently distributed
according to a Gaussian pdf:

p(xh(p)|Lref ) ∼ G(xh(p); µp, Σp),

• The location of a part observed in the image is distributed according to the same
Gaussian pdf, but with the means transformed1 by pose L:

p(xh(p)|L) ∼ G(xh(p); Lµ̃p, Σp),

• The locations of features not assigned to any part are background features and are
independently and uniformly distributed:

p(xf | f ∈ Cbg) ∼ (image area)−1,

• Each part has a prior probability wp of being present,

• The probability of each part being present or not is independent of the presence of the
other parts, so that the probability of hypothesis h is given by2

p(h) ∼ k
∏

h(p)>0

wp

∏

h(p)=0

1− wp, (4.3)

1
µ̃p = [x, y, 1]>, ie. µp augmented with a final 1, which is needed to apply the pose.

2here, k is a normalization constant. It is actually never needed, but may be computed as follows: if we
sum over all hypotheses, each part will contribute (|Cp| − 1)wp + (1 − wp) to this sum. For a model with one
part, the normalization constant would be kp = [ (|Cp| − 1)wp + (1 − wp) ]−1. For a model with P parts k is

therefore the product of all kp: k =
�

p

kp =
�

p

[ (|Cp| − 1)wp + (1 − wp) ]−1.



4.1 The spatial model 39

• The pose is uniformly distributed: p(L) = c.

The reason we use an affine transformation to model the pose when detecting the face is
that the 3D pose estimate takes on average about a second to compute. Because we have to
evaluate lots of hypotheses, even a second is prohibitively long. For this reason we approx-
imate the 3D pose with an affine pose, which also fits better into our probabilistic spatial
model. Note that we do not transform the covariance matrix. As a consequence the covari-
ance matrix describes the noise in the candidate locations encountered in the image, and not
in the reference positions, which would be preferable. The reason why we do not transform
the covariance matrix is due to the estimation of the pose, which is done by computing L for
which p(C|h, L) is at a maximum. A closed form solution for to computing this maximum
is analytically intractable if the covariance matrix is transformed by L as well. Transforming
the means only allows the computation of the pose with maximum likelihood in closed form.

Putting everything together, we obtain

p(h, L,F) ∝ O−r
P∏

p: h(p)=0

(1− wp)

P∏

p: h(p)>0

wp G(xh(p); Lµ̃p, Σp) (4.4)

where O is the image area and r = |Cbg| is the number of background features. Eq. (4.4) is
proportional to Eq. (4.1), because we left out the scalars p(L) = c and k. We may use this
proportional form of p(h, L,C), because we only need to find the maximum of this function.

Taking a closer look at this equation, we see that if the probability of the optimal position
of a part is smaller than the probability of the part not being present, that is

wp

2π|Σp|
1

2

<
(1− wp)

O
, (4.5)

the part will never get an feature assigned. In this case it is always more likely that the part
is not present, see Fig. 4.1. It does not make much sense to keep such part in the model (it
is just a constant), so we should expunge every part in the model adhering to this condition.
We did not encounter this situation in the trained models.

4.1.1 Modelling the appearance

Besides relative feature location, we may also want to take other observed aspects of the
features into account to increase the model’s flexibility. For example, although we used
appearance (in chapter 3) to create the candidate sets for each part, we may still want to
take the appearance into account when evaluating a hypothesis likelihood. A very convincing
appearance of the correct feature for a certain part can in this way make up for worse relative
location and thereby still being favored over other (incorrect) candidates with a better relative
position. We experimented with this by using

p(h, L,F) = p(h) p(L) p(A|h) p(F|h, L), (4.6)

instead of Eq. (4.1). In this equation p(A|h) denotes the probability of observing the feature
descriptors given a hypothesis, which was modelled by a mixture of Gaussian as described in
chapter three. Besides feature appearance, feature scale can also be taken into account in this
way. This is, for example, done in [3], [7] and [24]. It turned out, however, that doing this



40 Face detection & pose estimation

Figure 4.1: If the probability of the location of a part, multiplied with its prior probability
of being present (part distribution), is always smaller than the likelihood of a background
feature, multiplied by the probability of the part not being present (background distribution),
the part should be expunged from the model.

