
Face Detection On The INCA+

General Information
This report is a master’s thesis concluding the study Computer Science. The re-
search for this thesis was conducted at Philips Research Laboratories Eindhoven,
Digital Design and Test Group.

Title Face Detection on the INCA+. (Master’s Thesis)
Author Martijn Reuvers
E-mail mreuvers@science.uva.nl
College Card Number 9732128
Study Computer Science
Specialization Intelligent Autonomous Systems and Intelligent Sen-

sory Information Systems
Supervisors Dr. Ir. Ben Kröse and Dr. Ir. Richard Kleihorst

University of Amsterdam
Faculty of Science

Abstract
Embedded systems such as mobile phones, handheld computer systems, robots etc.,
are becoming increasingly more important in our daily lives. There are countless
examples of embedded systems on which it is feasible to have a robust face detector.
For example to increase the interaction between a human and a robot, a first step
for the robot could be to detect the face of the human it interacts with. However
the majority of the available face detection techniques are designed to operate on
high performance personal computer systems and are therefore usually not suited
for embedded systems.

The primary objective of our research was to find and implement a robust face
detection technique, which is able to run at a reasonable speed, on an embedded
system called the INCA+. We implemented two of the most promising face detec-
tion techniques on the INCA+: a skin color based face detector and the Viola and
Jones face detector. We used a face detection experiment to determine which of
these two techniques performed best. The experiment showed that the Viola and
Jones detector performed best.

Next we wanted to adapt the Viola and Jones detector so that it could run on the
low-level SIMD processor which is part of the INCA+. To increase the performance
of the Viola and Jones detector, we propose two improvements of the algorithm.
As a general improvement of the Viola and Jones algorithm, the usage of multiple
threshold weak classifiers is proposed. A second improvement considers the usage
of weak classifiers containing complex (Gabor) filters, instead of the simple Haar-
like filters used in the original algorithm. Computing these complex filters would
normally be computationally too expensive. We will demonstrate that when these
complex filters are separable they can be computed rapidly on an SIMD processor.

Keywords: Face Detection, Skin Color Based Face Detection,
Viola and Jones Face Detector, SIMD Processor,
Separable Filters, Gabor Filters, Multiple Threshold
Weak Classifiers.

mailto:mreuvers@science.uva.nl

Contents

1 Introduction 1
1.1 Face Detection On A Computer 1

1.1.1 Face Detection On Embedded Systems 2
1.2 Problem Definition And Objectives 3

1.2.1 Research Objectives 3
1.3 Thesis Overview . 4

2 Architecture Of The INCA+ 5
2.1 Introduction To SIMD . 6

2.1.1 Memory Models . 6
2.2 The Xetal Architecture . 8
2.3 The TriMedia Processor . 9
2.4 Architecture Discussion . 10

3 Face Detection: A Literature Survey 11
3.1 Skin Color Based . 12

3.1.1 Discussion . 13
3.2 Distribution-Based . 14

3.2.1 Bootstrapping . 15
3.2.2 Results . 16

3.3 Support Vector Machines . 16
3.3.1 Results . 17

3.4 Neural Networks . 18
3.4.1 Results . 19

3.5 Viola And Jones Face Detector 19
3.5.1 Filters . 20
3.5.2 Integral Image . 20
3.5.3 Filter Computation . 24
3.5.4 Image Normalization 25
3.5.5 Filter Selection Using AdaBoost 25
3.5.6 The Attentional Cascade 26
3.5.7 Speeding Up The Detector 29
3.5.8 Grouping . 29

v

vi CONTENTS

3.5.9 Results . 29
3.5.10 Related Work . 30

3.6 Discussion Of Face Detection Techniques 32

4 Face Detection Experiments 33
4.1 Photoshooting Experiment 33
4.2 Detection Validation Model 34

4.2.1 Determining The Validation Regions 36
4.3 Skin Color Based Face Detection Experiment 37

4.3.1 Results . 39
4.4 Viola And Jones Face Detection Experiment 40

4.4.1 Results . 41
4.5 Discussion . 41

5 Viola And Jones Detector On SIMD 43
5.1 Sliding Windows . 44
5.2 Integral Image On SIMD . 45
5.3 Filter Computation Using Separable Filters 46

5.3.1 Introduction To Separable Filters 47
5.3.2 Separable Filters On SIMD 47
5.3.3 Separable Viola And Jones Filters 49
5.3.4 Cumulative Row Sum 50

5.4 Image Normalization On SIMD 51
5.5 Detection At Multiple Scales On SIMD 53
5.6 Attentional Cascade On SIMD 54
5.7 Discussion . 54

6 Weak Classifier Improvements 55
6.1 Multiple Threshold Weak Classifiers 55

6.1.1 Experiments And Results 60
6.1.2 Discussion . 65

6.2 The Effect Of More Complex Filters 66
6.2.1 Extended Viola And Jones Filters 67
6.2.2 Gabor Filters . 67
6.2.3 Experiments . 71
6.2.4 Results . 72
6.2.5 Discussion . 75

7 Conclusions 77
7.1 Future Work . 78

Bibliography 79

Acknowledgments 85

CONTENTS vii

A V-J On SIMD: A Performance Evaluation 87
A.1 Required Number Of Instructions 87

A.1.1 Model Discussion . 88
A.2 Required Memory . 89

B Programming Details 91
B.1 Programming Xetal . 91

B.1.1 Xetal Programming Examples 92
B.2 Programming TriMedia . 99

List of Figures

2.1 The INCA+ . 5
2.2 Example of the increment operation on SIMD 6
2.3 Shift example . 7
2.4 Detailed overview of the Xetal processor 8
2.5 A VLIW instruction . 9

3.1 A typical skin color based face detection approach 13
3.2 The preprocessing step developed by Sung and Poggio 15
3.3 The distribution based face model as proposed by Sung and

Poggio . 16
3.4 Separating hyperplane in the SVM 17
3.5 The system of Rowley et. al. 19
3.6 The five Haar like filters used by Viola and Jones 21
3.7 The integral image value . 21
3.8 Calculation of the pixelsum using the integral image 23
3.9 Computing the filter result Hh edge 24
3.10 Number of lookups per filter type 25
3.11 Schematic overview of the attentional cascade 28
3.12 Grouping the multiple detections into a single detection . . . 30

4.1 Photo shooting experiment. 34
4.2 The ground truth and our detection validation model. 35
4.3 Our facial model. 36
4.4 Our skin color based face detector with the combined seg-

mentation methods. 38
4.5 Detection rate of the skin based face detector using different

lighting conditions. 39
4.6 Skin segmentation examples under different lighting conditions. 40
4.7 Detection rate of the Viola and Jones face detector using dif-

ferent lighting conditions. 42

5.1 Sliding window on SIMD. 45
5.2 Applying a vertical filter on an image using SIMD. 49
5.3 Viola and Jones filters separated into an x- and y-component 50

ix

x LIST OF FIGURES

5.4 Computing Hy1, Hy2 and Hy3. 52

6.1 The effect of parity pj . 56
6.2 The errors p(error|ωp) and p(error|ωn). 57
6.3 The single threshold dilemma. 58
6.4 Expanding the positive ranges to reduce the number of thresh-

olds . 59
6.5 The total error p(error) of the multiple threshold weak classifier. 60
6.6 Detection rate and false positive rate on test data using single

and multiple threshold weak classifiers. 63
6.7 Detection rate and false positive rate on training data using

single and multiple threshold weak classifiers. 64
6.8 The AdaBoost error εt during training using single and mul-

tiple threshold weak classifiers. 65
6.9 The averaged ROC curves of the strong classifiers using single

and multiple threshold weak classifiers 66
6.10 The extended Viola and Jones set used in our experiment. . . 67
6.11 A representation of even an odd 2-D Gabor filters. 68
6.12 The horizontal and vertical 2-D Gabor filters. 70
6.13 2-D Combination Gabor Filters. 71
6.14 Detection rate and false positive rate on test data using weak

classifiers with different filters sets. 72
6.15 Detection rate and false positive rate on training data using

weak classifiers with different filters sets. 73
6.16 The AdaBoost error εt during training using single and mul-

tiple threshold weak classifiers. 74
6.17 The averaged ROC curves of the strong classifiers using weak

classifiers with different filters. 75

B.1 Example of the PASSC and PASSCR operations 93
B.2 Example of a simple binary threshold 94
B.3 Example of a 5x1 mean filter 95
B.4 Example of the cumulative row sum 96
B.5 Example of the row shift . 98
B.6 Example of the cumulative column sum 99

List of Tables

3.1 Performance of the SVM face detector versus the face detector
of Sung and Poggio . 18

3.2 The adapted Discrete AdaBoost algorithm 27

4.1 Overall detection rate on the test database using the skin
based face detector with different segmentation methods. . . 39

4.2 Overall detection rate on the test database using the Viola
and Jones face detector with different cascades. 41

6.1 Placing the multiple thresholds 58
6.2 Average performance of the multiple threshold weak classifier

experiments using different T settings. 61

A.1 Viola and Jones detector on SIMD: maximum required in-
structions per line for filter computation, using 12 different
configurations . 88

A.2 Abbreviations used in Table A.1 89

B.1 Xetal LPA Instruction Set . 92

xi

Chapter 1

Introduction

Face detection is the ability to detect and localize faces within an image
or scene. Evolved through millions of years, humans can perform this task
effortlessly. The human skill to detect faces in an image or scene is very
robust despite various lighting conditions, scene conditions, facial occlusions
or different facial features (e.g. beard, mustache, glasses etc.). Humans
practically never fail in detecting faces in a scene or image.

Face detection should not be confused with face recognition, which is
the ability to recognize a face given a facial image. Face detection can
therefore be seen as a necessary first step in a face recognition system: first
faces are detected and localized. Next the face recognition system tries to
recognize the detected faces. Biological evidence indicates that this two
step approach is also present in the human brain [42, 30]. People who suffer
from prosopagnosia, a face recognition impairment, are not able to recognize
otherwise familiar faces [10]. However they are able to perform the face
detection task (i.e. they are able to detect and localize faces in images or
sceneries). This further illustrates the importance of face detection.

1.1 Face Detection On A Computer

The ability to detect faces in a scene is critical for humans in their everyday
activities. Consequently, automating this task would be useful in many ap-
plication areas such as intelligent human-computer interfaces, content-based
image retrieval, security, surveillance, gaze-based control, video conferenc-
ing, speech recognition assistance, video compression as well as many other
areas. However it was not until recently that face detection gained a strong
popularity among the computer vision community, simply because the pro-
cessing power of early processors was not sufficient to perform such a difficult
task.

1

2 CHAPTER 1. INTRODUCTION

Some of the factors that make face detection such a difficult task are [50]:

• Face orientation. A face can appear in many different poses. For
instance the face can appear in a frontal or a profile (i.e. sideways)
position. Furthermore a face can be rotated in plane (e.g. it appears
under an angle of 45◦). Therefore a face appears in many different
shapes in an image.

• Face size. The size of the human face can vary a lot. Not only
do different persons have different sized faces, also faces closer to the
camera appear larger than faces that are far away from the camera.

• Different facial expression. The appearance of a person who is
laughing is totally different than the appearance of a person who is
angry. Therefore facial expressions directly affect the appearance of
the face in the image.

• Different facial features. Some people wear glasses, some have a
beard or a mustache, others have a scar. These type of features are
called facial features. There are countless examples of facial features
and they all vary in shape, size and color.

• Occlusion. Faces in images may be partially occluded. For instance
a person standing in front of another or an object that is placed in
front of the face. Therefore only part of the facial image is present in
the image.

• Lighting conditions. Faces appear totally different when different
lighting conditions are used. For instance when side lighting is used,
a part of the face is very bright while the other part is very dark.

• Scene conditions. The scene in which the face is placed ranges from
a simple uniform background to high detailed complex backgrounds.
In the latter case it obviously is more difficult to detect a face.

In the past several years, many face detection techniques have been proposed
throughout the literature that solve many of the above problems. However
there is still no single face detection technique available that fully solves all
problems.

1.1.1 Face Detection On Embedded Systems

Embedded systems such as mobile phones, handheld computer systems,
robots, smart vacuum cleaners, autonomous surveillance video systems etc.,
are becoming increasingly more important in our daily lives. There are
countless examples of embedded systems on which it is feasible to have a

1.2. PROBLEM DEFINITION AND OBJECTIVES 3

robust face detector. For example to increase the interaction between a hu-
man and a robot, a first step for the robot could be to detect the face of
the human it interacts with. This could enable a robot to look at a person
when the person communicates with it. Another example of face detection
in an embedded environment could be video conferencing via the (mobile)
telephone. Instead of sending the complete image including the background,
only the region containing the face is send over the network, saving band-
width. As the demand for embedded systems will grow, so will the demand
for embedded face detection systems.

1.2 Problem Definition And Objectives

The majority of the available face detection techniques are designed to op-
erate on high performance personal computer systems. Since embedded
systems often require a low-cost processor (otherwise the device would be
too expensive) that has a low-power consumption (due to battery constraints
or to prevent overheating), the performance of these processors is usually
much lower than the performance of processors in personal computers sys-
tems. Therefore many of the face detection techniques that run at high
speeds on personal computers are not suited to run on an embedded sys-
tem. Although some attempts have been made to implement a face detector
on an embedded system [43, 26], these systems often utilize hardware specif-
ically designed for the face detection task, making it harder to adapt them
for the detection of other objects.

1.2.1 Research Objectives

The primary objective of our research was to find and implement a robust
face detection technique, which is able to run at a reasonable speed, on an
embedded system called the INCA+. The INCA+ is an intelligent camera
equipped with two processors: a high-level processor called “TriMedia” and
a low-level parallel processor called “Xetal”. The TriMedia processor is able
to execute programs that are designed for personal computers. However
the performance of the TriMedia is much lower than the average processor
equipped in nowadays personal computer systems. The second processor is
a low-cost, low-power consuming parallel processor which could easily be
used in other embedded systems. More information on the INCA+ and its
processors is presented in Chapter 2.

The second objective of our research was to investigate the possibility to
adapt the chosen face detection technique to enable it to run on the Xetal
processor. If we prove it to be possible to implement a robust face detector,
or at least a significant part of it, on the Xetal processor, it could be a first
step in creating a robust low-cost, low-power consuming face detector which
can be used in many embedded systems. Furthermore an implementation of

4 CHAPTER 1. INTRODUCTION

the face detector on the low-level Xetal also reliefs the high-level TriMedia
from doing the computationally expensive face detection task. This enables
the TriMedia processor to spend most of its processing time on other tasks
(e.g. face recognition).

Finally our third objective was to try to improve the chosen face detec-
tion technique in terms of performance and speed.

1.3 Thesis Overview

In Chapter 2 we will present the architecture of the INCA+ in more detail.
Subsequently, a modest literature survey is presented in Chapter 3, which
outlines several face detection techniques. Based on this survey we choose
two of the most promising face detection techniques that suit best on the
INCA+. Chapter 4 describes an experiment which we used to select the
best of the two face detection techniques. In Chapter 5 we discuss the
possibility to adapt the chosen face detection technique enabling it to run
on Xetal. Chapter 6 will present some possible improvements on the chosen
face detector. Finally, Chapter 7 concludes this thesis with a summary of
the work and the direction of future research and improvements.

Chapter 2

Architecture Of The INCA+

As already mentioned in the introduction, the face detector has to run on a
platform called the INCA+. The INCA+ is an intelligent camera produced
by Philips CFT and is shown in Figure 2.1(a). This camera houses a CMOS
sensor, a parallel processor called “Xetal” for low level pixel operations, a
DSP called “TriMedia” for the high level programs and some communication
devices to communicate with for instance a PC as depicted in Figure 2.1(b).
The next sections discuss the two major components of the INCA+: Xetal
and TriMedia. First a brief introduction on SIMD architectures is presented
in order to better understand the Xetal architecture.

(a) Outside

CMOS
Sensor Xetal TriMedia

SDRAM Flash
Memory

FireWire
I/O

V
G

A
 O

utput

(b) Inside

Figure 2.1: The INCA+

5

6 CHAPTER 2. ARCHITECTURE OF THE INCA+

2.1 Introduction To SIMD

Xetal is a parallel chip working in SIMD mode. SIMD stands for Single
Instruction, Multiple Data. An SIMD processor contains many processing
elements (PEs) combined into a Linear Processor Array (LPA). Each PE
performs the same operation only on different data. A typical PE usually
contains an arithmetic unit (AU) and a memory unit (MU). The program
flow is controlled by the Global Control Processor (GCP) which controls the
program counter and passes the instructions to every PE in the LPA. To
illustrate the working of an SIMD processor in Figure 2.2 an example of a
single increment (INCR) instruction on SIMD is shown.

LPA
PE 1

GCP INCR

5

PE 2

8

PE 3

1

PE 4

4

PE 1

6

PE 2

9

PE 3

2

PE 4

5

Figure 2.2: Example of the increment operation on SIMD. There are four
PEs in the LPA, each operating on its own memory element (the rectangles
within the PE). The GCP passes one INCR instruction to the four PEs
and the contents of all four memory elements are incremented in a single
instruction. On a sequential processor this would require four instructions,
since each element would have to be incremented separately.

2.1.1 Memory Models

There are roughly two memory models for an SIMD processor [5]: a dis-
tributed and a shared memory model. In case of an SIMD processor using a
distributed memory model each PE is only allowed to use its own memory.
If a PE needs the information contained in another PE, it has to put in a
request to the GCP and the GCP manages the transferring of information.
The advantage of this memory model is the ease of adding more memory
and PEs to the processor. The disadvantage of the distributed model can
be found in the time wasted by the GCP managing all memory exchanges.

In case of a shared memory model each PE shares its memory with
other PEs. The memory elements of each PE are connected through a
network or a switching unit. This reliefs the GCP from doing costly memory
exchanges. The disadvantage of this model is inherited in the difficulty of

2.1. INTRODUCTION TO SIMD 7

adding memory. In this thesis only shared memory models are considered.
The shared memory model can further be subdivided into fully and limited
connected memory models1:

• In case of a fully connected shared memory model, each PE is con-
nected to every other PE. The advantage of fully connected models is
that each PE can read directly from every other PE. The disadvantage
is the fact that the number of wires required to make all connections
grows exponentially with the number of PEs. For this reason fully
connected models are hardly ever used when there is a large number
of PEs in the LPA.

• In case of a limited connected shared memory model, each PE is con-
nected to n other PEs. The advantage of this model is that only a
limited number of wires is needed per PE for the connections. The
disadvantage of limited connected models is that each PE can only
read directly from its n connected PEs. Shifting is used to reach other
PEs as shown in Figure 2.3. A problem with shifting is that the num-
ber of shifts increases linearly with the distance between the source and
destination PE. Fetching values from far away PEs therefore consumes
a lot of instructions.

5 92 47

4 57 2-

Shift right

Figure 2.3: Shift example. In this figure five PEs are drawn and each PE
is connected only to its left and right neighbor. Suppose that the center PE
wants to read the value 7 of the leftmost PE. But the center PE can only
read the value 2 and 5 from its direct neighbors. In order to reach value 7
each PE reads and stores the value from its left neighbor, effectively shifting
the whole row to the right. Now the center PE can read value 7. Note that
in a fully connected memory model value 7 could be fetched immediately.

1 Other interconnection topologies such as rings, stars, trees and hypercubes are also
possible but they are beyond the scope of this thesis.

8 CHAPTER 2. ARCHITECTURE OF THE INCA+

2.2 The Xetal Architecture

Xetal’s LPA contains 320 PEs, each with its own AU and MU. The AU
contains an accumulator, an adder and a multiplier with which comparison,
addition, subtraction, data weighing and multiply-accumulate can be per-
formed [4, 20]. The PEs also incorporate a flag that is used for conditional
pass-instructions. Xetal uses the limited connected shared memory model
as described in the previous section. In Figure 2.4 a detailed overview of

0 1

AU

PE 1

R/W

MU

AU

PE 2

R/W

MU
R

AU

PE 320

R/W

MU
R

3 Seq.
Output LMs

16 Line
Memories

RR R

GCP

PM

Instruction Bus

SP

Input Seq. Input LM

O
utput

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

Figure 2.4: Detailed overview of the Xetal processor

Xetal is presented. As shown the AU operates on two memory columns be-
cause the image is 640 pixels in width and there are 320 processing elements
(PEs). Each memory element is 10 bits in size. A single frame contains 480
lines and the AU can execute a maximum of 1560 instructions per PE per
line. Each AU is also connected to the MU of its direct neighbors, making
it possible to read from them. Since there is no left neighbor of PE 1 and
no right neighbor of PE 320, reading from that neighbor results in reading
from their own MU.

