
Visitracker: Feature extraction by single-
camera tracking for camera to camera

matching

October 14, 2002

Niels P. Hietbrink
FNWI

Universiteit van Amsterdam

2

3

Visitracker: Feature extraction by single-camera tracking for camera to
camera matching

Author: Niels Hietbrink
Study: Artificial Intelligence
Specialization: Intelligent Autonomous Systems
Faculty: FNWI
University: Universiteit van Amsterdam
Location: WCW, Kruislaan 403, Amsterdam
Date: October 30, 2002
Supervisors: Dr. Ir. B.J.A. Kröse

Drs. W. Zajdel

Abstract
For fully automating surveillance, or in general, monitoring tasks, it is often

required to be able to follow a person or object over multiple cameras. To do so,
these objects have to be recognized and identified on differing backgrounds,

lighting conditions and viewing angles. This thesis describes a method of
gathering information about the appearance of an object, such that it can be

recognized on different cameras.
A background subtraction method is used to find the foreground pixels in an

image frame, after which these pixels are clustered and labeled. Then, features are
extracted from these labeled pixel clusters. These features are used to track

foreground objects on a single camera. While doing so, the features are also used
to update the information a track collects of the object it is tracking. This

information includes properties of the blob as well as statistical data on the
tracking process. When tracking is complete, either when the object being tracked
is no longer visible, or the tracking process does not receive any more input, the
properties and statistics of each track are reported. This data can then be used to

identify objects on different cameras.

4

Contents

1 Introduction 10
1.1 Context 10
1.2 The basis of our system 12
1.3 Problem statement 13
1.4 General layout of the thesis 13

2 Object detection 15
2.1 Background subtraction 15
2.2 Morphological growing 16
2.3 Label growing 17

3 Tracking objects using feature extraction and probability
matching 18
3.1 Feature extraction 18

3.1.1 Center pixel location 19
3.1.2 Average color 19
3.1.3 Blob size 20
3.1.4 Average pixel center 20
3.1.5 Covariance matrix 20

3.2 Calculating match probabilities 21
3.2.1 Positional distance 21
3.2.2 Color distance 22
3.2.3 Size distance 22

3.3 Assignment 23
3.3.1 Matching 23
3.3.2 Track extension 27

3.4 Initialization 28
3.5 Conclusions 28

4 The robots 29
4.1 Software 29
4.2 Building the robots 30

4.2.1 Programming the robots 31
4.3 Testing 32

5

5 Experiments 33
5.1 Setup 33

5.1.1 The room 33
5.1.2 The cameras 33

5.2 Testing the software 34
5.2.1 Evaluation 35
5.2.2 The different tests 36
5.2.3 Testing assignment methods 36
5.2.4 Discussion of the first test results 37
5.2.5 Testing feature sets 38
5.2.6 Discussion of the second test results 39

6 Implementation 41
6.1 System configuration 41

6.1.1 Hardware 41
6.1.2 Operating system 42
6.1.3 Software 42

7 Discussion and Conclusion 44
7.1 Discussion 44
7.2 Conclusion 45
7.3 Future work 45

A iLab classes 47
B File structures 48
C Pseudo code 49

Bibliography 50

Index 52

6

List of Figures

2.1 Morphological growing 17

3.1 Rangarajan assignment 24
3.2 Bipartite graph 26
3.3 Translation from a weighted graph to a matrix 26
3.4 Alternating path example 27

C.1 Pseudo-code describing the computation of the bounding box
center 49

7

List of Tables

5.1 One robot moving straight 37
5.2 One robot moving randomly 37
5.3 Two robots moving straight 37
5.4 Two robots moving randomly 37
5.5 Feature set test results 39

A.1 iLab Classes 47

8

List of Equations

2.1 RGB to rgI conversion 15
2.2 Color vector 15
2.3 Bhattacharyya distance 16
2.4 Simplified Bhattacharyya distance 16

3.1 Center pixel location feature 19
3.2 Average color feature 19
3.3 Blob size feature 20
3.4 Center of gravity feature 20
3.5 Pixel covariance matrix feature 20
3.6 Combined match probability 21
3.7 Expected location calculation 21
3.8 Extended Gaussian probability function 21
3.9 Positional probability covariance matrix 21
3.10 Color distance calculation 22
3.11 Incremental updating covariance matrix function 22
3.12 Color probability function 22
3.13 Expected size calculation 22
3.14 Size probability function 22
3.15 Hungarian assignment edge addition 25
3.16 Equality subgraph label updating 26

5.1 Label consistency 35
5.2 Track count error 35
5.3 Average label consistency 36
5.4 Relative label consistency & track count error 38

9

10

Chapter 1

Introduction

A large part of the job of surveillance is following people or objects (collectively
referred to as objects in the rest of the thesis) over multiple cameras. When an
object moves out of the view of one camera, we expect it to appear at a different
camera. We have no problem recognizing this object when it appears at this
second camera. For a computer however, this is a far more complex task. To
accomplish the task of tracking objects over multiple cameras we have split it into
two subtasks. The first subtask, which is described in this thesis, is the tracking of
objects on one camera. This will produce features, information about the
appearance of an object. These features can then be used to accomplish the second
subtask, which is the matching of objects on a camera with ones observed earlier
on another camera.

As mentioned, this thesis focuses on the single camera object tracking.
First, we will take a look at earlier research in this field and the approaches used.
One of these approaches will be examined in more detail, as it will serve as the
basis of our own system. The third section of this chapter will elaborate on the
problem statement. The rest of the thesis covers the implementation of our system
and the experiments done to test its suitability.

1.1 Context

This master’s project is part of the Distributed Surveillance (DS) project. This is
cooperation between FEL-TNO and the Intelligent Autonomous Systems group of
the University of Amsterdam. The goal of the DS project is to develop a system
capable of automatically tracking moving objects over multiple cameras. This
system is supposed to be a set of distributed, possibly but not necessarily
overlapping, intelligent sensors. Each sensor consists of a camera and a computer.
Every sensor should be capable, based on extracted information, of tracking and,
if possible identifying, objects it detects. Sensors can communicate so that objects
can be tracked and followed throughout the entire system.

This thesis will focus on the tracking of moving objects using only one
camera. The resulting information, gathered from this tracking process can then
be used to track the objects as they move to other cameras. Camera images carry a
large amount of information, such as position, size, shape, speed, direction and
color about an object. After separating the foreground pixels from the
background, these features can be extracted from the image to aid the tracking
process. The goal of this masters project is to develop a system that can track
objects within the view of one camera. This tracking uses features extracted from

11

a camera image, where objects have been separated by background subtraction as
implemented by Frank Zwarthoed [16]. A track is a set of points (positions) at
which an object was observed in subsequent image frames, together with
characteristics (features) of the object, which are updated when a new point is
added to the track. These characteristics will later be used to identify an object on
a different camera. The trajectory of the object through the camera view can also
be used to find the most likely camera the object is to pass next.

Other people have performed similar tasks. Schiele and Spengler [13] have
designed a system in which multiple features are calculated for each blob (a
cluster of foreground pixels, considered to contain the image of an object, further
explained in section 2.1) after which they are integrated into one value. This is
done using one of two combination systems. First, there is Democratic
Integration, a self-adaptive multi-feature integration system where the different
feature representations agree upon a common position estimation. In this system,
not all features carry the same weight in the agreement. Redundant features
(features that are not used in the position estimation, but are used to evaluate the
tracking performance during the tracking) are used to update these weights for
each of the features. Secondly, Condensation, a combination of multiple-
hypotheses tracking and multi-feature integration based on a system by Isard and
Blake [6] is used. This way, it is possible to track multiple objects simultaneously.

As an extension, Spengler and Schiele, together with Hannes Kruppa [12]
describe an algorithm for switching between detection models. They illustrate this
by tracking faces, based on a number of skin-color models. This model switching
is used as a bootstrapping mechanism for failing features (failing features are
features that change due to sudden environmental changes and therefore fail to
provide an accurate position estimation. Using Democratic Integration, the only
way to recover from this is by slowly adapting the used model, which decreases
the system’s reliability over a larger time), where a failing model is reset to a
more appropriate one. In addition, it also provides a means of resetting the system
when false positives cause deadlocks. False positives are hypotheses that are
accepted while they are actually false. When this happens, the model will adapt to
this hypothesis, even reinforcing it. Model switching will stop adapting when a
different model is more appropriate, thus avoiding deadlocks.

Since we will be tracking persons, instead of parts of a person, it seems
very hard to acquire good models for people wearing different types of clothing or
being only half-detected. In addition, calculating the performance of every model,
to find out which one fits the situation best is very time-consuming. While this
algorithm might work well in well-defined tracking tasks, it is not suitable for
general application, since you cannot track something that you have not modeled
roughly first. While our task is to track objects in order to better describe their
features, without first knowing them (which is required in order to use model-
driven systems), this approach is not suitable for us.