leads to a problem: due to the general high dimensionality of appearance vectors, the scale
of the resulting appearance probabilities can easily destroy the effect of the spatial model.
The reason for this is that for high dimensional data the probabilities are typically orders
of magnitude smaller than probabilities of low dimensional data. In [3] this issue is tacitly
circumvented by computing the principal components of the set of all part appearances and
using the first 10-15 components to project newly observed appearances to a lower dimen-
sional space. However, it is not clear how this number should be chosen such that modeling
appearance and location together yields better results than first selecting candidates based
on their appearance and using location to find the best matching. For this reason, we do not
take the appearance into account when applying the spatial model. The appearance is only
used to construct the candidate sets.

4.2 Estimating the pose

Given an image, we are interested in the (hypothesis, pose) combination with highest proba-
bility given the observations:

argmax
h,L

[ p(h, L|F) ] = argmax
h,L

[ p(h, L,F) ] , (4.7)

where the right hand side follows from the fact p(F) is constant for all h ∈ H, L ∈ L. Filling
in equation Eq. (4.1), we arrive at

argmax
h,L

[ p(h, L|F) ] = argmax
h

[

p(h) argmax
L

[ p(F|h, L) ]

]

. (4.8)

For a given hypothesis, the pose is therefore computed using

argmax
L

p(F|h, L) = argmax
L

∏

p: h(p)>0

G(xh(p); Lµ̃p, Σp), (4.9)



4.3 Finding the best hypothesis using A* 41

which follows from Eq. (4.4). The maximum argument of Eq. (4.9) is found by differentiating
the logarithm of the product of the Gaussians functions with respect to L and equating the
result to zero. Details on this computation are found in Appendix C.

4.3 Finding the best hypothesis using A*

To detect the face we need to find h for which Eq. (4.1) is at a maximum, which follows from
Eq. (4.8) (computing the optimal pose for every explored hypothesis). The number of values
h(p) can take is np = |Cp|. This means that the size of the hypothesis space is exponential in
the number of parts:

|H| =
∏

p

np ≥ [min
p

np]P . (4.10)

As a result the size of the hypothesis space rapidly becomes of intractable size. A 13-part
model, with 2 candidates per part, already results in a hypothesis size of nearly 313 ≈ 1, 6×106

(each part has three possible values: two candidates plus the zero). As shown the previous
chapter, we can expect about 12 candidates on average on images from the bioid data set!
Clearly, this renders exhaustive search through the hypothesis space intractable in almost all
situations. Using heuristic search we are able to significantly reduce the search space which
needs to be explored, which is described in the rest of this section. Although heuristic search
does not remove the exponential complexity of the search problem in general, it turns out to
work very well in practice.

Following ideas presented in [14], we use the A* algorithm [18] to employ heuristics in
searching for the best hypothesis. The A* algorithm finds the shortest path from a start node
to a goal node in a directed graph. This is achieved by building a set of paths incrementally,
at each stage expanding the path for which the actual cost plus an estimated cost to reach
the goal node is smallest. This latter cost is referred to as a heuristic. In our case, a path is
specified by a (partial) hypothesis h. To let A* build hypotheses incrementally, we recognize
an additional state for h(p): h(p) = −1. We now have three types of h(p):

• h(p) = −1: the part is not yet assigned to a value from candidate set Cp,

• h(p) = 0: the part is determined to be not present,

• h(p) > 0: a feature is assigned to the part,

The hypothesis space is represented as a layered and acyclic directed graph, where each
layer represents a part, as is shown in Fig. 4.2. Further, we let

z(h) = argmin
p

[ h(p) = −1 ] (4.11)

denote the entry used to fork a hypothesis into a set of new hypotheses, when it is selected
to be expanded. This means that hypotheses are build incrementally, starting with part one.



42 Face detection & pose estimation

start

��

expand

��

0 3

""F
F

F
F

F
F

F
F

F
F 4 1

parts

��

0 11 5

��

2

0 7 1

uullllllllllllllllll

0

""E
E

E
E

E
E

E
E

E 9

��

P

goal

candidates //

Figure 4.2: Search through the hypothesis space for a model with four parts, represented by
directed graph. The solid arrows show the path corresponding to hypothesis h = [3, 5, 1, 0].
The dotted lines indicate the hypotheses that were explored.

