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Abstract
At the Universiteit van Amsterdam we are developing a distributed intelligent surveillance
system. We want this system to track moving objects across multiple cameras. This requires a
distributed computing platform that handles the information exchange between the cameras.
In this thesis we compare two systems that can perform this task, namely NID and Splice.
NID uses Java’s Jini protocols for creating connections between devices and Java’s RMI
protocol for communicating data between devices. Splice is a shared data space system.
Devices communicate via the shared data space, and data is distributed by a collection of
standard processes.
We identify the most important issues for our application and discuss how NID and Splice
handle each of these issues. To compare the performance of both systems we performed two
experiments. The first experiment measured data transfers of different sizes. The second
experiment simulated the communication pattern of our application with a varying number of
(simulated) cameras.
The outcome of this study is that NID shows better adjustability, flexibility and robustness.
Splice has a better mechanism for dealing with persistent data and shows better real-time
performance and scalability. Since real-time performance and scalability are essential for our
application, Splice is more suitable for exchanging data between the cameras in our system.
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Chapter 1
Introduction

1.1 Background

Safety is a hot topic in today’s society. The use of cameras to ensure safety is becoming more
and more common practice. Normally this requires that a human operator monitors the video
images from a number of cameras. By embedding the cameras with a certain level of
intelligence and letting them cooperate, the cameras could do the monitoring themselves. At
the Universiteit van Amsterdam (UvA) we are developing such a distributed intelligent
surveillance system as part of the Big Brother project.
We want our system to track moving objects across multiple cameras. The first step is
detecting a moving object in a video sequence that is generated by a camera. Therefore we use
a background subtraction technique. This technique separates moving objects from the static
background.
The second step is tracking the detected objects through the video sequence. This is done by
comparing features of an object in one video image with features of objects in the next video
image. In that way, objects can be tracked by a single camera as long as they are in the field
of view of the same camera.
When an object disappears from the field of view of one camera and enters the field of view
of another camera, we want to maintain tracking. Therefore the cameras have to exchange
information about the objects. This requires a distributed computing platform that handles the
information exchange between the cameras. This thesis concentrates on that particular part of
the system.
Designing a distributed system is not a trivial task because there are many different aspects
involved. The kind of application and its requirements will strongly influence the design of
the underlying computing platform. Fortunately, there exist already a large number of such
platforms, so we don’t have to design one from scratch. In this thesis we will compare two
operational platforms that we are familiar with at the UvA, namely Networked Intelligent
Devices (NID) [12] and Splice [1] [2]. The result of this comparison will form the basis of
selecting one of these two platforms for the distributed intelligent surveillance system that we
are developing.

1.2 Framework application

If we want to make a detailed comparison, we first need to decide what we are comparing
exactly. Therefore we present a framework application in order to define a clear frame-of-
reference. In the following chapters we will describe how this framework would be
implemented using NID or Splice. This will allow us to compare the two platforms.
The framework application consists of a number of interconnected devices. Each device
consists of two parts: a camera and a computer. The computer processes the video-sequence
generated by the camera. It tries to detect moving objects in the camera’s field of view. Data
about the moving objects is communicated to other devices in the system. When an object
disappears from one camera’s field of view and enters another camera’s field of view, the
other device should be able to decide whether it is the same object. The devices only keep
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track of the current location of an object. They don’t trace the path that the object has
followed.
To limit the amount of data that is sent across the network, the devices only send object
information to devices nearby. This is viable because devices nearby are more likely to detect
the object than devices far away.
The devices are monitored remotely. An operator can see where the cameras are located, and
where the detected objects are. The operator can also make adjustments to the devices
remotely. He or she can pan or tilt a camera for example, or let a camera zoom in.
The application is easily expandable. New devices can be added without having to
reconfigure the existing ones. This means that a new device contacts the existing devices, and
is integrated into the network automatically.

1.3 Related work

This section describes a number of studies that are in some way related to the study presented
in this thesis.

Wells et al. compared three shared data space systems [18]. These systems are JavaSpaces
from Sun, IBM’s Tspaces and Wells’ own system, which is called eLinda. All three systems
are based on the Linda programming model. Since Splice bears strong resemblance to Linda,
the three mentioned systems are comparable to Splice. Another interesting point is that
JavaSpaces uses Jini technology, just like NID does. All three systems are implemented in
Java and use a central data server. Experiments with a ray-tracing application distributed over
a small number of computers showed only small differences in performance.

Mohindra and Ramachandran did a comparative study of distributed shared memory system
design issues [13]. They tried to identify a set of issues that define an efficient
implementation. The issues that they consider most important are integration of distributed
memory with virtual memory management, granularity of computation and data, choice of
memory model and choice of coherency protocol.

Both studies compare different implementations of the same concept, whereas our study
compares two implementations of different concepts. However, it does show us how a
comparison could be done.

López de Ipiña developed a system that shows some similarities to our framework
application. His TRIP system [10] is a distributed vision based sensor system, which uses
visual markers (stickers with a barcode) to identify objects with a camera. Information about
the detected objects is communicated to a central server that manages this information.

There are also a number of more general studies about distributed systems that are relevant to
our framework application [5] [6] [8] [9] [11]. These studies show which issues are important
for distributed systems. From these issues we select the issues that are relevant for a network
of communicating devices.



10

1.4 Thesis outline

In this chapter we gave a brief description of the Big Brother project and the goal of this
study. We also described a framework application that will be used for the comparison and we
discussed some work from other authors that is related to this study.
The next two chapters will introduce the two systems that we are going to compare. Chapter 2
introduces the NID concept and chapter 3 introduces Splice. The crucial issues in the design
of our framework application are discussed in chapter 4. For each issue we will discuss how
NID and Splice handle it, and we will try to decide which of the two systems handles it better.
For a further comparison we have created two experiments. These are described in chapter 5.
Our findings in chapter 4 and 5 will be discussed in chapter 6. A final conclusion will be
presented in chapter 7.
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Chapter 2
The NID concept
This chapter describes the NID concept, which is developed to create a network of devices
that cooperate to perform a certain task. It uses Jini [16] for creating connections between
devices and RMI [15] for communicating data between devices.

2.1 Introduction

TNO-FEL developed the NID concept for creating a network of interconnected devices that
cooperate to perform a certain task. NID stands for Networked Intelligent Device. Typically, a
NID has a hardware and a software part. The hardware part consists of a sensor or actuator, a
network interface and a computation part. The software consists of a part that processes the
signal from the sensor/actuator, a part that manages the communication and a part that
performs the intelligent tasks. We will concentrate on the software part that is responsible for
all communication.
The devices in a NID system perform a number of tasks autonomously, such as analyzing the
data it gets from the sensor. Devices communicate the results from their analysis to other
devices in the system. On the basis of the shared information, they then cooperate to make an
elaborated decision about the actions that have to be taken.
Each device is capable of functioning correctly on its own. In other words, a device does not
rely on other devices. This ensures that the system keeps on functioning if a device breaks
down.
The interconnection pattern of a NID system and the behavior of the individual devices can be
configured at runtime. The connections between devices are established with Java’s Jini
technology. Communication with devices and between devices is done via Java RMI. The
next two sections will describe Jini and RMI.

2.2 Jini

The Jini Technology Architecture is an addition to the Java programming language, which
facilitates the use of distributed services. The service is the most important concept of Jini. A
service can be hardware, software or a combination. Examples of services are printing a
document, converting a file from one format to another, storing information, etc. Services can
be used by a person, a program or another Jini service. A collection of services together
makes up a Jini system. Such a system is also called a federation or a djinn.

The goal of the Jini Technology Architecture is to create a flexible, easy administered
network of distributed services. The Jini Programming Model makes it easy for users and
programs to make use of services and share services.
The Java Application Environment enables code and data to be run on any location with a
Java Virtual Machine (JVM). Jini makes use of this, so users can change their network
location but still access services in the same way.
The Jini infrastructure creates a dynamic network to which services can easily and
automatically connect and disconnect from. It does not require any network configuration.
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All of the entities involved in a Jini system may reside on different physical locations. The
only requirements are that there is an IP network connection between the locations, and that
there is a JVM running on every location.

The glue that holds a collection of services together is the lookup service. The lookup service
acts as a marketplace for offering and finding services. When a new service is created or
started up, it first has to find one or more lookup services. This is called the discovery process
(see figure 2.1). After this the service has to register with one or more of the lookup services it
has just found. This is called the join process. When the service is registered, it can be found
by other entities (persons, programs or other services) which have discovered one of the
lookup services the service is registered at.
An entity can get access to a service through the lookup service. This is called a lookup. The
entity asks the lookup service for a certain type of service, and the lookup service returns
references to the matching services. The entity can then access the service directly through the
obtained reference.

So far, we haven’t mentioned devices in Jini; we only mentioned services. In a NID system,
every device offers one or more services to other devices. A device registers its services at the
lookup service and uses the lookup service to get references to services offered by other
devices. The protocols that are involved are described in the following sections.

2.2.1 Discovery

lookup service

client

service

service object

entry objects

Figure 2.1: Discovery. The service seeks a lookup service

When an entity wishes to participate in a Jini system, it first has to obtain a reference to one or
more lookup services. To do this the entity has to follow the discovery protocol (figure 2.1).
Every lookup service belongs to one or more groups. When an entity tries to discover a
lookup service, it can specify a set of groups it is interested in. This way, only the lookup
services belonging to one of the specified groups will respond.
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Discovery can be done in three ways:
Multicast Request Protocol: This way, all lookup services on a local subnet can be found. The

discovering entity repeatedly performs a multicast by sending an UDP-datagram. This
datagram contains the set of groups the entity is interested in and the network address
and port of the entity itself. Every lookup service that receives the datagram and is a
member of one of the specified groups responds by creating a TCP connection to the
discovering entity. The lookup service then sends a proxy back to the discovering
entity. This proxy serves as a front-end to the lookup service, and gives the
discovering entity access to the lookup service’s methods.