The image or video input data is a VGA (640×480 pixels) size frame with
up to 10-bit digitized signals at a maximum rate of 30 frames/second. This
data is read per line into the sequential input line memory. The raw data

2.3. THE TRIMEDIA PROCESSOR 9

originating from a sensor, can then be converted to any popular format (e.g.
RGB or YCbCr) using interpolation and some line memories for temporary
storage. The converted format is sent out to the serial processor via three
sequential output line memories. The serial processor (SP) reads out the
three sequential output line memories and monitors the statistics (minimum
value, maximum value and average value) of the image data, which can be
read by the GCP. The data is then sent off-chip using three ports, each
10-bit wide. The Program Memory (PM) contains the actual program code.
The GCP reads from the PM and sends the instructions to each PE via the
Instruction Bus. Details on how to program Xetal as well as a number of
programming examples can be found in Section B.1.

2.3 The TriMedia Processor

The second processor in the INCA+ is the TriMedia 1300 32-bit processor
running at 133 MHz. This processor uses a Very Long Instruction Word
(VLIW) architecture which means that every instruction can execute up to
five operations in parallel in a single cycle, as shown in Figure 2.5. Each
operation can again contain multiple arithmetic operations, for example the
ifir(a,b) operation contains a total of three arithmetic operations: two
multiplications and one addition (aHI × bHI + aLO × bLO) [3]. However
the performance of the operation parallelism is entirely dependent on the
performance of the compiler. In the best case five operations can run in
parallel. But in the worst case no operations run in parallel and only one
operation is executed per instruction.

Operation 1 Operation 2 Operation 3 Operation 4 Operation 5

Instruction

Cycle n

Figure 2.5: A VLIW instruction

Furthermore, the TriMedia 1300 contains an image coprocessor, which
can be used for image processing tasks (e.g. image scaling), and a floating
point coprocessor (FPU) which reliefs the processor from doing costly float-

10 CHAPTER 2. ARCHITECTURE OF THE INCA+

ing point operations. Details on how to program TriMedia can be found in
Section B.2.

2.4 Architecture Discussion

This chapter showed that Xetal is suited for doing low-level operations.
Algorithms that are not complex of nature but do require a lot of processing
time suit best on Xetal. Xetal’s architecture is simple and it has a low power
consumption, allowing it to run at a relatively high performance as compared
to other parallel architectures (e.g. MIMD, which requires a lot more power
to achieve the same performance). Also a low power consumption lowers the
risk of overheating, which is especially useful in an embedded architecture.

The TriMedia on the other hand is more suited for doing more complex
higher level algorithms. Its architecture is designed to work with large and
complex datastructures and has a more extended instruction set as compared
to Xetal.

The ideal setup for any application on the INCA+ would be to (pre)
process as much as possible on Xetal. Further (post) processing can then
be done by the TriMedia. For instance the ideal face detection application
would have a large part running on Xetal. This reliefs the TriMedia from
doing computationally expensive low level operations, enabling it to spend
more time on more sophisticated applications (i.e. face recognition using a
database).

In the following chapter we will discuss various face detection techniques
presented throughout the literature. We will determine which of these tech-
niques could be implemented on the INCA+ architecture.

Chapter 3

Face Detection: A Literature
Survey

We can roughly group the existing face detection techniques into two cat-
egories: techniques that are feature-based and techniques that make use of
sliding windows.

Feature-based techniques follow a bottom-up approach, first (low level)
features are extracted from an input image (i.e. image segmentation). Sec-
ond a high level knowledge based system analyses the features and deter-
mines whether the features belong to a face or not. Feature-based techniques
usually operate on pixel level (e.g. skin color), or use a small filter kernel
(e.g. edge-based techniques). Feature extraction usually is a simple low level
task which can be done with little effort. For instance a check to determine
whether a pixel is a skin color pixel or not only takes a few instructions.
This simplicity allows the feature extraction to run at high speeds. A draw-
back of feature-based techniques is that they often operate on pixel level
and therefore often suffer from ambiguity due to illumination, signal noise
and occlusion [50, 16].

Sliding window techniques follow a top-down approach. These tech-
niques use a detection window of a fixed size and place this detection window
over the input image. Next the algorithm determines whether the content
of the image inside the window represents a face or not. When it finishes
processing the window content, the window “slides” to another location on
the input image and the algorithm again tries to determine whether the
content of the detection window represents a face or not. This procedure
continues until all image locations are checked. To detect faces at different
scales usually the image is scaled down a number of times to form a so-called
“image pyramid” (see Figure 3.5) and the detection procedure is repeated.
Sliding window based techniques are usually more robust, however they also
require a lot more processing time.

11

12 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

The following sections will discuss a number of face detection techniques.
First skin color based face detection, a very popular feature-based tech-
nique, will be reviewed. Subsequently we will discuss four sliding window
techniques. This chapter concludes with a discussion on which of these
techniques fits best on our architecture.

3.1 Skin Color Based

Skin color based face detection methods have gained strong popularity among
the face detection community, mainly because of its simplicity and robust-
ness to geometric variations of the face. Furthermore the skin color of hu-
mans of different races, although perceived differently by humans, only dif-
fers in intensity rather than chrominance. This chrominance invariance of
the human skin makes it possible to implement a simple and consistent skin
color segmentation method. Skin color based face detection techniques can
be divided into three steps:

• Colorspace decision.

• Skin model creation and segmentation of the image using that model.

• Face localization using the segmented image.

For skin based face detection many colorspaces have been proposed
throughout the literature. Some popular examples of colorspaces are: RGB,
Normalized RGB, YCbCr (i.e. YUV), HSI (Hue, Saturation and Intensity)
as well as many others. Which colorspace is the best for skin color seg-
mentation is still subject to discussion. In [37] Shin et. al. showed that the
separability between skin and non-skin colors depends on the chosen col-
ormodel. Using four separability metrics on 18 different colorspaces, they
concluded that the RGB and YCbCr colorspace performed best. However
these conclusions were later questioned by Vezhnevets et. al. in [45].

The next step is to create a skin color model, based on the chosen col-
orspace. This model is used to separate the skin pixels from the non-skin
pixels (i.e. segmentation). There are many proposed skin modeling methods,
ranging from simple segmentation rules [19, 15] to more complex statistical
models [49] and adaptive methods (e.g. neural networks [8]).

A problem surfaces when different illumination conditions are used. The
color of objects and scenes change dramatically when placed in a differ-
ent lighting condition1. Several approaches have been proposed to address
this problem, however they require temporal knowledge [27] or require the
camera characteristics and light source spectrum to be known [39].

The last step involves a high level knowledge-based system that tries to
determine the location of the faces by using the segmented image. Many

1 This is a general problem in color vision and is called color constancy.

3.1. SKIN COLOR BASED 13

(a) Choose segmentation rules

(b) Original image (c) Skin segmentation (d) Localizing the faces

Figure 3.1: A typical skin color based face detection approach. After
choosing the desired colorspace the skin segmentation rules are chosen (a).
Next the original image (b) is segmented based on these rules (c). In the
last step a high level system analyzes the segmented image and localizes the
faces.

approaches have been proposed throughout the literature. We will address
some of these approaches. In [38] Singh et. al. extract facial features such
as the eyes and the mouth from the image, based on the assumption that
eyes and mouth are regions that appear darker in an image. These facial
features are used for face verification. In [47] Wang et. al. first apply a
contour finding algorithm on the binary skin map. Next they try to find
facial features within the found contour and try to determine the symmetry
axis of the face based on the position of the mouth. In [35] Saber et. al.
construct an elliptical model of the face and try to match the shape of a
binary skin region to that elliptical model (i.e. ellipse fit). Once the elliptical
facial pattern is found, they try to find facial features within this pattern.

3.1.1 Discussion

As with all feature-based methods, the performance of the skin color based
face detector heavily depends on the performance of the segmentation method.
If the performance is bad, the high level system has a very difficult task

14 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

in trying to locate the human face in the segmented image. Many of the
reported results were obtained using face images that were taken in con-
ditioned environments (e.g. frontal non-colored lighting). The reported
detection rate in these environments is usually very high (i.e. detection rate
between 80% and 95% [38, 15]).

3.2 Distribution-Based

In [40] Sung and Poggio developed a distribution-based method for face
detection. Their system, which is a sliding window based technique, first
models 19× 19 sample images into multi-dimensional sample image vectors.
Next they try to subdivide the sample space, containing the sample image
vectors, into subclasses. To approximate the subclasses they use multi-
dimensional Gaussian clusters. The system developed by Sung and Poggio
consists of the following four steps ([16, 50, 40]):

1. First the image in the detection window is preprocessed by rescaling
it to 19× 19 pixels and applying the steps shown in Figure 3.2. This
preprocessing step enhances the image and reduces the dimensionality
of the image vector from <361 to <283.

2. A distribution-model of canonical face- and nonface patterns is con-
structed using 12 multi-dimensional Gaussian clusters as shown in Fig-
ure 3.3. The 283-dimensional clusters are constructed using a modified
k-means clustering algorithm which computes the cluster centroids and
covariance matrices.

3. Given a new image, the distance between that image pattern and each
cluster is computed, resulting in 12 distances between the image and
the 12 cluster centroids. For each of the 12 distances, two values are
computed. The first value is the Mahalanobis-like distance between
the new image and the cluster centroid in a subspace spanned by the
cluster’s 75 largest eigenvectors. The second value is the Euclidean dis-
tance between the new image and its projection in the subspace. Given
12 distances and two values per distance, in total a 24-dimensional im-
age measurement vector is obtained.

4. A multilayer perceptron (MLP) is used to classify input patterns as
faces or nonfaces, using the 24-dimensional image measurement vector.
The MLP is trained using standard backpropagation from a training
set of 47 316 patterns of which 4150 are face patterns.

To classify a new input pattern, the image pattern is preprocessed (step 1)
and subsequently the 24-dimensional image measurement vector is computed
(step 3). Finally the MLP determines whether the image measurement
vector corresponds to a face image or not.

3.2. DISTRIBUTION-BASED 15

Figure 3.2: The preprocessing step developed by Sung and Poggio [40]. It
preprocesses the image by first applying an oval mask for eliminating near-
boundary pixels from the image. This step also reduces the dimension of
the image vector from <361 to <283. It continues by searching for a best fit
brightness plane in the masked image pixels and subsequently it subtracts
that brightness plane from the unmasked image pixels. Finally histogram
equalization is applied to correct for different camera gains and to improve
the contrast of the image.

3.2.1 Bootstrapping

Because the negative examples are difficult to characterize and the nega-
tive nonface class is far more broader and richer than the positive face class,
more negative examples are needed to accurately separate the negative from
the positive class. To do this Sung and Poggio used a so called “bootstrap-
ping” method. This bootstrapping method uses images that do not contain
any faces. During each training session misclassifications (false positives)
on these images are placed in the training set for the next session. This
overcomes the problem of using a huge set of nonface images in the training
set, many of which may not influence the training. Good sources of false
positives are images of landscapes, buildings, trees etc., due to the different
textured patterns they contain [28].

16 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

Figure 3.3: The distribution based face model as proposed by Sung and
Poggio [40]. The top row shows an empirical distribution of face patterns.
They model this distribution using six multi-dimensional Gaussian clus-
ters, whose centers are shown on the right. The bottom row shows the
distribution of nonface patterns and again they model this by using six
multi-dimensional Gaussian clusters. In total their model consists of 12,
283-dimensional clusters.

3.2.2 Results

Sung and Poggio tested their system on two different facial databases. They
reported a detection rate of 96.3% with three false detections on the first
database containing 301 frontal and near-frontal face mugshots of 71 differ-
ent persons. On their second test set (the MIT subset of the MIT+CMU
facial database [41]) they reported a detection rate of 79.9% with 5 false
positives. However they did not report the speed of their detector.

3.3 Support Vector Machines

Support Vector Machine (SVM) is a pattern classification algorithm de-
veloped by Vapnik et. al. [44]. Most machine learning based classification
techniques are based on the principle of minimizing the error in training

3.3. SUPPORT VECTOR MACHINES 17

data, called empirical risk minimization. SVMs operate on another induc-
tion principle, called structural risk minimization, which minimizes an upper
bound on the generalization error.

For classification, SVMs operate by finding a hyperplane in the space of
possible inputs. This hyperplane will attempt to split the positive examples
from the negative examples. The hyperplane will be chosen to have the
maximum distance to the nearest of the positive and negative examples as
depicted in Figure 3.4. Intuitively, this makes the classification correct for
testing data that is near, but not identical to the training data.

(a) Small distance. (b) Maximum distance

Figure 3.4: Separating hyperplane in the SVM [44]. In (a) a hyperplane
with a small distance to the nearest of the positive and negative examples is
chosen, yielding worse generalization. In (b) the hyperplane has a maximum
distance between the two classes, hence a better generalization capability is
expected.

Support Vector Machines were first used for face detection by Osuna
et. al. in [28]. They trained the SVM using a database of faces and non-
faces of size 19× 19 pixels. The proposed system uses a preprocessing step
adopted from Sung and Poggio’s system [40] which is shown in Figure 3.2.
This preprocessing step reduces the dimensionality of the input space and
improves the image quality. Osuna et. al. also use the bootstrapping method
as explained in the previous section.

3.3.1 Results

Osuna et. al. tested their SVM on two facial databases. The first set con-
tained 313 high-quality images with a single face per image. The second set
contained 23 images of mixed quality and a total of 155 faces. For compar-
ison reasons they also tested the performance of Sung and Poggio system
on these databases. In total 4 669 960 pattern windows were evaluated for

18 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

the first database and 5 383 682 for the second. The detection rate and the
number of false positives are presented in Table 3.1. The SVM performed
better when looking at the detection rates (DR), and slightly worse when
looking at the number of false positives (FP). However Osuna et. al. claimed
that their system was 30 times faster than the system of Sung and Poggio.

Database 1 Database 2
DR FP DR FP

SVM 97.1% 4 74.2% 20
Sung et. al. 94.6% 2 74.2% 11

Table 3.1: Performance of the SVM face detector versus the face detector
of Sung and Poggio.

3.4 Neural Networks

Since face detection can be considered as a two-class pattern recognition
problem, various neural network architectures have been proposed through-
out the literature. Probably the most significant work on face detection
using neural networks has been done by Rowley et. al. [33]. Their sys-
tem basically consists of three steps: preprocessing, the neural network and
postprocessing.

Rowley et. al. also adopt the preprocessing method devised by Sung and
Poggio [40] shown in Figure 3.2. The preprocessed images are passed to the
neural network. The neural network is designed to process images of 20×20
pixels, yielding 400 input units. There is one hidden layer with 26 units: 4
units process 10×10 pixel subregions, 16 units process 5×5 subregions and
6 process 20× 5 horizontal stripes as shown in Figure 3.5.

The network was trained using 1050 face samples of various sizes, in-
tensities, orientations and positions. 1000 nonfacial images were used for
training and were taken randomly from a set of images not containing any
faces. Given a test pattern, the trained neural network outputs a value
ranging from -1 (nonface) to 1 (face).

The postprocessing step counts the number of detections in a small neigh-
borhood and if it is above a certain threshold a face is likely to be present.
The postprocessing step also merges overlapping detection rectangles.To fur-
ther improve performance, Rowley et. al. trained multiple neural networks
and combined the output with simple arbitration schemes such as logic op-
erators (AND/OR) and voting.

A limitation of the system is that it is only able to detect upright, frontal
faces. Rowley et. al. extended their method in [34] to detect faces at all
angles in the image plane.

3.5. VIOLA AND JONES FACE DETECTOR 19

îð ¾§ îð

°·¨»´

Ò»«®¿´ ²»¬©±®µÐ®»°®±½»·²¹

Ñ«¬°«¬

Û¨¬®¿½¬»¼ ©·²¼±© Ý±®®»½¬»¼ ´·¹¸¬·²¹ Ø·¬±¹®¿³ »¯«¿´·¦»¼
Ø·¼¼»² «²·¬

Î»½»°¬·ª» º·»´¼

øîð ¾§ îð °·¨»´÷

×²°«¬ ·³¿¹» °§®¿³·¼

Ò»¬©±®µ

×²°«¬

Figure 3.5: The system of Rowley et. al. [33]

3.4.1 Results

For upright faces Rowley et. al. claim a detection rate between 77.9% and
90.3% of faces in a set of 130 test images, with an acceptable number of false
detections. Depending on the application, the system can be made more or
less accurate by varying the arbitration heuristics or thresholds used.

The system has been tested on a wide variety of images, with many faces
and unconstrained backgrounds. A fast version of the system can process a
320× 240 pixel image in 2 to 4 seconds on a 200 MHz R4400 SGI Indigo 2.

3.5 Viola And Jones Face Detector

In [46] Paul Viola and Michael Jones describe a novel object detection
method which can be used for face detection. Their sliding window based
algorithm uses so-called filters2 rather than operating on raw pixels, like
for instance Rowley et. al. do in their neural network approach. The filters
span a rectangular area of pixels within the detection window, and can be
computed rapidly when using a new image representation called the integral
image.

The number of possible filters within a detection window is very large.
In order to select only the most effective filters, the object detector is trained
by using an adapted version of the AdaBoost algorithm, originally proposed
by Freund and Schapire in [13]. This boosting algorithm selects a small
number of so-called weak classifiers (each containing a single filter) from a
large pool of weak classifiers. None of these weak classifiers will have a high

2 Instead of the word “filter”, Viola and Jones used a different term: “feature”. However
as we already used that word for feature-based techniques we decided to use the word
“filter” to avoid ambiguity. The word “filter” instead of “feature” for this purpose is also
used in [36].

20 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

classification performance, however when they are combined they form a
strong classifier which is able to achieve a high classification performance.

To further reduce the number of weak classifier evaluations per detection
window, Viola and Jones propose the use of an “attentional cascade”. This
cascade combines successively more complex classifiers into a cascade struc-
ture. Using this layered approach with increased complexity it is possible
to reject non-face windows very quickly while spending more computational
effort on windows that are more likely to contain a face.

This section will discuss the Viola and Jones method more in-depth since
it plays an important role in this thesis. First we will discuss the filters used
by Viola and Jones. Then we will describe the integral image and how
these filters can be computed using the integral image. Subsequently we
will describe the boosting algorithm used to reduce the number of weak
classifiers to form an effective strong classifier. Next the attentional cascade
and the experimental results obtained by Viola and Jones is discussed. We
will conclude this section with a brief overview on related work.

3.5.1 Filters

Viola and Jones motivated their choice for using filters rather than pixels
with the following arguments: the used filters operate on a broader spatial
domain enabling them to ’look’ at larger structures such as edges, corners
and lines inside the detection window. Second, the filters can be computed
very fast when using the special image representation called the integral im-
age. Viola and Jones used the five simple binary filters shown in Figure 3.6.
These filters are partially based on work of Papageorgiou in [29], who used
Haar basis functions for the detection of faces and pedestrians in images.
The filters contain either two, three or four rectangular regions. The regions
are equal in size and shape and are horizontally or vertically adjacent.

When using a detection window with a base size of 24× 24 pixels, there
are more than 180 000 different rectangular filters possible inside a single
detection window. Computing all these filters per detection window would
be too expensive. Therefore a small subset of these filters need to be selected
to form an effective classifier. This will be discussed in Section 3.5.5.

3.5.2 Integral Image

Viola and Jones propose a special image representation called the “integral
image” to compute the rectangular filters very rapidly. The integral image
is in fact equivalent to the Summed Area Table (SAT) that is used as a
texture mapping technique, first presented by Crow in [9]. Viola and Jones
renamed the SAT to integral image to distinguish between the purpose of
use: texture mapping versus image analysis.

3.5. VIOLA AND JONES FACE DETECTOR 21

(a) Fh edge (b) Fv edge (c) Fh line (d) Fv line (e) Fdiag

Figure 3.6: The five Haar like filters used by Viola and Jones placed in
the detection window. To compute a filter, the sum of the pixels in the dark
area is substracted from the sum of the pixels in the light area. Notice that
we could also substract the light area from the dark area, the only difference
is the sign of the result. The horizontal and vertical two-rectangle filters
Fh edge and Fv edge are shown in (a) respectively (b), and tend to focus on
edges. The horizontal and vertical three-rectangle filters Fh line and Fv line

are shown in (c) respectively (d), and tend to focus on lines. The four-
rectangle filter Fdiag in (e) tends to focus on diagonal lines [24].

(x, y)

(0, 0)

(a) Integral image value at point (x, y)

0 1 2
3 4 5
6 7 8

0 1 3
3 8 15
9 21 36

Original Image Integral Image

(b) Integral image value in numbers

Figure 3.7: The integral image value.