A more suitable approach is described by Beymer [1]. Here, tracking is
used to measure traffic parameters, such as vehicle counts, average speed and lane
change frequencies. Because a problem with tracking vehicles is partial occlusion,
not the entire car is tracked, but 'sub-features' are used (the specific sub-features

12

used in this system are corner features. Corners are detected when the (gray-scale)
image gradient shows a steep increase or decrease both horizontally as well as
vertically). Kalman filtering is used to decrease the effect of noisy image data.
 To group the sub-features (necessary to find out which sub-features belong to the
same vehicle) motion-based grouping is used. Here, point features moving rigidly
together are grouped. As many frames as conceivably possible are used to make
this robust. Because the decision to use background estimation had been taken
before our tracking project started, this approach has not been considered.

1.2 The basis of our system

Intille, Davis and Bobick [4] have a situation that most resembles ours. They want
to track multiple persons by using contextual information to decrease the
information complexity. They use a closed-world assumption to do so. For a good
understanding, it is necessary to know that they refer to tracks as objects. They are
also using a background estimation algorithm to collect foreground pixels. They
are firstly formed into clusters using a triple dilation, after which they calculate
the bounding boxes of connected regions1. When two regions are sufficiently
close together (5 pixels) they are merged into one region, after which a new
bounding box is calculated. This is done exhaustively. Because large diagonally
oriented clusters generally have a very large bounding box, they use an algorithm
that estimates the smallest distance between the boundaries of two blobs for large
clusters. The resulting connected regions are called blobs.

After this merging, features are collected for each blob, from the original
image (the non-dilated image). The features used are size, position and average
color. Then, matching between blobs and objects is done. Every object has four
properties: average color, position, size and velocity. These properties are used to
calculate four distances:

1. The two-dimensional distance between the average color of a blob and that
of an object.

2. The two-dimensional distance between the position of a blob and the
position of an object.

3. The two-dimensional distance between the expected position of a blob and
its true position.

4. The one-dimensional difference between the size of an object’s blob and
the average size of all blobs in a track.

For each distance, a score matrix S is created, where ijS is the match score of

object i with blob j. These scores are normalized, so that ∑ =1ijS . After
weighting the four matrices, they are summed in one matching score matrix M.

So then it is time to do the actual matching. This is separated in a number of steps.
Important to know is, that objects can only enter or exit the video in the door area,

1 Also see sections 2.2 and 2.3 for alternative methods.

13

part of the frame close to the door. To make sure that objects are not matched to
blobs that are on the other side of the room, they use hard constraints to limit the
matching.

Once the matching has been performed, the objects’ properties and
statistics are updated with the feature information of the new blob. The local-
closed-world is used to determine whether to update certain properties. If the
object is the only object in the local-closed-world, its properties can safely be
updated, but if there are other objects in the same local-closed-world, this means
the blob was probably a merging of two persons, so color information should not
be updated and neither should the size estimation. Also, velocity information is
unreliable in a multi-object closed-world, so this is not updated either.

1.3 Problem statement

The goal of this project is to produce features that describe an object as it is
observed by a single camera. These features will be used to track an object within
a network of cameras. It is possible to extract object features from one image.
However, these features become more reliable when they are gathered from
multiple images. The problem is to find out what specific features should be used
to uniquely identify a single object in a series of image frames, such that it can be
tracked. By tracking these objects, an arbitrary number of characteristics can
theoretically be robustly determined. The goal can be separated in a number of
different tasks:

• Implementation of a real-time blob-detection program
• Finding and implementing single-image feature extraction routines
• Implementing a tracking algorithm
• Producing results for use in the camera-to-camera tracking.

For better understanding it is important to make a distinction between tracking
features and features collected by the tracking process. Tracking features are
features that are extracted from a single blob and are used to match a blob to an
existing track. Collected features are features that are collected over all the blobs
that make up a track. Tracking features are necessary to be able to track at all and
collected features are the goal of the tracking.

1.4 General layout of the thesis

The rest of this thesis describes a method for tracking moving objects using
feature extraction. In chapter two, the method used for detecting foreground
objects is described. This chapter also elaborates on two methods used to create
consistent labels for fragmented foreground objects. Chapter three describes the
feature extraction and track to blob matching. Because we have not tested our
tracking software using people, but we have used robots, chapter four explains
how these robots were built and programmed. Chapter five describes the

14

experiments we performed and it discusses the results from these experiments.
Chapter six describes the implementation of the software and finally in chapter
seven, the conclusions drawn from this project, as well as a discussion and future
work is found.

15

Chapter 2

Object detection

In order to be able to track moving objects, you will first have to detect these
objects in the camera images. There are several methods to do so. Examples of
which are optic flow, temporal differencing and background subtraction [16]. The
choice had previously been made to use the background subtraction method.

2.1 Background subtraction

For basic moving object detection, a background subtraction method by Frank
Zwarthoed [16] is used. This method uses multi-dimensional Gaussian kernels to
learn a per-pixel background model.

The background model uses normalized RGB (rgI):
R

r
R G B

G
g

R G B
I R G B

=
+ +

=
+ +

= + +

(2.1)

(,)Tr g=c . (2.2)

The I (luminance) is ignored. In this way, shadows are eliminated as foreground
objects, because they only differ from the background in color intensity, not in
color tone.

The background model is used to make a decision on whether a pixel is
part of the foreground or background. Combined with morphological operations
(erosion, dilation) clusters of related, connected pixels, known as blobs, are
formed. These blobs are labeled using a labeling algorithm by Horn1. This
labeling assigns a number to each foreground pixel. Foreground pixels that are
connected (connected pixels are pixels that are directly next to another foreground
pixel in any direction) get the same number. The result is that every blob has its
own label. Unfortunately, the Zwarthoed algorithm produces a very fragmented
object detection, meaning that a real foreground object is represented as a number
of blobs, all with their own label. To avoid them being handled as different
objects, either morphological growing or label growing (explained in the
following sections) is used to 'stick' blobs of fragmented objects together. An
additional problem using EM mixture models for background subtraction is that

1 See [16], chapter 2 for more information.

16

the kernels tend to 'grow' together. This always happens. The moment at which it
becomes so severe that it starts to affect foreground detection depends on the
color intensity of a pixel. Dark colored pixels produce more noise then light
colored ones. This is caused by the non-linearity of the color system (normalized
RGB, rgI).

To solve the problem of kernels growing together, we use the
Bhattacharyya distance between two probability density functions (p.d.f.’s), as
described in [18]. The Bhattacharyya distance between two p.d.f.’s 1p and 2p is
defined as:

1/2
1 2log (() ())BJ p x p x dx= − ∫ . (2.3)

Since our distributions are normal: 1 1 1(; ;)p N= Σx µ and 2 2 2(; ;)p N= Σx µ the
equation can be simplified to:

1 21
2 1 1 2 2 1 1/2

1 2

1 1
() () () log

4 2 2()
T

BJ −
 Σ + Σ

= − Σ + Σ − +   Σ Σ 
µ µ µ µ . (2.4)

First, the kernel with the highest prior probability is selected, and then all other
kernels are checked for their distance to the kernel with the maximum prior
probability. If for some kernel this distance is less than the set threshold, that
kernel is not updated. The threshold is currently set to 2.5.
It is quite hard to tweak this threshold in a way that it avoids large amounts of
noise and still produces acceptable foreground object detection.

2.2 Morphological growing

Morphological growing is used to combine the information of different blobs
usually making up one object. If this method is not used, fragmented objects will
be handled as being different foreground objects. Since we have to deal with
fragmented objects in almost every image frame, this method is a necessity. After
normal morphology (one erosion to remove single-pixel noise, followed by two
dilations and one erosion), the binary picture is backed-up. Then, another five
dilations are applied to the picture. This 'grown' picture is labeled and then the
labels are copied to the backed-up picture. This backed-up picture now contains
multiple blobs with the same label, which will be handled as being one foreground
object (to extract features from these foreground objects only single-pixel
information is used and the relevance of other pixels or their proximity is not
taken into account).

17

(a) (b)

(c) (d)
Figure 2.1: Morphological growing. (a) The original, fragmented collection of blobs. (b) The
labeling based on the original blobs. (c) The collection of blobs after morphological growing. (d)
The resulting labeling.

2.3 Label growing

Label growing is a variation on the morphological growing, described in the
previous section. The process works as follows:

First, the binary foreground image, still including noise, is dilated twice.
This “sticks” clusters together, possibly with noise pixels. This dilated image is
then labeled. The labels are copied to the original binary foreground image, just
like in the morphological growing algorithm. Then, using an erosion, the noise is
removed from a copy of this image. Because the noise was also labeled, certain
labels will vanish, while others will be retained. The noise with the same labels
that are still present in this copy is brought back (all pixels with surviving labels
are restored, including the ones that were removed by the erosion step). A further
three dilations, followed by three erosions produces a series of blobs. Because
certain parts might be sticking out because of noise being present close to the edge
of an object, as is usually the case, another erosion and a dilation clips these parts.

This method produces far more constantly shaped blobs than the
morphological growing method, because of the assumption that not all noise is
random. This assumption means that noise, surrounded by, or very close to, an
object usually is part of that object and the noise is caused by a failure of the
background segmentation method, rather than a random variance in the image
data.