Unicast Discovery: This way, a specific lookup service anywhere on the network can be
found. This requires the discovering entity to have a LookupLocator for the lookup
service, which contains the IP address and the TCP port of the lookup service. The
discovering entity creates a TCP connection to the lookup service and sends a request.
The lookup service responds by sending a proxy.

Multicast Announcement Protocol: This is used by the lookup service to announce its
existence. The lookup service sends a multicast UDP-datagram containing its
ServiceID, a LookupLocator and a set of groups. The ServiceID can be used by entities
to check if they already know that lookup service. If an entity doesn’t know the lookup
service and is interested in one of the groups, it can use the LookupLocator to perform
Unicast Discovery.

2.2.2 Join

lookup service

service item

service object

service ID

entry objects

client

service

service object

service ID

entry objects

Figure 2.2: Join. The service registers itself with the lookup service.

The join protocol (figure 2.2) describes the process of registering a service with a lookup
service. The registering service provides the lookup service with information about itself. A
service is registered by using the lookup service’s register method. The arguments to this
method are the requested lease duration and a ServiceItem. The lookup service returns a
ServiceRegistration object. After this the service can be found by other entities.
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A lease is a time period during which the grantor of the lease ensures (to its best abilities) that
the holder of the lease will have access to some resource. In this case the grantor is the lookup
service, the holder is the registered service and the resource is the registration. This means
that the lookup service will maintain the registration of the service for the requested time
period. When the lease expires, the registration is removed from the lookup service.
Leases can be renewed or cancelled by the holder. The grantor decides whether it grants the
requested lease duration, but it can also decide to grant a shorter time period. A lease is
represented by a Lease object. The Lease object can be used to renew or cancel the lease or
to obtain the lease duration.

A ServiceItem contains a service object (a reference to the service), a service’s ServiceID and
a set of Entry objects. A ServiceID is a unique number that identifies the service. When the
service registers for the first time it receives a ServiceID from the lookup service. After that it
has to provide this ServiceID with every following registration.
Entry objects contain information about a service: the service attributes. These service
attributes can be viewed by other services, so they can find an appropriate service for a certain
task.
A ServiceRegistration object contains a Lease and a ServiceID. The service attributes of a
service can also be modified through the ServiceRegistration object.

2.2.3 Lookup

service

lookup service

service item

service object

service ID

entry objects

client

service object

Figure 2.3: Lookup. The client gets a proxy to the service

The process of finding a service is known as lookup (figure 2.3). Entities that want to find a
particular service can use the lookup service’s lookup method. This method takes a
ServiceTemplate as an argument that specifies the services the entity is interested in. A
ServiceTemplate can contain a ServiceID, a set of service types and a set of Entry objects.
The lookup service returns the ServiceItem objects of all the services that match the service
template. This ServiceItem contains the ServiceID of the service and a service object. The
service object acts as a proxy to the service. The entity can use this service object to
communicate directly with the service.
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Entities that want to be kept up-to-date about new services or services changing their
attributes, can use the lookup service’s notify method, which also takes a ServiceTemplate as
an argument. When a new service registers that matches the ServiceTemplate or when a
change occurs that the entity showed interest in, the lookup service fires an event.

2.2.4 Jini Helper Utilities and Services
The Jini API (Application Programmer Interface) provides a collection of utilities and
services that can save the programmer a lot of work.
A helper service is a Jini service that can be registered with any number of lookup services
and whose methods can execute on remote hosts. In general a helper service should be of use
to more than one type of entity.
Helper utilities are programming components that can be used during construction of Jini
services and/or clients. Helper utilities are not remote and do not register with a lookup
service. They are instantiated locally by entities wishing to employ them.
There are services and utilities that help with the discovery process, the join process, service
discovery, lease renewal and event handling.

2.3 Java Remote Method Invocation (RMI)

So far we discussed how devices can exchange proxy objects by means of the Jini protocols.
This section describes how the devices communicate. All communication is done with remote
procedure calls. In Java, a remote procedure call is known as a remote method invocation.

A device communicates with a service by calling a method of the service’s proxy object. The
proxy object serves as a local interface to the remote service. It sends the method call to the
service and gives the return from that call to the device that called the method. This
mechanism is called RMI, Remote Method Invocation.

What actually happens is the following. The proxy object creates a stream socket connection
to the remote object. The protocol that is used for this connection is TCP (Transmission
Control Protocol). The stream to the remote object starts with a header that identifies the
object and the method that is called. The rest of the stream contains the objects that are passed
as parameters to the method. These parameter objects are formatted into a transmittable form
by means of the Java Serialization Protocol. The return stream contains an acknowledgement
and possibly return objects that are also serialized.

2.4 Framework implementation with NID

This section describes how the framework application that was introduced in section 1.2
would be implemented with NID. It shows how the Jini and RMI protocols are used in a
practical application.

The NID-device starts with using Jini’s discovery and join protocols to integrate into the
system. The device gets references to other devices by performing a lookup at the lookup
service. The lookup call contains a template with a number of criteria for the devices it wants
to receive data from. The lookup service returns a reference to every device that matches the
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criteria defined in the template. These references are proxy objects that allow the device to
communicate with other devices by means of RMI calls.
The device uses the references to register itself at the other devices. A device registers itself
by giving another device a listener object. The other device uses the listener object to
communicate. It passes data to the listener object, and the listener object forwards this data to
the registered device.
Within the application framework there is a separate program that monitors the devices. This
program also performs the discovery protocol to find a lookup service, and performs a lookup
to get references to devices. Just as the devices, it uses listener objects to receive data from
devices. The monitoring program can also download a user-interface from a device. This
allows the operator of the system to interact with a device.

2.5 Conclusion

The NID concept is basically a collection of protocols that allows devices to communicate
with each other. First contact between devices is established via the Jini protocols. Devices
use Jini’s lookup service to exchange references to each other. When a device has a reference
to another device, it can send data to the device via RMI calls.
The next chapter will describe Splice, the other system in our comparison.
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Chapter 3
Splice
This chapter describes Splice, an architecture developed for large-scale embedded systems.
Splice uses a shared data space to distribute data across the network.

3.1 Introduction

The development of Splice began in the early 1980’s at Hollandse Signaalapparaten. They
needed a software architecture that could be used for large-scale embedded systems like
traffic management, process control and command-and-control systems. The complexity of
such systems makes them very difficult to implement and even more difficult to modify. A
modular approach to the design is therefore necessary. This leads to better designs, less errors
and reduced development time.
Traditional modular design methods separate the various functions that a system has to
perform into different modules. Today’s large-scale embedded systems are often distributed
over a large number of interconnected computers. This introduces design problems in the area
of communication, distribution of processing and adaptability and extendibility. Functional
decomposition only is not adequate to solve these problems.
Splice uses an extension of the traditional approach. It separates the computation part of a
system from the coordination part. The computation model expresses the basic tasks that have
to be performed by a system. The coordination model expresses the system in terms of
processes and the communication between them. This approach improves the modularity of
the complete system.

3.2 Software architecture

The Splice software architecture basically consists of two types of components: applications
and a shared data space. The applications are concurrently executing processes, which
together perform the functions of the system. They interact only through the shared data
space. In this sense Splice bears strong resemblance to Linda [4]. Linda is a coordination
language for parallel and distributed processing. It provides a communication mechanism
based on a logically shared memory space. This shared memory is called tuple space. Linda
provides a library with a small set of operations that may be used to place tuples into tuple
space and to retrieve them from tuple space.

In Splice the shared data space is organized as a collection of relational databases. A new
database is created by a sort definition. The definition of a sort specifies the name of the sort
and the names and types of the fields. The field types can be integer, double, string and also
more complex types like arrays and nested records. Just as with a relational database, one or
more fields can be declared key fields.
Each data element in the shared data space is uniquely determined by its sort and the value of
its key fields. The different sorts enable the application processes to distinguish between
different kinds of information.
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sort name object_data (volatile)

field names object_id (key) location color

field types long double[3] int[3]

sort name camera_info (persistent)

field names camera_id (key) location orientation

field types long double[3] double[2]

Figure 3.1 Example sort definitions.  The sorts shown in this figure are examples
of sorts that could be used in our framework application.

The Splice architecture offers three primitives for interaction with the shared data space. With
these primitives an application can store data elements in the data space and retrieve data
elements from the data space. The three primitives are defined as follows:
- write(a, x): inserts element x of sort a into the shared data space. If the data space already

contains an element of the same sort and with the same key value, the old element is
overwritten and replaced by the new element.

- read(a, q, t): reads an element of sort a that satisfies query q from the shared data space. If
the data space does not contain an element satisfying the query, the operation blocks until
either one becomes available or until the timeout t has expired.

- get(a, q, t): operates exactly the same way as the read operation. The only difference is that
once an element is retrieved by the get operation, it is hidden from the applications view and
cannot be read a second time.

To ensure the consistency of the shared data space the architecture imposes the design
constraint that for each sort at most one application shall write data elements with the same
key value.