The integral image at location (x, y) is defined as the sum of all pixels
above and to the left of (x, y) (see Figure 3.7(a)):

ii(x, y) =
x∑

j=0

y∑
k=0

I(j, k) (3.1)

where ii(x, y) is the integral image value at (x, y), and I(x, y) is the original
image value. This equation can be rewritten into the following recurrent
equations:

r(x, y) = r(x, y − 1) + I(x, y) (3.2)
ii(x, y) = ii(x− 1, y) + r(x, y) (3.3)

22 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

where r(x, y) is called the cumulative row sum3, r(x,−1) = 0, ii(−1, y) = 0
and ii(x,−1) = 0. Using these recurrent equations the integral image can
be computed in a single pass over the original image.

Computing A Rectangular Pixelsum

The pixelsum of a rectangular area is defined as:

pixelsum(x, y, w, h) =
x+w−1∑

j=x

y+h−1∑
k=y

I(j, k)

where w and h are the width and height respectively of a rectangular area at
location (x, y) and I(j, k) is the image value at location (i, j). We will now
demonstrate that this value can be computed rapidly when using the integral
image. The integral image value at the lower right corner of a rectangular
area is defined as:

ii(x + w − 1, y + h− 1) =
x+w−1∑

j=0

y+h−1∑
k=0

I(j, k)

We can rewrite this into the following four terms:

ii(x + w − 1, y + h− 1) =
x−1∑
j=0

y−1∑
k=0

I(j, k) +
x−1∑
j=0

y+h−1∑
k=y

I(j, k) +

x+w−1∑
j=x

y−1∑
k=0

I(j, k) +
x+w−1∑

j=x

y+h−1∑
k=y

I(j, k)

︸ ︷︷ ︸
pixelsum

When looking at these four terms it can be observed that the last term
equals the pixelsum. To obtain this value we need to substract the other
three terms. We can do this when using three other integral images values
(see Figure 3.8):

ii(x− 1, y − 1) =
x−1∑
j=0

y−1∑
k=0

I(j, k)

ii(x + w − 1, y − 1) =
x+w−1∑

j=0

y−1∑
k=0

I(j, k)

ii(x− 1, y + h− 1) =
x−1∑
j=0

y+h−1∑
k=0

I(j, k)

3 The term cumulative row sum was introduced by Viola and Jones but is rather
ambiguous. Unlike its name suggests it is a column containing the summed y-values.
Thus the cumulative row sum at position (x, y) contains the sum of all y-values of the
rows above (x, y): r(x, y) =

∑y

k=0
I(x, k).

3.5. VIOLA AND JONES FACE DETECTOR 23

These values can be rewritten into their following equivalents:

ii(x− 1, y − 1) =
x−1∑
j=0

y−1∑
k=0

I(j, k)

ii(x + w − 1, y − 1) = ii(x− 1, y − 1) +
x+w−1∑
j=x−1

y−1∑
k=0

I(j, k)

ii(x− 1, y + h− 1) = ii(x− 1, y − 1) +
x−1∑
j=0

y+h−1∑
k=y

I(j, k)

Using these three equations it is easily seen that:

pixelsum(x, y, w, h) = ii(x + w − 1, y + h− 1) + ii(x− 1, y − 1)−
ii(x− 1, y + h− 1)− ii(x + w − 1, y − 1)

Therefore when using an integral image, any rectangular pixelsum can be
computed with only four lookups, two subtractions and one addition.

pixelsum(x,y,w,h)

w

h

(0, 0)

ii(x+w-1, y-1)

ii(x+w-1, y+h-1)

(x, y)

ii(x-1, y+h-1)

ii(x-1, y-1)

Figure 3.8: Calculation of the pixelsum using the integral image. Using
four integral image values, ii(x + w − 1, y + h − 1), ii(x − 1, y − 1), ii(x −
1, y + h− 1) and ii(x + w − 1, y − 1) we can calculate the sum of the pixels
in the grey rectangular area.

24 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

3.5.3 Filter Computation

The five filters as proposed by Viola and Jones consists of two or more
rectangular regions which need to be added together or substracted from
eachother. One of the five filters, the horizontal edge filter Fh edge, is shown
in Figure 3.9. To compute the result Hh edge of filter Fh edge applied on
image I, the sum of the pixels in the lower dark rectangular region have
to be substracted from the sum of the pixels of the upper light rectangular
region:

Hh edge(x, y) =
x+w−1∑

j=x

y+h−1∑
k=y+ 1

2
h

I(j, k)−
x+w−1∑

j=x

y+ 1
2
h−1∑

k=y

I(j, k)

where w and h are the width respectively height of the filter. When using

(x, y) w

½h

½h

Figure 3.9: Computing the filter result Hh edge.

the integral image we can use the pixelsum as defined in Equation 3.4 and
rewrite the filter result H to the following:

Hh edge(x, y) = pixelsum(x, y +
1
2
h, w,

1
2
h)−

pixelsum(x, y, w,
1
2
h)

Using two pixelsums the filter result can be computed. Since this filter
contains two adjacent rectangular areas, there are two equal integral image
positions and only six integral image lookups are required to compute the
filter result. The number of lookups for the other filter types is shown in
Figure 3.10. Using this technique filters results can be computed very fast
and in constant time regardless of their size and location. Instead of down
scaling the image a number of times, Viola and Jones propose to scale up
the detection window. A detection window contains only one simple filter
which can be easily scaled up using extrapolation of the size and position

3.5. VIOLA AND JONES FACE DETECTOR 25

(a) 2 rectangles: 6 lookups (b) 3 rectangles: 8 lookups (c) 4 rectangles: 9 lookups

Figure 3.10: Number of lookups per filter type. A filter with two rectan-
gular areas contains two equal integral image positions and can therefore be
calculated with six lookups. A filter with three rectangular areas involve four
identical integral image positions and can be calculated with eight lookups,
a four rectangular filter with nine lookups.

of the filter. By scaling up the detection window there is no need to use a
pyramid anymore and this saves significant computation time.

3.5.4 Image Normalization

Viola and Jones normalized the images to unit variance during training
to minimize the effect of different lighting conditions. To normalize the
image during detection they post multiply the filter results by the standard
deviation σ of the image in the detector window, rather than operating
directly on the pixel values. Viola and Jones compute the standard deviation
of the pixel values in the detection window by using the following equation:

σ =
√

µ2 − 1
N

∑
x2 (3.4)

where µ is the mean, x is the pixel value and N is the total number of pixels
inside the detection window. The mean can be computed by using the inte-
gral image. To calculate

∑
x2 Viola and Jones use a squared integral image,

which is an integral image only with squared image values. Computing σ
only requires eight lookups and a few instructions.

3.5.5 Filter Selection Using AdaBoost

Recall that there over 180 000 filters possible within a single detection win-
dow. Computing all these filters would be too expensive. Therefore a small
subset of these filters need to be selected to form an effective classifier. For
this task Viola and Jones used a boosting algorithm. The original boosting
algorithm called Discrete AdaBoost (Adaptive Boosting) was proposed by
Freund and Schapire in [13]. They discovered an algorithm that sequen-
tially fits so-called weak (i.e. simple) classifiers to different weighings of the

26 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

samples in a dataset. The classifiers are called weak because even the best
classifier will not be able to classify the training data well. Each boosting
cycle the weak classifier with the lowest error is selected from a pool of weak
classifiers. Next the samples that are misclassified by the weak classifier
receive a greater weight on the next boosting round. The algorithm iterates
several times, piling more weight on the samples that are difficult to classify.
The final classifier, called a strong classifier, is a weighted combination of
the weak classifiers.

Viola and Jones adapted the Discrete AdaBoost algorithm by constrain-
ing the weak classifier to use a single filter which best separates the positive
and negative examples. For each filter an optimal threshold value is deter-
mined such that the minimum number of examples are misclassified. The
weak classifier used by Viola and Jones is defined as:

hj(x) =

{
1 if pjfj(x) < pjθj

0 otherwise
(3.5)

where fj(x) is the result of the filter on input image x, θj is the threshold,
pj is the parity which indicates the direction of the equality sign and x is
the input image. The learning algorithm is shown in Table 3.2.

3.5.6 The Attentional Cascade

There is a very large amount of possible detection windows in a single image
of which the vast majority does not contain a face. Therefore detection
windows not containing a face have to be rejected as fast as possible. In
order to do this, Viola and Jones devised the “attentional cascade”. This
cascade contains several stages (i.e. strong classifiers). The first stages in
the cascade contains a small amount of weak classifiers, so these stages can
be evaluated very fast. These simple stages are trained in such a way that
they reject a large amount of negatives while accepting all the positives (i.e.
detection rate near 100% and the false positive rate as low as possible with
the fewest possible weak classifiers). Later stages of the cascade are more
complex (i.e. contain more weak classifiers) and are used to lower the false
positive rate. The false positive rate should be as low as possible considering
the amount of possible detection windows (e.g. a 640× 480 image contains
over 800 000 possible detection windows when using a detection window with
a base resolution of 24 × 24 pixels and 13 different scales, therefore even a
small false positive rate will result in many false positives).

The image in the detection window is detected as a face when all stages
classify the image as a face. A negative outcome of a stage at any point in
the cascade immediately rejects the detection window and the next detection
window will be processed (see Figure 3.11).

Viola and Jones trained a strong classifier containing only two weak
classifiers for the first stage in their cascade. They modified the original

3.5. VIOLA AND JONES FACE DETECTOR 27

• Given example images (x1, y1), . . . , (xn, yn) where yi = 0, 1 for
negative and positive examples respectively.

• Initialize weights w1,i = 1
2m , 1

2l for yi = 0, 1 respectively, where
m and l are the number of negatives and positives respectively.

• For t = 1, . . . , T :

1. Normalize the weights,

wt,i ←
wt,i∑n

j=1 wt,j

so that wt is a probability distribution.

2. For each filter, j, train a classifier hj which is restricted to
using a single filter. The error is evaluated with respect to
wt:

εj =
∑

i

wi|hj(xi)− yi| (3.6)

3. Choose the classifier, ht, with the lowest error εt.

4. Update the weights:

wt+1,i = wt,iβ
1−|hi(xi)−yi|
t

where βt = εt
1−εt

.

• The final strong classifier is:

h(x) =

{
1
∑T

t=1 αtht(x) ≥ θ
∑T

t=1 αt

0 otherwise
(3.7)

where αt = − log βt and θ is a value in the range [0..1]. θ is
usually set to its original value: 1

2 (i.e. a democratic vote of all
weak classifiers).

Table 3.2: The adapted Discrete AdaBoost algorithm. Viola and Jones
adapted the original Discrete AdaBoost algorithm by constraining the weak
classifier to use only a single filter. T weak classifiers are constructed us-
ing the steps defined above. When T weak classifiers are constructed they
participate in a weighted vote for the final strong classifier.

28 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

S1 S2 S2 Sn……
TTT

FACE

NON-FACE

F
F

F
F

Figure 3.11: Schematic overview of the attentional cascade. In order to
positively classify the image in a detection window, all the n stages in the
cascade will have to classify the image as a face. If a stage rejects the image,
the detection window is rejected and the next window will be processed.
The first stages are simple and small, eliminating a large number of false
positives at little computational effort. The later stages are larger and more
complex in order to reduce the false positive rate even further.

threshold of the strong classifier, 1
2

∑T
t=1 αt, in order to achieve a detection

rate of 100%. At this threshold setting the false positive rate was 40%,
yielding a rejection of 60% of all detection windows that do not contain a
face. Since the amount of detection window not containing a face is nearly
100% of all detection windows, practically 60% of all possible detection
windows is rejected with an evaluation of only two classifiers.

The stages were trained using a face database containing 4916 faces. The
non-face images were gathered from 9500 images that did not contain any
faces. For each stage 10 000 non-face images were randomly selected from
this set of 9500 images. Viola and Jones used the bootstrapping procedure,
as explained in Section 3.2.1, to train the subsequent stages. When a stage
was trained, a detector with the partial cascade was run across a large non-
face image and a maximum of 6000 false positives were collected. These
false positives were then used to train the subsequent stage.

The final detector cascade trained by Viola and Jones contains 32 stages,
with a total of 4297 filters. Viola and Jones kept adding more stages to the
cascade until the false detection rate on the validation set was nearly zero,
while still remaining a high detection rate.

3.5. VIOLA AND JONES FACE DETECTOR 29

3.5.7 Speeding Up The Detector

To increase the speed of the detector at the expense of the accuracy there
are three tunable parameters:

1. The starting scale is the scale of the detection window when the de-
tection procedure is started. E.g. when the original detection window
is 24 × 24 pixels and the starting scale is 2.0, then the detector will
start with detection windows of size 48 × 48. Usually the start scale
is set to 1.0. But if the minimum face size should be larger than the
original detection window size it is best to use a larger starting scale,
since it saves significant computation time.

2. When the detector finishes processing all detection windows of one
scale, the detector window is scaled up by the scale step size. E.g.
when the original detection window is 24 × 24 and the scale step is
1.25 then the next detection window size will be 25% bigger: 30× 30
pixels. Viola and Jones obtained good results when the scale step size
was set to 1.25.

3. The detector is also scanned across location. After processing a detec-
tion window the detection window slides a number of pixels to the next
position. The number of pixels it slides depends on the current scale
s and the position step size ∆. If the current scale is s, then the
window slides [s∆] pixels to the next position, where [] is the rounding
operation. When ∆ > 1 the detection rate tends to decrease slightly
while also the number of false positives decreases.

3.5.8 Grouping

The final trained cascade (i.e. detector) is scanned across the whole image
at multiple scales and multiple positions. Because the detector is insensitive
to small variations in scale and position, usually a large number of detec-
tions occur around a face (see Figure 3.12). To incorporate these multiple
detections into a single detection, which is more practical, Viola and Jones
applied a simple grouping algorithm. This algorithm combines overlapping
detection rectangles into a single detection rectangle. Two detections are
placed in the same set if their bounding rectangles overlap. For each set
the average size and position is determined, resulting in a single detection
rectangle per set of overlapping detections.

3.5.9 Results

Viola and Jones tested their detector on the MIT+CMU frontal face test set
[41] and reported results that are comparative with the systems of Rowley
et. al. and Sung and Poggio. However the Viola and Jones detector runs

30 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

(a) No grouping. (b) Grouping.

Figure 3.12: Grouping the multiple detections into a single detection.

much faster (approx. 15 times faster than the Rowley-Baluja-Kanade de-
tector). On average only 8 weak classifiers out of 4297 were evaluated per
detection window. The face detector runs at 15 frames per second on a
700 MHz Pentium III processor, when processing images of 384× 288 pixels
(starting scale 1.0, scale step size 1.25 and a position step size of 1.5).

3.5.10 Related Work

Rotated Faces

In [18] Viola and Jones extend their method to be able to detect rotated
faces and profile views of faces. Experiments showed that the original five
filters used by Viola and Jones were not sufficient to detect non-upright and
non-frontal faces with a high accuracy. Therefore Viola and Jones added
two extra filters which were able to focus on diagonal features inside the
detection window. To detect the rotated and profile faces, Viola and Jones
created two face detectors: one for detecting the rotated faces and one for
the profile faces. Both detectors use a pose estimator in the form of an
decision tree. The decision tree runs across the image and returns for each
location the pose of the possible face. If the image in the detection window
is not a facial image, the returned pose can be considered random. When all
poses are estimated, a face detector specialized for a particular pose is run
across every estimated pose. This two-stage approach showed good results
for both rotated and profile faces. Both face detectors process a 320 × 240
image in approximately 0.12-0.14 seconds on a 2.8 GHz Pentium 4. The
detection rate of the rotated face detector lies between 89.7% and 95.0%,
depending on the number of false positives. The detection rate of the profile
face detector lies between 70.4% and 83.1%.

In [24] Lienhart and Maydt enrich the set of filters used by Viola and
Jones with 45◦ rotated filters, in order to detect rotated faces. To com-
pute these rotated filters Lienhart and Maydt created a rotated variant of
the integral image. Using this rotated integral image, pixelsums of rotated

3.5. VIOLA AND JONES FACE DETECTOR 31

rectangular areas can be computed in four lookups. Combined with an
post-optimization technique, these extended rotated filters performed much
better than the original filters used by Viola and Jones. The system of Lien-
hart and Maydt processes a 320× 240 image in approximately 0.20 seconds
on a 2.0 GHz Pentium 4. The detection rate of their rotated face detector
lies between the 90.0% and the 95.4%, depending on the false positive rate.

Gender And Ethnicity Classification

Shakhnarovich et. al. present in [36] a framework, based on the work of
Viola and Jones, to classify the gender and ethnicity (Asian or non-Asian)
of a person. They trained a strong classifier with a few hundred filters. The
output of this classifier is a scalar whose sign determines class membership
(i.e. male or female and Asian or non-Asian), and the magnitude can be
considered as a confidence in the decision. They incorporated this classifier
into a novel tracking algorithm. Based on the output of the classifier on
the previous images, the tracking algorithm matches persons in the current
image. For gender classification they reported error rates between 24.5%
and 21.0%, depending on the number of weak classifiers. For the ethnicity
classification error rates between 24.3% and 20.8% were reported. With the
tracking algorithm these error rates dropped to 10% for gender classification
and 17% for ethnicity classification.

Other Boosting Algorithms

Viola and Jones use an adapted version of the Discrete AdaBoost algorithm.
In [23] Lienhart et. al. test the performance of the face detector when trained
with Discrete AdaBoost, Real AdaBoost and Gentle AdaBoost (the latter
two are two variants of the original Discrete AdaBoost algorithm). They
conclude that Gentle AdaBoost performs best, despite the fact that on av-
erage it required fewer weak classifiers.

AdaBoost is a sequential forward search procedure. When AdaBoost
selects a weak classifier during a boosting cycle, this weak classifier is placed
in the set of weak classifiers and this set will not be changed. If all possible
weak classifiers are evaluated during each boosting cycle this is not a prob-
lem, because one can be sure that only the best weak classifiers are selected
during each boosting cycle. However if only a limited amount of the possi-
ble number of weak classifiers is evaluated, it could be the case that a worse
weak classifier is selected. This weak classifier will stay in the set of weak
classifiers, possibly dropping the performance of the final strong classifier.
This is called boosting redundancy. To reduce the boosting redundancy Li
et. al. invented a floating search variant of the AdaBoost algorithm called
FloatBoost [22]. Instead of fixing the set of weak classifiers, FloatBoost uses
a backtracking algorithm that allows deletion of those weak classifiers that

32 CHAPTER 3. FACE DETECTION: A LITERATURE SURVEY

are non-effective or unfavorable in terms of the error rate. This leads to a
strong classifier containing fewer weak classifiers, or achieves lower a error
rate with the same number of weak classifiers.

In [48] Xiao et. al. propose a very promising boosting method for object
detection called the boosting chain. This algorithm integrates the boosting
method and bootstrap training into a single learning procedure. After each
boosting cycle the bootstrap method collects negatives for the next boosting
round. To reduce the boosting redundancy a linear optimization scheme
is applied, resulting in fewer weak classifiers and lower error rates. Their
results on the face detection problem outperform AdaBoost and FloatBoost
(i.e. lower false positive rates and higher detection rates on both training
and test data).

3.6 Discussion Of Face Detection Techniques

In this chapter we discussed five different detection techniques. We decided
to implement two of the most promising of these techniques on the INCA+:
a skin color based face detector and the Viola and Jones face detector.

The skin color based face detector was chosen because of its simplicity
and its popularity among the face detection community. Its simplicity could
allow the algorithm to run fully, or at least a large part of it, on Xetal. Part
of our objective was to find a face detection technique which could fit on
the low-level Xetal chip to relief the TriMedia processor, and the skin color
based face detector looks very promising to do such a task.

The Viola and Jones face detector was chosen because of its reported
accuracy and the availability of the source code [1]. The detector runs at high
speeds while maintaining a high accuracy, making at a robust real-time face
detection algorithm. Furthermore the algorithm works on greyscale images
and is thus insensitive to color changes and a camera does not need to be
equipped with a color sensor, allowing cheaper hardware. Most importantly:
the Viola and Jones technique was not designed specifically for face detection
like for instance the skin color based face detection. It allows the learning of
several different types of objects, making it very suitable as a generic object
detector.

In the next chapter we will compare the two implemented face detection
techniques. Based on the outcome of that experiment we will decide which
of the two techniques suits best on the INCA+.

Chapter 4

Face Detection Experiments

In this chapter we will compare a skin color based face detector against
the Viola and Jones face detector. Both techniques were successfully imple-
mented on the INCA+. The skin color based face detector uses the ideal
dual approach: skin color segmentation (i.e. a large part of the face detec-
tion task) is done completely on Xetal. Xetal sends the segmented binary
skin image to the TriMedia, which further analyzes the skin image in order
to determine the location of the face. The Viola and Jones detector proved
to be too complex to run on Xetal and therefore we had to implement it as
a whole on the TriMedia processor.