For the selection of the hypothesis to-be expanded, two cost functions are used: g() is
the actual cost of the assigned part of a hypothesis: entries 1 to [z(h) − 1]. The heuristic
function e() is a cost estimate for the hypothesis entries not yet assigned to a value, z(h)
to P . At each step, A* expands the hypothesis with smallest value for f() = g() + e() by
replacing entry z(h) with each value in Cz(h). The |Cz(h)| new hypotheses resulting from
this expansion are added to the set of current hypotheses, from which the expanded path
itself is removed, and the process is repeated. As soon as a completely assigned hypothesis is
selected for expansion, the algorithm terminates. Fig. 4.3 depicts the first four steps of the
A* algorithm for the situation in Fig. 4.2.

We use the negative logarithm of p(h, L,F) for the actual cost function g():

g(h) = −log O−b
∏

p: h(p)=0

(1− wp)
∏

p: h(p)>0

wp G(xh(p); Lµ̃p, Σp) (4.12)

where b = |Cbg| − sum[h(p) = −1] is the number background features, lessened with the
number of parts to-be explored. The heuristic cost function e() is given by

e(h) = −log
∏

p: h(p)=−1

wp

2π|Σp|
1

2

, (4.13)

The particular choice for the heuristic function is explained shortly. Although the logarithm
allows rewriting the product terms to sums, we retain this form here for notational conciseness.

A* is complete, optimal, and optimally efficient, provided that e() never overestimates (ie.
is optimistic) the actual cost to reach goal [18]. Such an e() is called an admissible heuristic.



4.4 Estimating the model parameters 43

Figure 4.3: First four steps taken by the A* algorithm for an example situation. In this case
it is assumed that f(h0) = 10.

To see why e(h) in Eq. (4.13) is admissible, note that the form follows by letting the location
of each part-to-be-explored exactly coincide with the corresponding transformed part mean,
using the pose of the assigned parts. Because a Gaussian function is maximum at the mean,
the negative logarithm of a Gaussian is minimal at the mean. As a result this is the best
possible location for a part, and so e() can never overestimate the actual cost.

A* is complete in the sense that if there exist a solution, it will always find it. Optimal
refers to the property that it finds the highest-quality solution. This is the property we really
enjoy because any path (hypothesis) leads to a solution in our case. Finally, A* is optimally
efficient, which means no better algorithm with same the knowledge performs better.

Note that the cost function g(h) is only defined for the assigned part of the hypothesis as

a whole, ie. it cannot be build from the addition of the cost of the individual steps, because
adding a part changes the estimated pose Lm (see Section 4.2), and thereby it can increase
the ’path length’ of previous steps. Although A* is often applied to topographic problems
(at least in examples), where the actual path cost often is the addition of its individual steps,
the algorithm does not requires this. For A* to work it needs only to be able to evaluate the
cost of the actual path.

Hypotheses are pruned from the current set of hypotheses when the cost f(h) is greater
than the background hypothesis h0 = 0 which consists of only zeros. Of course such hy-
potheses with cost higher than that of the background hypothesis will never be selected for
expansion. However, because there is potentially a large amount of such hypotheses, they
use a significant amount of memory and administration and are therefore better removed.
Fig. 4.4 summarizes the algorithm.

4.4 Estimating the model parameters

Using the labelled data from the pose and bioid data set, used in the last chapter, we obtain
two sets of the spatial model parameters. The procedure is outlined in Fig. 4.5. The part
priors are obtained from Tab. 3.3.2. The spatial models obtained for the data sets are depicted
in Fig. 4.6. These models are used in the experiments described below. All training data was
used to construct the spatial models. Although using the same data for training as well as



44 Face detection & pose estimation

Objective Find hypothesis hopt with maximum a posteriori probability (MAP),
using heuristic search method A*.