18

Chapter 3

Tracking objects using feature
extraction and probability
matching

When an object passes a camera, we want to be able to extract its features in a
robust way. One possibility of doing so is to track the object through consecutive
image frames. A track is a collection of blob positions (in the image domain),
along with other features of a blob of which is assumed they are produced by one
single object. For tracking objects, it is necessary to have some way of comparing
information stored in a track with the information of different blobs in the current
image frame. Features provide this means of comparing. Based on features,
probabilities of particular matches can be calculated, after which an assignment of
blobs to tracks can be done. It is quite common to use Kalman filters for tracking
moving objects, however since Kalman filtering assumes the motion can be
described by some prior model, there is a problem. Human motion is difficult to
model. People can suddenly stop and turn very sharp angles. Extreme speed
changes are also possible (think about someone running into the image and
suddenly stopping, turning around and running back). Because of this problem,
we decided to track the blobs differently. This is described in the next sections.

3.1 Feature extraction

Features are numerical properties of pixels making up a blob, based on the pixel
or spatial information that can be extracted from the blob. A number of features
are extracted from the foreground blobs. The specific features we have selected
are easily extracted from the image without the need of any kind of pre-processing
of the image data. The features used are:

• Location of the center pixel of a blob, derived from the bounding
rectangle.

• Average color of the blob, using normalized RGB (rgI), where the
intensity channel I is ignored (further referred to as ‘rg’). The average
color is computed for the red and green channel separately.

19

In a later stage, we also consider:
• Size of the blob relative to the image size.
• Average center location of the blob. The mean of all the coordinates of the

pixels of a blob is computed. This is also known as the center of gravity of
a blob.

• Covariance matrix of the pixel coordinates within the blob. This provides
information about the pixel distribution of the blob.

The following sections describe the ways these features are extracted.

3.1.1 Center pixel location

Calculating the center pixel location is done by first establishing the dimensions
of the bounding rectangle and calculating the center of this bounding rectangle1.
The algorithm runs through the image top-down, left-to-right. The location of the
first pixel with the given label is the initial top-left corner and the initial bottom-
right corner of the bounding rectangle. When subsequent pixels with the same
label are found outside the current bounding rectangle, the dimensions of the
bounding rectangle are updated to include these pixels. Once the entire image is
scanned and the dimensions and location of the bounding box are known, the
center of the box is computed and rounded to the nearest pixel coordinates.

()

2
j i

c i

−
= +

x x
x x , (3.1)

where),(cycxc xx=x the pixel location of the center of the bounding rectangle,

ix is the pixel location of the top-left and jx is the pixel location of the bottom-
right corner of the bounding rectangle.

3.1.2 Average color

The mean color of a blob with label l is calculated using the following equation:
1

()
l

c i
i Bl

l
B ∈

= ∑µ c , (3.2)

where lB is the set of pixels with label l in the image and ic is the color vector for
pixel i, as described in equation (2.2).

1 See Appendix C for the algorithm

20

3.1.3 Blob size; zero order moment

Blob size s of a blob with label l is calculated in the following way:

() lB
s l

N
= , (3.3)

where N is the total number of pixels in the image.

3.1.4 Center of gravity; first order moment

The average pixel center is calculated for the center of gravity feature using the
following equation:

1

l

x i
i BlB ∈

= ∑µ x . (3.4)

Here ix is the location vector of pixel i.
The advantage of using this over the center pixel location feature is that when
using the center of gravity feature, the computed location of the center pixel of a
blob is less influenced by the dimensions of the blob, but more by the shape of it.
When an object is stationary, the dimensions of its accompanying blob might still
change radically, but the shape of the blob is more constant. This results in a more
constant blob location computation.

3.1.5 Covariance matrix of pixel coordinates; second order moments

A covariance matrix is calculated for all pixels of a blob using the center of
gravity of section 3.1.4 as the mean xµ :

2

2

() ()()1
()

()() ()1
l

ix x ix x iy y

i B iy y ix x iy yl

x µ x µ x µ
l

x µ x µ x µB ∈

 − − −
∑ =  − − −−   

∑ , (3.5)

where ixx is the x-coordinate of the location vector x of pixel i and xµ is the x-
coordinate of the average pixel center.

21

3.2 Calculating match probabilities

We are assigning blobs to tracks based on match probabilities. In order to
calculate these match probabilities, distance measures are computed to be able to
compare tracks to blobs. Converting distances into probabilities is done using a
Gaussian probability density function. Because we assume that the features are
independent, we can also assume that all the resulting probabilities are
independent. We can combine the different probabilities by multiplication:

(| ,) (| , ,)ij ij n
n

P match i j P match i j d= ∏ , (3.6)

where ijmatch is a match between track i and blob j and nd is the distance for
feature n. The probability of a match between track i and blob j, given track i and
blob j equals the product of all probabilities of a match between track i and blob j,
given track i, blob j and distance nd .
The combined match probabilities are used to determine if one track and one blob
are a match or not. The following distance measures are used.

3.2.1 Positional distance

Positional distance is the distance between the expected location of the center
point of a blob and its actual location. To calculate the expected location of a new
blob, we have:

() ()
()

(') () () '

t t t
t

t
t t t t t

− − ∆
=

∆
+ ∆ = + ⋅ ∆

x x
?

µ x v
, (3.7)

where)(tt ∆+µ is the predicted position at timestamp tt ∆+ and)(tv is the
speed vector in pixels per millisecond between the last two points of the track.

t∆ is the amount of time between two frames. Note that this need not be constant.
Now, a two-dimensional variant of the general Gaussian equation is used to
calculate the match probability:

() ()1
1
2

1 1
() exp

22

Tp x − = − − ∑ − 
 π ∑

x µ x µ , (3.8)

where x is the actual location of a blob, µ the expected location and ∑ a
covariance matrix. A diagonal covariance matrix ∑ is used:

2

2

()
0

2

()
0

2

v t

v t

  
  
  ∑ =        

. (3.9)

22

3.2.2 Color distance

The color of a track is defined as the incremental mean of the mean colors of the
blobs assigned to the track:

(1) (1)
() k c

k

N t
t

N
− ⋅ − +

=
µ µ

µ , (3.10)

where)(tkµ is the mean color of track k at time t, N is the length of the track and

cµ is the mean color of the blob being assigned. Also, for the calculation of the
color distance probability, we use equation (3.8). However, in this case the
covariance matrix is not arbitrary. We are using an incremental update function
for the covariance matrix:

()()()

()()()

1
2

2

1
(1) () (1) () (1)

1
(1) () (1) (1) (1) (1)

t

ij i i j j
k

ij i i j j

t x k t x k t
t

t t x t t x t t
t

+ 
σ + = − µ + − µ + ≈ 

 

≈ − σ + + − µ + + − µ +

∑
. (3.11)

In this function, 2
ijσ is the entry in the covariance matrix at row i, column j.

With a dimensionality of 2 (two color channels), the equation for calculating the
color match probability is:

()
() ()1

, ,1
2

1 1
() exp () ()

22

T

c blob c c blob cp x k k− = − − ∑ − 
 π ∑

µ µ µ µ , (3.12)

with Σ as expressed in equation (3.11).

3.2.3 Size distance

The size of a track is the expected size of the next blob assigned to the track. The
expected size is computed as follows:

() ()
()

(') () () 's

s t s t t
d t

t
µ t t s t d t t

− − ∆
=

∆
+ ∆ = + ⋅ ∆

, (3.13)

where d(t) is the difference in size between the last blob assigned to the track and
the one before that. Since size is a scalar, we compute the match probability thus:

()2

22

1
() exp

22
ss µ

p x
 − −
 =
 σπσ  

, (3.14)

where
2

2 ()
2

d t σ =  
 

, similar to the variance for the position.

23

Now that we have the different match probabilities, we can continue with the
actual assignment process.

3.3 Assignment

Assignment is the linking of blobs to existing tracks. Now, we are possibly
dealing with multiple blobs and multiple tracks. Because it is possible that
straightforward matching (assigning the blob with the highest combined match
probability to a track) does not work, for example when for two tracks the same
blob has the highest match probability, the necessity arose to implement more
elaborate assignment methods. Because all tracks are independent, we can simply
calculate the overall match probability by taking the product of the appropriate
combined match probabilities, as defined in section 3.2. Instead of looking at
individual track-to-blob matches, we have to look at the overall match probability,
because the matching of one blob to a track can affect the effectiveness of all
other matches.

3.3.1 Matching

Our assignment problem can be seen as a special case of the weighted matching
problem [8]. This involves finding the path with maximum weights in a bipartite
graph),,(EUVG = (see figure 3.3). All tracks are nodes in V, all blobs are nodes
in U. All nodes in V are connected to all nodes in U: Euvji ji ∈∀∀],[. This will

later be referred to as a fully connected bipartite graph. The weight of an edge ijw
is the probability for that match. A match set M on a graph G is a subset of edges
in E, such that a node in V is connected to at most one node in U. There are a
number of methods for solving this problem. For a match set M on graph G, all of
the methods have the same goal, which is to maximize the assignment score,
defined as ∑ ijw for all Muv ji ∈],[. Because we are using probabilities instead
of scores, we want to maximize the product of the assignment probabilities. This
maximization guarantees a high overall match probability, which means the
individual matches are all as high as they can be (with respect to the other
matches). To realize this product maximization, we use log(P) instead of P,
because maximizing ∑)log(P is the same as maximizing ∏ P . This section
explains how the different methods work and why one is more efficient than
another.