After implementing both face detectors on the INCA+ our next step was
to evaluate the performance of both detectors. We did this by comparing the
performance of both detectors on a test database. Section 4.1 explains how
this test database was created. Each image in the test database contains a
single face and both face detectors had to determine the position and size of
this face. In order to determine whether the outcome of a face detector on a
test image was correct or incorrect we created a detection validation model,
which is described in Section 4.2. In Section 4.3 we tested the skin color
based face detector on the test database and demonstrate the results. In
Section 4.4 we tested the Viola and Jones face detector on the test database
and demonstrate the results. We will conclude this chapter with a discussion
on the results of both detectors and we will determine which of the two
techniques will be used on our architecture.

4.1 Photoshooting Experiment

To compare the two algorithms we set up a photo shooting experiment to
create our test database. In total 800 frontal face images were taken of 20 dif-
ferent individuals under four different lighting conditions using the INCA+

itself. We used back/top lighting, side lighting, ambient/environment light-
ing and frontal lighting as different lighting conditions. The individuals were

33

34 CHAPTER 4. FACE DETECTION EXPERIMENTS

chosen in such a way that there was enough variety in gender, age and race.
Also some persons had a beard and some were wearing glasses. A schematic
overview of our photo shooting experiment as well as some of the images we
took are shown in Figure 4.1. The images were taken in full color and are
640× 480 pixels in size.

Back/Top Lighting

Side Lighting

Person

IN
C

A
+

Frontal Lighting

(a) Schematic overview of the photo shoot-
ing experiment.

(b) Some of the images we took.

Figure 4.1: The physical setup of our photo shooting experiment is pre-
sented in (a). We used four different lighting conditions: back/top light-
ing, side lighting, ambient/environment lighting and frontal lighting. (b)
presents some of the images we took. From the top to the bottom row:
back/top lighting, side lighting, ambient/environment lighting and frontal
lighting respectively.

4.2 Detection Validation Model

In order to create our detection validation model we first need to define the
ground truth for each image. We used the ground truth as defined in the
MIT+CMU set [41]. In this set faces are manually labeled using five facial
feature points: the center of the left and right eye (le and re), the tip of
the nose (tn) and the left and right corner of the mouth (lm and rm) as
shown in Figure 4.2(a). Another method for defining the ground truth is to
manually define a ground truth rectangle around the face. A big drawback
of this method is that it is very sensitive to the perception of what is a
face and what is not of the person who is defining the rectangle. Ground
truth rectangles usually need to be ’drawn’ by hand making it easy to make
mistakes, especially when a lot of faces need to be processed by hand. The
MIT+CMU approach therefore seems to be a more accurate way to define
the ground truth. However these five ground truth points do not define the

4.2. DETECTION VALIDATION MODEL 35

validity of a detection1. For this we created the detection validation model
based on the five ground truth points. In our detection validation model two
validation rectangles are defined: one specifying the minimum face region
and one specifying the maximum face region (see Figure 4.2(b)).

• The minimum region encloses all important facial features. In our
experiment these important features are the eyes, the nose and the
mouth. A face detection is only valid if all these features are enclosed
by the detection rectangle.

• The maximum region ensures an upper bound on the size and position
of the detection. A face detection is only valid when the detection
rectangle is fully enclosed by the maximum region.

le re

tn
lm rm

(a) The ground truth.

minimum region

maximum region

le re

tn
lm rm

(b) The detection validation model.

Figure 4.2: The ground truth and our detection validation model. In (a)
we present the five labeled facial features used as ground truth. These five
feature points are also used as ground truth in the MIT+CMU database [41].
In (b) we present our detection validation model. A detection is classified as
valid when its detection rectangle fully encloses the minimum region and if
and only if it its detection rectangle is fully enclosed by the maximum region.
The grey area thus represents a valid area for the detection rectangle.

1 None of the papers we have studied explain how to discriminate a valid detection
from an invalid detection. Therefore a single detection validation model that is used by
everyone seems to be lacking in the face detection community. This makes it very hard to
compare performance results of different face detectors. The creation and documentation
of our validation model could be a first step in the creation of a consistent single validation
model.

36 CHAPTER 4. FACE DETECTION EXPERIMENTS

4.2.1 Determining The Validation Regions

To determine the size and location of the two validation regions using only
the five ground truth points, we created a facial model first. This model
is shown in Figure 4.3 and it is constructed by analyzing some of the faces
of our test database and combining these measurements with existing facial
models designed by others researchers [25, 6, 35].

0.4w

0.3w 0.3w

w

h =
1.4w

hf =
1.25w 0.11w0.06h

0.07h

0.5h

(x,y)

Figure 4.3: Our facial model based on a combination of existing facial mod-
els and an analysis of some of the faces we captured during our photoshoot
experiment.

Using this facial model and the position of the eyes, le and re, we can
compute the bounding rectangle of the face:

w =
||le− re||

0.4
h = 1.4w

x = xle − 0.3w

y =
yle + yre

2
− 0.5h

where (x, y) specifies the top left corner of the facial bounding rectangle and
w and h specify the width and height respectively. Our experiment only uses
frontal faces, hence the y-position of both eyes should be approximately the
same. But to increase the accuracy of the position of the bounding rectangle,
the average of the y-position of both eyes is used instead of selecting a single
y-position.

4.3. SKIN COLOR BASED FACE DETECTION EXPERIMENT 37

The maximum region was empirically determined at 1.15× the width
and height of the facial bounding box. This value ensures that the complete
head is included in the region and it allows small variations in size and/or
position. Using these metrics we can compute the maximum region by using
the following equations:

xmax = x− 1.15w − w

2

ymax = y − 1.15h− h

2
wmax = 1.15w

hmax = 1.15h

As mentioned earlier the minimum region should include at least the
eyes, nose and mouth. Using our facial model and the location of the eyes
and mouth, we can compute the minimum region:

xmin = xle − 0.11w

ymin =
yle + yre

2
− 0.06h

wmin = (xre + 0.11w)− xmin

hmin = (
ylm + yrm

2
+ 0.07h)− yin

4.3 Skin Color Based Face Detection Experiment

The performance of a skin color based face detector heavily depends on the
performance of the chosen skin color segmentation method. If the skin color
segmentation method performs well, a good face detector based on that
segmentation method could be developed. However if the segmentation
fails, it will be very hard to create a good face detector. This skin color
experiment therefore tries to determine how various segmentation methods
perform.

In our experiment we tested four different skin color segmentation meth-
ods: an RGB based segmentation method as described in [19], an YCbCr
based and an HSI based method both taken from [15] and a method which
combines the output of the RGB, YCbCr and HSI segmentation methods.
This combined method was inspired by work of Singh et. al. in [38]. Our
main motivations to choose these techniques was the fact that they are eas-
ily implemented on Xetal and they showed good results in the literature
[19, 15, 38, 45].

After the skin color segmentation we applied erosion and dilation to re-
move background noise. For face extraction a contour matching algorithm

38 CHAPTER 4. FACE DETECTION EXPERIMENTS

taken from the OpenCV library [1] was used. This contour matching algo-
rithm finds connected skin pixels and groups them into skin clusters. Since
every image only contains a single face we can assume that the largest skin
cluster in the image is the face2. However in many of the images this largest
skin cluster also contains a part of the neck. To remove the neck we dis-
regard the height of the skin cluster, instead we compute the height using
our facial model: the height of the face (from chin to hairline) is 1.25× the
width of the face. An example of our skin based face detector using the
combination segmentation method is shown in Figure 4.4. The output face
detection rectangle will be evaluated using the detector validation model.
The processing time for a single 640 × 480 image ranged from 0.05 to 0.07
seconds (i.e. 15-20 frames per second) on the INCA+.

(a) Original (b) RGB segmenta-
tion

(c) YCbCr segmen-
tation

(d) HSI segmenta-
tion

(e) Combined seg-
mentation

(f) Erosion/dilation (g) Find largest con-
tour and determine
detection rectangle

(h) Output detec-
tion rectangle super-
imposed on the orig-
inal image

Figure 4.4: Our skin color based face detector with the combined segmen-
tation methods.

2 When creating a robust skin color based face detector this approach is not sufficient
and a more complex face searching and verification algorithm needs to be incorporated
(e.g. with additional eyes and mouth searching and matching).

4.3. SKIN COLOR BASED FACE DETECTION EXPERIMENT 39

4.3.1 Results

The overall detection rates of our skin based face detector applied on all
800 images using the four different segmentation methods, are shown in
Table 4.13. It is clear that when using the combined segmentation method
the total detection rate is the highest.

Segmentation Method Detection Rate
RGB 42.3%
YCbCr 54.0%
HSI 52.1%
Combined 73.5%

Table 4.1: Overall detection rate on the test database using the skin based
face detector with different segmentation methods.

Detection Rate Per Lighting Condition

0

10

20

30

40

50

60

70

80

90

100

Back/Top Side Ambient Front
Lighting Condition

D
et

ec
tio

n
R

at
e

(%
)

RGB
YCbCr
HSI
Combined

Segmentation
Method

Figure 4.5: Detection rate of the skin based face detector using different
lighting conditions.

Figure 4.5 shows the detection rate per different lighting condition. The
results are good when using the frontal and ambient lighting condition and
are comparative with the reported detection results in [38]. None of the
individual segmentation methods performs very well when using back/top

3 Note that only the detection rate is presented. For all images only a single detection
rectangle was created, which either correctly or incorrectly classified the face. Therefore
the false positive rate is equal to the number of false negative rate (100% − detection rate
(in %)).

40 CHAPTER 4. FACE DETECTION EXPERIMENTS

or side lighting, however when combining the segmentation methods the
performance increases significantly in these lighting conditions. But still the
performance in the ambient and frontal lighting conditions is much better.
The cause of the lower detection rates when using the back/top or side
lighting is a worse skin segmentation in these lighting conditions, as shown
in Figure 4.6.

Figure 4.6: Skin segmentation examples under different lighting condi-
tions. From the top to the bottom row the same individuals are presented
under the following lighting conditions respectively: frontal lighting, side
lighting and back/top lighting. These examples clearly demonstrate the
cause of the lower detection rates when using back/top or side lighting: the
segmentation in these lighting conditions is worse than when using frontal
lighting.

4.4 Viola And Jones Face Detection Experiment

The performance in terms of speed and accuracy of the Viola and Jones
detector depends on the chosen cascade. We tested two setups: a very
accurate but slow setup and a less accurate setup which is able to run in
near real-time on the INCA+.

For the accurate setup we used the cascade which is part of the OpenCV
library. This cascade contains 24 stages and has a total of 2913 weak clas-
sifiers. Its starting window size is 24 × 24 pixels. The starting scale was
set to 1.0, the scale step size was set to 1.1 and the position step size ∆
was set to 1.0. In total 32 different scales were checked, yielding a total of
more than 1.8 million possible detection windows. The processing time for
a single 640× 480 image ranged from 20 to 25 seconds on the INCA+. This

4.5. DISCUSSION 41

is far from being real-time, but it is a good indication of the upper bound
of the accuracy of this algorithm.

The second setup used a smaller cascade trained by Philips Aachen [31].
This cascade contains 24 stages with a total of 651 weak classifiers. Various
optimizations were applied to increase the speed of the detector at little
expense of the accuracy. The image was downscaled (using the image co-
processor) to a size of 320× 240 to reduce the number of possible detection
windows. The starting window size is 20× 20 pixels. The starting scale was
set to 2.0, the scale step size was set to 1.2 and the position step size ∆
was set to 1.5. In total 10 different scales were evaluated yielding a total of
more than 200 000 possible detection windows. The processing time for a
single 640× 480 image ranged from 0.20 to 0.25 seconds (i.e. 4-5 frames per
second) on the INCA+.

4.4.1 Results

Since every image only contains a single face we can collect all detections
and average the size and position into a single detection rectangle. We tested
both setups on our face database and the result are displayed in Table 4.2.

Cascade Detection Rate
OpenCV 93.1%
Philips Aachen 86.8%

Table 4.2: Overall detection rate on the test database using the Viola and
Jones face detector with different cascades.

Figure 4.7 shows the detection rate of both detectors under different
lighting conditions. The accurate setup performed very good under all light-
ing conditions. The fast, less accurate setup also performs reasonably good,
it only performs slightly worse when using side lighting.

4.5 Discussion

In this chapter we compared a skin based face detector against the Viola
and Jones face detector. When using ambient or frontal lighting the skin
based face detector performs well. However when using side or back lighting
the skin segmentation often fails, making it very hard for the face detector
to determine the location of the face. Using complex face localization tech-
niques and possibly a better and more complex segmentation method this
problem could probably be solved (partially). But the main motivation to
choose the skin color technique was its simplicity. When adding complex

42 CHAPTER 4. FACE DETECTION EXPERIMENTS

Detection Rate Per Lighting Condition

0

10

20

30

40

50

60

70

80

90

100

Back/Top Side Ambient Front
Lighting Condition

D
et

ec
tio

n
R

at
e

(%
)

Philips Aachen
OpenCV

Cascade type

Figure 4.7: Detection rate of the Viola and Jones face detector using
different lighting conditions.

routines to the skin based face detector to improve the detection accuracy,
this simplicity is lost and the performance in terms of speed will drop.

The Viola and Jones algorithm proved to be robust under different light-
ing conditions. We were also able to implement a reasonable fast detector
(i.e. 4-5 frames per second) on the INCA+ while maintaining a high detec-
tion rate on our test set. The Viola and Jones method outperformed the
skin based method under all lighting conditions, even when the fast and less
accurate classifier was used. Furthermore the Viola and Jones method is
not constrained solely to face detection. The framework is able to learn and
detect other objects as well, only a different cascade needs to be trained. In
an embedded architecture with limited resources, such as the INCA+, it is
useful to have a single generic object detection framework, instead of several
implementations to detect various objects.

We decided, based on the great differences in performance and the ability
to learn other objects, to use the Viola and Jones face detector on the
INCA+. The only drawback of this method is that it is executed completely
on the TriMedia. It would be ideal if the Viola and Jones method could be
implemented on Xetal, or a similar SIMD processor. The following chapter
will discuss whether it is possible to adapt the algorithm to enable it to run
on Xetal.

Chapter 5

Viola And Jones Detector
On SIMD

The previous chapter showed that the Viola and Jones detector outperforms
the skin color based face detector. However this algorithm only makes use
of the sequential TriMedia processor and does not benefit at all from the
parallel processing power of the SIMD Xetal.

One of our objectives was to investigate the possibility to adapt the
chosen face detector so that it could run on the low-level Xetal processor.
Unfortunately during our research we found out that it was not possible
to implement the Viola and Jones detector on Xetal, simply because Xetal
lacks memory and processing power to do such a complex task. However
we still wanted to investigate whether it is possible to adapt the Viola and
Jones detector to a Xetal like SIMD processor. If it turns out to be possible
to create an SIMD version of the Viola and Jones detector, the detector
could run on possible future SIMD processors (e.g. the successor of Xetal).

Since the original Viola and Jones algorithm was designed for a sequential
processor, a number of modifications need to made in order to adapt the
Viola and Jones detector to an SIMD processor. These modifications are
presented in this chapter. First the sliding window principle is adapted
to SIMD. Subsequently we will discuss the usage of the integral image on
SIMD. Using the integral image for filter computation on SIMD is not always
feasible or possible (depending on the chosen SIMD architecture), therefore
Section 5.3 presents two alternative filter computation methods. Section 5.4
discusses lighting correction on SIMD. Section 5.5 will discuss detection at
multiple scales and Section 5.6 considers the use of the attentional cascade on
SIMD. We will conclude this chapter with a brief discussion on the presented
modifications.

43

44 CHAPTER 5. VIOLA AND JONES DETECTOR ON SIMD

Note that this chapter globally discusses the possibility to implement the
Viola and Jones detector on an SIMD processor. More detailed information
concerning the number of instructions and memory usage of the algorithm
under various SIMD architectures, can be found in Appendix A.

5.1 Sliding Windows

The face detector developed by Viola and Jones uses the sliding detection
window principle as mentioned in Chapter 3. The algorithm processes a
single detection window, slides to a next location and processes the window
again. When the attentional cascade is not used, exactly the same processing
is done for each detection window. Based on this principle we can exploit
SIMD parallelism. Assuming that we have an SIMD processor that operates
on a row of pixels1, each pixel can be considered as a possible detection
window location. If there are P processing elements and W pixels in a
row (i.e. W = image width), then P detection windows can be processed
at the same time. Processing a row is done in 1

P of the time it would
take for the normal sequential approach. In order to finish processing a
whole row of detection windows, each PE will have to process W

P detection
windows. For example, if W = 640 and P = 320, then there are 640 possible
detection window locations. Because P = 320, 320 detection windows can
be processed at the same time. Each PE will only have to process W

P = 2
detection windows, instead of 640. An example of this principle is presented
in Figure 5.1.

The theoretical maximum speedup is achieved when W = P , then the
algorithm is W -times faster. For example processing a 640×480 image using
the parallel SIMD approach with 640 PEs would take only 1/640 of the time
it would take for the normal sequential approach.

1 i.e. the same topology as the Xetal processor: a row of processing elements processing
a row of pixels. If for instance the image width is 640 pixels and there are 320 processors,
then each processor processes two columns of pixels. Other topologies are also possible
(i.e. a vertical layout, rings, stars or hypercubes), but these topologies are beyond the
scope of this thesis.

5.2. INTEGRAL IMAGE ON SIMD 45

1 W

image

(a) Normal

¼W1 W

PE 1 PE 2 PE 3 PE 4

image

½W ¾W

(b) SIMD

Figure 5.1: In (a) the ’normal’ sequential situation is depicted. The sliding
detection window processes a window, slides to the next location, processes
the window etc. In total W different detection window locations need to be
processed. On an SIMD processor all PEs process a detection window at the
same time as visualized in (b). In this example there are 4 PEs operating
on W pixels. Therefore the algorithm processes a row in 1/4 of the time it
would take for the normal sequential approach.

5.2 Integral Image On SIMD

Recall the integral image is defined as the sum of all pixels above and to the
left of point (x, y):

ii(x, y) =
x∑

j=0

y∑
k=0

I(j, k) (5.1)

where ii(x, y) is the value of the integral image at x, y and I(j, k) is the
value of the original image at (i, j). Viola and Jones rewrote this equation
into the following pair of recurrences:

r(x, y) = r(x, y − 1) + I(x, y) (5.2)
ii(x, y) = ii(x− 1, y) + r(x, y) (5.3)

where r(x, y) is the cumulative row sum, r(x,−1) = 0 and ii(−1, y) = 0.
Using these recurrences the value of the integral image at (x, y) can be
computed with only two lookups. The cumulative row sum can be computed

46 CHAPTER 5. VIOLA AND JONES DETECTOR ON SIMD

easily on an SIMD architecture: add the current image value I(x, y) to the
cumulative row sum of the row above r(x, y − 1). However the calculation
of Equation 5.3 is a problem since ii(x, y) requires the integral image value
of the left neighbor ii(x − 1, y) to be known. On an SIMD processor this
left value will only be known after the computation since all PEs execute
the same instructions at the same time. To solve this problem Equation 5.1
can be rewritten into the following equations:

c(x, y) =
x∑

j=0

I(j, y)

ii(x, y) = c(x, y) + c(x, y − 1)

where c(x, y) is the cumulative column sum2. Computing the cumulative
column sum is computationally relatively expensive as it requires the sum-
mation of a whole row of pixels instead of just a single lookup (see also
Section B.1.1). The integral image also consumes a lot of memory and
therefore it is not always feasible to use an integral image.

If the integral image is used, filters can be computed in the same fashion
as already explained in Section 3.5.2. However the number of instructions
that is required to compute the filter depends on the memory architecture
of the SIMD processor (e.g. fully or limited connected). More details on
this subject can be found in Appendix A.

5.3 Filter Computation Using Separable Filters

The previous section showed that computing the integral image on an SIMD
architecture is relatively expensive. Therefore this section presents two other
methods to compute a filter result. These methods are based on so-called
separable filters. Using these methods for filter computation saves the num-
ber of instructions required to compute the integral image. However filter
computation itself is computationally more expensive.

First we will give a brief introduction into separable filters. Subsequently
we will demonstrate how separable filters can be computed rapidly on an
SIMD architecture. Next we will show that the five filters used by Viola and
Jones are separable. We will conclude this section by showing that when
using the cumulative row sum, separable filters can be calculated even faster.

2 i.e. the opposite of the cumulative row sum: it is a row containing the summed
x-values. Again this term is rather ambiguous, but we used it to be consistent with Viola
and Jones’ definition of the cumulative row sum.