Input model m = {Σ1,µ1, w1, . . . , Σp,µp, wp}, candidates {C1∪C2 . . . ∪CP}, image
area O

1. initialize hypothesis space H = {−1}

2. select hi ∈ H for which f(hi) = g(hi) + e(hi) is minimal

3. if hi is not completely assigned set q = z(hi)

(a) for each c ∈ Cq

i. set h = hi, h(q) = c

ii. if f(h) < f(h0) H = H∪ h else prune h

(b) H = H/hi, goto step 2

4. else return hopt = hi

Figure 4.4: Heuristic hypothesis space search algorithm.

testing does not give a good indication of the performance of the method in general, we did
not split up the data because the aim of the experiments is to provide a proof of concept of the
presented algorithm. Note that spatial model of the pose data set has very tight parameters,
for example part ten allows almost not vertical variation in the image part location. The
reason that the spatial model of the pose data set is much more tight than the spatial model
of the bioid data set, is that it is estimated using image of a single person (the author), while
the bioid data set contains many different subjects.

4.5 Experiments

4.5.1 Detecting faces

To investigate the capability of the method to detect faces of different subjects in a realistic
setting, the method was tested on the bioid data set, described in the previous chapter. No
calibration matrix is available for this data set, so the 3D pose of the faces can not be estimated
in this experiment. Because the used part classifier (the ppca/ppca MoG bayesian classifier,
see chapter three) has a very low precision, many candidates for each part are returned.

4.5.2 Results and discussion

In Fig. 4.7 the candidates returned for two example images are depicted. As a result of the
number of candidates for each part, the search algorithm had to deal with very large hypothe-
ses spaces, containing on average 6.7 × 107 hypotheses. As a result of the heuristic search,
not more than 0.5 % of the hypothesis space needed to be explored. The time to conduct this
search took on average 145 seconds, with peaks up to 20 minutes3. The cumulative number

3The experiments were conducted on a laptop computer with a 1800 MHz Intel pentium 4 processor and
512mb ram.



4.5 Experiments 45

Objective Estimate spatial model parameters θ = {µ1, Σ1, ...,µp, Σp}

Input Labelled data (h is known for each image)

1. Model means. Choose master image, translate part positions to zero mean.
Set ∀p: h(p)>0 Σp = λI, for any λ 6= 0. This is the initial model. If the pose
is to be estimated, scale the model means to appropriate size, such that the
distances between the parts in the model correspond to the distances between
the facial features measured directly on the face.

2. Estimate the pose of each image in the data set using the parts present in both
the new image and the initial model (Section 4.2).

3. Use the pose of each image to map the part location to reference pose.

4. Compute part means of the model by averaging the transformed location for
each part.

5. Image covariance matrices. Use part means to estimate the pose of each
image.

6. Transform the means using the obtained pose for each image.

7. Compute the image covariance matrices the location of the transformed part
means and observed part locations in each image.

Figure 4.5: Procedure to estimate model parameters.

−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

100

12
345

6

7

8 9

10

11
12

13

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

80

100

1
234

5

6

7

8
9

10

11 12

13

Figure 4.6: Spatial model for the pose data set (left) and the bioid data set (right). Consult
Tab. 3.3.2 on page 26 for a legend of the parts.



46 Face detection & pose estimation

Figure 4.7: Detected candidate features for each part for two images from the bioid data set.

Category Percentage

Correct detections 30%

Detections ’close’ to correct 19%

False detections 50%

Table 4.1: Percentage of the face detections on 304 images from the bioid data set, falling in
each of the three detection categories.

of correctly returned hypothesis entries is shown in Fig. 4.8. Note that not once the fully
correct hypothesis was returned.

Because Fig. 4.8 says little about the quality of the detections, each detection was cate-
gorized into one of three classes by visual inspection: correct detections, detections ’close’ to
being correct, and false detections. The middle category is used because it is sometimes hard
to draw the line between correct and false detections. Percentages of the detection falling
into each category are given in Tab. 4.1. Examples of each category are given in Fig. 4.9 -
Fig. 4.11.

From this experiment we conclude that the method is capable of face detection in realistic
settings and can even cope with face artifacts such as glasses, beards and mustaches. However,
the computational time needed to perform a detection is prohibitively long. This a direct
consequence of the low precision of the part classifier. A better part classifier, taking for
example color information into account as well, should be able to have a much higher precision,
leading to faster detections.