3.3 Distributing the shared data space

To share data amongst application processes running on different computers, the shared data
space has to be distributed across a network of computers. The distribution of data is handled
by heralds.

Each application process has exactly one herald. The herald acts as an intermediary between
the application and the shared data space. An application interacts only with its own herald
and does this by means of the primitives discussed in the previous section. The herald
communicates with other heralds to create a distributed shared data space. Each herald
embodies a local database. This local database should contain all data elements of every sort
that the application is interested in. This is realized by a subscription protocol.

When an application issues a read request for a given sort, the herald checks whether this is
the first request for that particular sort. If it is, the herald asks the other heralds for data
elements of that sort. It does this by broadcasting a subscribe message to all the other heralds.
This message contains the name of the sort and the address of the herald.
Every herald that receives the request registers the requesting herald as a subscriber to the
requested sort. Then they check if their own application has written any data elements of that
sort. If this is the case they send copies of all the written data elements to the subscriber. And
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from that moment on they immediately send a copy to the subscriber when their application
writes a new data element.
Note that it is important that a herald only sends the data elements that were actually written
by its own application. Let’s consider what would happen if a herald would simply send all
the data elements of the given sort that are in its local database. If the herald has already sent
data elements of that sort to another subscriber, the other subscriber will send the same data
elements to the new subscriber. This means that the new subscriber will receive multiple
copies of the same data element. By limiting the sending of data elements to copies that are
written by a herald’s own application, a subscriber will receive each copy only once.
Also note that even if a herald doesn’t have any data elements of the requested sort in its local
database at the moment of the request, it still registers the subscriber. The herald does this
because its application may start producing elements of that sort at a later time.

sort
a
b
c

P1

herald H1

subscr.
H2
H3

read b

P2

b ? b ?

sort
a
b
c

herald H2

subscr.

H3

P3

sort
a
b
c

herald H3

subscr.
H2

Figure 3.2a. Read request. This figure shows an example Splice system. The italic sorts are not in the
local database. The plain sorts are in the local database, but there are no data elements present that were
written by the herald’s own process. The underlined sorts are present in the local database and there are
data elements that were written by the local process. Process P1 performs a read request for sort b, but
sort b is not in herald H1’s database. Therefore, H1 broadcasts a request for sort b.

sort
a
b
c

P1

herald H1

subscr.
H2
H3

b

P2

b

sort
a
b
c

herald H2

subscr.

H3, H1

P3

sort
a
b
c

herald H3

subscr.
H2
H1

Figure 3.2b. Read reply. Herald H3 does have data elements of sort b in it’s local database, but they
were not written by process P3, so it does not send any data elements. However, it does register H1 as
a subscriber to sort b. Herald H2 has data elements of sort b that were written by it’s own process, so it
sends these data elements to H1. H2 also registers H1 as a subscriber to sort b. H1 stores the data
elements it receives in the local database and responds to P1’s read request.

When an application issues a write operation, the herald stores the data element in its local
database. If this was the first write operation for the written sort, the herald announces this by
broadcasting a publish message to the other heralds. If this herald did not exist when one or
more of the other heralds subscribed to the written sort, it doesn’t have their subscriptions.
The publish message notifies the heralds of a new publisher, and allows them to add a
subscription to the new herald.
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After this, the herald of the writing application checks if it has registered any subscribers for
the sort that is written. If this is the case, it sends a copy of the data element to every
subscriber.
A get operation is handled the same way as a read operation. The only difference is that after
a data element is passed to the application, it is removed from the local database. We know
that a herald receives every data element only once. This ensures that the application will not
be able to read the same data element again.

As a result of this protocol, all the data that an application needs will become available in the
local database. And each local database only contains the sorts that an application actually
reads or writes. Heralds need no prior information about the application they serve, so all
heralds can be identical. The communication needs are derived dynamically from the read and
write operations that are performed by the application processes. Communication does not
have to be considered when designing the application processes. The complexity of the
system is thus effectively decreased by this separation between computation and
communication. The significant amount of code needed for the communication part is now
handled by the standardized heralds.
Note that the use of heralds is a distinct Splice innovation. Other coordination languages
suchs as Linda do not have heralds. How data is distributed across a network is not explained.
Linda is only concerned with how processes interact with the tuple space, and how they
interact with each other through tuple space.

3.4 Volatile and persistent data

The way the protocol is described so far is to store persistent data. In Splice, this means that
even if an application did not exist at the time that the data was written, it can still read the
data. This has some undesirable consequences. Consider the following situation.
A new application enters the system and wants to read data of a certain sort. The application’s
herald broadcasts the name of the sort. Now, every other herald that already has an application
producing data elements of that sort starts sending. Because a lot of heralds start sending at
the same time and to the same herald, the network can become clogged. This can interfere
with other communications. So, it can take quite a long time before the new application is
fully integrated into the system.
To solve this problem, Splice supports volatile data. Volatile data is only visible to those
applications that are present at the moment the data is written. The distinction between
volatile and persistent data is made by adding an attribute to the sort definition that indicates
whether the sort is volatile or persistent. The protocol for handling volatile data is almost the
same as for handling persistent data. The only difference is in the handling of a write
operation. When a data element of a volatile sort is written, the herald does not store the data
element in its local database, but sends it immediately to all subscribers. The result of this
change is that data elements are only sent at the time they are written, and never afterwards.

In figure 3.1 we can see that the object_data sort is defined as volatile and that the
camera_info sort is defined as persistent. Information about objects changes dynamically. The
location of moving objects, for example, changes constantly. For this reason, old object
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information is not very useful.1 Therefore, object information is a good example of volatile
data. Sensor data should in general be declared volatile, because only recent samples are of
interest and new samples invalidate old samples.
On the contrary, information about a camera (e.g. its location, field of view and optical
characteristics) usually doesn’t change. It is only invalidated when the camera is moved. If a
new camera is added to the system, it needs information about the other cameras. This
requires that camera_info should be declared as a persistent sort. In general, system
configuration data should be persistent.

3.5 Framework implementation with Splice

This section describes how the framework application that was introduced in section 1.2
would be implemented with Splice. Every device has a herald and at least one application
process. The herald actually consists of a number of processes. The most important one is the
Splice daemon, which takes care of all communication. The tasks of the other processes
include managing the global clock and handling persistent data.

For the framework application we need three different kinds of sorts. One sort for publishing
information about the camera, one sort for sending object data to other devices, and one sort
for user interaction.
The Splice daemon of every device automatically establishes contact with other Splice
daemons. Each device starts with publishing information about the camera. Then it reads all
the camera information from the other devices. From this information it selects the devices it
wants to receive data from, and subscribes to the object data sort of every selected device.
Data is sent to other devices by writing it to the shared data space. The Splice daemon then
forwards the data to the subscribed devices.
The program that is used to monitor the system also has a Splice daemon. The monitoring
program subscribes to the camera information sort, so the operator can see where the cameras
are. It can subscribe to the object data sorts of the devices to receive object data. Interaction
with the devices is also via the shared data space. Remote commands and replies to those
commands are embedded in data elements of the user interaction sort.

3.6 Conclusion

Splice is a distributed shared data space system. The distribution of the data is handled by a
number of standard processes that are called heralds. The heralds ensure that all the data that a
device needs is available in the device’s local database. This is done by means of a
subscription algorithm. Communication between devices is only possible through the shared
data space.
In the next chapter we will compare NID and Splice for a number of issues that are important
for the design of our framework application.

                                               
1 For object tracking, previous locations are necessary. But an object is only tracked by the camera that has the
object in its field of view. The other cameras don’t track the object, so they don’t need its previous locations.
Therefore, the previous locations don’t have to be kept in the shared data space.
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Chapter 4
Crucial issues in device to device communication
This chapter describes the important issues when creating a network of communicating
devices. We want to decide which of the two systems that we are comparing (NID and Splice)
is best suited for communicating object information in a network of cameras. Therefore, we
described a framework for such an application in section 1.2. In sections 2.4 and 3.4 we
described how this framework would be implemented with NID and Splice. These
implementations will form the basis for our comparison.

4.1 Introduction

The most important issues for our framework application are: security, data representation,
data persistency, data consistency, robustness, synchronization, adjustability/flexibility, fault-
tolerance, communication protocols, real-time performance, message compactness and
scalability. How NID and Splice handle these issues is discussed in the following sections.
In chapter 5 the performance related issues are discussed further on the basis of performed
experiments. These issues are: real-time performance, communication protocols, message
compactness and scalability.

We will also assign parameters to a number of issues. Each parameter expresses the efficiency
of a certain aspect of the system. These parameters are intended for future use for describing
distributed networks issues.

4.2 Crucial issues

Each issue will be handled separately in the sections below. We first explain why it is an
important issue for the framework application. Then, we describe for NID and Splice how
each of them handles that particular issue. Finally, we compare both approaches and decide
which approach is the best.