5.3. FILTER COMPUTATION USING SEPARABLE FILTERS 47

5.3.1 Introduction To Separable Filters

A separable filter is a filter such that it can be written into the following
form:

F (j, k) = Fx(j) · Fy(k) (5.4)

where Fx is a component of x-coefficients and Fy is a component of y-
coefficients. For example:

Fx =
[
−1 1

]
and Fy =

[
−1

1

]
Then filter F would be:

F =
[
−1 1

]
·
[
−1

1

]
=

[
1 −1
−1 1

]
Notice that this is not a matrix multiplication. Brackets are used to distin-
guish this multiplication from matrix multiplications. Unlike matrix multi-
plication this type of multiplication is commutative (xy ≡ yx) [7]:

F (j, k) = Fx(j) · Fy(k) ≡ Fy(j) · Fx(k)

It is easily shown that not every filter can be separated into two components:

F =

[
0 1
1 0

]
The above filter is impossible to separate into the two components Fx and
Fy. Setting one element of one of the components to 0 would result in the
whole row or column to be set to 0. This is in contradiction with F since
every column and row contains a 1.

5.3.2 Separable Filters On SIMD

The result of a two-dimensional filter applied on an image is defined as:

H(x, y) =
h−1∑
k=0

w−1∑
j=0

F (j, k) · I(x + j, y + k) (5.5)

where H(x, y) is the filter result at position (x, y), w and h are the width
respectively height of filter F , which is applied on image I. Computing
a two-dimensional filter result requires w × h instructions on a sequential
processor3. When F is separable we can substitute Equation 5.4 into Equa-
tion 5.5, yielding:

H(x, y) =
h−1∑
k=0

w−1∑
j=0

(Fy(k) · Fx(j)) · I(x + j, y + k)

3 A separable filter can be computed in w+h multiplications on an sequential processor,
however still w × h instructions are required to fetch all image values.

48 CHAPTER 5. VIOLA AND JONES DETECTOR ON SIMD

=
h−1∑
k=0

Fy(k)
w−1∑
j=0

Fx(j) · I(x + j, y + k) (5.6)

Since this type of multiplication is commutative also the following equation
is true:

H(x, y) =
w−1∑
j=0

h−1∑
k=0

(Fx(j) · Fy(k)) · I(x + j, y + k)

=
w−1∑
j=0

Fx(j)
h−1∑
k=0

Fy(k) · I(x + j, y + k) (5.7)

We can rewrite Equation 5.6 and Equation 5.7 into:

H(x, y) =
h−1∑
k=0

Fy(k) ·Hx(x, y + k) (5.8)

H(x, y) =
w−1∑
j=0

Fx(j) ·Hy(x + j, y) (5.9)

where:

Hx(x,m) =
w−1∑
j=0

Fx(j) · I(x + j,m) (5.10)

Hy(n, y) =
h−1∑
k=0

Fy(k) · I(n, y + k) (5.11)

Equation 5.9 is especially useful in an SIMD environment since every PE in
the LPA can compute Hy at the same time, as visualized in Figure 5.2. The
computation of Hy by all PEs consumes h instructions4 and will result in a
one-dimensional array of results. To obtain the final filter result H, the x-
component is applied on these results consuming w instructions. Therefore
computing the filter result of a two-dimensional separable filter takes w + h
instructions on an SIMD architecture, while it would take w×h instructions
on a sequential architecture.

4 Assuming that every PE processes one column (i.e. the image width (in pixels) is
equal to the number of PEs). If the number of PEs is smaller, the number of instructions
will be larger.

5.3. FILTER COMPUTATION USING SEPARABLE FILTERS 49

Fy

imagePE 1 PE n

PE 1 PE n
Σ

Hy(0, y) Hy(n-1, y)

Figure 5.2: Applying a vertical filter on an image using SIMD. The vertical
filter Fy is applied on the image by all PEs at the same time. Subsequently
the results are summed together to form a one-dimensional array of results.

5.3.3 Separable Viola And Jones Filters

This section will demonstrate that the filters used by Viola and Jones are
separable into an x- and y component. We can create the filters by using
the following components:

Fx1(j) = 1

Fx2(j) =

{
1 if 0 ≤ j ≤ 1

2w − 1
−1 if 1

2w ≤ j ≤ w − 1

Fx3(j) =

1 if 0 ≤ j ≤ 1

3w − 1
−1 if 1

3w ≤ j ≤ 2
3w − 1

1 if 2
3w ≤ j ≤ w − 1

Fy1(k) = 1

Fy2(k) =

{
−1 if 0 ≤ k ≤ 1

2h− 1
1 if 1

2h ≤ k ≤ h− 1

Fy3(k) =

1 if 0 ≤ k ≤ 1

3h− 1
−1 if 1

3h ≤ k ≤ 2
3h− 1

1 if 2
3h ≤ k ≤ h− 1

where Fx1 and Fy1 are identity components (i.e. always 1). Using these
components, the five Viola and Jones filters are defined as follows:

Fh edge(j, k) = Fx1(j) · Fy2(k)
Fv edge(j, k) = Fx2(j) · Fy1(k)
Fh line(j, k) = Fx1(j) · Fy3(k)
Fv line(j, k) = Fx3(j) · Fy1(k)
Fdiag(j, k) = Fx2(j) · Fy2(k)

50 CHAPTER 5. VIOLA AND JONES DETECTOR ON SIMD

This is visualized in Figure 5.3.

Fx1

Fy2

(a) Fh edge

Fx2

Fy1

(b) Fv edge

Fx1

Fy3

(c) Fh line

Fx3

Fy1

(d) Fv line

Fx2

Fy2

(e) Fdiag

Figure 5.3: Viola and Jones filters separated into an x- and y-component.

5.3.4 Cumulative Row Sum

When looking at the five separable Viola and Jones filters, defined in the
previous section, it can be observed that the y-component can either be Fy1,
Fy2 or Fy3. As explained in the Section 5.3.2 computing Hy normally takes
h instructions. This section will demonstrate that the computation of Hy1,
Hy2 and Hy3 can be performed in much less instructions when using the
cumulative row sum. Recall the cumulative row sum is defined as:

r(x, y) =
y∑

k=0

I(x, k) (5.12)

and its recursive version is easily implemented on SIMD as already men-
tioned in Section 5.2. Hy1 is defined as:

Hy1(n, y) =
h−1∑
k=0

Fy1(k) · I(n, y + k) (5.13)

Since Fy(k) = 1 for all k, Equation 5.13 can be rewritten into:

Hy1(n, y) =
h−1∑
k=0

I(n, y + k) (5.14)

Under the assumption that I(x,−1) = 0, we can rewrite Equation 5.14 into
the following form:

Hy1(n, y) =
y+h−1∑

k=0

I(n, k)−
y−1∑
k=0

I(n, k) (5.15)

when combining this equation with the definition of the cumulative row sum
this equals:

Hy1(n, y) = r(n, y + h− 1)− r(n, y − 1) (5.16)

5.4. IMAGE NORMALIZATION ON SIMD 51

Therefore computing Hy1 consumes 1 instruction (1 subtraction) instead of
h. This is visualized in Figure 5.4(a). Using this approach we can also
rewrite Hy2 and Hy3:

Hy2(n, y) =
(

r(n, y + h− 1)− r(n, y +
1
2
h− 1)

)
−(

r(n, y +
1
2
h− 1)− r(n, y − 1)

)
Computing Hy2 consumes 3 instructions (3 subtractions) as visualized in
Figure 5.4(b).

Hy3(n, y) =
(

r(n, y + h− 1)− r(n, y +
2
3
h− 1)

)
−(

r(n, y +
2
3
h− 1)− r(n,

1
3
y − 1)

)
+(

r(n, y +
1
3
h− 1)− r(n, y − 1)

)
Computing Hy3 consumes 5 instructions (4 subtractions and 1 addition) as
visualized in Figure 5.4(c).

We have shown that on an SIMD architecture the Viola and Jones fil-
ters can be computed in w + 1, w + 3 or w + 5 instructions, when using
the cumulative row sum. Using the cumulative row sum can speed up filter
computation on SIMD significantly. A drawback of the usage of the cumu-
lative row sum is the memory consumption to store the cumulative row sum
values. Furthermore it only works with binary filters where the coefficients
of the components are either 1 or -1, separable filters on the other hand can
have coefficients of any value5.

5.4 Image Normalization On SIMD

Viola and Jones normalized the image during detection by post multiplying
the filter results by the standard deviation σ of the image in the detector
window. Viola and Jones compute the standard deviation of the pixel values
in the detection window by using the following equation:

σ =
√

µ2 − 1
N

∑
x2 (5.17)

where µ is the mean, x is the pixel value and N is the total number of
pixels inside the detection window. The mean can be computed by com-
puting the pixelsum of the detection window, using the integral image. To

5 This allows the usage of more complex filters at a slight computational expense. More
information on complex filters is presented in Chapter 6.2

52 CHAPTER 5. VIOLA AND JONES DETECTOR ON SIMD

r(n, y+h-1)

r(n, y-1)

h-

(a) Computing Hy1

r(n, y+h-1)

— ½h

½h

r(n, y-1)

r(n, y+½h-1)

-

-
-

(b) Computing Hy2

Fy3

r(n, y+h-1)

r(n, y-1)

r(n, y+⅓h-1)

—

⅓h

⅓h

⅓hr(n, y+⅔h-1)
-

-

-

-

+

(c) Computing Hy3

Figure 5.4: Computing Hy1 consumes one subtraction. Computing Hy2

consumes 3 subtractions and Hy3 4 subtractions and 1 addition.

calculate
∑

x2, Viola and Jones use a squared integral image, which is an
integral image only with squared image values. Computing σ requires eight
instructions for the lookups.

If it is possible to use the integral image on an SIMD architecture, this
approach for lighting correction can be adopted. However the number of
instructions to compute σ might be larger than the eight lookups, depending
on the configuration of the architecture (see Appendix A).

We can also compute σ by using a separable filter. If we create an identity
filter : Fid = Fx1 · Fy1, and apply it on an image it returns the pixelsum of
the area:

Hid(x, y) =
w−1∑
j=0

Fx1(j)
h−1∑
k=0

Fy1(k) · I(x + j, y + k)

=
w−1∑
j=0

h−1∑
k=0

I(x + j, y + k)

= pixelsum(x, y, w, h)

5.5. DETECTION AT MULTIPLE SCALES ON SIMD 53

The computation of this separable filter consumes w + h instructions on an
SIMD architecture. We can also use the cumulative row sum to compute
the identity filter. In that case computing the pixelsum consumes w + 1 in-
structions. To compute the squared pixelsum,

∑
x2, we can use the squared

identity filter :

H2
id(x, y) =

w−1∑
j=0

Fx1(j)
h−1∑
k=0

Fy1(k) · I2(x + j, y + k)

=
w−1∑
j=0

h−1∑
k=0

I2(x + j, y + k)

Computing this filter consumes w + 2h instructions. If we use a squared
cumulative row sum6, the squared pixelsum can be computed in w + 1 in-
structions.

Therefore lighting correction on an SIMD processor consumes a mini-
mum of 8 instructions and maximum of (w + h) + (w + 2h) = 2w + 3h per
detection window. The actual number of instructions depends on the chosen
SIMD architecture.

5.5 Detection At Multiple Scales On SIMD

To detect faces at multiple scales Viola and Jones scale up the detection
window instead of using the image pyramid approach like for instance Row-
ley et. al. use. The big advantage of the system of Viola and Jones is that
processing a single detection window is done in constant time independent
of the scale and position of the detection window. Scaling up the detection
window rather than scaling down the original image is therefore a logical
choice.

However as previous sections have shown, filters are not always computed
in constant time on an SIMD architecture. For instance the number of in-
structions to compute a separable filter depends on the width and height
of the filter. Scaling up the filter yields an increase in the number of in-
structions. To ensure a constant processing time per detection window, we
would have to consider the usage of the image pyramid for SIMD architec-
tures that cannot process a detection window in constant time. There is no
telling which of the two approaches is the best, it depends on the chosen
architecture. More details can be found in Appendix A.

6 r2(x, y) =
∑y

k=0
I(x, k)2 = r2(x, y − 1) + I(x, y)2

54 CHAPTER 5. VIOLA AND JONES DETECTOR ON SIMD

5.6 Attentional Cascade On SIMD

The attentional cascade as mentioned in Section 3.5.6 was proposed by Vi-
ola and Jones in order to reduce the number of evaluations per detection
window. The idea is to use simple classifiers in the first stages to reject the
majority of the detection windows, before using more complex classifiers in
later stages to achieve low false positive rates.

In our SIMD approach such a cascade can not be used. As mentioned
in Section 5.1 the SIMD approach does not process a single sliding window
at a time but it processes multiple detection windows at once. When one of
the detection windows contains a face, the detector has to process through
the whole cascade in order to determine that. But since multiple detection
windows at processed once, also the detection windows containing non faces
have to process through the whole cascade, rendering the cascade useless.

Therefore our SIMD approach does not use the attentional cascade but
it uses a single monolithic strong classifier instead. Viola and Jones trained
such a monolithic strong classifier containing 200 weak classifiers and they
reported results that were better than when using a 10 stage cascade con-
taining 20 weak classifiers per stage [46].

5.7 Discussion

In this chapter we demonstrated that it is possible to adapt the Viola and
Jones detector to an SIMD architecture. Because multiple detection win-
dows are processed at the same time, the SIMD version of the algorithm
could theoretically be much faster than the original sequential version.

Filter computation and lighting correction can be performed using three
different methods: using the integral image, using separable filters and using
the cumulative row sum. Because of the great differences between various
SIMD architectures (e.g. fully or limited connected, number of PEs etc.)
there is no telling which of these methods is the best. If for instance the
algorithm runs very fast on a fully connected architecture using one method,
it could very well run slow on a limited connected architecture using the same
method.

We showed that it is useless to use the attentional cascade on an SIMD
architecture. Therefore a single monolithic strong classifier is required. In
order to speed up the detection, the number of weak classifiers contained
in this strong classifier should be as low as possible, while maintaining a
high performance. The next chapter will present two methods which could
reduce the number of weak classifiers significantly.

Chapter 6

Weak Classifier
Improvements

As demonstrated in the previous chapter, it is possible to adapt the Viola
and Jones algorithm to an SIMD architecture. However as the attentional
cascade cannot be used, every weak classifier contained in the strong clas-
sifier needs to be checked for each detection window. Therefore we need to
search for methods that reduce the number of weak classifiers significantly.

This chapter will present two methods that improves the performance
of weak classifiers. When the individual weak classifiers perform better, the
total number of weak classifiers in the strong classifier could be smaller to
achieve the same performance.

The first improvement, presented in Section 6.1, demonstrates that using
multiple thresholds for the weak classifier can improve the performance of the
weak classifier significantly. In Section 6.2 the weak classifiers contain more
complex filters than the simple Haar-like filter used by Viola and Jones.
It demonstrates the effectiveness of these filters and how they could be
implemented on an SIMD architecture.

6.1 Multiple Threshold Weak Classifiers

In the original AdaBoost algorithm a number of single filter weak classifiers
are trained per strong classifier. Recall the weak classifier as it is used by
Viola and Jones (see Section 3.5):

hj(x) =

{
1 if pjfj(x) < pjθj

0 otherwise
(6.1)

where fj is the filter, θj is the threshold, pj is the parity which indicates
the direction of the equality sign as shown in Figure 6.1, and x is the input
image. For each weak classifier hj an optimal threshold θj and a parity
pj are determined such that a minimum of positive and negative examples

55

56 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

pj = + 1

positives

θj

negatives

(a) pj = +1

pj = - 1

θj

negatives
positives

(b) pj = −1

Figure 6.1: The effect of parity pj . In (a) the majority of the positive
examples lie left of threshold θj , thus hj(x) = 1 if fj(x) < θj and pj = +1.
In (b) the majority of the positive examples lie right of threshold θj , thus
hj(x) = 1 if fj(x) > θj ≡ −fj(x) < −θj and pj = −1.

are misclassified [46]. Therefore the probability of making an error (mis-
classification) should be minimal. According to Bayes decision theory the
probability of making an error is defined as:

p(error) = p(error|ωp)p(ωp) + p(error|ωn)p(ωn)

where ωp is the positive (face) class, ωn the negative (non-face) class and

p(error|ωp) =
∫
Ωn

p(x|ωp)dx and p(error|ωn) =
∫
Ωp

p(x|ωn)dx

where Ωp defines a positive range and Ωn defines a negative range as visual-
ized in Figure 6.2. Both the positive and negative examples are normalized:∫ ∞

−∞
p(x|ωp)p(ωp)dx =

∫ ∞

−∞
p(x|ωn)p(ωn)dx = 1 .

Because nothing can be said about the a priori probabilities p(ωp) and
p(ωn), there is no predetermined probability that an image is a face or not1,
we assume that p(ωp) = p(ωn) = 1

2 . The probability of making an error is
then defined as:

p(error) =
p(error|ωp) + p(error|ωn)

2
(6.2)

1 In the “real world” the a priori probability of a facial image is much lower than
the a priori probability of a nonface image. It would be an interesting research topic to
investigate the performance of a weak classifier when a lower a priori probability of the
positive facial images is chosen, however this is beyond the scope of this thesis.

6.1. MULTIPLE THRESHOLD WEAK CLASSIFIERS 57

p(x|ωp)

θjΩp Ωn

p(x|ωn)

p(error|ωn) p(error|ωp)

Figure 6.2: The errors p(error|ωp) and p(error|ωn).

And this error is minimal at when the threshold θ is placed at the crossing
point of the positive and negative examples (Bayes classifier). Thus when:

p(x|ωp)p(ωp) = p(x|ωn)p(ωn)
p(ωp)=p(ωn)⇐⇒

p(x|ωp) = p(x|ωn) (6.3)

If the positive and negative examples can be well separated into two areas
as shown in Figure 6.2, a single threshold combined with a parity ensures
the lowest possible error. However this makes the assumption that the dis-
tribution of positive and negative examples is restricted to identical classes
(e.g. the distribution of positive and negative examples can be modeled with
a Gaussian with equal µ and σ). However if the classes are not identical
as shown in Figure 6.3, more than one threshold is required to ensure the
lowest error. Using a single threshold therefore does not always result in the
lowest possible error, and this could influence the performance of the weak
classifier and therefore also the performance of the final strong classifier.

We developed an algorithm that uses multiple thresholds to overcome
this dilemma. First the following definitions are made:

P (Ωi,j) =

∫ θj

θi
p(x|ωp)p(ωp)dx∫∞

−∞ p(x|ωp)p(ωp)dx
× 100% (6.4)

N(Ωi,j) =

∫ θj

θi
p(x|ωn)p(ωn)dx∫∞

−∞ p(x|ωn)p(ωn)dx
× 100% (6.5)

where Ωi,j defines a range enclosed between the two thresholds: θi and θj ,
i ≤ j. P (Ωi,j) and N(Ωi,j) thus represent the percentage of positive and
negative examples in range Ωi,j respectively. A range Ωi,j is defined as
positive if P (Ωi,j)−N(Ωi,j) > 0, negative otherwise.

Using these definitions we present our algorithm in Table 6.1. If thresh-
olds are placed at every crossing point between the positive and negative

58 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

θj

p(x|ωp)p(ωp)
p(x|ωn)p(ωn)

p(error)

N1

(a) pj = +1

θj

p(x|ωp)p(ωp)
p(x|ωn)p(ωn)

p(error)

N2

(b) pj = −1

Figure 6.3: The single threshold dilemma. No matter how the threshold
θj and parity pj are set, they cannot prevent the negative examples N1 or
N2 from being included, yielding a higher p(error).

examples, the lowest error is ensured (Bayes classifier). However when the
distribution of positive and negative examples fluctuates a lot, this will re-
sult in an impractical amount of thresholds. In order to reduce the amount
of thresholds we introduce value T . For a range Ωi,j to appear in the set
of output ranges R, P (Ωi,j) − N(Ωi,j) should be larger than T . This is
visualized in Figure 6.4.

1. Create an empty set of output ranges R = {}.

2. Apply a filter fj on all positive and negative samples to create a filter output
distribution of positive and negatives examples.

3. Place thresholds at all crossing points of the positive and negative examples (Bayes
classifier). If C thresholds are placed, C + 1 ranges will be defined.

4. Find a single positive range Ωi,j for which:

• P (Ωi,j)− N(Ωi,j) > T , where T ≥ 0.

• P (Ωi,j)− N(Ωi,j) is maximal.

• range Ωi,j does not overlap with any of the ranges in R.