4.5.3 Detecting the face and estimating the face pose

This experiment puts all the pieces together on the pose data set. The true pose of the faces
in the pose data set were estimated by hand to obtain ground truth of the performance of the
method. The poses where obtained by letting the person in the images (the author) look at
a grid of spots on the wall with a fixed distance to the camera. The pose of the face in each
image was accordingly fined-tuned through visual inspection. This fine tuning was needed



4.5 Experiments 47

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

minimum number of correctly found hypothesis entries 

%
 im

ag
es

Figure 4.8: Percentage of images from the bioid data set for which a minimum number of
hypothesis entries are correctly found. Noted that the true hypothesis entries are zero about
40% of the time (see Tab. 3.3.2, page 26).

Figure 4.9: Examples of correctly detected faces for the bioid data set.



48 Face detection & pose estimation

Figure 4.10: Examples of face detections somewhat ’close’ to being correct for the bioid data
set.

Figure 4.11: Examples of false face detections for the bioid data set.



4.5 Experiments 49

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

initial pose orientation error

er
ro

r 
af

te
r 

op
tim

iz
at

io
n

Figure 4.12: Scatter plot of the error in the estimated face poses as the angle between the
true plane normal in the image and the estimated plane normal before optimization (x-axis)
and after optimization (y-axis), for the pose data set. Dots below the solid line indicate pose
estimates that were improved by the optimization routine. The error of the estimated poses
below the dashed line are reduced more than two times; poses below the dotted line have a
more than four times lower error. Note that in three cases the ’optimized’ pose estimate is
actual much worse than the initial pose, and in ten cases the optimization produced slightly
worsened estimates.

because it turned out to be hard to use only the head to look at the spots; most of the time
a combination of head rotation and eye rotation were used.

4.5.4 Results and discussion

The process of estimating a face pose given an image and camera parameters, as described
throughout this thesis is visualized for three images in Tab. 4.2. As can be seen, the number of
candidates is much less for this data set, and as a result the time needed to detect the faces was
at maximum a few seconds. The time the LM optimization routine needs to converge is under
a second for the correctly estimated poses. Fig. 4.12 shows the error in the estimated face
poses as the angle between the true plane normal in the image and the estimated plane normal
before optimization (x-axis) and after optimization (y-axis), for all 60 images in the pose data
set. As is seen, the optimization serves its purpose, although sometimes the pose estimated
is worsened. The estimated pose for some images are depicted in Fig. 4.13 - Fig. 4.15.



50 Face detection & pose estimation

image 20 image 52 image 23

↓ Detect ↓ features ↓

↓ Classify ↓ features ↓

↓ Find best ↓ matching ↓

↓ Estimate ↓ initial pose ↓

↓ Optimize ↓ initial pose ↓

↓ ↓ ↓

pose pose pose

Table 4.2: Steps taken to estimate the face pose, visualized for images 20, 52 and 23.



4.5 Experiments 51

Figure 4.13: Correctly estimated poses (pose data set). Images 11, 13, 15 (top) and 20, 24,
52 (bottom).

Figure 4.14: Pose estimates getting close (pose data set). Image 2, 17, 26 (top) and 33, 47,
51 (bottom).



52 Face detection & pose estimation

Figure 4.15: Wrong pose estimates (pose data set). Image 10, 23, 32 (top) and 39, 50, 60
(bottom). Note that, except for image 60, the center of the face is still correctly found.

4.6 Conclusion

We showed how a spatial planar model of the part locations is used to find the best match
between model parts and features in the image. The method was tested on the bioid data set
to investigate its capabilities of detecting faces in a realistic setting. The results are promising,
but the computational time needed to detect a face is prohibitively long. The main cause of
this deficit is the low precision of the part classifier.
Estimation of the pose was tested on the pose data set. The results provide a proof of concept
on the use of a planar model to detect the face and estimate the face pose in an integrated
manner.



Chapter 5

Conclusion

We have investigated the use of a part-based planar model of Sift features to detect faces and
estimate the face pose in an integrated manner. Evidence was provided on the applicability
of this approach. However, better part classifiers are needed to allow face detections to be
fast and robust enough for the system to usable in practice. Summarized, the contribution of
this work to the area of face detection and face pose estimation consists of:

• Affirming the applicability of the Sift detector to facial part detection,

• Detecting facial parts using a mixture of Gaussians Bayesian classifier,

• Detection of faces invariant to affine transformations of the part locations, using a
spatial planar model and heuristic search through the hypothesis space,

• Computing the 3D face pose from planar point correspondences, found as a result of
the face detection process.