4.2.1 Security
In every networked system security is important. The system has to be protected against
intruders that want to read data or interfere with the system in some way. This can be done by
encrypting the messages between the devices. For example, IDEA (the International Data
Encryption Algorithm) [8] is a well-suited encryption algorithm for this purpose. IDEA is a
block-ciphering algorithm, which is considered virtually unbreakable and is also relatively
fast. It uses a 128-bit key, which has to be known at the sender and the receiver of the
message. The same key is used for encryption as well as decryption.
Typically, two levels of protection are distinguished. The first level protects the system from
unauthorized entities that want to join the system. This ensures that no entity can interfere
with the system. An entity that joins the system could, for example, send incorrect data to the
other devices. The second level protects the data in the system from unauthorized entities that
want to read it. This could happen if entities intercept messages that are sent between the
devices.
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NID
Because a NID system is programmed in Java, it benefits from Java’s built-in security. Java is
a so-called type-safe language. Type-safe languages ensure that references to objects cannot
be forged (i.e. created by an unauthorized entity), and that objects can only be used by holding
a valid reference to them. The Java Virtual Machine enforces the Java language’s type safety,
preventing programs from accessing memory or calling methods without authorization. The
Java Classloader ensures that system classes cannot be replaced by user classes.
The first level of protection can be ensured by encrypting the messages associated with the
discovery process. The lookup service should only respond to discovery messages that are
encrypted with the correct key. The response, which contains a reference to the lookup
service, should also be encrypted. The Java Virtual Machine ensures that references can’t be
forged. In this way, only entities that have the correct key can make use of the lookup service.
If the intruding entity cannot read messages that are not addressed to it, the system is
completely protected. If this is not the case, other messages also have to be encrypted. The
lookup service’s response to a lookup message has to be protected, because it contains
references to the devices. The messages between the devices also have to be encrypted so the
intruder can’t read the data that is in these messages.

Splice
In the Splice system no security is built-in. But the programming model makes it easy to
implement security of the first level. The Splice daemons use some sort of discovery protocol
to find each other. If the messages of this protocol are encrypted, no unauthorized entity can
join the system. Encryption of the subscribe messages is not an option, because unauthorized
entities could just send incorrect data to every other device, regardless of the subscriptions.
Just as a NID system, a Splice system is also completely protected by enforcing the first level
of protection if intruding entities cannot read messages that are not addressed to it. When an
intruder can read messages that are not addressed to it, every message between two devices
has to be encrypted.

Comparison
Because the Jini Specification can be simply downloaded from Sun’s website, anyone can
find out how a lookup service can be accessed. Splice is a commercial product that is not
freely available. The protocols that the Splice daemons use are therefore not open to the
public. So, it is not very easy to create your own Splice daemon and let it join a Splice system.
In that respect, Splice is safer. Beyond that, the security measures that have to be taken are the
same for both systems.

4.2.2 Communication protocols
There are two different forms of communication in the framework application. First, the
devices have to perform some sort of communication protocol to connect to and integrate into
the system. Second, when this is done, the devices need a protocol for sharing data about the
detected objects. Each protocol has its requirements, limitations and possibilities.
For good scalability, each protocol should require as few messages as possible and should be
implemented efficiently (i.e. require a small number of operations). The efficiency of protocol
P depends on the efficiency of the implementation E and the number of messages N. This can
be denoted as P ( E, N ).
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NID
The NID system uses Java’s Jini Technology for connecting the devices to each other. Every
device with a TCP/IP connection to the rest of the network can join the system by means of
the Jini protocols. A device can use broadcast messages to discover a lookup service. If the
network does not support broadcast or if the lookup service is outside the broadcast domain,
the device needs the lookup service’s IP-address to connect to it. The devices use the lookup
service to exchange references. The references will be used by the devices to send data to
each other.
Data is sent by means of Java RMI (Remote Method Invocation) calls. An RMI call creates a
TCP (Transmission Control Protocol) connection between the calling object and the receiving
object. TCP is a reliable protocol, which means that packets always reach their destination in
the correct order.
There are two ways of transferring data. Data can be pulled by the receiving object, or pushed
by the sending object. In our framework application, data is sent as soon as it is available.
This means that it is pushed by the device that generates the data. It requires that the devices
that want to receive the data have to register at the sending device.
An RMI call is a synchronous data transfer. This means that a method call only returns when
both the sending and the receiving object have performed all operations. The advantage of this
is that the sending object knows that the receiving object has received the data when the
method call has returned. The disadvantage is that the sending object is blocked during the
entire transfer. This problem can be solved by calling the method in a separate thread. We will
see the drawback of that solution in chapter 5.

Splice
Connecting to the Splice system is done by starting a Splice daemon. The Splice daemon
automatically searches the network for other Splice daemons. If the network does not support
broadcast messages, the Splice daemon needs the IP-address of one or more other Splice
daemons. Once two Splice daemons have contacted each other, they exchange the addresses
of other Splice daemons that they have had contact with before.
Data is shared between devices by means of the shared data space. A device can write
information to the shared data space and read information from it. It can control which
information it receives by means of a subscription paradigm. If it wants to receive data from a
certain device, it subscribes to the device’s object data sort. The Splice daemons take care of
transferring the data from the producing devices to the subscribed devices. The subscription
paradigm implies that only push communication is possible.
The data transfer in Splice is asynchronous. When a device writes data to the shared data
space, the data is first stored in a local database. So when the write method returns, the device
only knows that the data is stored locally. When new data is written to the local database, the
Splice daemon tries to transfer it to the local databases of the subscribers as soon as possible.
However, the producer of the data will never get an acknowledgement.
The Splice daemons have two different network protocols for transmitting data. The
declaration of the data’s sort determines whether they use a reliable or an unreliable protocol.
The reliable protocol has guaranteed delivery, but it is slower. A big disadvantage of the
unreliable protocol is that a lot of packets get lost if the network load is high. This introduces
unwanted non-determinism to the system.
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Comparison
The communication protocol of NID involves a central marketplace for exchanging
references: the lookup service. The disadvantage of this is that network traffic is concentrated
on the node of the lookup service. Splice doesn’t have this disadvantage. The management of
the connected devices is distributed over all nodes.
Furthermore, the asynchronous data transfer of Splice is more efficient than the synchronous
protocol of NID. NID, on the other hand, offers more flexibility in the sense that it supports
both push and pull communication. However, from a performance point of view, Splice
should beat NID. Whether this is also the case in practice, we will see in the next chapter.

4.2.3 Message compactness
Message compactness relates to how the messages between the devices are formatted and
sized. In addition to the content, each message has a header, which identifies the recipient and
may contain a timestamp and the type of the message.
A scalable system requires that the messages are formatted efficiently and that the size of the
messages is as small as possible. The compactness of a message M depends on the content C
and the overhead H. This can be denoted as M ( C, H ).

NID
In the NID system all communication is done by means of remote procedure calls that contain
the data that is to be sent. The protocol for the remote procedure calls is Java RMI. The data is
represented by Java objects, which are formatted into a byte stream by means of Java’s Object
Serialization Mechanism. Both the RMI protocol and the serialization of the objects incur
some overhead.
The structure of an RMI call is as follows: header (28 bytes) – method identifier (38 bytes) –
message data (variable) – acknowledgement (4 bytes) – return data (variable). The overhead
of the RMI call is: 28 + 38 + 4 = 70 bytes.
We will calculate the serialization overhead for two example messages. The messages contain
locations of detected objects. The location of each object is represented by 3 doubles (a
double is 8 bytes in Java). The first message contains 10 locations; the second message
contains 100 locations. The efficiency of the serialization depends on how the locations are
represented. We discovered that the most efficient representation is to store each location in a
Java object and store these objects in an array. This results in the values shown in table 4.1.

locations data size serialized RMI message size overhead
10 3·8·10 = 240 371 70 371 + 70 = 441 (441-240)/441 =

30 %
100 3·8·100 = 2400 3071 70 3071 + 70 = 3141 (3141-2400)/3141 =

24 %

Table 4.1. Message compactness of NID.

Splice
In Splice, all communication is handled by the Splice daemons. How the Splice daemons
format their messages could not be disclosed. Therefore, we don’t know the message
compactness.
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Comparison
Because we don’t know how messages in Splice are formatted, we can’t compare the message
compactness of the two systems. The data transfer experiment in the next chapter should
clarify the situation.

4.2.4 Real-time performance
Our framework application is an example of a so-called soft real-time system [7]. This means
that if a result is not produced before a certain deadline, this does not have catastrophic
consequences. The performance of a real-time system should be predictable, even at high
load.

NID
The NID system is programmed in Java, which is not well known for its real-time
performance. In general is an application programmed in Java about 10 times slower than the
same application programmed in C.
An advantage of the Java programming language is that it offers the programmer the notion of
threads. Threads are lightweight processes, which can be assigned a priority value by the
programmer. By performing time-critical operations in a thread with high priority, real-time
performance can be enhanced.

Splice
Splice was specifically designed for large real-time systems. Because Splice is programmed in
C and uses asynchronous communication, it should inherently be faster than NID.
Furthermore, according to [2] the upper bounds of Splice are acceptable for distributed
applications where timing requirements are in the order of milliseconds.

Comparison
Because of the difference in programming language and communication protocol, Splice
should have substantial better real-time performance than NID. The experiments in the next
chapter should prove this.

4.2.5 Data representation
Data representation relates to how data is represented locally. Not all the data that a device
generates needs to be sent. A device may want to store some of the data only locally.
There are two kinds of data in this system: data generated by the cameras and data about the
cameras. Data generated by a camera will be called object data. This is usually the location of
the object, and other features of the object that allow it to be identified by other cameras. The
data about a camera, which we call camera information, is the location and orientation of the
camera.
All this data has to be represented efficiently. In this case efficiently means that the data is
easily accessible and occupies a small amount of resources. A compact representation of the
data is necessary for a scalable system. The compactness of representation R of information I
will be denoted as R ( I ).