5. If such a range Ωi,j exists, add it to the set of output ranges R, and goto step 4.
Else goto step 6.

6. Expand all positive ranges by merging each positive range with adjacent ranges
and goto step 4. If none of the positive ranges can be further expanded and no
more range can be added to R, stop.

Table 6.1: Placing the multiple thresholds.

6.1. MULTIPLE THRESHOLD WEAK CLASSIFIERS 59

θ3θ1

p(x|ωn)p(ωn)

p(x|ωp)p(ωp)

Ω1,2

–∞ +∞θ2 θ4

Ω3,4

(a)

θ1

p(x|ωn)p(ωn)

p(x|ωp)p(ωp)

Ω1,2

–∞ +∞θ2

(b)

Figure 6.4: Expanding the positive ranges to reduce the number of thresh-
olds. In (a) thresholds are placed at every crossing point between the positive
and negative examples (Bayes classifier). Therefore the total error (dark grey
area) is as low as possible. The light grey areas represent the positive ranges.
To reduce the number of thresholds we introduce the value T . Suppose we
choose a value T and P (Ω1,2) − N(Ω1,2) ≤ T and P (Ω3,4) − N(Ω3,4) ≤ T .
Then our algorithm expands the ranges (step 6) and find the range Ω1,4 and
P (Ω1,4)−N(Ω1,4) > T . Now two thresholds are removed at the expense of
a slight increase of the total error.

The original threshold weak classifier (Equation 6.1) can be rewritten
into a multiple threshold form as follows:

hj(x) =

{
1 if ∃Ωk,m ∈ R such that fj(x) ∈ Ωk,m

0 otherwise
(6.6)

When looking at Figure 6.5, we can define the error (in %) for the positive
and negative class as follows:

p(error|ωp) = 100−
||R||∑
i=1

P (R[i])

p(error|ωn) =
||R||∑
i=1

N(R[i])

Using these definitions and Equation 6.2 we can compute the total error,
p(error), for the multiple threshold classifier.

60 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

θ2θ1

p(x|ωn)p(ωn)

p(x|ωp)p(ωp)
100 – P(Ω1, 2)

Ω1,2

–∞ +∞

N(Ω1, 2)

Figure 6.5: The total error p(error) of the multiple threshold weak classi-
fier.

6.1.1 Experiments And Results

To compare the performance of the multiple threshold weak classifier against
the single threshold weak classifier, we set up two experiments. The first
experiment was used to determine the optimal T for the multiple threshold
weak classifier. The second experiment will then compare results of the
multiple threshold weak classifier using this optimal T against the original
single threshold weak classifier.

In both experiments we used the MIT+CBCL [2] frontal face database
for the training and test data. This database contains a training set, with
2429 faces and 4548 non-faces, and a test set with 472 faces and 23 573 non-
faces. All images are cropped and rescaled to a size of 19 × 19 pixels. We
manually normalized the contrast of the images to minimize the effect of
different lighting conditions.

6.1. MULTIPLE THRESHOLD WEAK CLASSIFIERS 61

Determining T

In order to determine the optimal T , we tested the following eight values
for T : 0.05%, 0.1%, 0.5%, 1%, 5%, 10%, 20% and 30%. For each different
value, 10 strong classifiers were trained. The number of weak classifiers in a
strong classifier was set to 50. Each boosting round the weak classifier with
the lowest error rate was selected from a pool of 200 random weak classifiers.
A fixed random seed was used to ensure that the exact same random weak
classifiers were generated and evaluated for all tests.

The average performance of the strong classifiers on the training data
and test data is presented in Table 6.2.

T (%) DR Train FPR Train DR Test FPR Test # Thr.

0 100 ±0.03 0.22 ±0.08 64.3 ±2.5 0.98 ±0.18 167 ±6.5

0.05 100 ±0.03 0.20 ±0.09 65.5 ±3.7 0.66 ±0.14 77.7 ±31

0.1 99.9 ±0.08 0.44 ±0.13 66.1 ±7.5 0.62 ±0.09 33.3 ±9.9

0.5 99.7 ±0.13 0.54 ±0.16 67.0 ±5.8 0.54 ±0.13 6.1 ±8.7

1 99.7 ±0.13 0.43 ±0.10 69.1 ±5.1 0.41 ±0.10 2.9 ±0.12

5 99.7 ±0.13 0.51 ±0.09 70.4 ±6.0 0.53 ±0.10 2.7 ±0.10

10 99.7 ±0.16 0.57 ±0.16 75.5 ±4.3 0.58 ±0.11 2.6 ±0.09

20 99.0 ±0.28 0.89 ±0.20 66.9 ±5.6 0.66 ±0.17 2.2 ±0.15

30 98.2 ±0.40 1.02 ±0.19 59.3 ±6.6 0.79 ±0.09 2.0 ±0.04

Table 6.2: Average performance of the multiple threshold weak classifier
experiments using different T settings. DR is the detection rate and FPR is
the false positive rate, both measured in percentages. # Thr. is the average
number of thresholds.

When looking at Table 6.2 the following observations can be made:

• When T is chosen too small (e.g. ≤ 0.05) the performance of the final
strong classifier on the training data is maximal: 100% detection rate
and the lowest false positive rate. However the performance on the test
data is better when a larger T is chosen. This could be an indication
of a better generalization. When T is chosen too small an impractical
amount of thresholds needs to be checked.

• When T is chosen too large (e.g. ≥ 20%) the performance of the final
strong classifier on the test data will be worse than when a lower T is
chosen. T was introduced to reduce the number of thresholds, but a
value of T ≥ 20% means that the difference between the percentage
of positive examples and negative examples is ≥ 20%. Filters that
are able to realize such a high difference between the positive and
negative examples are usually small filters that tend to focus on small
high variance spots (e.g. noise). These small filters are very poor in
generalization and therefore the performance drops when T is set too
large.

62 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

Our optimal value T was chosen by applying the following criterions:

1. The average number of thresholds should not exceed 4, otherwise an
impractical amount of thresholds needs to be checked for each weak
classifier.

2. The false positive rate on the test data should be the lowest.

In this case the lowest false positive rate was found when T = 1%. Note
that other criterions can also be chosen, for example another criterion could
be the highest detection rate on the test data. In that case T = 10% would
be the optimal value.

Comparing Single And Multiple Threshold Weak Classifiers.

In the second experiment we trained 20 strong classifiers using the origi-
nal single threshold weak classifier, and 20 strong classifiers using multiple
threshold weak classifiers with the optimal value T = 1%. The number of
weak classifiers in the strong classifiers was set to 50. Each boosting round
the weak classifier with the lowest error rate was selected from a pool of 500
random weak classifiers. The average performance of the single and multiple
threshold approaches are displayed in the figures on the following pages.

6.1. MULTIPLE THRESHOLD WEAK CLASSIFIERS 63

Detection Rate On Test Data

40

45

50

55

60

65

70

75

80

1 6 11 16 21 26 31 36 41 46

Number Of Weak Classifiers

D
et

ec
tio

n
R

at
e

(%
)

Single Threshold
Multiple Thresholds; T = 1 %

(a)

False Positive Rate On Test Data

0

2

4

6

8

10

12

1 6 11 16 21 26 31 36 41 46

Number Of Weak Classifiers

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

Single Threshold
Multiple Thresholds; T = 1 %

(b)

Figure 6.6: Detection rate and false positive rate on test data using single
and multiple threshold weak classifiers. When using multiple threshold weak
classifiers the detection rate is always higher than when using single thresh-
old weak classifiers. When using 7 multiple threshold weak classifiers, the
detection rate is already higher than when using 50 single threshold weak
classifiers. More importantly the false positive rate on the test set converges
much faster towards zero. When using 20 multiple threshold weak classifiers,
both the detection rate and the false positive rate are better than when us-
ing 50 single threshold weak classifiers. A reduction in number of classifiers
of 250%.

64 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

Detection Rate On Training Data

50

55

60

65

70

75

80

85

90

95

100

1 6 11 16 21 26 31 36 41 46

Number Of Weak Classifiers

D
et

ec
tio

n
R

at
e

(%
) Single Threshold

Multiple Thresholds; T = 1 %

(a)

False Positive Rate On Training Data

0

2

4

6

8

10

12

14

16

1 6 11 16 21 26 31 36 41 46

Number Of Weak Classifiers

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

Single Threshold
Multiple Thresholds; T = 1 %

(b)

Figure 6.7: Detection rate and false positive rate on training data using
single and multiple threshold weak classifiers. The detection rate is only
slightly higher when using a strong classifier containing multiple threshold
weak classifiers. The false positive rate however converges much faster to-
wards zero when using multiple thresholds. Notice that when using multiple
threshold weak classifiers the oscillations in detection rate and false positive
rate are more damped, an indication of a more stable learner.

6.1. MULTIPLE THRESHOLD WEAK CLASSIFIERS 65

AdaBoost Error During Training

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

1 6 11 16 21 26 31 36 41 46

Number Of Weak Classifiers

Er
ro

r

Single Threshold
Multiple Thresholds; T = 1 %

Figure 6.8: The AdaBoost error εt during training using single and multiple
threshold weak classifiers. This figure shows that the AdaBoost error is
much lower when using multiple threshold weak classifiers. An indication of
a better generalizing weak classifier (i.e. it makes fewer mistakes).

The previous figures demonstrated better results in terms of detection
rate and false positive rate, on both training and test set, when using the
multiple threshold weak classifiers. To further compare the two approaches,
we computed an ROC curve of each strong classifier. We can compute an
ROC curve by adjusting the threshold θ of the strong classifier from 0 to 1
(see Equation 3.7). The averaged ROC curves of the strong classifiers using
single and multiple threshold weak classifiers are displayed in Figure 6.9.

6.1.2 Discussion

In this section we proposed the idea to use multiple threshold weak classifiers
instead of using the single threshold classifiers as used by Viola and Jones.
We showed that the performance in terms of detection rate and false positive
rate is much better when using multiple threshold weak classifiers. Using
this approach might reduce the number of weak classifiers in the final strong
classifier significantly at the expensive of a few extra threshold evaluations.
The preliminary results look promising, however we should stress that more
research is required to obtain the final results. We only used a single facial
database with relatively few examples, 2429 positives and 4548 negatives,
as compared to the number of examples Viola and Jones use: 4916 positives
and 10 000 negatives combined with a bootstrapping algorithm. What the
effect of the multiple threshold classifier will be when using other facial
databases will have to be determined.

66 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

Average ROC Curves Of The Strong Classifiers Using Single or
Multiple Threshold Weak Classifiers

50

55

60

65

70

75

80

85

90

95

100

0.1 1 10 100
False Positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

Single Threshold

Multiple Thresholds

Figure 6.9: The averaged ROC curves of the strong classifiers using single
and multiple threshold weak classifiers. Notice that the x-axis is presented
in log domain. This better visualizes the difference between the two curves.

6.2 The Effect Of More Complex Filters

In this section we will introduce two new filter sets. These filters are more
complex than the original filters used by Viola and Jones. We will determine
whether these filters are more effective in the face detection task. If they
are, the number of weak classifiers might be reduced significantly.

First we will introduce a slightly more complex filter set based on the
original Viola and Jones filters. Next we will introduce a complex filter set
based on separable Gabor filters. In Section 6.2.3 we setup an experiment
to test the performance of these complexer filter sets when used for the face
detection task. We will conclude this section with a brief discussion on the
performance of the complex filters.

6.2. THE EFFECT OF MORE COMPLEX FILTERS 67

6.2.1 Extended Viola And Jones Filters

Part of our research focused on the question whether more complex Haar-
like filters would increase the performance of the weak classifier. Therefore
we decided to enrich the original filter set used by Viola and Jones with
three new filters as shown in Figure 6.10. The three new filters are:

Fx2y3(j, k) = Fx2(j) · Fy3(k)
Fx3y2(j, k) = Fx3(j) · Fy2(k)
Fx3y3(j, k) = Fx3(j) · Fy3(k)

These filters are build of the same components as the original Viola and
Jones filters, therefore they can be computed fast using the cumulative row
sum (as explained in Section 5.3.4).

Figure 6.10: The extended Viola and Jones set used in our experiment.

6.2.2 Gabor Filters

Gabor filters, designed by Dennis Gabor [14], are known for their image or
information compaction capabilities. They have been used in image pro-
cessing applications such as texture segmentation [12], face recognition [47],
fingerprint recognition [17] and other areas. The use of Gabor filters is also
biologically motivated since the receptive fields of so called simple cells in
the primary visual cortex of mammals can be approximated with Gabor
functions [32]. The original complex one-dimensional Gabor filter is a mod-
ulation of a normalized Gaussian kernel and a complex term [14, 51]:

g(t|σ, f) =
1√
2πσ

e
−t2

2σ2︸ ︷︷ ︸
Gaussian envelope

· ei2πft︸ ︷︷ ︸
Modulation term

(6.7)

where f is the frequency of the sinusoidal plane wave.
In this section we will try to determine whether the usage of Gabor filters

as filters for our face detection method will improve the performance of the
detector.

68 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

2-D Gabor Filters

Daugman extended the 1-D Gabor filter to model the spatial summation
properties (of the receptive fields) of simple cells in the visual cortex of
mammals, to the following 2-D form [11, 17]:

G(x, y|σ′x, σ′y, f, θ) = e
− 1

2
(x′2

σ′2x
+ y′2

σ′2y
)
· ei2πfx′ (6.8)

x′ = x sin θ + y cos θ (6.9)
y′ = x cos θ − y sin θ (6.10)

where f is the frequency of the sinusoidal plane wave along the direction θ
with respect to the x-axis. σ′2x and σ′2y are the standard deviations of the
Gaussian envelope along the x′ and y′ axes respectively. A representation of
even (real) and odd (complex) 2-D Gabor filters is presented in Figure 6.11.

(a) Even 2-D Gabor Filters (b) Odd 2-D Gabor Filters

Figure 6.11: A representation of even an odd 2-D Gabor filters using
different orientations and frequency values (taken from [21]).

6.2. THE EFFECT OF MORE COMPLEX FILTERS 69

Separable 2-D Gabor Filters

To be able to use the 2-D Gabor filters on an SIMD architecture, the filters
need to be separable (see Section 5.3.2). The 2-D Gabor filter as defined in
Equation 6.8 can only be separated when there is no dependency between
x and y. Using Equation 6.16 and 6.16 it is seen that this is only the case
when θ = {0, 1

2π, π, 11
2π} (i.e. the filter is horizontal or vertical). If θ = 0

or π then x′ = y and y′ = x. Equation 6.8 can then be rewritten as follows:

G(x, y|σx, σy, f, θ{0,π}) = e
− 1

2
(x2

σ2
x

+ y2

σ2
y

)
· ei2πfy (6.11)

G(x, y|σx, σy, f, θ{0,π}) = e
− x2

2σ2
x︸ ︷︷ ︸

Gauss

·
(

e
− y2

2σ2
y · ei2πfy

)
︸ ︷︷ ︸

1-D Gabor

(6.12)

Equation 6.12 is of the form F (x, y) = Fx(x) · Fy(y), Fx being a Gaussian
envelope and Fy being the original 1-D Gabor filter as defined in Equation 6.7
(without the normalization factor). Equation 6.12 is called the horizontal
2-D Gabor filter.

If θ = 1
2π or 11

2π then x′ = ±x and y′ = ±y, then Equation 6.8 can be
rewritten as follows:

G(x, y|σx, σy, f, θ{ 1
2
π,1 1

2
π}) = e

− 1
2
(x2

σ2
x

+ y2

σ2
y

)
· ei2πf ·(±x) (6.13)

G(x, y|σx, σy, f, θ{ 1
2
π,1 1

2
π}) =

(
e
− x2

2σ2
x · ei2πf ·(±x)

)
︸ ︷︷ ︸

1-D Gabor

· e
− y2

2σ2
y︸ ︷︷ ︸

Gauss

(6.14)

Equation 6.14 is of the form F (x, y) = Fx(x) · Fy(y), Fx being a Gaussian
envelope and Fy being the original Gabor filter as defined in Equation 6.7.
Equation 6.14 is called the vertical 2-D Gabor filter.

We showed that it is possible to separate the 2-D Gabor filter in two
components. It poses however a restriction on the orientation θ of the filter:
only horizontal and vertical variants can be used. The set of separable Gabor
filters we used in our experiments is shown in Figure 6.12.

70 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

(a) Even 2-D Gabor Filters (b) Odd 2-D Gabor Filters

Figure 6.12: The horizontal and vertical 2-D Gabor filters. In (a) an
ensemble of horizontal and vertical even 2-D Gabor filters are presented. In
(b) the odd filters are presented. Five different frequencies are displayed,
from left to right: f = 0.5, 1, 2, 3 and 4. These values were used in our
experiments.

2-D Combination Gabor Filters

We can only use the horizontal and vertical variants of the 2-D Gabor filter
and this could pose a severe constraint on the ability to learn rotated features
in the image. Therefore we created a 2-D combination filter that modulates
the 1-D Gabor filter with another 1-D Gabor filter, rather than with a
Gaussian. The original 2-D Gabor filter is rewritten into its 2-D combination
form as follows:

Gc(x, y|σ′x, σ′y, f, θ) = e
− 1

2
(x′2

σ′2x
+ y′2

σ′2y
)
· ei2πf(x′+y′) (6.15)

x′ = x sin θ + y cos θ

y′ = x cos θ − y sin θ

Again only the horizontal and vertical variants can be used. This set
of 2-D Gabor combination filters will produce diagonal squared filters that
closely resemble to the diagonal Haar-like filter used by Viola and Jones (see
Figure 6.13). Viola and Jones added the diagonal filter to their set of filters
in order to be able to focus on diagonal parts of the image. By adding these
2-D Gabor combination filters to the set of separable 2-D Gabor filters, we
hope to enrich the set with filters that are able to focus on diagonal aspects
of the image.

Computing Separable Gabor Filters On SIMD

Because the 2-D Gabor filters and 2-D Combination Gabor filters are separa-
ble, they can be easily computed on an SIMD architecture (see Section 5.3.2).
However the cumulative row sum, which is used to speed up filter compu-
tation, cannot be used as the cumulative row sum requires binary separable
filters (with coefficients -1 or 1).

6.2. THE EFFECT OF MORE COMPLEX FILTERS 71

Figure 6.13: 2-D Combination Gabor Filters. We created a 2-D combi-
nation filter that modulates the 1-D Gabor filter with another 1-D Gabor
filter in order to produce diagonal squared filters. The top row shows the
even combination filters that are created by applying an even Gabor func-
tion on both the x and y-axes. The bottom row shows the odd combination
filters which are created by applying an odd Gabor function on both axes.
Note that the second filter on the bottom row closely resembles the diagonal
Haar-like filter as used by Viola and Jones. Five different frequencies are
displayed, from left to right: f = 0.5, 1, 2, 3 and 4. These values were used
in our experiments.

6.2.3 Experiments

To test the performance of the more complex filters we set up three exper-
iments, each with a different filter set: the extended Viola and Jones set
(Section 6.2.1), the horizontal and vertical 2-D Gabor filter set and the hor-
izontal and vertical 2-D Gabor filter set enriched with the 2-D Combination
Gabor filters. For the Gabor based sets we used five different frequency set-
tings, f = 0.5, 1, 2, 3 and 4, and a fixed σ value for the Gaussian envelope.

We trained 20 strong classifiers per experiment to create an average of the
performance per filter set. The multiple threshold weak classifiers were used
to train strong classifiers in each experiment. With a simple experiment, as
described in Section 6.1, we determined the optimal value of T per different
filter set. Again we used the MIT+CBCL frontal face database for the
training and test data.

The results of the experiments using the Extended Viola and Jones set
(V-J Ext), the 2-D Gabor set and the 2-D Gabor set with combination filters
(2-D Gabor + Comb.) are compared against the original Viola and Jones
filter set (V-J Org) in the following section.

72 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

6.2.4 Results

Detection Rate On Test Data

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46

Number Of Weak Classifiers

D
et

ec
tio

n
R

at
e

(%
)

V-J Org.; T = 1%
V-J Ext.; T = 10 %
2-D Gabor; T = 1%
2-D Gabor + Comb.; T = 1%

(a)

False Positive Rate On Test Data

0.1

1

10

100

1 6 11 16 21 26 31 36 41 46

Number Of Weak Classifiers

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
) V-J Org.; T = 1%

V-J Ext.; T = 10 %
2-D Gabor; T = 1%
2-D Gabor + Comb.; T = 1%

(b)

Figure 6.14: Detection rate and false positive rate on test data using weak
classifiers with different filters sets. The detection rate of the complexer
filter set is higher than when using the original filter set. Note that the
2-D Gabor without combination set, outperforms the original and extended
Viola and Jones set even though it lacks diagonal filters. Clearly the 2-D
Gabor set with combination filters outperforms all others. Also its false
positive rate (shown in log domain) is much lower than the others.