Considering the work presented in this thesis, two questions remain. First, the presented
routine to estimate the 3D pose of the face is unsatisfactory because it is partially based
on a optimization routine. As a result even a considerable amount of computational time
does not necessarily provide a good estimate of the pose, due to local optima or bad initial
estimates. A closed form solution to the face pose estimation problem Eq. (2.5) is therefore
highly desirable. The second question involves the integration of the appearance model with
the spatial model. As pointed out in Section 4.1.1 it remains unclear how the probabilistic
appearance and location model of the parts should be integrated to yield be better results
than first selecting candidates based on the appearance and using location find the optimal
constellation of candidates for given a spatial model.

5.1 Future research

The use of color information instead of just intensity values could play an important role
in obtaining a facial part detector with higher precision. The rationale behind this idea is
that the color of the skin in images is often only present on faces (and other human body
parts), and therefore easily distinguished from non-face structures. Future research could
also include the automatic construction of the planar model, such as is done in [23], [3], [7],
which we omitted because of lack of time. Advantages of the automatic construction of the



54 Conclusion

planar model are the use of potentially more parts and the automatic insertion and deletion
of parts when presented with new images. Thirdly, because a typical application of face pose
estimation is found in human computer interaction, the change observed in the face pose over
time will be continuous and local in nature. This suggests the use of a predictor-corrector
schema such as the celebrated Kalman filter [10] to improve the pose estimate and perhaps
guide the hypothesis search such that faster detection is accomplished.

5.2 Acknowledgements

I am most grateful to the people at IAS for the support and encouragement I received while
conducting my research project and while writing this thesis. I particular, I would like to
thank J.J. (Sjaak) Verbeek for his patience, insights and the many pleasant talks we had
about my research topic. Thanks Sjaak! Finally, I would like to show my gratitude to all
my fellow students for cheering me up and for reminding me to eat once in a while. Thanks
everyone!



Appendix A

Estimating the descriptor MoG

parameters

A multivariate Gaussian probability density function is given by:

G(x|µ, Σ) =
1

(2π)
d
2 |Σ|

1

2

e−
1

2
(x−µ)T Σ−1(x−µ). (A.1)

The rest of this section provides the maximum likelihood estimators for the prior, mean
and the different forms of restriction on the covariance matrix covariance matrix. We start
with some notation.

The set of all detected features in an image is denoted with F . The appearance of fea-
ture f ∈ F is described by its descriptor, denoted af ∈ R

128 returned by the Sift-detector
(together with the feature location xf , and scale sf which are not used here). For each part
p ∈ {1, ..., P} we let Ap denote the set of all descriptors representing that part in all images in
the training set. The set of all features in all images in the training set is denoted by A. Note
that, since each training image contains at most one feature per part, but many background
features, A0 will be several orders of magnitude greater than Ap.

The component priors πp are estimated by

πp =
|Ap|

|A|
. (A.2)

Note that the priors for the parts will be small compared to the prior of the background,
because of the abundance of background features in each image.
The means µp of the components are estimated by

µp =
1

|Ap|

∑

f∈Ap

af . (A.3)



56 Estimating the descriptor MoG parameters

A.1 Isotropic covariance matrix

The maximum likelihood estimator for the isotropic covariance matrix is given by:

Σp = sI, with s =
1

128

128∑

i=1

σp
i , (A.4)

where σp
i is the variance of the ith variable of the observation in Ap:

σp
i =

1

|Ap|

∑

f∈Ap

[af (i) − µp(i)]2 . (A.5)

A.2 Independent covariance matrix

The maximum likelihood estimator for the covariance matrix on the assumption that the
variables are independently distributed is given by:

Σp = diag(σp
1 , .., σ

p
128), (A.6)

where σp
i is the variance of the ith variable of the observation in Ap, Eq. (A.5). ’diag’ refers

to the construction of a square matrix by putting the its argument along the diagonal of the
matrix and leaving the other entries zero.