NID
All data is represented by Java objects. Object data is represented by the ObjectData class.
For every object that a device detects, an instance of this class is created. The attributes of the
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ObjectData class contain the coordinates of the location and the values of the other features.
The ObjectData objects are stored in a Java data structure, for example a HashMap.
Each device stores its camera information locally and also gives a copy of this information to
the lookup service when it registers. To be able to communicate, every device needs
references to other devices. These references are represented by service objects. A device can
ask the lookup service to give it the service objects of devices that match certain criteria. The
lookup service uses the camera information to find positive matches. The service objects that
are returned by the lookup service are stored in a HashMap, with the device’s ServiceID as
the key object. A device only stores the service objects of devices it wants to receive data
from.
A device also has to store the listener objects of the devices that have registered to receive
data. They are stored in a HashMap, with the ServiceID of the registered device as the key
object. Service objects and listener objects are stored in a HashMap, so that they can be easily
removed when the corresponding device is disconnected from the network.

Splice
In Splice, data is represented by a sort. The most important aspect of a sort is whether it is
declared volatile or persistent (see section 3.4). Sorts are represented by C structs. They are
stored in the shared data space, which is structured as a collection of relational databases.
Every device needs to have its own sort for publishing object data. Otherwise, data would
always be sent to every device in the system. Object data should be declared volatile. This
implies that it is not stored in the local database. But it is stored in the database of every
subscribing device.
There also has to be one sort that contains information about the camera (e.g. location). This
has to be persistent data. All subscribers subscribe to the camera information sort. From this
data they select the object data sorts to which they subscribe. Every device has the camera
information of every camera in the system in its local database.
The Splice daemon of every device also stores some information. It has to store the network
addresses of every other Splice daemon in the system, and it has to store all the subscriptions.

Comparison
The representation of data isn’t very different for NID and Splice. A Java object that only
stores information is comparable to a C struct. The difference between a HashMap and a
relational database isn’t very big either. Both store information that can be retrieved by a
unique identifier, which is called the key.
The disadvantage of the Splice system is that all camera information is stored locally at every
device. This is inherent to Splice’s subscription paradigm. Once a device has subscribed to the
camera information sort, all available data elements are immediately sent to it. From this we
can conclude that Splice requires more resources to store data.

4.2.6 Data persistency
There may be critical data in the system that should never be lost. This data has to be stored
somewhere such that it cannot easily be removed. A CD-ROM is an ideal example for
persistent data storage, cache memory not at all. Persistency can also be achieved by storing
data at multiple locations.
A device needs to know the location and optical characteristics of its camera to calculate the
location of the objects it detects. This information about the camera should not get lost, and
should therefore be stored persistently.
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Object data doesn’t have to be stored persistently. The system only keeps track of the current
location of an object, so object data is only valid until it is replaced by new object data. When
the camera doesn’t detect the object any longer, the object data is removed.

NID
Object data is stored in memory by the producer of the data, and by every device that has
registered to receive this data. Camera information is stored in memory at the lookup service.
If the device has a local disk, it also stores this data persistently on the disk. If this is not
possible, because the devices for example only have volatile and read-only memory, we need
another solution. We could add a special device that stores the camera information of every
camera on a disk. The monitoring station could perform this task.

Splice
Because object data is a volatile sort, it is only stored in the volatile database of the
subscribers. This database only exists in memory. Once object data is lost at one node, it is
permanently lost there because of the properties of volatile data. When data is read, it is
removed from the database. Otherwise the database would keep growing until all available
memory is occupied.
Camera information is a persistent sort and is therefore stored in the persistent database of the
producer and the consumers. The persistent database is kept in memory and is stored on a
local disk. Every device that runs a Splice process has a process that manages the persistent
database. It synchronizes the database in memory with the database that is stored on disk. So,
when data is lost from memory, it can always be retrieved from disk.

Comparison
Both systems have mechanisms to deal with data persistency. The difference is that in the
NID system the programmer has to ensure persistency, whereas the Splice system handles all
persistency issues automatically. When a sort is declared persistent, its persistency is ensured
by a special Splice process. So, data persistency is more easily achieved with Splice.

4.2.7 Adjustability / flexibility
The system we want to create is not a static system. It has to be adjustable, which means that
the system can easily be reconfigured. When a camera is moved, for example, a remote
operator should be able to change the camera’s field of view.
It also has to be flexible, such that new devices can easily be added and other ones removed.
The system should keep on running as usual when a new device is being installed, or when a
device is disconnected from the system.

NID
A device can be added to the system at any time. The new device starts with discovering a
lookup service and registering at that lookup service. Then it gets a number of references to
other devices from the lookup service and registers at those devices. The other devices “see”
that a new device has joined the system, so they register at the new device. Now the new
device is completely integrated into the system.
A device is removed by canceling the registration at the lookup service. The other devices
will notice this, and will discard their reference to it. They also discard the listener object of
the disconnected device.
Remote configuration and user interaction with the device can be accomplished by means of
the user interface. Every device has a user interface that can be downloaded by any service. In
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our case, it would be downloaded by the monitoring program. Actions that are performed on
the user interface will be communicated to the device by means of RMI calls.

Splice
A device is added by starting the Splice daemon, which searches the network for other Splice
daemons. When the Splice daemon has contacted other Splice daemons, the device can start
communicating. It has to start with subscribing to the camera info sort, so it can select the
object data sorts of the other devices that it wants to subscribe to. It also has to write its own
camera info to the shared data space, so the other devices know there is a new sort to
subscribe to.
When a device is removed, it firs overwrites its camera information with a special value, so
new devices won’t subscribe to its object data sort. Then the device’s application process can
be terminated. The Splice daemon will notice this, and cancels all subscriptions of the
application process. This way, no more data will be sent to the device.
Communication with a Splice process is only possible through the shared data space. This
means that messages for interaction have to be embedded in a special sort. It is useful to have
one sort for messages from the monitoring program to the devices and another sort for
messages in the opposite direction. If we have one sort for both directions, a message from a
device to the monitoring program will not only be sent to the user, but also to every device in
the system. The devices have no use for such messages, so it is better if they don’t receive
them. Therefore, we need two separate sorts.
With two sorts, a message from the monitoring program to a device will be sent to every
device in the system. Because messages from the monitoring program are usually not very
frequent and not very large, this is not a problem. But these messages should have an
identifier field that indicates for which device the message is intended. Messages in the
opposite direction should also have an identifier field, so the monitoring program knows
which device sent the message. Finally, the messages that are used for interaction have to be
translated into actions.

Comparison
Flexibility: When a new device is added to a Splice system, it gets the camera information
from every device in the system. This can take quite a long time in a system of substantial
size. The NID system doesn’t have this drawback, because all the device information is stored
at the lookup service. In this respect, the NID system is more flexible (assuming that the time
it takes to change the configuration is a criterium).
Adjustability: Interaction in the Splice system is not as straightforward as in the NID system.
It requires some message coordination, and every message has to be translated into an action.
In the NID system, on the other hand, every device has a user interface that allows the user to
interact with the device in a natural way. So, we can conclude that the NID system is the more
easily adjustable system.

4.2.8 Robustness
Robustness is a measure for the ability of a system to cope with disturbances or even failures
within the system. In networked applications, devices may be connected or removed at any
time. The system should be able of dealing with these changes without degrading its
performance or even crashing.
In a network of devices there are a number of faults that can disturb the system. The most
important ones are:
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1. A reference to a device is not valid for some reason, but the device works properly. The
holder of the invalid reference should be able to discover that the device still works, and
that the fault is in the reference. It should also be able to restore contact with the device.

2. A device is suddenly disconnected from the network. Because the device didn’t shut down
properly, the system cannot know that the device is no longer connected. Therefore, the
references to that device are no longer valid. The system has to deal with this situation and
continue operation.

3. A device does not work, but is still connected. This can happen, for example, when the
device’s camera is broken. The device should be capable of detecting that it is not working
properly. Since it is still connected to the network, it can notify the system.

NID
The NID system has mechanisms to deal with all three possible faults. Most problems are
handled automatically. Every device periodically asks the lookup service for references to the
currently registered devices. This way, references to devices that aren’t registered any more,
are removed from the system. When a device registers at a lookup service, the registration is
associated with a lease. The device has to renew this lease periodically. Otherwise, the
registration is removed by the lookup service when the lease expires.
1. If a device tries to use an invalid reference, it will get a RemoteException. This means that

it can’t contact the device for some reason. So, it discards the invalid reference. Invalid
references are automatically removed from the system this way. When the device checks
the lookup service the next time for a reference to the desired device, it will get a new
reference. (The lookup service will certainly have a valid reference to the device.)

2. If a device is disconnected from the network, the lease for its registration at the lookup
service will no longer be renewed. So, when the lease expires, the reference to the device is
removed from the lookup service. After every device has asked the lookup service for
references to the currently registered devices, all references to the disconnected device are
removed from the system. Note however that the device was suddenly disconnected.
Therefore, there is a period of time that the reference is not valid any longer. This problem
is dealt with in the solution to problem 1.

3. The failed device does two things to solve the problem. First, it removes its registration at
the lookup service by canceling the lease. This will effectively remove the device from the
system over time (see the solution to problem 2). Second, it notifies the monitoring
program of the problem, so someone can come and fix it.

The mechanism of periodically checking the lookup service, and periodically renewing the
lease ensures that invalid references or references to disconnected devices are automatically
removed from the system. However, bad references are not removed from the system
immediately.