Exhaustive matching

Exhaustive matching is by far the easiest way of solving the match problem. By
enumerating all possible match sets and calculating their summed score, the best

24

match is found. It is easy to see that the order of this method is)!(nO . This takes
a lot of time and since we want our algorithm to be able to run real-time (read: at
least five frames per second on the system outlined in chapter 6), we clearly need
a more efficient algorithm.

Assignment by Rangarajan and Shah

The assignment method by Rangarajan and Shah [10] is an approximate method
and substantially more efficient than the exhaustive matching. Its order is)(2nO .
A match probability matrix is constructed. The row indexes are tracks (nodes V in
the bipartite graph) and the column indexes are the blobs (nodes U). The matrix
values are the match probabilities for the different track to blob matches. In every
row (for every track), the highest score is selected. For all of these highest scores,
the 'missed score' is calculated. The missed score is the sum of all scores that
cannot be assigned by selecting this blob. The track with the lowest missed score
is then selected to be matched with its highest scoring blob.

(a) (b)

(c) (d)
Figure 3.1: Rangarajan assignment. (a) Score matrix with maximum scores per track circled. (b)
Missed score for track 1 grayed. (c) Missed score for track 2 grayed. (d) After selecting blob 4 as

a match for track 2, row 2 and column 4 are masked.

25

By doing this, the amount of good alternatives (alternatives that would be
considered useful in the assignment context) lost by this assignment is minimized.
The respective row and column are masked and the process is restarted. This
continues until all tracks are matched. Figure 3.1 illustrates the process.

Hungarian assignment algorithm

The Hungarian algorithm is the established method for graph matching problems.
It is a rather complex algorithm to create an optimal match. In our problem we are
dealing with a bipartite graph, which somewhat simplifies the problem. Still, its
order is somewhat higher than that of the Rangarajan method:)(3nO . If the
number of tracks in the bipartite graph is not equal to the number of blobs,

UV ≠ , we need to add ‘dummy’ tracks or blobs to equalize the graph. To make
sure they do not affect the matching process, all the edges these ‘dummy’ nodes
are connected to have a match probability (and thus weight) of zero. The method
as described in [17] works as follows:

A label l(v) is assigned to each node Vv ∈ and Uu ∈ , such that
),()()(uvwulvl ≥+ . Such a labeling is called feasible. A feasible labeling always

exists, namely 0)(=ul and)},({max)(uvwvl Uu∈= . Using this particular
labeling, an equality subgraph),,(== = EUVG is constructed. The edges =E are
the edges of E for which),()()(uvwulvl =+ . Now the problem of finding an
optimal match in G has been reduced to finding a perfect match in =G , where
every node in V is connected to a node in U. This is because a perfect matching in
the equality subgraph corresponds to the optimal match in the original graph.

The algorithm starts with an arbitrary matching M in =G . A matching is a
set of edges that connect one node in V to one node in U. Nodes in U cannot be
matched to more than one node in V. If this matching is perfect, the algorithm is
completed. If not, starting at a node in V and not in M, an alternating path is
constructed. An alternating path is a series of nodes, such that the edge connecting
two subsequent nodes is alternating in and not in M. See figure 3.4 for an
example. If the alternating path ends at a node in U, the matching can be
augmented (changed). Then the algorithm restarts. If the alternating path ends at a
node in V, it means the matching cannot be augmented and edges need to be
added. Note that not all edges of E are in =E . The edges are added in the
following way:

min{ () () (,)}l x S
y T

l x l y w x y
∈
∈

α = + − , (3.15)

where S is the set of nodes of V in the alternating path and T is the set of nodes of
U in the alternating path. The edge causing lα is added to the equality subgraph
and the labels are updated:

26

() if
() () if

() otherwise

l

l

l v v S
l v l v v T

l v

− α ∈
= + α ∈



. (3.16)

A new matching is created. And the algorithm restarts.

Figure 3.2: Bipartite graph

Figure 3.3: Translation from a weighted graph to a matrix

27

Figure 3.4: Alternating path example. The current matching is denoted in blue. Starting at v4, a
correct alternating path would be: {v4, u3, v3, u1, v1}. Since this alternating path does not end on

a node of U, the current matching cannot be augmented.

Because of the inefficiency of the exhaustive matching, we have decided not to
use it. Both the Rangarajan and the Hungarian matching will be used in the
assignment process.

3.3.2 Track extension

Track extension is the process of actually extending the existing tracks with new
blobs, based on the matches returned by one of the match algorithms and creating
new tracks if required. The match algorithm always returns a complete match,
which means that all tracks are matched to a blob. A threshold is used to
determine if a match probability is high enough to be accepted. Any match whose
probability is below the threshold is discarded, leaving the track unmatched and a
candidate for matching in a later stage. It is also possible that there are not enough
blobs to match all tracks, or that there are more blobs then there are available
tracks. In these cases, tracks need to be created or ended. Since merging of two
objects is possible, assigning two tracks to the same blob is also considered. The
extension steps are:

1. Known track to unoccupied blob. In this stage, blobs are assigned to their
most likely track, based on their match probability. If there are multiple
objects with the same blob as their candidate, it is needed to find out what
the most profitable assignment would be. If you have a large number of
objects, this can be a very time-consuming job. This is why we use the
assignment systems mentioned above to solve this problem.

2. Known track to occupied blob. If it is not possible to assign a blob to a
track in step 1, then try to assign a blob that was previously assigned to a
different track. This should cover object merging. If the final assignment
of this track results from this step, size and color information should not be
updated.

3. Blob without a track: create new track. If there are still unassigned blobs,
create new tracks for them.

4. Track without a blob: remove track. When a track didn't get a blob
assigned in the previous steps, its corresponding blob has probably moved
out of the image frame, so the object should be removed (since this can

28

also be caused by (partial) occlusion, the actual removal of the object is
delayed for a number of frames).

3.4 Initialization

Our approach requires the track features to be initialized. Mean and standard
deviation are initialized when the track is first created. Mean color is set to the
mean color of the blob that created the track, the standard deviation is initialized
high, since you don't know anything about it. Also, track size is set to the size of
the same blob, the size difference is set to an initial value of 10% of the blob size.

3.5 Conclusions

The conclusions that can be drawn from this chapter are that there are multiple
features to choose from, as well as multiple matching algorithms. The question
now is: which combination of matching algorithms and features works best.
Therefore the experiments will first look at the difference in performance between
the Hungarian matching and the matching by Rangarajan and Shah and secondly
take a look at the sensitivity of the tracking algorithm to the specific set of
features used. Since we are using robots, we will first explain their construction
and programming.

29

Chapter 4

The robots

To find out if the tracking software performs in an adequate way, tests have to be
performed. These tests are set up to proof the different part of the tracking and
feature acquisition. Different behaviors (for example constant and erratic
movements) should not have a negative effect on the tracking performance. For
these tests, we are using Lego Mindstorms robots. These robots are built using
Lego and the RCX brick. The RCX brick is the Mindstorms computer. It has
limited memory capacity and computing power, three connections for sensors and
another three for actuators such as motors. For communication with a computer or
another RCX brick, an infrared port is present (communication can be seen as a
program transfer when the brick is not running, or the transmission and reception
of data during the run of a program). After writing the program that describes the
actions and interactions of the robot on a PC, it is downloaded using the supplied
infrared interface. The program can then be run on the robot, which performs the
tasks as programmed, optionally based on sensory input. The user has no control
over the behavior of the robot once the program is downloaded.

The reason for choosing the Mindstorms robots is that their appearance
can easily be altered as well as their behavior (behavior is defined as a series of
motions). In order to get reproducible results, it is desirable to have objects with
predictable behavior (human behavior is not considered predictable).

This section describes first the software used to program the robots. In
section 2 the program itself is explained. Section 3 covers testing results.

4.1 Software

The software being used is Not Quite C (NQC). This is a near-C environment in
which Lego Mindstorms robots can be programmed with considerable ease, albeit
somewhat limited. Before programs written in NQC can be downloaded to the
robot, the firmware has to be downloaded. Firmware is the actual operating
system of the Lego robot. There are two versions of the firmware, RCX and
RCX2. Note that the name of the version of the firmware is identical to the actual
name of the Mindstorms brick (RCX).We are using the RCX2 firmware, because
although it is slightly bigger then the original RCX firmware, leaving less space or
user programs, it has largely increased functionality. In fact, on the original RCX
firmware, most functions implemented in NQC are unavailable. The size of
programs written in NQC is limited, because of the limited amount of memory in
the RCX brick, the Mindstorms computer. There is a total of 32KB of memory in
the brick, of which the firmware usually uses about 16KB, leaving a maximum

30

program size of 16KB. Usually, NQC programs are quite short, so they stay well
within this limit.

There are other software platforms for the Mindstorms brick (RCX).
Examples are:

• LeJOS, a Java implementation for the RCX. This makes it possible to
write almost fully functional Java programs for the RCX. The
disadvantage of this software is that Java programs tend to be much larger
and much more complicated then NQC programs.

• LegOS, a Linux kernel running on the RCX, implementing full C and C++
compatibility. This was our first choice, but unfortunately we couldn't get
the Linux-RCX cross-compiler working, so we abandoned this.