6.2. THE EFFECT OF MORE COMPLEX FILTERS 73

Detection Rate On Training Data

60

65

70

75

80

85

90

95

100

1 6 11 16

Number Of Weak Classifiers

D
et

ec
tio

n
R

at
e

(%
)

V-J Org.; T = 1%
V-J Ext.; T = 10 %
2-D Gabor; T = 1%
2-D Gabor + Comb.; T = 1%

(a)

False Positive Rate On Training Data

0.01

0.1

1

10

100

1 6 11 16 21 26 31 36 41 46

Number Of Weak Classifiers

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

V-J Org.; T = 1%
V-J Ext.; T = 10 %
2-D Gabor; T = 1%
2-D Gabor + Comb.; T = 1%

(b)

Figure 6.15: Detection rate and false positive rate on training data using
weak classifiers with different filters sets. The detection rate on the training
data (only the first 20 classifiers are displayed) is near equal, although the
2-D Gabor with combination filters performed best. The false positive rate
(shown in log domain) converges exponentially towards zero except for the
2-D Gabor set with combination filters: that converges even faster towards
zero.

74 CHAPTER 6. WEAK CLASSIFIER IMPROVEMENTS

AdaBoost Error During Training

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

1 6 11 16 21 26 31 36 41 46

Number Of Weak Classifiers

Er
ro

r

V-J Org.; T = 1%
V-J Ext.; T = 10 %
2-D Gabor; T = 1%
2-D Gabor + Comb.; T = 1%

Figure 6.16: The AdaBoost error εt during training using single and mul-
tiple threshold weak classifiers. This figure shows again that the 2-D Gabor
with combination filters outperforms all other filter sets.

The previous figures demonstrated better results in terms of detection rate
and false positive rate, on both training and test set, when using the more
complex filter sets were used. The 2-D Gabor with combination filters set
performed best. To further compare the different filter sets, we determined
an ROC curve of each strong classifier. The averaged ROC curves of the
strong classifiers using different filter sets are displayed in Figure 6.17.

6.2. THE EFFECT OF MORE COMPLEX FILTERS 75

ROC Curves Of Face Detectors Using Various Filter Sets

50

55

60

65

70

75

80

85

90

95

100

0.01 0.1 1 10 100
False Positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

V-J Single Thresh.
V-J Multi. Thresh.
V-J Ext.
Gabor
Gabor + Comb.

Figure 6.17: The averaged ROC curves of the strong classifiers using weak
classifiers with different filters. The x-axis is presented in log domain, this
better visualizes the differences between the various strong classifiers.

6.2.5 Discussion

In this section we proposed the usage of complexer filters for the weak clas-
sifiers. We showed that the performance in terms of detection rate and false
positive rate is much better when using complexer filters. The filter set that
performed best in our experiments was the 2-D Gabor set with 2-D combi-
nation filters. This filter set outperformed the others in terms of detection
rate and false positive rate, both on training as well as test data. Using
this filter set might reduce the total number of weak classifiers in the final
strong classifier significantly. However, computing a separable Gabor filter
on SIMD consumes more instructions than computing a Haar-like filter, this
because the cumulative row sum cannot be used.

As already stressed in the discussion on multiple threshold classifiers,
the results are preliminary and more research is required to obtain the final
results.

Chapter 7

Conclusions

The primary objective of our research was to find a robust face detection
technique which is able to run on the INCA+. Using the face detection
experiment described in Chapter 4, we concluded that the Viola and Jones
detector outperforms the skin color based face detector. Furthermore we
were able to implement a reasonable fast and accurate variant of the Viola
and Jones detector on the INCA+, which runs at 4-5 frames per second
while maintaining a high performance.

The second objective was to investigate the possibility to implement the
chosen face detector on the low-level Xetal processor. It proved to be im-
possible to implement the Viola and Jones detector on Xetal. However we
presented a framework in Chapter 5 which enables the Viola and Jones face
detector to run on an SIMD processor. We also introduced two filter com-
putation methods which can be used in an SIMD environment to compute
filters without using the integral image.

Finally, we wanted to improve the Viola and Jones algorithm in Chap-
ter 6. We presented two improvements of the Viola and Jones algorithm.
A general improvement that uses multiple threshold weak classifiers, proved
to outperform the original single threshold weak classifiers. The second im-
provement uses two filter sets that are more complex than the Haar-like filter
set used by Viola and Jones. We showed that when using these filters, the
performance of the weak classifiers can improve significantly. These complex
filters can be easily computed on an SIMD processor, using separable filters
or the cumulative row sum.

77

78 CHAPTER 7. CONCLUSIONS

7.1 Future Work

In this section we will present a direction of future research and possible
improvements.

• Further Investigate Proposed Improvements. As already men-
tioned, the results of the proposed improvements are preliminary.
More research is required in order to determine whether the proposed
improvements perform significantly better.

• Use Complex Filters For Detection Of Other Objects. It would
be an interesting research topic to determine how the complex filters
perform on the detection of other objects (e.g. pedestrian detection,
car detection etc.).

• Use Complex Filters For Detection Of Profile Faces. The orig-
inal Viola and Jones filters proved to be too simple to be used for the
detection of profile and rotated faces. A possible research topic would
be to investigate whether the presented complex filters (or similar fil-
ters) perform better on the detection of profile and rotated faces.

• Real Implementation On SIMD. We presented a framework which
enables the Viola and Jones face detector to run on an SIMD processor.
Future research could focus on the actual implementation of the Viola
and Jones detector on an SIMD processor.

• Other Boosting Methods. As mentioned in Section 3.5.10 other
boosting methods, like FloatBoost and the boosting chain, perform
better than the original Discrete AdaBoost. Using these boosting
methods might reduce the number of weak classifiers significantly.

Bibliography

[1] Open Source Computer Vision (OpenCV) Library. Intel Research,
http://www.intel.com/research/mrl/research/opencv/.

[2] MIT CBCL Face Database #1. MIT Center For Biological and Compu-
tation Learning, http://cbcl.mit.edu/cbcl/software-datasets/
FaceData2.html, 2000.

[3] TriMedia Documentation: Book 1, February 2003.

[4] A. Abbo and R. Kleihorst. Xetal Software Framework Programming
Guidelines. Philips Research Laboratories, NatLab, 2001.

[5] G. Alaghband. Parallel computing and architectures. http://carbon.
cudenver.edu/∼galaghba/csc6551.html, 1997.

[6] D. G. Becker. Rhinoplasty. Journal of Long-Term Effects of Medical
Implants, 13(3):223–246, 2003.

[7] R. N. Bracewell. The Fourier Transform and Its Applications., chap-
ter 3, page 27. McGraw-Hill, 3rd edition.

[8] D. Brown, I. Craw, and J. Lewthwaite. A SOM Based Approach to
Skin Detection with Application in Real Time Systems. In Proceedings
of the British Machine Vision Conference, pages 491–500, 2001.

[9] F. C. Crow. Summed-area tables for texture mapping. In Proceedings
of the 11th annual conference on Computer graphics and interactive
techniques, pages 207–212. ACM Press, 1984.

[10] M. N. Dailey and G. W. Cottrell. Prosopagnosia in modular neural
network models. In Reggia, J., Ruppin, E., and Glanzman, D., Eds.,
Disorders of Brain, Behavior, and Cognition: The Neurocomputational
Perspective, Progress in Brain Research series, volume 121, pages 165–
184. Elsevier Amsterdam, 1999.

[11] J. Daugman. Uncertainty relations for resolution in space, spatial fre-
quency, and orientation optimized by two-dimensional visual cortical
filters. Journal of the Optical Society of America A, 2:1160–1169, 1985.

79

http://www.intel.com/research/mrl/research/opencv/
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
http://carbon.cudenver.edu/~galaghba/csc6551.html
http://carbon.cudenver.edu/~galaghba/csc6551.html

80 BIBLIOGRAPHY

[12] D. Dunn and W. Higgings. Optimal Gabor filters for texture segmen-
tation. IEEE Transactions on Image Processing, 4(7):947–964, July
1995.

[13] Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, 1998.

[14] D. Gabor. Theory of communications. In Proc. Inst. Elect. Eng., vol-
ume 93, pages 429–459, 1946.

[15] C. Garcia and G. Tziritas. Face detection using quantized skin color re-
gions merging and wavelet packet analysis. IEEE TRANS. Multimedia,
1(3):264–277, September 1999.

[16] E. Hjelm̊as and B. K. Low. Face detection: A survey. Computer Vision
and Image Understanding, 83(3):236–274, 2001.

[17] M. Horton, P. Meenen, R. Adhami, and P. Cox. The Cost and Bene-
fits of Using 2-D Gabor Filters in a Filter-Based Fingerprint-Matching
System. In Proceedings of the Thirty-Fourth Southeastern Symposium
on System Theory, pages 171–175, 18-19 March 2002.

[18] M. Jones and P. Viola. Fast multi-view face detection. Technical Report
TR2003-96, Mitsubishi Electric Research Laboratories, June 2003.

[19] J. Kovac, P. Peer, and F. Solina. Human Skin Colour Clustering for Face
Detection. EUROCON 2003 - International Conference on Computer
as a Tool, September 2003.

[20] M. Lee, R. Kleihorst, A. Abbo, and E. Cohen-Solal. Real time skin-
region detection with a single-chip digital camera. In ICIP 2001, Thes-
saloniki, Greece, Oct 8-11 2001.

[21] T. S. Lee. Image representation using 2D Gabor wavelets. IEEE Trans.
Pattern Analysis and Machine Intelligence, 18:959–971, 1996.

[22] S. Z. Li, Z. Q. Zhang, H. Y. Shum, and H. J. Zhang. FloatBoost
Learning for Classification. In Advances in Neural Information Process-
ing Systems: Proceedings from the 2002 Conference, pages 1017–1024,
2002.

[23] R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical Analysis of
Detection Cascades of Boosted Classifiers for Rapid Object Detec-
tion. DAGM’03, 25th Pattern Recognition Symposium, pages 297–304,
September 2003.

[24] R. Lienhart and J. Maydt. An Extended Set of Haar-like Features for
Rapid Object Detection. IEEE ICIP 2002, 1:900–903, September 2002.

BIBLIOGRAPHY 81

[25] D. Maio and D. Maltoni. Real-Time Face Location on Gray-Scale Static
Images. Pattern Recognition, 33(9):1525–1539, September 2000.

[26] R. McCready. Real-Time Face Detection on a Configurable Hardware
System. In Proceedings of Field-Programmable Logic and Applications,
The Roadmap to Reconfigurable Computing, 10th International Work-
shop, FPL 2000, volume 1896, pages 157–162, 2000.

[27] S. McKenna, S. Gong, and Y. Raja. Modelling facial colour and identity
with gaussian mixtures. Pattern Recognition, 31(12):1883–1892, 1998.

[28] E. Osuna, R. Freund, and F. Girosi. Training support vector machines:
an application to face detection. In Proceedings of the 1997 Conference
on Computer Vision and Pattern Recognition (CVPR ’97), page 130.
IEEE Computer Society, 1997.

[29] C. P. Papageorgiou, M. Oren, and T. Poggio. A General Framework for
Object Detection. In Proceedings of the Sixth International Conference
on Computer Vision, page 555. IEEE Computer Society, 1998.

[30] Perret et al. Visual cells in the temporal cortex sensitive to face view
and gaze direction. In Proc R Soc Lond B Biol Sci, volume 223(1232),
pages 293–317, Jan 22 1985.

[31] V. Philomin. Personal contact, Philips Aachen, 2003.

[32] D. Pollen and S. Ronner. Visual cortical neurons as localized spatial
frequency filters. IEEE Transactions on System, Man and Cybernetics,
13:907–916, 1983.

[33] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face de-
tection. In Proceedings of the 1996 Conference on Computer Vision and
Pattern Recognition (CVPR ’96), page 203. IEEE Computer Society,
1996.

[34] H. A. Rowley, S. Baluja, and T. Kanade. Rotation invariant neural
network-based face detection. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, June 1998.

[35] E. Saber and A. M. Tekalp. Frontal-view face detection and facial fea-
ture extraction using color, shape and symmetry based cost functions.
Pattern Recognition Letters, 19:669–680, 1998.

[36] G. Shakhnarovich, P. Viola, and B. Moghaddam. A Unified Learning
Framework for Real-Time Face Detection and Classification. IEEE
International Conference on Automatic Face and Gesture Recognition
(FG), pages 14–21, May 2002.

82 BIBLIOGRAPHY

[37] M. C. Shin, K. I. Chang, and L. V. Tsap. Does Colorspace Transfor-
mation Make Any Difference on Skin Detection? IEEE Workshop on
Applications of Computer Vision, pages 275–279, December 2002.

[38] S. K. Singh, D. S. Chauhan, M. Vatsa, and R. Singh. A Robust Skin
Color Based Face Detection Algorithm. Tamkang Journal of Science
and Engineering, 6(4):227–234, 2003.

[39] M. Störring, H. Andersen, and E. Granum. Skin colour detection under
changing lighting condition. In Araujo and J. Dias (ed.) 7th Symposium
on Intelligent Robotics Systems, pages 187–195, 1999.

[40] K. K. Sung and T. Poggio. Example-based learning for view-based
human face detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(1):39–51, 1998.

[41] K. K. Sung, T. Poggio, H. A. Rowley, S. Baluja, and T. Kanade.
MIT+CMU Frontal Face Image Database. http://vasc.ri.cmu.edu/
idb/html/face/frontal images/index.html, 1997.

[42] J. W. Tanaka and M. J. Farah. Parts and wholes in face recognition.
In Quarterly Journal of Experimental Psychology, volume 46A, pages
225–245., 1993.

[43] T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Irwin, and W. Wolf.
Embedded hardware face detection. In Proceedings of the International
Conference on VLSI Design, Mubai, India, January 2004, pages 133–
141. IEEE, January 2004.

[44] V. Vapnik and C. Cortes. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[45] V. Vezhnevets, V. Sazonov, and A. Andreeva. A Survey on Pixel-Based
Skin Color Detection Techniques. In Proc. Graphicon-2003, pages 85–
92, September 1998.

[46] P. Viola and M. Jones. Robust real-time object detection. Technical
Report CRL 2001/01, The Cambridge Research Laboratory, February
2001.

[47] Y. Wang, C. Chua, and Y. Ho. Facial feature detection and face recogni-
tion from 2D and 3D images. Pattern Recognition Letters, 4(10):1191–
1202, 2002.

[48] R. Xiao, L. Zhu, and H. J. Zhang. Boosting chain learning for object
detection. In Proceedings of the Ninth IEEE International Conference
on Computer Vision, pages 709–715, October 2003.

http://vasc.ri.cmu.edu/idb/html/face/frontal_images/index.html
http://vasc.ri.cmu.edu/idb/html/face/frontal_images/index.html

BIBLIOGRAPHY 83

[49] J. Yang and A. Waibel. A real-time face tracker. In Proc. Workshop
on Applications of Computer Vision, pages 142–147, 1996.

[50] M. H. Yang, D. J. Kriegman, and N. Ahuja. Detecting faces in images:
A survey. In IEEE Transactions on Pattern Analysis and Machine
Intelligence, volume 24, January 2002.

[51] I. T. Young, L. J. van Vliet, and M. van Ginkel. Recursive gabor
filtering. IEEE Transactions On Signal Processing, 50(11):2798–2805,
2002.

Acknowledgments

I would like to thank the following people:

• My supervisors Ben Kröse and Richard Kleihorst for their guidance
and help.

• Harry Broers for helping me with numerous programming problems
and providing me with examples.

• Gerrianne Leeuwis for helping me labeling facial features of 800 differ-
ent faces.

• Menno Bisschops for submitting my thesis.

• Collin van Ginkel for helping me with creating the cover of this thesis.

• Tom de Vries, Zbigniew Chamski and Paul Zander for helping me with
various problems regarding makefiles and compilers.

• Anteneh Abbo for helping me with various Xetal related problems.

• Ivo Kronenburg for sharing his Xetal sources with me.

• Roel Reuvers for printing out this paper.

85

Appendix A

V-J On SIMD: A
Performance Evaluation

This chapter presents a global indication of the performance required to run
the Viola and Jones detector on an SIMD architecture. In Section A.1 we will
present 12 models, covering 12 different SIMD configurations. These models
can be used to compute an indication of the number of instructions required
to compute the filters on an SIMD processor. Section A.2 will present an
indication of the required memory when different SIMD configurations are
considered.

This chapter assumes that the reader has sufficient knowledge about
SIMD architectures and the Viola and Jones face detector.

A.1 Required Number Of Instructions

In this thesis we presented two different SIMD memory models: fully- and
limited connected memory models (see Section 2.1.1). Furthermore we pre-
sented three different filter computation methods for SIMD: filter compu-
tation using the integral image, using the cumulative row sum and using
separable filters (see Section 5.2 and Section 5.3). For the detection of faces
at multiple scales we can scale up the detection window, or use an image
pyramid (see Section 5.5).

When the above settings are combined we can create 12 different config-
urations. For each configuration we created a model which can be used to
compute the maximum1. The 12 models are presented in Table A.1. The
abbreviations used in this table are explained in Table A.2.

1 We present the maximum required number of instructions. For filters that are com-
puted using the integral image, the maximum number of instructions is 9 (filter Fdiag
requires 9 lookups as shown in Section 3.5.3). When using the cumulative row sum, the
maximum is w + 5 (see Section 5.3.4), etc.

87

88 APPENDIX A. V-J ON SIMD: A PERFORMANCE EVALUATION

Configuration ii+ii2 r+r2 Filter Computation Lighting Correction

FC ii DS 4× W - 9× S × T × W
P

8× S × W
P

FC r DS - 4
(∑S−1

i=0
wsi + 5

)
× T × W

P

(∑S−1

i=0
wsi + 2

)
× 2× W

P

FC SF DS - -
(∑S−1

i=0
wsi + h

)
× T × W

P

(∑S−1

i=0
wsi + h

)
× 2× W

P

LC ii DS 4× W -
(∑S−1

i=0
MS(i) + 9

)
× T

(∑S−1

i=0
MS(i) + 4

)
× 2

LC r DS - 4
(∑S−1

i=0
wsi + 5

)
× T × W

P

(∑S−1

i=0
wsi + 2

)
× 2× W

P

LC SF DS - -
(∑S−1

i=0
wsi + h

)
× T × W

P

(∑S−1

i=0
wsi + h

)
× 2× W

P

FC ii IP 4× W - 9× T × W
P

8× W
P

FC r IP - 4 (w + 5)× T × W
P

(w + 2)× 2× W
P

FC SF IP - - (w + h)× T × W
P

(w + h)× 2× W
P

LC ii IP 4× W - (MS(0) + 9)× T (MS(0) + 4)× 2

LC r IP - 4 (w + 5)× T × W
P

(w + 2)× 2× W
P

LC SF IP - - (w + h)× T × W
P

(w + h)× 2× W
P

Table A.1: Viola and Jones detector on SIMD: maximum required instruc-
tions per line for filter computation, using 12 different configurations.

A.1.1 Model Discussion

When looking at the 12 models we can observe that if the cumulative row
sum (r) or separable filters (SF) are used, it does not matter if the used
architecture is fully connected (FC) or limited connected (LC). We can ex-
plain this by looking at the way filters are computed when using separable
filters or the cumulative row sum. To compute the filter result, both meth-
ods require a number of pixels to be summed. When summing a number of
pixels, it does not matter whether the architecture is fully connected or lim-
ited connected because every pixel has to be addressed separately. Therefore
when using separable filters or a cumulative row sum for filter computation,
fully connected architectures will not perform better than limited connected
architectures.

When using the integral image however, the fully connected architecture
always outperforms the limited connected architecture. In a fully connected
architecture, every integral image value can be accessed by every PE. In a
limited connected architecture, only the integral image values of neighboring
PEs are available for each PE. To reach other values, the PEs will have to
shift (as explained in Section 2.1.1) and this consumes instructions.

When using an image pyramid the number of instructions is constant
for all models, however the total execution time will be increased signifi-
cantly. Normally the complete image is processed after H lines (if H is
the image height). When using an image pyramid this number is much
larger. Also computing an image pyramid requires additional computation
time (or additional hardware). Image pyramids should only be used when
the total number of instructions is too large when scaling up the detection
window. For example, when using separable filters for filter computation,
then the filter computation time depends on the width and height of the
detection window. Scaling up the detection window, directly increases the

A.2. REQUIRED MEMORY 89

computation time.