Splice
Contact between devices is maintained by the Splice daemon of each device. It keeps track of
which devices enter the system and which devices disappear from the system. Most
robustness problems are handled automatically this way.
1. The Splice daemon solves these sorts of problems automatically. How it does this exactly

is classified information.
2. When a Splice daemon tries to contact the disconnected Splice daemon, it will notice that it

doesn’t get a reply. Consequently, it will remove the subscriptions for the disconnected
device. This will prevent it from trying to contact the disconnected device again.

3. When the device detects that the camera is not working properly it overwrites its camera
information with a warning. Every device should periodically check the shared data space
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for camera information data elements that contain warnings. If a device finds such a data
element, it cancels the subscription to the device’s object data sort.

How some problems are handled by the Splice system could not be discovered. The articles
and documentation about Splice don’t reveal all details. The manufacturers of Splice were, for
obvious reasons, also unable/unwilling to disclose all details. 2

Comparison
In the NID system, most problems are solved by means of the leasing mechanism. And if all
exceptions that can be thrown are handled properly, the system should keep on running as
usual no matter what problem occurs. In Splice, problems are automatically solved by the
Splice daemon. It is not clear which approach leads to better robustness. Since for Splice it
depends on the implementation of the daemon, NID seems slightly favorable.

4.2.9 Fault-tolerance
Fault-tolerance is related to robustness for the system failure part. A system that is not
influenced negatively by failures is fault-tolerant. This means that the system should keep on
running as usual no matter how many components fail.

NID
In the NID system, the lookup service is a vital part. If the lookup service fails, new devices
can’t enter the system, and the problems described in the previous section can’t be solved.
Fortunately, it is possible to incorporate several lookup services in the system without any
problems.
The failure of a device will not degrade the performance of the system. The only problem in
that case is that other devices will no longer receive data from the failed device.

Splice
In Splice, the failure of a device will neither cause any problems other than that subscribers to
the device’s object data sort will no longer receive data.
A device can fail in a number of ways. If the Splice daemon is terminated for some reason,
the device is disconnected from the network and all other Splice processes on the same
computer are also terminated. A failure of another Splice process can be recovered from by
using process replication. There are two ways of doing process replication: passive replication
and active replication.
With passive replication one process is executing and the other process is in a sleeping mode.
The state of the executing process is periodically stored in the persistent database. When the
running process is terminated for some reason, the sleeping process is activated. It first
restores the last saved state from the persistent database and continues execution from there.
With active replication two instances of the same process are executing in parallel. When one
of the processes is terminated, the other process can take over immediately. This can be useful
for time-critical systems.

Comparison
The NID system has the disadvantage that it can’t function without a lookup service.
Furthermore, the Splice system has mechanisms for process replication. Therefore, we can
conclude that Splice shows better fault-tolerance.
                                               
2 Splice is a commercial product. Therefore, it is logical that the manufacturers don’t reveal all details.
Moreover, Splice is used in military and traffic control systems, so some details can’t be disclosed for security
reasons.
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4.2.10 Synchronization
Ideally, when a message is sent to a number of devices, it arrives instantly at every device. In
practice this is not possible. There is always a certain delay before a message reaches its
destination. Furthermore, this delay is usually unpredictable. This has two undesired
consequences. Messages may arrive in a different order than they are sent, and the sender
does not know when the receiver has received the message.

NID
In NID, messages are sent with a synchronous protocol. So, the sender knows that the receiver
has received the message when the send operation has ended. Messages can be ordered by
giving them a sequence number. This only orders the messages from one sender. Messages
from different senders cannot be ordered.

Splice
The Splice system uses an asynchronous protocol for sending messages. Only if the receiver
sends an acknowledgement, the sender will know that a message has arrived. For ordering
messages, the global clock can be used. Splice has a global clock that gives the same time at
every node. The current time can serve as a timestamp for messages. That way, even
messages from different senders can be ordered.

Comparison
NID has the advantage of synchronous communication, and Splice has the advantage of a
global clock. For our application it is not really important that the sender of a message knows
when the message arrives. Therefore, we conclude that Splice has better synchronization
properties.

4.2.11 Scalability
Scalability is a measure for how the system behaves when the number of devices is increased.
Ideally, the number of devices has no influence on the performance of the system. Practically,
when the number of devices is increased this has consequences for the performance and the
resource requirements.
The performance is influenced negatively because the number of messages increases. How
much the performance is influenced, is determined by the communication protocol P ( E, N )
and the message compactness M ( C, H ).
Every device requires more memory because they receive more data and have to store more
camera information. The amount of memory that is required is determined by the data
representation R ( I ).
We stated that Splice has a more efficient communication protocol and NID has a more
efficient data representation. How the relation is for message compactness, is unknown at this
time. However, we can predict that a large NID system requires less memory and that a large
Splice system has better performance. In the next chapter we will see if this is the case in
practice.
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Chapter 5
Experiments
This chapter describes two experiments that were performed to compare the performance of
NID and Splice. In the first experiment we measured the performance of the message passing
mechanism of both systems. In the second experiment we simulated the communication
pattern of our framework application.

5.1 Introduction

So far we have compared NID and Splice on a qualitative level. This chapter will make a
comparison on a quantitative level. In other words: we will compare the performance of the
systems on the basis of measurements.
Therefore we performed two experiments. In the first experiment we measured a number of
data transfers between two processes. This allows us to compare the message compactness
and efficiency of the communication protocols of both systems.
In the second experiment we simulated the framework application described in section 1.2. It
consists of a number of processes that periodically send messages. We measured how long it
takes before a process has exchanged a number of messages with every other process. This
way, we can predict the scalability and real-time performance of the two systems.

5.2 Experiment 1: Data transfer

This experiment measured how long it takes to send a number of messages of a certain size
from one process to the other. We performed the experiment two times: one time with each
process on a different computer, and one time with both processes on the same computer. We
want to use the results of this experiment for the analysis of the results of experiment 2. In
experiment 2 we will also have more than one process running on the same computer.
The data was transferred from a Sparc5 with 32 MB RAM to a Sparc5 with 64 MB RAM.
When we ran both processes on the same computer we used the Sparc5 with 32 MB RAM.
We varied the size of the messages. To perform this experiment we had to create a test-
program.

5.2.1 The NID program
The NID program consists of two parts: a sender and a receiver. Both processes start with the
discovery and join process. The receiver then performs a lookup and gets a reference to the
sender. It uses this reference to add a listener to the sender. When the sender has received the
listener, the data transfer starts.
Data is transferred by calling the send method of the receiver’s listener. The data that is
transferred is passed as an argument to this method. The send method is called a number of
times. The start-time is recorded just before the first call to the send method. The end-time is
recorded directly after the last send call returns. This is a viable approach, because when the
send method returns, this means that the receiver has received all of the data.
When the measurement is completed, the measured total time is divided by the number of
send calls.
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5.2.2 The Splice program
The Splice program also consists of a sender and a receiver. Both processes have a Splice
daemon. The Splice daemons automatically establish contact when they are started. If both
processes run on the same computer, they share a Splice daemon.
The receiving application process is started first. It subscribes to the sort that will be sent, and
then waits for the sender to start sending.
When the sending process is started, it publishes the sort it will write to the shared data space.
This is only necessary before the first write operation is performed. After this the
measurement starts. The start-time is recorded and it is put in the first data element. Then, a
number of data elements are sent by performing subsequent write operations. When the
receiver has received the last data element, the end-time is recorded. Because the Splice
system has a global clock, the start-time and end-time can be recorded on different computers.
Afterwards, the total time is divided by the number of write operations.
We cannot record the end-time at the sender when the last write operation returns. The return
of a write operation only means that the local herald has received the data. It does not mean
that the data has been transferred to the herald of the receiver, and that the receiver has
received the data.

5.2.3 Results
Before we look at the results of this experiment, we will first examine what we have actually
measured. When a message is sent from one process to another, a number of actions are
performed.
First, the data of the message has to be prepared for transmission at the side of the sending
process. This means that data has to be formatted into a transmittable form, and headers have
to be created. This can be handled differently by NID and Splice.
After this, the data can be sent across the network. The network and transport layers divide
the data into packets and deliver it at the right computer. NID and Splice both use a reliable
protocol for this experiment. Splice also supports an unreliable protocol, which is usually
faster, but does not guarantee delivery. We decided to let Splice use the reliable protocol, so
that they both use the same sort of protocol, since we don’t want to involve network issues in
this experiment.
Finally, the receiving process has to remove the headers, and translate the data back from the
transmittable form. Then, the data can be stored.
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Figure 5.1. Data transfer: NID versus Splice. The left graph (a) shows the results of the data
transfer experiment with two processes on different computers. The right graph (b) shows the
results of the experiment with both processes on the same computer. The data in the messages
represents locations of detected objects. A location is represented by 3 doubles, which is 3 * 8 =
24 bytes. So, 240 bytes represent 10 locations.