There are dozens more that are all more or less based on the three systems
mentioned above. More information about NQC, LeJOS and LegOS can be found
in their respective manuals and on the Internet.

4.2 Building the robots

To get devices that met our requirements (adaptable in appearance and behavior),
we decided to build two physically different robots, running the same program.
Because of these physical differences, their actual behaviors would be different as
well. Another requirement was that they were capable of traversing an enclosed
area without getting stuck in corners or against walls (for the testing of the
software the robots had to be in the view area of the camera as the only moving
objects while image sequences were recorded1, so human intervention was not an
option). This meant that collision detection had to be incorporated into the design.

The two Lego Mindstorms robots were built using only parts found in the
Lego Mindstorms Invention Kit 2.0. This kit contains, apart from building parts,
the RCX brick and an infrared tower for sending the programs to the brick. We
based our designs on the Rover example from the building manual contained in
the kit. The basic design involved a rover-like robot, consisting of two engines
driving the wheels independently, a light sensor (pointed down and close to the
surface) for measuring light and color changes (the light sensor in the kit can be
used for both light and color change measurements) and a two-sensor bumper for
collision detection on the front. The two sensors make it possible to distinct
between a collision on the left and one on the right of the robot. One of the robots
has caterpillar tracks and a geared transmission. This robot is quite slow, but is
also very precise in its color measurements. The other one has only two wheels on
the front, driven by the two motors and a skid pad on the back. The wheels are
connected 1:1 to the engines, making this robot very fast and agile, but also very
imprecise in its measurements (because of the high speed with which it moves).
These differences make the two robots interact with the environment in
completely different ways. The slow robot will never miss a crucial measurement,

1 See chapter 5, section 2 for information about the recording of image sequences (videos).

31

whereas the faster robot will usually overshoot the measurement point and then
try to solve a problem that is not at the position the robot is at. For convenience,
both robots use the same programs.

4.2.1 Programming the robots

To test tracking accuracy, we need to test different behaviors. Speeds should be
variable, as well as appearance and directional and speed changes. To accomplish
this, we have two programs for the robots. One with which the robots move in a
somewhat straight line (the actual line described is dependent on obstacles that
have to be avoided and the torque the two motors provide. If this is not equal, then
the line described will not be straight). Using this program, the speed at which the
robot moves is quite constant, which makes tracking easy, since position and
speed measurements can be used to predict the next likely position of the robot
accurately. The second program moves the robots in a ‘straight’ line (as explained
above) for a certain time (which can be a randomly determined number), then
turns for a certain time and moves on ‘straight’ again. This second program is
described in closer detail below:

We programmed the robots to be able to move over a blue-and-white tiled floor.
We wanted them to move in a way that simulates motion of humans in an
environment where the direction of movement is not predetermined by the layout
of the environment. Concretely, this means the robots’ motion is a set of straight-
line movements and rotations of non-predetermined length and angle. This way of
motion will further be referred to as random motion. Because the only way the
robots can interact with their environment is to sense it, we have to use the
environment to guide the robots. We decided to use the tiling on the floor for this
purpose. Because the entire floor has the same white-and-blue tiles, using the
edges between two differently colored tiles as sensory input to the program
running on the robots does not make their behavior predetermined by the layout of
the environment. The robots will behave in exactly the same way, no matter
where they are placed on the floor, as long as the angle to the edges between the
tiles is the same. The way in which the environment around the robots is used to
guide them is:

1. Check sensor values. If one of the bumper sensors is on, handle the
appropriate object avoidance. If the light sensor changed considerably
(from light to dark or from dark to light), raise the number of edges
(changes from a white to a blue tile or the other way around) detected by
one.

2. If the number of edges detected is below the threshold (determined
randomly), set the engines to full power forward. If the number of edges
detected is at or above the threshold, set the engine's direction so that the
robot turns either left or right (determined randomly) and leave them like
that for a random period of time, reset the edge counter and determine a
new threshold randomly. When the turn time has expired, move forward

32

again (note that during the time the robot turns, collision detection does
not work).

Of course, the edge count threshold must have an initial value. This is also
determined randomly. The program contains minimal and maximal values for this
threshold.

To have accurate edge detection, appropriate light-sensor values have to be
recorded for ‘light’ and ‘dark’. This can be done automatically in the following
way: the robot is positioned at right angles to the edges between the tiles. The first
two edges are measured and used to find minimal (dark) and maximal (light)
values for the light sensor. Every time the sensor is polled, the difference to these
dark and light thresholds is calculated. The smallest difference tells you whether
the robot is on a light or a dark tile. The result of the last polling is retained and
compared to the new one. If they differ (example: last polling was 'light', the new
polling is 'dark'), an edge is detected and the edge counter is raised.

It is much easier to hard-code these sensor values into the program. For
this purpose a small program is written that constantly reads the raw sensor value
(the unscaled, direct sensor output) and displays this on the display on the RCX
brick. When the robot is placed on a tile while this program runs, the sensor value
returned by the light sensor can be read directly from the display. This value can
be used in the actual robot program.

It is also possible to use constant calibration. That is, the polled light
sensor value is first classified as either 'light' or 'dark' and then the closest
threshold is updated by this value. A possible way of doing this is to average all
measurements classified for this threshold. This could also be extended to a time-
deprecating average, where influence of sensor pollings deprecates in time (of
course, the first two measurements are the basis of the light-dark thresholds and
when these don't differ a lot, for example because the second measurement was
caused by a stain on the floor and not by an edge between tiles, this method will
make sure that the thresholds will be somewhat reliable after some time, whereas
the original calibration method would find many non-existent edges).

4.3 Testing

The robots have been tested on the aforementioned tiled floor. The two-step
calibration method fails occasionally, causing the problem mentioned in the last
section (detection of many non-existent edges) to occur. The calibration step is
highly sensitive to a pre-determined value telling the robot how far sensor values
should be separated to be considered an edge. The time-deprecating average
method has not been tested, because it is much too elaborate for our purpose. To
avoid the calibration problems, we have decided to use the hard-code option
(during the recording of the testing videos, it is only needed to change these
values once).

33

Chapter 5

Experiments

Experiments are used to test the tracking software as described in chapter 3. The
tracking will be tested using different assignment methods, tracking features and
robot behaviors. In this chapter the test setup will be explained first, after which
the different tests are explained, as well as the results of the individual tests.

5.1 Setup

This section covers the design of the test environment as well as the equipment
used for the experiments.

5.1.1 The room

The room we used as our test area has a blue and white tiled floor. A part of this
floor has been fenced off and a white-ish, uniformly colored back wall is placed.
Lighting conditions are kept constant during the experiments, to get an optimal
background estimation model. People are not visible during the experiments.
Since not all of the test area is within the view of the camera, it is possible to
handle the robots without appearing before the camera.

5.1.2 The cameras

The cameras are situated in such a way that they look down on the testing area,
since in real-life situations, surveillance cameras are often mounted in such a way
that they look down onto the area surveilled. The cameras are so-called pan-tilt-
zoom cameras, meaning that the pan, tilt and zoom of the camera can be
controlled remotely, either by an infrared remote control, or a serial interface
present on the back of the camera. This serial interface uses the VISCA protocol,
which is a communication protocol for cameras developed by Sony. The VISCA
interface enables a program to change all settings of the camera (not only pan, tilt
and zoom, but also focus (auto focus in three modes or manual) and a number of
more advanced functions. One of these more advanced functions is white
balancing. White balancing is a process with which the total luminance (the sum
of the red, green and blue values of the pixels) of all images is kept on or around a
pre-defined value by means of the brightness of the image (often this value is

34

hard-coded into the camera). White balancing constantly updates the ambient
luminance of the image. Sometimes this is done to the extreme, which causes
areas to change color (light areas become white or dark areas turn black). This is a
problem for the background estimation. The background model becomes very
imprecise. For this reason, continuous white balancing (which is the default
setting of the camera) is disabled and instead a one-push white balancing is used.
One-push white balancing is one white balancing operation that is performed
when the software requests it. We don't want the cameras to move while the
software is running, so the software uses a pre-programmed pan-tilt-zoom
situation in which the camera is positioned at the start of the program.

5.2 Testing the software

Software tests consist of runs in the lab, in which different situations are simulated
using the two Lego Mindstorms robots. For the tests, pre-recorded videos are used
to ensure reproducibility. These videos are recorded using a realistic simulated
frame-rate of 10 frames per second. (this is the actual speed the software runs at
on our test machine (see chapter 6) using the online system). Each video consists
of 6000 frames, which is a total length of 10 minutes. The first 3000 frames are
pure background, to make sure the background subtraction system has time to
form an accurate model. The remaining 3000 frames contain repeated passes of
one or two robots through the image. In one video, we use only a single robot,
which moves in and out of the image repeatedly. In another we use two robots in
the same fashion. The videos are presented to the tracking program using a
‘virtual frame grabber’, which simulates an actual frame grabber, but instead of
reading from a camera device, this frame grabber reads from a file. This ensures
absolute transparency, which allows for easy switching between online and offline
use of the tracker.

35

5.2.1 Evaluation

The evaluation method analyzes the performance of our tracking system by first
establishing the ground truth. We investigated the video sequences manually and
recorded the begin- and endframes of a true track, as well as the number of tracks
in the video. Each of the true tracks gets a label.