A.2 Required Memory

The required memory depends on the chosen filter computation technique.
When using the integral image for filter computation two framebuffers of
memory are required. One for the integral image and one for the squared

Abbr. Full Name Extra Description

FC Fully Connected Indicates the usage of a Fully Connected ar-
chitecture, as explained in Section 2.1.1.

LC Limited Connected Indicates the usage of a Limited Connected ar-
chitecture, as explained in Section 2.1.1.

ii Integral Image Indicates the usage of the integral image for
filter computation. ii2 denotes the square in-
tegral image.

r Cumulative Row Sum Indicates the usage of the cumulative row sum
for filter computation. r2 denotes the square
cumulative row sum.

SF Separable Filter Indicates the usage of separable filters for filter
computation.

DS Detection Window Scales Indicates the usage of the cumulative row sum
for filter computation.

IP Image Pyramid Indicates the usage of an image pyramid. This
ensures that filters can be computed in con-
stant time.

W Image width Denotes the image width in pixels.
H Image height Denotes the image height in pixels.
T Number of weak classifiers The total number of weak classifiers used in

the strong classifier.
S Number of scales The total number of different scales used for

the detection window.
P Number of PEs The total number of processing elements in the

LPA of the SIMD processor.
C Connections per PE The connectivity (in one direction) of each PE.

E.g. if C = 1, the PE is connected to one
neighbor in one direction. Xetal has C = 1.

R Range per PE R = W
P

× C. This value indicates the number
of pixels each PE can access of neighboring
PEs without shifting. E.g. in case of Xetal:
W = 640 pixels, P = 320 and C = 1, then
R = 2. Which is true for Xetal since it can
access 2 neighboring pixels in one direction.

MS(i) Maximum number of shifts at scale i This number represents the maximum
number of shifts required to fetch the
integral image values at scale i. This
function returns the following value:

MS(i) =
∑W

P
−1

j=0 dmax(
wsi−(W

P
−j)−R

R
, 0)e.

w Org. det. window width The width in pixels of the original detection
window. E.g. 24 pixels.

h Org. det. window height The height in pixels of the original detection
window. E.g. 24 pixels.

s Scale factor The scale factor of the detection window. E.g.
1.25.

Table A.2: Abbreviations used in Table A.1.

90 APPENDIX A. V-J ON SIMD: A PERFORMANCE EVALUATION

integral image. The size of the memory elements in the framebuffer is:
d2logW×H×255e bits for the integral image framebuffer and d2logW×H×2552e
bits for the squared integral image framebuffer. For instance when using
a 640 × 480 image, the framebuffer containing the integral image is 480
lines. Each line contains 640 elements, each element is 27 bits in size. The
framebuffer containing the squared integral image is 480 lines. Each line
contains 640 elements, each element is 35 bits in size.

When using the cumulative row sum for filter computation also two
framebuffers of memory are required. One for the cumulative row sum and
for the squared cumulative row sum. The size of the memory elements in
the framebuffer is: d2logH×255e bits for the integral image framebuffer and
d2logH×2552e bits for the squared integral image framebuffer. For instance
when using a 640 × 480 image, the framebuffer containing the cumulative
row sum is 480 lines. Each line contains 640 elements, each element is 17
bits in size. The framebuffer containing the squared cumulative row sum is
480 lines. Each line contains 640 elements, each element is 25 bits in size.

When using separable filters for filter computation, no additional frame-
buffer is required. This technique is computationally the most expensive,
however it requires the least amount of memory.

Appendix B

Programming Details

B.1 Programming Xetal

Table B.1 shows the Xetal Instruction Set for programming the LPA. Except
for the NOP instruction, the result of an instruction is written to an optional
line memory column (res[i]) and to the accumulator (ACCU). The value
of index i is either 0 or 1 because each PE can only write to its own MU,
which contains two columns: 0 and 1 (see also Figure 2.4).

Either the ACCU, a line memory column or a value from the GCP can
serve as source operands for an instruction. The source operand designated
as oprd0 can be a line memory column (lmem[i]) or a value from the GCP,
whereas oprd1 can only be a line memory column. Since Xetal can read
from its direct neighbors, the value of index i now ranges from -2 to 3.
When i = 0 or 1, the data directly assigned to the PE is accessed. Data
from a left neighbor is obtained by setting i = −2 or −1, and data from a
right neighbor by setting i = 2 or 3.

While the accumulator is affected by all instructions, the flag is only
affected by four compare instructions: MAX, MIN, ABSMAX, ABSMIN. This
flag is used for the PASSC and PASSCR instructions. Xetal’s LPA lacks con-
ditional jump instructions like if since an if instruction can jump to two
different locations depending on the outcome of a conditional check. Each
location can contain different program code. Jumping to a different location
in the LPA is thus prohibited by means of SIMD since each PE executes
the same instructions. For this reason the Pass Conditional (PASSC) and
its inverse, Pass Conditional Reverse (PASSCR), were designed. The PASSC
is used in combination with the conditional flags. An example of how the
PASSC and PASSCR instructions work as well as many other examples of how
to program Xetal can be found in the next section.

91

92 APPENDIX B. PROGRAMMING DETAILS

Instruction Usage Effect

NOP NOP do nothing

PASS PASS res[i], oprd0; res[i], ACCU← oprd0

PASSC PASSC res[i], oprd0; res[i], ACCU← oprd0 if flag = 1

res[i], ACCU← ACCU, otherwise

PASSCR PASSCR res[i], oprd0; res[i], ACCU← oprd0 if flag = 0

res[i], ACCU← ACCU, otherwise

ADD ADD res[i], oprd0; res[i], ACCU← ACCU + oprd0

SUB SUB res[i], oprd0; res[i], ACCU← ACCU− oprd0

SUBA SUBA res[i], oprd0; res[i], ACCU← oprd0− ACCU

MUL MUL res[i], oprd1, coef; res[i], ACCU← oprd1 ∗ coef
MULA MULA res[i], coef; res[i], ACCU← ACCU ∗ coef
MAC MAC res[i], oprd1, coef; res[i], ACCU← ACCU + (oprd1 ∗ coef)
ABS ABS res[i], oprd0; res[i], ACCU← |oprd0|
ABSA ABSA res[i]; res[i], ACCU← |ACCU|
MIN MIN res[i], oprd0; res[i], ACCU← min(ACCU, oprd0)

flag = 1, if oprd0 ≤ ACCU

flag = 0, otherwise

MAX MAX res[i], oprd0; res[i], ACCU← max(ACCU, oprd0)
flag = 1, if oprd0 > ACCU

flag = 0, otherwise

ABSMIN ABSMIN res[i], oprd0; res[i], ACCU← oprd0, if |oprd0| ≤ |ACCU|
res[i], ACCU← ACCU, otherwise
flag = 1, if |oprd0| ≤ |ACCU|
flag = 0, otherwise

ABSMAX ABSMAX res[i], oprd0; res[i], ACCU← oprd0, if |oprd0| > |ACCU|
res[i], ACCU← ACCU, otherwise
flag = 1, if |oprd0| > |ACCU|
flag = 0, otherwise

Table B.1: Xetal LPA Instruction Set [4].

B.1.1 Xetal Programming Examples

This section presents some programming examples that demonstrate how
Xetal works. Some examples mention the number of instructions that a
particular program consumes. This number represents the number of in-
structions per pixel. Since each PE operates on two pixels (the even and
odd columns) the total number of instructions would be twice as much usu-
ally, unless the even and odd pixels do not use the same algorithm.

B.1. PROGRAMMING XETAL 93

Pass Conditionals

In Figure B.1(a) an example of a simple program containing conditional
jumps (if) is presented in pseudo code. This program could be easily im-
plemented on a sequential processor and executes in 6 instructions. However
this program uses the conditional jump which is prohibited on the Xetal’s
LPA, since it runs in SIMD mode. The Xetal equivalent code is presented
in Figure B.1(b) and runs in 7 instructions. The example also demonstrates
how successive PASSC or PASSCR can reuse the flag once it has been set.

my_value := 10

lmem_a[0] := 20

lmem_b[0] := max(my_value, lmem_a[0])

if (lmem_a[0] > my_value)

lmem_c[0] := lmem_a[0]

lmem_d[0] := my_value

else

lmem_c[0] := my_value

lmem_d[0] := lmem_a[0]

fi

(a) Program with conditional jumps

// Initialise the accumulator

ACCU := 10

// Init a line memory column

lmem_a[0] := 20

// Determine maximum

lmem_b[0] := MAX(ACCU, lmem_a[0])

// now lmem_b[0] := 20

// lmem_a[0] > ACCU -> flag is set

// ACCU is affected by all operations

// so re-initialise

ACCU := 10

// Do PASSC (flag is set)

lmem_c[0] := PASSC(ACCU, lmem_a[0])

// lmem_c[0] := lmem_a[0] := 20 since

// if is set PASSC passes oprd0

// ACCU is affected by all operations

// so re-initialise

ACCU := 10

// Do PASSCR (flag is still set)

lmem_d[0] := PASSCR(ACCU, lmem_a[0])

// lmem_d[0] := ACCU := 10 since

// if flag is set PASSCR passes ACCU

(b) Xetal LPA equivalent

Figure B.1: Example of the PASSC and PASSCR operations

94 APPENDIX B. PROGRAMMING DETAILS

Simple Binary Threshold

Using the PASSC instruction it is easy to create a simple binary threshold.
This example demonstrates how to implement such a threshold. The exam-
ple also demonstrates how to program for the two columns (0 and 1): the
code is simply copied.

Suppose a threshold is set at red value 50: all red pixels > 50 are set to
1 and all pixels ≤ 50 are set to0.

thresh_value := 50

if (lmem_red[0] > thresh_value)

lmem_red[0] := 1

else

lmem_red[0] := 0

fi

if (lmem_red[1] > thresh_value)

lmem_red[1] := 1

else

lmem_red[1] := 0

fi

(a) Program with conditional jumps

//// Do column 0

// Load the red value

ACCU := lmem_red[0]

// Determine maximum

MAX(ACCU, 50)

// Load value on success

ACCU := 1

// Do PASSC, this will load 0 or 1

lmem_red[0] := PASSC(ACCU, 0)

// Load the red value

ACCU := lmem_red[1]

//// Do column 1

// Determine maximum

MAX(ACCU, 50)

// Load value on success

ACCU := 1

// Do PASSC, this will load 0 or 1

lmem_red[1] := PASSC(ACCU, 0)

(b) Xetal LPA equivalent

Figure B.2: Example of a simple binary threshold

5x1 Mean Filter

To implement a mean filter with width 5 pixels and height 1 pixel, Xetal’s
PE capability to read from its neighboring pixels needs to be used. A 5x1
mean filter is defined as:

mean(x, y) =
∑2

j=−2 I(x + j, y)
5

Where mean(x, y) is the mean value at (x, y) and I is the actual image value.
Xetal lacks the divide instruction, however every division can be rewritten

B.1. PROGRAMMING XETAL 95

into a multiplication with the reciprocal (multiplicative inverse) value:

a

b
= a(

1
b
) a ∈ <, b ∈ <\{0}

So instead we multiply each value with the reciprocal value 0.2. The result-
ing code is shown in Figure B.3.

lmem_a[0] += lmem_a[-2]

lmem_a[0] += lmem_a[-1]

lmem_a[0] += lmem_a[1]

lmem_a[0] += lmem_a[2]

lmem_a[0] = lmem_a[0] / 5

lmem_a[1] += lmem_a[-1]

lmem_a[1] += lmem_a[0]

lmem_a[1] += lmem_a[2]

lmem_a[1] += lmem_a[3]

lmem_a[1] = lmem_a[1] / 5

(a) Program with the divide instruction

//// Do column 0

ACCU := lmem_a[-2] * 0.2

// Use multiply accumulate

ACCU := ACCU + lmem_a[-1] * 0.2;

ACCU := ACCU + lmem_a[0] * 0.2;

ACCU := ACCU + lmem_a[1] * 0.2;

lmem_a[0] := ACCU +

lmem_a[2] * 0.2;

//// Do column 1

ACCU := lmem_a[-1] * 0.2

// Use multiply accumulate

ACCU := ACCU + lmem_a[0] * 0.2;

ACCU := ACCU + lmem_a[1] * 0.2;

ACCU := ACCU + lmem_a[2] * 0.2;

lmem_a[1] = ACCU +

lmem_a[3] * 0.2;

(b) Xetal LPA equivalent

Figure B.3: Example of a 5x1 mean filter

Cumulative Row Sum

The cumulative row sum is defined as the sum of all pixels directly above a
pixel:

rowsum(x, y) =
y∑

k=0

I(x, k)

Where rowsum(x, y) is the cumulative row sum at point (x, y). This can be
rewritten into a recursive version [46]:

rowsum(x, y) = rowsum(x, y − 1) + I(x, y)

Where rowsum(x,−1) = 0. In Figure B.4 an example of a possible Xetal
implementation of the cumulative row sum is shown. The example sums
all rows of the red channel (lmem red) and stores it into lmem rowsum. The
example also demonstrates the use of the GCP since it uses an IF state-
ment. The IF statement is prohibited in LPA mode but the GCP can make
use of it. In this example the GCP sends four instructions to the LPA

96 APPENDIX B. PROGRAMMING DETAILS

when the register current line = 0 and six instructions to the LPA when
current line != 0. This way the SIMD principle is not violated since each
processor still executes the same instructions at the same time.

// GCP IF

IF(current_line = 0) THEN

lmem_rowsum[0] := lmem_red[0]

lmem_prev[0] := lmem_rowsum[0]

// ... same for column 1

// 2 instructions on first line

ELSE

// load previous value into ACCU

ACCU := lmem_prev[0]

// store rowsum

lmem_rowsum[0] := ACCU + lmem_red[0]

lmem_prev[0] := lmem_rowsum[0]

// ... same for column 1

// 3 instructions on other lines

FI

Figure B.4: Example of the cumulative row sum

Row Shift

A row shift shifts all pixels of a row to the right or to the left.

shiftedrow[i](n) = row[i + n]

Where shiftedrow is the shifted row, n is the number of shifts and 0 ≤ i ≤
rowSize. If n is positive it shifts the row to the left, when it is negative the
row is shifted to the right.

B.1. PROGRAMMING XETAL 97

When shifting, some pixels will be shifted out and some will be shifted
into the row. The question is only what to do with these pixels. Three
possible solutions are:

real shift Truncate the pixels that are shifted out and assign value 0 to the
pixels that are shifted in. For example (shift to the right 3 elements):

5 3 1 9 3 7 4 8 source
===============
0 0 0 5 3 1 9 3 real shift

rotate Rotate the row: every pixel that is shifted out shifts in at the other
side of the row. This solution ensures that no data is lost. The rotate
example:

5 3 1 9 3 7 4 8 source
===============
7 4 8 5 3 1 9 3 rotate

Xetal shift Truncate the pixels that are shifted out. When shifting to the
right the value of the leftmost pixel will be assigned to the shifted in
pixel. When shifting to the left the value of the rightmost pixel will
be assigned. The Xetal shift example:

5 3 1 9 3 7 4 8 source
===============
5 5 5 5 3 1 9 3 Xetal shift

Xetal lacks a direct shift instruction and therefore it need to be implemented
by copying values of neighboring PEs. Figure B.5 shows the pseudo source
code of such an implementation. Because each PE of the Xetal’s LPA is
connected to two neighbors, as explained in Section 2.2, a single instruction
(per pixel) can shift up to two columns.

98 APPENDIX B. PROGRAMMING DETAILS

//// single shift (1 column)

// right shift

linemem_a[1] := linemem_a[0]

linemem_a[0] := linemem_a[-1]

// left shift

linemem_a[0] := linemem_a[1]

linemem_a[1] := linemem_a[2]

//// double shift (2 columns)

// right shift

linemem_a[1] := linemem_a[-1]

linemem_a[0] := linemem_a[-2]

// left shift

linemem_a[0] := linemem_a[2]

linemem_a[1] := linemem_a[3]

Figure B.5: Example of the row shift

Cumulative Column Sum

Instead of the cumulative row sum we can also define a cumulative column
sum. The cumulative column sum is defined as the sum of all pixels left of
a pixel:

colsum(x, y) =
x∑

k=0

I(k, y)

Where colsum(x, y) is the cumulative column sum at point (x, y). We can
rewrite this into its recursive equivalent:

colsum(x, y) = colsum(x− 1, y) + I(x, y)

Where colsum(−1, y) = 0. However this introduces a problem: colsum(x, y)
depends on the cumulative column sum of the previous pixel: colsum(x −
1, y). But since Xetal’s LPA operates in SIMD mode that value will be
computed at exactly the same time as colsum(x, y) itself and is therefore
available only after the computation. Because of this problem the simple
recursive equivalent is not possible on Xetal and calculating the cumulative
column sum can only be done by summing all pixels individually as shown
in Figure B.6.

This example uses the row shift principle as explained in the previous
example and combines it with an addition each iteration. It starts with
the original image value (in this case lmem red) and then adds the left
neighboring pixel to that value. Finally it shifts the complete row to the
right and subsequently adds the left neighboring pixel again, etc. When
shifting the complete row to the right the rightmost pixel value will be

B.2. PROGRAMMING TRIMEDIA 99

colsum[0] := lmem_red[0]

colsum[1] := lmem_red[1]

// GCP FOR LOOP

FOR i := 0 TO 319

ACCU := colsum[0]

// add left neighbor

colsum[0] = ACCU + lmem_red[-1]

ACCU := colsum[1]

// add left neighbor

colsum[1] := ACCU + lmem_red[0]

// shift lmem_red to the right

lmem_red[1] := lmem_red[0]

lmem_red[0] := lmem_red[-1]

LOOP

// 319*3 + 1 = 958 instr. per pixel

// total 1921*2 = 1916 instructions

Figure B.6: Example of the cumulative column sum

truncated and a new pixel value appears at the leftmost end of the row.
Because of the fact that when shifting to the right the leftmost pixel value
propagates to the right (see Section B.1.1) the leftmost pixel value should
be 0. Otherwise it keeps adding the leftmost pixel value to the results each
iteration.

After 320 iterations the algorithm is finally finished, consuming several
hundreds of instructions. The algorithm could be made faster using the dou-
ble shift technique as explained in Section B.1.1. This could save a number
of instructions, but it would still consume a large amount of instructions.

Compared to the cumulative row sum, the cumulative column sum is far
more computationally expensive and because of the amount of instructions
even impossible on Xetal.

B.2 Programming TriMedia

Programming the TriMedia processor can be done using the Rhapsody
C/C++ software package. This package contains several functions which
relief the programmer from doing low-level programming. The C/C++ code
should be compiled with the TriMedia Compilation System (TCS) 2.2 tools.
Also a small operating system called pSOS 2.2 that runs on the INCA+

should be linked with the project. This OS is required for programs to run
on the INCA+. pSOS 2.2 is shipped with TCS 2.2.

	Introduction
	Face Detection On A Computer
	Face Detection On Embedded Systems

	Problem Definition And Objectives
	Research Objectives

	Thesis Overview

	Architecture Of The INCA+
	Introduction To SIMD
	Memory Models

	The Xetal Architecture
	The TriMedia Processor
	Architecture Discussion

	Face Detection: A Literature Survey
	Skin Color Based
	Discussion

	Distribution-Based
	Bootstrapping
	Results

	Support Vector Machines
	Results

	Neural Networks
	Results

	Viola And Jones Face Detector
	Filters
	Integral Image
	Filter Computation
	Image Normalization
	Filter Selection Using AdaBoost
	The Attentional Cascade
	Speeding Up The Detector
	Grouping
	Results
	Related Work

	Discussion Of Face Detection Techniques

	Face Detection Experiments
	Photoshooting Experiment
	Detection Validation Model
	Determining The Validation Regions

	Skin Color Based Face Detection Experiment
	Results

	Viola And Jones Face Detection Experiment
	Results

	Discussion

	Viola And Jones Detector On SIMD
	Sliding Windows
	Integral Image On SIMD
	Filter Computation Using Separable Filters
	Introduction To Separable Filters
	Separable Filters On SIMD
	Separable Viola And Jones Filters
	Cumulative Row Sum

	Image Normalization On SIMD
	Detection At Multiple Scales On SIMD
	Attentional Cascade On SIMD
	Discussion

	Weak Classifier Improvements
	Multiple Threshold Weak Classifiers
	Experiments And Results
	Discussion

	The Effect Of More Complex Filters
	Extended Viola And Jones Filters
	Gabor Filters
	Experiments
	Results
	Discussion

	Conclusions
	Future Work

	Bibliography
	Acknowledgments
	V-J On SIMD: A Performance Evaluation
	Required Number Of Instructions
	Model Discussion

	Required Memory

	Programming Details
	Programming Xetal
	Xetal Programming Examples

	Programming TriMedia