In figures 5.1.a en 5.1.b we see that Splice is much faster than NID. In the inter-node test
Splice is about 25 times faster, and in the intra-node test Splice is almost 200 times faster for
the larger message size. For the inter-node test there are two factors that can explain the much
better performance of Splice. First, the transmittable form of the data is much smaller for
Splice than for NID. This results in a shorter transmission time. Second, the translation of data
to a transmittable form takes less time.
The first factor is not very likely to cause a big difference. For NID we know exactly how the
data is formatted (see 4.2.3 Message compactness). The overhead of a message with 10
locations (the smaller message size in figure 5.1.a) is 30 %. We don’t know the exact
overhead of a message in Splice. But even if it is 0 %, a Splice message is 30 % smaller than a
NID message, and would only result in a 30 % shorter transmission time.
The second factor is more likely to cause a big difference. First of all, the NID processes are
written in Java, and the Splice processes are written in C. In general, a program written in C is
about 10 times faster than the same program written in Java. Furthermore, the Object
Serialization Mechanism that the NID process uses to format the data costs probably more
time than the Splice process’ formatting operations. This is because the purpose of the object
serialization is that data can be exchanged between two different computing platforms. Splice
does not support this, and therefore probably has a simpler mechanism for formatting data.
Hence, we can explain that Splice transfers data between two computers about 25 times faster
than NID because the formatting operations take much less time.
For the intra-node test we have to take another issue into account. If two Splice processes run
on the same computer, they share their Splice daemon. In that situation, the data isn’t
formatted for transmission. The NID processes, however, “don’t know” that they are on the
same computer, so they still perform all the operations to format the data into a transmittable
form. For this reason, the difference is even larger for the intra-node test.
This section showed a small part of the results that allowed us to compare NID with Splice.
Next, we will analyze the entire set of results separately for NID and Splice.
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NID
In the previous section we saw that the measurements of the NID program resulted in much
longer times than the Splice program. From this we can conclude that, for the NID
experiment, the transmission time is only a very small part of the total time needed for the
data transfer. The major part of the transfer time is needed for object serialization.
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Figure 5.2. Data transfer with NID.

In figure 5.2 the relationship between the message size and the transfer time is shown for both
the inter and intra-node communication. It can be seen that both lines are nearly straight. This
is logical, because the number of operations needed for object serialization increases linearly
with the size of the object that has to be serialized.
There is also a logical reason why the intra-node data transfer takes more time than the inter-
node data transfer. Communication between two processes on the same computer does not
require network transmission, but we already concluded that the network transmission time is
only a very small part of the total time. What is more important is that both processes now use
the same processor to perform all operations. This slows down the entire data transfer.
Because the number of available processors is divided by two, one might think that the data
transfer will take twice as much time. However, there is not much overlap in the activities of
the sending and the receiving process. The sending process begins with a number of
operations before the data is transmitted, and the receiving process will start its operations not
until it has received the first packet of data.
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Figure 5.3. Data transfer with Splice.

In figure 5.3 we see that for Splice the line of the intra-node data transfer is almost perfectly
straight. This is not very strange. When data is transferred between two Splice processes on
the same computer the only thing that happens is that the sending process writes data to
shared memory space, and the receiving process reads it from the same memory space. Both
operations increase linearly with the number of bytes that is transferred.
The line of the inter-node data transfer is not entirely straight. There is a clear jump between
the message sizes of 1200 bytes and 1440 bytes. We can’t say that the network transmission
time doesn’t play a role in the measurement of the Splice program. The measured transfer
times are so small that the network transmission time probably does play a role. The jump in
the line could therefore very well be a result of a jump in network transmission times. Note
that the maximum packet size of an Ethernet packet is 1500 bytes [17]. The message of 1440
bytes combined with some overhead bytes doesn’t fit into one packet. So, there are two
packets needed to transmit a message of this size. The jump from one packet to two packets
explains the jump in the line.

Conclusions
From the jump in the inter-node line in figure 5.3 we can deduce the message compactness of
the Splice system. We know that the message of 1200 bytes is the largest message in our
experiment that fits into one packet, and that the message of 1440 bytes is the smallest
message that needs two packets. This means that the largest message that fits into one packet
is between 1200 and 1439 bytes. If it is 1200 bytes, the overhead is: (1500 – 1200) / 1500 =
20 %. If it is 1439 bytes, the overhead is: (1500 – 1439) / 1500 = 4 %. So the actual overhead
is between 4 % and 20 %. In section 4.2.3 we calculated that the overhead in the NID system
was between 24 % and 30 %. Hence, we can conclude that the message compactness of the
Splice system is better than the NID system.
The communication protocol of the NID system involves object serialization. We concluded
that this mechanism takes much more time than the mechanism that Splice uses for formatting
data. So, Splice has a far more efficient communication protocol. The advantage of the NID
system’s object serialization is that data can be transferred between different platforms (e.g.
from Windows to Unix). This is not possible with Splice.
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5.3 Experiment 2: Framework simulation

In this experiment we simulated the communication that will typically take place in the
framework application that was described in section 1.2. This means that we had a number of
processes on a number of computers that communicated with each other. We let each process
periodically send a message to every other process. This is not entirely in accordance with our
framework application, which lets devices only communicate with devices nearby. But this
does not hinder our comparison, since it effects both systems in the same way.
There was, however, a small problem. We only have a trial license for the Splice system. This
license disallows networks larger than 5 nodes. This means that we were unable to use more
than 5 computers for our experiment. A typical implementation of our framework application
has a lot more than 5 devices. That’s why we ran more than one process on a computer for
this experiment. This allowed us to measure the performance of a much larger system. This
way, we actually simulated a system in which more than one device makes use of the same
computing resource.
In practice, the computer will be used for more than just handling communication. It also
processes the video sequence from the camera to detect moving objects. This is a very
computationally intensive task. In our experiment we assume an ideal situation. This means
that video processing takes no time, memory or processor cycles, and that the size of the data
that is sent between the processes is negligible.
Of course this is not an accurate representation of a real system. But this experiment does
allow us to compare the performance of NID and Splice for a realistic communication pattern.
Besides, we are not interested in the video processing part of the system, but only in the
communication part.
What we measured is how long it takes before a process has received 50 messages from every
other process. Every process sends its data at a rate of 10 Hz. This should be approximately
the frame-rate of the object detection module in a real system. On every computer we always
had one process that not only sends data, but also did the measurements. We also monitored
the memory usage and the processor usage of the processes. We varied the number of
computers and the number of processes per computer.
The experiment was performed on a heterogeneous network of computers. We used 4 Sparc5s
and one UltraSparc. Two of the Sparc5s have 32 MB RAM, the other two have 64 MB RAM.
The UltraSparc has 192 MB RAM.

5.3.1 The NID program
Every process starts with performing the discovery and join protocols to connect to the Jini
network. After this the process performs a lookup to get references to the other devices in the
system. It adds a listener object to every device that it gets a reference to. Then it records the
start-time and starts sending data.
The process calls the send method of every listener object that it has received. There are two
ways to do this. Each call to the send method of a listener object is done in a different thread,
or every call is done in the same thread. The latter means that the next call can only be done
when the previous one has returned. We do the experiment for both ways to see the
advantages and disadvantages of each way.
After the data is sent to every registered device, the process sleeps for 100 milliseconds (since
we want to transmit data at a rate of 10 Hz). This is repeated indefinitely. When a listener
object’s send method is called, it calls its device’s received method. This method stores the
data at the receiving device.
The description so far applies to both the measuring process and the “normal” process. In
addition to storing the data, the measuring process also counts the messages it receives with
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the received method. When it has counted 50 messages from every device, it records the end-
time. After this the counters are reset, and the start-time is recorded again.

5.3.2 The Splice program
There are two different kinds of application processes for this test. One process only reads and
writes data, the other process also measures how long that takes. We first describe the process
that only reads and writes.
When this process is started it registers itself as a subscriber to the sort that will be sent, and
also announces that it will publish this sort. Then, it adds a filter to its local database that will
prevent the process from reading data that was written by itself. It creates a data element of
the sort that will be sent, and puts its application identifier in it. The application identifier is a
unique number for every Splice process. The measuring process can distinguish between data
from different processes by reading the application identifier contained in every data element.
After these initialization steps, the process enters a loop. In this loop, the process first reads all
available data and then writes its data element to the shared data space. After this, it goes into
a sleeping mode for 100 milliseconds. This loop repeats itself indefinitely.
The measuring process performs the same actions as the other process. In addition to this, it
counts how many messages it has received from each process. When it has counted 50
messages from every process, it records the end-time. The start-time is recorded just before
the counting starts.

5.3.3 Results
From the results of experiment 1 we can already make a prediction about the results of this
experiment, which are shown in figure 5.4. Because NID needs a lot more time to transfer
data than Splice does, we can predict that NID also takes more time for this experiment.
Furthermore, we concluded that NID performs a lot more operations to send a message. This
will have a negative effect on the CPU load and will prevent us from running a lot of
processes on one computer.
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Figure 5.4. Framework simulation: NID vs. Splice. The left graph (a) shows the averages of
the measurements on all 5 computers. The right graph (b) shows the averages of the CPU loads of
the 4 slowest computers.

The first thing that can be noticed about figure 5.4 is that it only shows the measurements for
one process per computer and two processes per computer. The reason for this is that we
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weren’t able to perform measurements for a NID system with more than two processes per
computer (which is a total of 10 processes). The CPU load with three processes per computer
was so high that leases weren’t renewed and connections between processes timed out. The
results of these problems were that references were discarded, and processes were
disconnected from the system. For the NID program that sent each message in a different
thread, these problems already occurred with two processes per computer.
The NID experiment as well as the Splice experiment showed no big differences between the
transfer times measured on different computers. This could be expected, because every
process has to wait for the slowest process. The CPU load, on the other hand, was much lower
on the fast UltraSparc than it was on the slow Sparc5s. We only look at the CPU loads of the
slow computers, because these limit the performance of the entire system.