After this step, the video of tracking results of our algorithm is analyzed.
This video shows tracks found by the tracking algorithm. These tracks will be
referred to as detected tracks. Each frame in which one or more detected tracks
are present, the true track they follow is determined by comparing the distance in
pixels of the location of a new track point to the location of the different objects in
the frame. The new track point receives the label of the true track that is closest to
this point (each moving object represents a single true track). Note that within one
detected track, different points can have different labels.

At the end of the result analysis, we have a set of detected tracks with their
labeling. For each detected track, we can now determine which label occurs most
frequently. By counting the number of occurrences of this label and dividing this
by the total length of the track, we get the label consistency, the fraction of the
feature information formed by the track that is reliable:

()
()

k

maj k
C k

N
= , (5.1)

where k is the detected track for which the label consistency is calculated, maj(k)
is the number of occurrences of the most frequently occurring label in track k and

kN is the total number of points in track k.

The second part of the evaluation compares the number of detected tracks
to the number of true tracks. It is possible that the tracking algorithm ends a track
prematurely or starts a track when no true track starts. This can be caused by an
inaccuracy in the background estimation or by an error in the tracking in an earlier
stage, such that the feature information used to match a track to a blob is
corrupted too much to allow a positive match. This causes more tracks to be found
then there are true tracks. For the same reasons it is also possible that a detected
track connects two true tracks. In this case less tracks are found. The track count
error is determined in the following way:

K d t

K

t

K K

K

∆ = −

∆
ε =

, (5.2)

where dK is the total number of detected tracks in a video, tK is the number of
true tracks in a video.

36

Combination

The label consistency of an entire test can be found by averaging over all label
consistencies:

1

1ˆ ()
dK

kd

C C k
K =

= ∑ . (5.3)

Now there are two measures for tracking quality: label consistency and
number of detected tracks. Usually, optimizing the tracking performance is a
trade-off between these two measures: when label consistency is optimized, the
number of tracks usually suffers, because starting a new track is preferred over
corrupting the label consistency. On the other hand, when the number of tracks is
optimized, this could easily result in faulty labeling, simply to keep the track
going.

5.2.2 The different tests

Two tests were carried out. The first test was aimed at determining which
assignment method produced the best results. The method that scored best in this
test was then used in the second test to establish which set of features could best
be used to track the Lego robots. At first, the tracking is tested using only a single
robot, moving in a straight line (as described in chapter 4) through the image. This
is tracked using both the Rangarajan and Hungarian assignment methods, as
described in chapter 3. Using each of these methods, the two available blob
construction algorithms, described in chapter 2, (morphological growing and label
growing) are also evaluated. The tracking features used in this stage are expected
position and average color, as described in chapter 3. The same setup is used with
three other videos. These videos contain one robot moving randomly, two robots
moving in a straight line and two robots moving randomly.

When these tracking results are analyzed, the best performing system
(either Rangarajan or Hungarian assignment) is selected for a second test. Here,
the tracking features are tested to see which features can best be used to track
moving objects. The remaining three features from chapter 3 are tested in this
stage.

5.2.3 Testing assignment methods

In this stage, the two assignment methods (Rangarajan and Hungarian) are tested
to determine which performs best in this particular task. This is combined with a
test of the two blob construction algorithms. Here, the method used in the next test
is also selected. Using four input videos, two assignment methods and two
different blob construction algorithms, brings the total of videos to be evaluated at
sixteen.

37

Tracking results

 In the following tables, tracking results will be shown. Each table shows
the results of tracking using one of the videos. A set of two numbers represents
the {average label consistency / average track count error} of that particular
algorithm.

Table 5.1: A single robot moving straight
Morphological growing Label growing

Rangarajan assignment 1.00 / 0.200 1.00 / 0.200
Hungarian assignment 1.00 / 0.200 1.00 / 0.200

Table 5.2: A single robot moving randomly
Morphological growing Label growing

Rangarajan assignment 1.00 / 1.500 1.00 / 1.625
Hungarian assignment 1.00 / 1.500 1.00 / 1.625

Table 5.3: Two robots moving straight
Morphological growing Label growing

Rangarajan assignment 0.965 / 0.077 0.932 / 0.154
Hungarian assignment 0.965 / 0.077 0.932 / 0.154

Table 5.4: Two robots moving randomly
Morphological growing Label growing

Rangarajan assignment 0.889 / 0.579 0.898 / 0.263
Hungarian assignment 0.929 / 0.368 0.902 / 0.211

5.2.4 Discussion of the first test results

The test results show, that for situations in which one single object is tracked, the
two methods produce the same result. In the case of two robots, the different blob
construction algorithms can produce slightly different blobs that have different
center points and thus produce different track trajectories. In some cases this
causes tracks to start and end at different frames and in different situations. Except
for the last video: in this particular case, the robots moved very close to one
another and actually touched each other frequently. This has somewhat upset the
tracking algorithms, since the number of detected foreground objects did not
always match the number of tracks in progress. It seems that only the data from
the tests where two robots were used, produces any meaningful results for
deciding which method produces the best results. Deciding which method is best,
depends on what it is to be used for. In our case, the tracking results are used to
identify an object on a different camera. Therefore, high label consistency is
required (the more consistent track labeling is, the more of the feature information
gathered in the track is from one single object). As mentioned before, feature

38

information is more reliable when it is gathered over a longer period of time, so
the best method should also produce a number of tracks that is close to the true
number of tracks. From the tables in the previous section, it can be seen that the
Hungarian assignment algorithm has the highest label consistency. Judging from
the difference in the track count error (where there are differences: tests 3 and 4),
the morphological growing blob construction algorithm performs slightly better
(in test 3 it produces half as many extra tracks as the label growing does, while the
fourth test shows that morphological growing only produces 1.7 times as many
extra tracks as label growing, which does not compensate for the difference in test
3). The combination of Hungarian assignment and morphological growing blob
construction should therefore be theoretically most suitable for the task of
tracking objects in order to gather information for their subsequent identification.

5.2.5 Testing feature sets

Here, the set of features best used for tracking moving objects is determined. For
this test, the video which was also used for the fourth experiment of the first test
(two robots moving randomly) is used again, since it is the video with the worst
results and indeed the only video that shows different results for each algorithm
combination. The previous stage has shown that expected position and average
color describe an object fairly well and make it possible to track it. However,
there are still a few points at which the tracking is far from optimal, such as the
number of tracks being reported by the tracking algorithm. Using a different
feature set may improve the tracking. In this stage, the basic feature set of
expected position and average color is compared to all other possible
combinations of features: expected position, average color, size, center of gravity
and pixel covariance. For each of these combinations, the improvement or
deterioration of the tracking performance is determined.

The table on the next page shows the results of the feature set tests. The numbers
shown are the relative label consistency and track count error. They are computed
in the following way:

2, 2, 1

2, 2, 1

s s

s s

C C C= −

ε = ε − ε

)

) , (5.4)

where sC ,2 is the average label consistency and s,2ε is the track count error of test

2 when using feature set s. 1C and 1ε are the average label consistency and track
count error respectively of test 1.

39

Table 5.5: Feature set test results
Feature set Relative track

consistency (+ better)

Relative track
count error (- better)

Position (POS) +0.019 ±0.000
Color (COL) -0.127 -0.210
Size (SIZ) -0.091 -0.368
Center of gravity (COG) +0.001 ±0.000
Pixel covariance (COV) -0.027 -0.157
POS + SIZ -0.020 -0.052
POS + COG +0.004 ±0.000
POS + COV -0.018 -0.052
COL + SIZ -0.129 -0.263
COL + COG -0.002 ±0.000
COL + COV -0.075 -0.210
SIZ + COG -0.024 -0.052
SIZ + COV -0.097 -0.263
COG + COV -0.034 -0.052
POS + COL + SIZ +0.003 ±0.000
POS + COL + COG +0.003 ±0.000
POS + COL + COV +0.003 ±0.000
POS + SIZ + COG -0.020 -0.052
POS + SIZ + COV -0.028 -0.052
POS + COG + COV -0.008 ±0.000
COL + SIZ + COG +0.003 ±0.000
COL + SIZ + COV -0.106 -0.315
COL + COG + COV +0.003 ±0.000
SIZ + COG + COV -0.027 -0.052
POS + COL + SIZ + COG +0.003 ±0.000
POS + COL + SIZ + COV +0.003 ±0.000
POS + COL + COG + COV +0.003 ±0.000
POS + SIZ + COG + COV -0.027 -0.052
COL + SIZ + COG + COV +0.003 ±0.000
POS + COL + SIZ + COG + COV +0.003 ±0.000

5.2.6 Discussion of the second test results

A feature set that performs better than the one used in the first test (expected
position and average color) should optimally have an improvement in both
average label consistency (denoted by a positive number in the table) and track
count error (denoted by a negative number). The table shows that there is no
feature set that does that. In fact, every feature set that does show an improvement
in average label consistency, detects the same number of tracks as in the first test.
Thus, judging from the table, this number of tracks is optimal with this particular

40

test video. There are improvements in the track count error in the table, but they
are always accompanied by deteriorations in the average label consistency.