A.3 Probabilistic PCA covariance matrix

Let S denote the covariance matrix of the Ap. Tipping et al. [19] show that the maximum
likelihood estimator for W is then given by

W = Uk(Λk − σ2I)
1

2 R, (A.7)

where the k column vectors in the d× k matrix Uk are the principal eigenvectors of S (ie. the
eigenvectors with largest eigenvalues), with corresponding eigenvalues in the k × k diagonal
matrix Λk, and R is an arbitrary k×k rotation matrix. Note that we do not need R, because
it collapses to I when computing Σ in Eq. (3.4). The maximum likelihood estimator for σ is
given by

σp =
1

d− q

d∑

j=q+1

λj . (A.8)

The evaluation of Eq. (A.1) requires the inverse of Σ. Because of the high dimensionality of
the data this is an expensive operation. Because Σ = σI + WW>, the inverse can also be
computed using the identity

(σI + ΛΛ>)−1 = σ−1I − σ−2Λ(I + σ−1Λ>Λ
︸ ︷︷ ︸

k × k

)−1Λ>, (A.9)

which leads to a reduction of the computational cost, because only the inverse of a k × k
(k ≤ 128) matrix is computed instead of a matrix of size 128 × 128.



A.4 Computing an eigen-decomposition from little data 57

What value of k should we choose in Eq. (A.7)? The total variance of the data, the trace

of S, is equal to the sum of the eigenvalues, tr[S] =
∑

k

λk. In the experiments we set k at

the smallest value such that

∑

k

λk ≥ .95 tr[S]. (A.10)

In words: we require the subspace to explain at least 95% of the data variance.

A.4 Computing an eigen-decomposition from little data

Eq. (A.7) requires the eigen-decomposition of the data covariance matrix S. Suppose A (size
128 × n) contains the zero mean descriptors for some part. Then S ∝ AA>. The eigenvalue
decomposition SU = UΛ, may now equally well be calculated using the covariance matrix
S′ = A>A of the transposed data. Let U ′ and Λ′ denote the eigenvectors and eigenvalues of
S′, respectively. Now

S′U ′ = A>AU ′ = U ′Λ′ left mult. with A ⇒ AA>
︸ ︷︷ ︸

S

AU ′
︸︷︷︸

U

= AU ′
︸︷︷︸

U

Λ′
︸︷︷︸

Λ

, (A.11)

and so we may use U = AU ′. This leads to a reduction in the computational cost if |Ap| < 128.

A.5 Computing the posterior probabilities with high dimen-

sional data

An issue when computing the posterior probability

p(P = p |af ) =
p(af , P = p)

∑

p
p(af , P = p)

, (A.12)

in Section 3.5.1 for high dimensional data-vectors (af ∈ R
128), is that the numerator p(af ,P =

p) will be very small due to the high dimensionality of the data. It is not uncommon that the
magnitude of these probabilities will drop under machine precision. This results in an error
or zero-valued probabilities. If necessary, this issue can be circumvented by evaluating the
numerator for each part according to:

p(af ,P = p) ∝ exp

[

logp(af , P = p)− argmax
p

[ logp(af , P = p) ]

]

, (A.13)

which is equal p(af ,P = p) up to scalar multiplication defined by the argmax term. The
worst thing that can happen now, is that p(af ,P = p) will be 1 for one part and 0 for the
others.



58 Estimating the descriptor MoG parameters



Appendix B

Sift matching results

model α = 0◦ α = 45◦ α = 90◦

γ = 0◦

γ = 15◦

γ = 30◦

γ = 45◦

Table B.1: Sift feature responses for a planar object. Features that match to a feature in the
model are in green.



60 Sift matching results

pose 0 pose 1 pose 2 pose 6 pose 8

Table B.2: Sift feature responses for a faces in different poses from the Yale data set. Features
that match to a feature in the model are in green.



Appendix C

Estimating the affine pose

As explained in Section 4.2, to obtain the pose for a given hypothesis, we compute

Lm = argmax
L

∏

p:h(p)>0

G(xh(p); Lµ̃p, Σp)

= argmax
L

∑

p:h(p)>0

log G(xh(p); Lµ̃p, Σp)

= argmax
L

− 1
2

∑

p:h(p)>0

(xp − Lµ̃p)>Σ−1
p (xp − Lµ̃p).