Something else the table shows, is that some positional expectation (either
expected position or expected center of gravity) is necessary to have a reasonable
average label consistency (one that does not deteriorate too bad) and indeed all
feature sets that show improved performance have either expected position or
expected center of gravity as one of their features.

Another conclusion that can be drawn from this table is that adding
average color to a feature set is usually not a good idea, unless the feature set also
has a positional expectation feature. All feature sets that do not have this
positional expectation feature, but do have average color as a feature perform
worse than the same feature set without average color. This is probably caused by
the similarity of the color of the two robots (they are both yellow on top and black
from halfway down). The average color feature makes it possible to “jump” from
object to object when their color is similar. The positional expectation feature
prevents this, because usually the other object (the one which is not currently
tracked by this track) is too far away to be a serious candidate.

Finally, the table shows that a positional expectation feature is all that is
needed to get a good tracking performance. The feature sets that only have either
one or both of these positional expectation features perform better than the feature
set of the first test.

41

Chapter 6

Implementation

6.1 System configuration

The system configuration follows from the initial project parameters and can be
divided into three areas: hardware, operating system and software.

6.1.1 Hardware

• CPU: Intel Pentium III 1GHz
• Frame-grabber: Hauppauge WinTV GO

Video digitizer: Connexant BrookTree BT878
Inputs:
· VHF/UHF RF input on Philips FI6748 TV tuner
· Composite input
Capabilities:
· Image capture
· Image overlay
· Image clipping
· Frame RAM
· Image scaling
Frames are captured as 24-bit RGB images. Maximum resolution of this
card is 768x576 pixels. Scaling is done via hardware-implemented
interpolation. Horizontal scaling is done via a 6-tap linear interpolation
filter, for vertical scaling a 5-tap linear interpolation filter is used.

• VGA-display card: Matrox G400 AGP
• Camera: Sony EVI-D31

Pan/tilt/zoom color camera featuring auto-focus, automatic white
balancing and serial control interface. The serial (VISCA) control interface
can be used to configure the camera as well as control its motion. This
interface has been used to change the white balancing setting. The default
setting is auto-white balancing, meaning it constantly adapts white
balancing. Also see section 5.1.2 for more information about the VISCA
interface.

42

6.1.2 Operating system

Red Hat Linux 7.0
• Kernel: 2.4.19
• Compiler: GNU gcc 2.96
• GlibC: 2.2.4 (currently, GlibC 2.2.5 is not supported, because of a bug in

the libc.so library)
• Window manager: KDE 1.2.2

6.1.3 Software

The main implementation is done in C++. The executable has a main loop in
which the different tasks, necessary for tracking, are performed. Initialization is
done before the main loop. The tasks performed in the main loop are the
following:

1. Grabbing an image frame.
2. Applying background subtraction to the image frame.
3. Applying morphological growing1 or label growing2.
4. Extracting features from the labeled foreground image in combination

with the grabbed image frame.
5. Assigning foreground blobs to tracks.
6. Displaying the end result together with a number of intermediate results,

produce output for the camera-to-camera tracking.

6.1.3.1 Before tracking

The image frame is captured in the form of an Image<PixRGB<byte>> class
object (see appendix A for iLab classes). From this object, a C-array is created,
which is used for all computations. The array is one-dimensional:

},,,...,,,{ 111 nnn BGRBGRimage =
After color space conversion to normalized RGB (rgI) (see section , the image
array looks like this:

},,...,,,,{ 2211 nn grgrgrimage =
This array is the input for the background estimation algorithm. The output of the
background estimation algorithm is a one-dimensional C-array with foreground
probabilities per pixel.

},...,,{ 21 npppforeground =
This image is thresholded with a value of 0.6, resulting in a binary foreground
image. The morphological operations (erosion, dilation) are applied on this image
 after which morphological growing is used to 'glue' fragmented objects together.

1 Morphological growing is used to de-fragment objects. See section 2.2 for details.
2 See section 2.3

43

 The result is labeled according to Horn's algorithm1.

6.1.3.2 Tracking

When the operations of the last section are completed, tracking can begin. The
first step is to extract features from the labeled foreground regions. These features
are then compared to properties of tracks that have been formed previously (if no
tracks are present yet, features are only extracted to initiate new tracks). The
resulting distance measures are converted to probabilities, of which the logarithm
is taken as mentioned in chapter 3. A matrix is formed with combined
probabilities:
















=

tbt

b

pp

pp
M

L
MOM

K

1

111

,

with b the number of available new blobs and t the number of tracks already
formed.

This matrix is the input for the assignment algorithm. For the assignments
we are using the Hungarian Algorithm2. Based on the output of this assignment
algorithm, tracks are extended, new tracks are formed and tracks are terminated.

6.1.3.3 After tracking

After tracking, all that remains is to display the results and produce output for the
camera-to-camera tracking. All C-arrays are converted to Image objects again,
after which they can be displayed in an XWindow object. Tracks are directly
drawn into the Image object. The list of tracks is analyzed to find out if any tracks
were finished. If this is the case, their information is output in a text-file, to be
 used by the camera-to-camera tracking system.

1 See Zwarthoed [16], section 2.4.2, pages 16-18 for an explanation of Horn’s algorithm.
2 See section 3.3.1

44

Chapter 7

Discussion and Conclusion

We have investigated the feasibility and performance of a feature-based visual
object tracking system as a means of gathering information about objects in order
to identify these objects in a multiple-camera environment. We have looked at
different assignment methods as well as different blob construction algorithms
and feature sets.

7.1 Discussion

Tracking moving objects is certainly not a straightforward process. There are a lot
of uncertainties and the signal to noise ratio of different parts of the process is
often hard to determine. Based on various approaches we created a tracking
method using stationary cameras and an EM-based background subtraction
system, to which we added a Bhattacharyya distance [18] measure to avoid the
“growing together” of the background kernels. Because of the fragmentation of
the foreground detection, we added two methods to grow these different
fragments together to one blob: morphological growing and label growing.

The testing has shown that not many features are needed to get accurate
tracking results. It has also shown that, when one robot is used, the two
assignment methods in combination with any blob construction algorithm,
produce identical results. This was expected, since choosing with only one option
is not considered awfully difficult.

To have accurate tracking results, either expected position or center of
gravity should be included as a feature, since it avoids jumps from one object to
another when they are far apart.

Most of the feature sets produce more detected tracks than there are true
tracks (in fact, in the tests of section 5.2.5 there is only one feature set that
produces less tracks then there really are: average color combined with size). This
means that the number of objects cannot be derived directly from the amount of
detected tracks. The features gathered about the objects should be compared to
decide which tracks describe the same object.

Which blob construction system should be used, depends on the particular
situation. Morphological growing is most suitable if the background contains
large evenly colored surfaces. When the background estimation fails to detect part
of an object, the part is quite evenly detected as background, whereas when the
background does not have large evenly colored surfaces, the failed part is usually
fragmented itself. When this happens, label growing will produce a more
constantly shaped blob. As a matter of fact, the blob shape produced by the label

45

growing algorithm over a number of frames is always more constant than a blob
formed by morphological growing.

7.2 Conclusions

This thesis has shown that, although multiple features do make tracking objects
more robust, it is not necessary to use a large number of them to get accurate
tracking results. It can even make tracking results worse, since using too many
features can “confuse” the assignment system, with deteriorating accuracy as a
result. The described approach, using a small number of features and tracking
multiple objects using the Hungarian assignment method works. An alternate
method, the Rangarajan method, which does not necessarily produce the best
assignment result, was shown to perform worse in situations where the differences
in the probabilities for the assignments were very small. Although background
estimation is not the optimal way of detecting foreground objects, it is sufficient
for this tracking system. Since this system is supposed to be used to extract
feature information about objects in order to track them in an environment with
multiple cameras, the extracted features had to be sufficiently reliable, which
means that the information making up the descriptive feature should only come
from one single object.

7.3 Future work

In the future, the system could be improved by using a different background
subtraction method, which incorporates pixel correspondence and inter-pixel
relations to produce a more informative foreground blob. Also, different features
could be used to track an object. The features we selected were only selected
because they are easily computable and usually carry enough information to
distinct between two objects (unless the two objects are twins wearing the same
clothing).

Occlusion and partial occlusion should be detected and appropriately
handled to bridge temporary (partial) invisibility of an object.

Since it is only necessary to produce a definite tracking result when an
object has moved out of the image frame, it is possible to delay the final
assignment decision. Multiple hypothesis tracking, where a number of 'good'
results are kept and they are all expanded in the next frame, can be used. Only
when this hypothesis tree has reached a certain size, a definite decision is made on
the top-node and the rest of the tree is pruned. This approach makes it possible to
'see in the future' how well a certain assignment would work before actually doing
it.

In the introduction, a method using sub-features was described to track
traffic on a motorway. Using this system of grouping sub-features and tracking
them can improve tracking performance. The only problem is that the grouping

46

method as used in [1] assumes rigid body motions, which is not applicable to
humans. This means a different grouping method should be used to allow for the
tracking of (corner-)features of non-rigid objects.

47

Appendix A

A.1 iLab classes

This section covers the classes used in VisiTracker that are part of the iLab
Neuromorphic Vision C++ Toolkit. Classes found in this toolkit are:

Table A.1: iLab classes
Name Description
Timer Very precise timing class
Log Implementing a logging system

Point2D Class for a 2D point
PixRGB<T> Definition of an RGB pixel with values of type T
Image<T> Image class with pixels of type T
V4Lgrabber Interface to the Video4Linux API
XWindow Implementation of an X-Windows window frame

48

Appendix B

B.1 File structures

The software creates a number of different files with varying structures. This appendix
explains the different structures and should provide all information necessary for reading
the output of the software.

Image captures
Image captures are raw RGB images. This means that the red, green and blue values of
the different pixels are simply dumped to a file. A correct raw RGB file has a size of

heightwidthN ×= bytes and looks like this:

},,,...,,,{ 111 NNN BGRBGR .

Probability propagations
Files containing probability propagations (consecutive probability values for a set period
of time) are text files. They consist of a frame number and a number of feature
probabilities. It depends on which feature set is used, what the file looks like. The basic
structure is:

}}{,}{,,...,}{,}{,{ 111 mmm ExtendedBasicframeExtendedBasicframe .
For basic features, a one-frame structure looks like:

},,{ sizecolorposition
and for extended features:

}cov_,_{ ariancepixelpositionalternate .
Frame numbers are int numbers (signed whole numbers), all feature probabilities are
double numbers (signed real numbers), written in a 7.5 format (7 digits total, of which 5
decimals).

Image videos
Image videos are series of raw RGB images in a wrapper containing information to
accurately replay the recorded sequence. The video starts with a header:

C R E C 1 0 w w
w W h h h h fr fr
fr Fr ts # # # # #

• Bold “CREC10” is an identification string.
• ‘w’ is the image width (integer, 4 bytes)
• ‘h’ is the image height (integer, 4 bytes)
• ‘fr’ is the sequence frame rate (integer, 4 bytes)
• ‘ts’ is a Boolean, for timestamp inclusion.

After the header, the data starts. Images are a collection of a frame number (int), an
optional timestamp (int) and an image, as described above. The end of a video can be
detected by an ‘end of file’ (EOF) event.

49

Appendix C

C.1 Pseudo code

For X = 0 to image_width do
 For Y = 0 to image_height do
 If (label_image(X,Y) = requested label) then
 begin
 If X < current top_left x-coordinate then

 top_left x-coordinate = X;
 If X > current bottom_right x-coordinate then
 bottom_right x-coordinate = X;
 If Y < current top_left y-coordinate then
 top_left y-coordinate = Y;
 If Y > current bottom_right y-coordinate then
 bottom_right y-coordinate = Y;
 end;
box_width = (bottom_right x-coordinate) –
 (top_left x-coordinate);
box_height =(bottom_right y-coordinate) –
 (top_left y-coordinate);
center-x = (box_width / 2) + top_left x-coordinate;
Center-y = (box_height / 2) + top_left y-coordinate;

FigureC.1: Pseudo-code describing the computation of the bounding box center.

50

Bibliography

1. D. Beymer, P. McLauchlan, B. Coifman, J. Malik. A Real-time Computer
Vision System for Measuring Traffic Parameters. In Proc. of ther IEEE
Conf. on Computer Vision and Pattern Recognition, 1997.
http://citeseer.nj.nec.com/beymer97realtime.html

2. Robert T. Collins, Alan J. Lipton and Takeo Kanade. A System for Video
Surveillance and Monitoring. In Proc. American Nuclear Society (ANS)
Eighth International Topical Meeting on Robotics and Remote Systems,
Pittsburg, PA, pages 497-501, April 25-29, 1999.

3. Theo Gevers.Color Image Invariant Segmentation and Retrieval. PhD
Thesis, University of Amsterdam, 1996, pages 27-29.

4. Stephen S. Intille, James W. Davis and Aaron F. Bobick. Real-Time
Closed-World Tracking. In Proc. of IEEE Computer Science Conference
on Computer Vision and Pattern Recognition, Cambridge, MA, pages 697-
703, June 1997.

5. Stephen S. Intille and Aaron F. Bobick. Closed-World Tracking. Proc. of
the Fifth Int. Conf. on Computer Vision, pages 672-678, June 1995.

6. Michael Isard and Andrew Blake. Condensation - Conditional density
propagation for visual tracking. International Journal of Computer Vision
29(1), pages 5-28, 1998.

7. P. S. Maybeck. Stochastic models, estimation and control. Volume 1,
chapter 1.Academic Press, New York. 1979.

8. Christos H. Papadimitriou, Kenneth Steiglitz. Combinatorial Optimization,
Algorithms and Complexity. Pentice-Hall, Inc, Englewood Cliffs, New
Jersey, 1982.

9. Hanna Pasula and Stuart Russel.Tracking many objects with many
sensors. In Proc. IJCAI-9 , pages 1160-1171, Stockholm 1999.

10. K. Rangarajan and M. Shah. Establishing Motion Correspondence.
Computer Vision, Graphics and Image Processing, 54, pages 56-73, 1991.

11. Timothy Huang and Stuart Russel. Object Identification: a Bayesian
analysis. In Artificial Intelligence 103, (1998), pages 77-93.

51

12. Hannes Kruppa, Martin Spengler, Bernt Schiele. Context-Driven Model
Switching for Visual Tracking. In 9th International Symposium on
Intelligent Robotic Systems, Toulouse, France, July 2001.

13. Martin Spengler, Bernt Schiele. Towards Robust Multi-Cue Integration for
Visual Tracking. In 9th International Workshop on Computer Vision
Systems 2001, pages 94-107, Vancouver, Canada, July 2001.

14. Cor J. Veenman. Motion Correspondence, Image Segmentation and
Clustering. PhD Thesis, Technical University Delft, January 2002.

15. W. Zajdel. Internal report on visual surveillance algorithms.

16. Frank Zwarthoed. Real-Time Object Detectie in Video met gebruik van
Mixture Modellen voor achtergrondschatting. Masters thesis, University of
Amsterdam, April 17, 2002.

17. Subhash Suri, Stephen Scott. Network algorithms (CS 541). Source
unknown, Fall 1995.

18. Andrew Webb. Statistical Pattern Recognition. Arnold Publishers, New
York, 1999.

52

Index
A

array...42
assignment...23, 38, 45

Hungarian..25
method test ..36
Rangarajan and Shah..................................24

augmenting...25

B
background...44

subtraction... 11, 15
behavior ...29
Bhattacharyya

distance ... 16, 44
binary...16
blob...15, 23, 38
bootstrap ..11

C
calibration ..32
camera...18, 33, 41
center

of gravity...20
pixel ..19

class ... 42, 47
closed-world...12

local ..13
cluster ..12
color

average..12
intensity...16

combination..36
compiler ...42
condensation...11
configuration ..41
confuse...45
consistency

label ..35
label (relative) ...38

corner ...12
covariance ..20
CPU ...41

D
deadlock ...11
democratic integration.....................................11
detected

track ..35
detection...13
dilation ...12
distance ..21
Distributed Surveillance10
distribution ...16

E
edge ... 31
EM... 16
equality

subgraph.. 25
error

track count... 35
track count (relative) 38

Euclidean ... 12
evaluation... 35
experiment ... 33
extension .. 27
extract .. 13

F
feature11, 12, 13, 18, 35, 44

set 38
FEL-TNO... 10
firmware... 29
foreground.. 10
fragmented ... 16
frame.. 11
frame grabber ... 34

hardware ... 41
virtual.. 34

G
Gaussian... 15
goal .. 13
gradient .. 12
graph

bipartite... 23
ground truth.. 35

H
Hungarian

assignmentSee assignment
hypothesis

multiple... 45

I
identify... 13
iLab.. 42, 47
Implementation... 41
infrared .. 29
initialization ... 28

K
Kalman

filtering ... 12, 18
kernel ... 44

53

Gaussian..15
Linux... 30, 42

L
Label

growing ...17
labeling

algorithm...15
track ..35

Lego...29
LegOS..30
LeJOS ..30
Linux.. 30, 42
luminance...15

M
match

optimal ..25
perfect ...25
probability ...21
score..12

matching
exhaustive ...24
weighted..23

matrix
assignment...43
covariance ...20
score.. 12, 24

measure ..21
merging..12
Mindstorms ..29
model ...15

detection..11
morphological...15

growing ...16
multi

dimensional ...15

N
network ..13
neuromorphic ...47
noise... 16, 17
non-linearity ...16
normalize ...12
Not Quite C ..29
NQC...29

O
object ...18
occlusion .. 11, 45
optic flow ...15
order...24

P
path

alternating ... 25
pixel ... 19
probability.. 21

match .. See match
property.. 13

R
random... 17
RCX... 29
RCX2... 29
reliable ... 13
RGB... 42
rgI 42
robot... 29
robust ... 13, 18

S
score

match .. See match
matrix..See matrix

sensor... 10
sensors ... 30
sub-feature ... 11
sub-features .. 46

T
task .. 13
temporal differencing...................................... 15
test ... 29
threshold .. 43
track.. 11, 18, 23, 43

detected... 35
true.. 35

tracking .. 42, 44
trajectory .. 11
tree... 45

U
update .. 13

V
velocity .. 13
video ...12, 35, 36
VISCA ... 33, 41

W
weighting ... 12