(C.1)

Maximizing a negative quantity is the same as minimizing the positive form, which we denote
here with Z:

Z =
1

2

∑

p

(xp − Lµ̃p)>Σ−1
p (xp − Lµ̃p), (C.2)

where p is shorthand for p with h(p) > 0. In order to find the maximum argument, we
differentiate Z with respect to L and equate the result to zero. The derivative of Z with
respect to L is given by

∂Z

∂L
=

∑

p

[CpLDp −Bp] , (C.3)

where Cp = Σ−1
p , Dp = µ̃pµ̃

>
p , and Bp = Σ−1

p xpµ̃
>
p . (C.4)

Equating to zero results in

∑

p

CpLDp = B with B =
∑

p

Bp, (C.5)

which we have to solve for L. Eq. (C.5) can be rewritten as

∀ij Bij =
∑

k,l

Lkl

∑

p

Cp
ikD

p
lj, (C.6)

which can again be rewritten as:



62 Estimating the affine pose












e11
11 . . . e11

13 . . . e11
23

...
...

...

e13
11 . . . e13

13 . . . e13
23

...
...

...

e23
11 . . . e23

13 . . . e23
23












︸ ︷︷ ︸

E














a11

a12

tx

a21

a22

ty














︸ ︷︷ ︸

l

=














B11

B12

B13

B21

B22

B23














︸ ︷︷ ︸

b

where eij
kl =

∑

p

Cp
ikD

p
lj (C.7)

There no reason (in general) to assume that E will be rank-deficient, so the solution to this
set of equations is l = E−1b. In case E is singular we may use the pseudo-inverse, however
in our experiments this was never necessary.



Bibliography

[1] M. Burl and P. Perona. Recognition of planar object classes. In Proceedings of the

International Conference on Computer Vision and Pattern Recognition, pages 223–230,
1996.

[2] J.W. Demmel. Numerical linear algebra. SIAM, first edition, 1997.

[3] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-
invariant learning. In Proceedings of the International Conference on Computer Vision

and Pattern Recognition, volume 2, page 264, June 2003.

[4] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman. From few to many: Illumination
cone models for face recognition under variable lighting and pose. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 23(6):643–660, 2001.

[5] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of

The Fourth Alvey Vision Conference, Manchester, pages 147–151, 1988.

[6] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2004.

[7] S. Helmer. Object recognition with many local features. Master’s thesis, University of
British Columbia (Department of Computer Science), October 2004.

[8] Q. Ji and R. Hu. 3d face pose estimation and tracking from a monocular camera.
Proceedings of the International Conference on Pattern Recognition, pages 400–403,
2004.

[9] T. Kadir and M. Brady. Scale, saliency and image description. International Journal of

Computer Vision, 45(2):83–105, 2001.

[10] R.E. Kalman. A new approach to linear filtering and prediction problems. Transactions

of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[11] D.G. Lowe. Demo software: Sift keypoint detector.

[12] D.G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the

IEEE International Conference on Computer Vision, pages 1150–1157, 1999.

[13] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.



64 BIBLIOGRAPHY

[14] T.V. Pham. Learning Spatial Relations for Object Recognition. PhD thesis, University
of Amsterdam, 2005.

[15] W. K. Pratt. Digital image processing. Wiley, 1991.

[16] Philips Research Press Release. Philips presents intuitive icat concept for the home,
2004.

[17] H.A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–38, 1998.

[18] S. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice Hall, first
edition, 1995.

[19] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analysers.
Neural Computation, 11(2):443–482, 1999.

[20] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience,
3:71–86, 1991.

[21] P. Viola and M. Jones. Robust real-time object detection. Proceedings of the Interna-

tional Conference on Computer Vision and Pattern Recognition, 2002.

[22] P. Viola and M. Jones. Fast multi-view face detection. Proceedings of the International

Conference on Computer Vision and Pattern Recognition, 2003.

[23] M. Weber. Unsupervised Learning of Models for Object Recognition. PhD thesis, Cali-
fornia Institute of Technology, 2000.

[24] M. Weber, W. Einhuser, M. Welling, and P. Perona. Viewpoint-invariant learning and
detection of human heads. In FG ’00: Proceedings of the Fourth IEEE International

Conference on Automatic Face and Gesture Recognition 2000, page 20. IEEE Computer
Society, 2000.

[25] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(11):1330–1334, 2000.