Let’s see if we can predict the measurements of this experiment by calculating the number of
messages that are sent, and multiplying this with the transfer times measured in experiment 1.
The following formula can be used for this:

total_time = 50 ? (100 + processes_inter ? time_inter + processes_intra ? time_intra)

The formula consists of the following factors:
- 50 : the number of iterations in each measurement;
- 100 : the sleep time in each iteration;
- processes_inter : the number of processes on other computers that send a message;
- time_inter : the transfer time of a message from a process on a different computer;
- processes_intra : the number of processes on the same computer that send a message;
- time_intra : the transfer time of a message from a process on the same computer.
If we apply the formula to the experiments that are shown in figure 5.4 we get the values of
table 5.1.

predicted values measured valuesprocesses per
computer 1 2 1 2
NID 9046 14220 8098 22051
Splice 5168 5350 5494 5498

Table 5.1. Prediction of the measurements. This table shows the predicted
and measured times in milliseconds. We used the measured transfer time of
the smallest message (240 bytes) for the prediction. The table doesn’t show
the predictions for the NID program with threads. The reason for this is that
the formula doesn’t apply to that program, because it sends all messages
concurrently.

We see that the prediction for the NID system with one process per computer is somewhat
high. This can be explained by the fact that the message size used for this prediction (240
bytes) was a lot bigger than the size of the messages in experiment 2 (8 bytes).3 There is also
a good explanation why the prediction of the NID system with two processes per computer is
a lot lower than the measured value. The CPU load was 72 % for this experiment. In every
experiment we saw that a CPU load above 70 % results in much longer response times.
The predictions for the Splice system are both a bit lower than the measured values. The CPU
load was only 1 % for both experiments, so that can’t be the explanation. A possible
explanation is that the measured inter-node transfer time doesn’t apply to all transfers. The
                                               
3 Even though this is a considerable difference, the prediction is still viable. From the results of experiment 1 we
can deduce that the difference in transfer time between 240 bytes and 8 bytes will be approximately 25 % for
NID and 10 % for Splice.
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data transfer experiment was performed on two computers physically located directly next to
each other. For experiment 2 we used the same two computers plus another computer that was
in the same room, and two computers that were in a different room on a different floor. The
transfer time between two computers on different floors is usually longer than two computers
in the same room. This could explain the difference of a couple of hundred milliseconds
between the predicted values and the measured values.
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Figure 5.5. Framework simulation with NID. The left graph (a) shows the averages of the
measurements on all 5 computers. The right graph (b) shows the averages of the CPU loads of the
4 slowest computers.

Because we weren’t able to increase the number of processes per computer very much for the
NID experiment, we didn’t get much of measurement data. Therefore, we performed the
experiment with a smaller number of computers. This gives us some additional measurements
and allows us to make a better prediction about the scalability.

In figure 5.5.a we see that the measured time increases linearly with the number of processes.
This applies to the experiment with one process per computer as well as the experiment with
two processes per computer. The experiment with the program that uses threads, on the other
hand, does not increase linearly. It shows a large increase from four to five processes per
computer.
The linearity of the two experiments without threads can be explained as follows. Because
every process sends data to every other process, the total number of messages m is a quadratic
function of the number of processes n:

2nm ≡  (1)
This means that the number of operations o that has to be performed to send the messages is
also a quadratic function of the number of processes:

2nmo ≡≡ (2)
The total computing power of the entire system c is a linear function of the number of
computers p and since we have one process per computer we get the following relation:

npc ≡≡ (3)
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The time t needed to perform the operations has the following relation to the computing
power:

cot ≡ (4)
The result is that the time needed to process the messages is a linear function of the number of
processes:

ntnnt
cot
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no

≡⇒≡⇒
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≡
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The reason why the experiment with threads does not show an entirely linear increase, is that
the CPU load is a limiting factor. In figure 5.5.b we see that the CPU load increases linearly
from two to four processes. From four to five processes the increase declines. The reason for
this is that the processors can’t handle a higher load. We will see the same thing happening
with the Splice experiment. Because the processors can’t provide the required amount of
operations, the linear increase in time can’t be maintained.
We just stated that the limiting factor in the threads experiment was the CPU load. But in
figure 5.5.b we can also see that the experiment with two processes per computer showed a
higher CPU load than the threads experiment. This CPU load is the combined load of the two
processes that are running. Apparently, the processor can handle a higher load when the load
is distributed among two processes, compared to one process with a large number of threads.

with 3 computers with 5 computersprocesses per
computer 192 MB 64 MB 32 MB 192 MB 64 MB 32 MB
1 (with threads) 15 14 13 16 14 13
1 14 13 13 15 14 13
2 15 14 10 15,5 14 10

Table 5.2. Memory usage in NID. This table shows the memory usage per process in
megabytes. Separate values are shown for the different computers.

In addition to the CPU load, we also monitored how much RAM memory each process used.
The memory usage didn’t play an important role in the experiments with only one process per
computer. In table 5.2 we see that on a computer with more memory the processes use slightly
more memory than they do on a computer with less memory. But overall is the memory usage
almost the same on each computer.
In the experiment with two processes per computer, on the other hand, we see that the
processes on the computer with 32 MB only use 10 MB. The reason for this is that there
simply isn’t more memory available. The operating system takes up a certain amount, and
what remains is not enough for two processes to function optimally. The result is that the
whole system is slowed down by the computers with insufficient memory.

The framework application is intended to have one camera per computer. The experiment
with one process per computer applies to that situation. We want to know how much the data
transfer time and the CPU load increase with every device that is added to the system. These
values can be calculated by calculating the slope of the lines in figure 5.5:
- time increase: (8098 – 5133) / (5 – 2) = 988 ms per device
- CPU load increase: (32 – 16) / (5 – 2) = 5,3 % per device
We can use these values to predict the performance of a larger system under the same
circumstances. They can also be used to compare the scalability of NID and Splice.
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Figure 5.6. Framework simulation with one process per computer. The values are the averages
of all participating computers.

The line in figure 5.6 shows that the measured time of the Splice system increases linearly
with the number of computers, just as the NID system. This allows us to calculate the time
increase the same way as we did for NID:
- time increase: (5495,4 – 5485,5) / (5 – 2) = 3,3 ms per device
The CPU load remained constant at approximately 1 % during the experiment shown in figure
5.6. This makes it impossible to calculate a realistic value for the CPU load increase.

The reason for the linearity of the line in figure 5.6 is the same reason as the linearity of the
NID experiment. Why the line of figure 5.7.a looks somewhat strange can be explained by
looking at figure 5.7.b.
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Figure 5.7. Framework simulation with more than one process per computer. The left graph
(a) shows the measured time averaged over all 5 computers. The right graph (b) shows the CPU
loads of the different computers. The values for Sparc5 are the averages of the CPU loads of the 4
Sparc5s.

The line for the Sparc5 in figure 5.7.b shows roughly the same behavior as the line of figure
5.7.a. Because the slowest computer determines the performance of the entire system, the
CPU load of the Sparc5s predicts the measured time on every computer. That’s why the two
lines look similar.
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The behavior of the lines seems to be quadratic. This can be explained as follows. Equations
1, 2 and 4 on pages 37 and 38 apply to this situation. Because the number of computers is
constant in this experiment, the total computing power is also constant. Therefore, we get the
following relation in stead of equation 3:

1≡≡ pc
The result is that the CPU load is a quadratic function of the number of processes in the
system:
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In figure 5.7.a we see that the line shoots up after 7 processes. This is because the CPU load is
so high that the processes can’t keep up any more with all the incoming data. This also effects
the memory usage as we will see in figure 5.8.
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Figure 5.8. Framework simulation with more than one process per computer. The graph
shows the memory usage on the different computers.

The lines show the same behavior for all computers. The only difference is that the processes
on the computers with more memory also use more memory. We saw the same thing in the
NID experiment. We see that the memory usage increases linearly up to 7 processes and than
shows a much bigger increase. The linear increase is because every additional process
requires a certain amount of memory. The big increase from 7 to 8 processes is because the
CPU load becomes so high that the processes are unable to read and subsequently remove all
data from the shared data space.

Conclusions
The large number of operations a NID process has to perform to send a message severely
limits the scalability of the NID system. We calculated that every additional NID process
increases the time by 988 milliseconds and the CPU load by 5 %. In the Splice system these
values were respectively 3,3 milliseconds and too small to calculate. The fact that the
maximum number of processes for the NID system was 10 and for the Splice system was 35,
also reflects the much better scalability of the Splice system.
In every experiment the Splice system showed better times than the NID system, so we can
conclude that the real-time performance of the Splice system is better than the NID system.
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Chapter 6
Discussion
In section 1.2 we described an application framework for a multi-camera system that may be
implemented with either NID or Splice. We introduced the most important issues for this
application and compared how NID and Splice handle each of these issues. This resulted in a
thorough examination of both systems. The discussed issues and each system’s most notable
strengths and weaknesses are shown in table 6.1.

Issue NID Splice
security + Java built-in security

– protocols openly available
+ protocols not available

communication
protocols

– central lookup service
? synchronous data transfer

? asynchronous data transfer

message
compactness

? RMI header, data formatted with 
object serialization

? unknown

real-time
performance

+ threads with priorities
– programmed in Java

+ asynchronous data transfer
+ programmed in C

data
representation

? data stored in Java objects – camera information at every node
? data stored in C structs

data
persistency

– ensured by programmer + ensured automatically by Splice 
daemon

adjustability /
flexibility

+ easy adjustability with RMI calls
+ Jini’s flexibility

– complicated device adjusting
– large data transfer at start-up

robustness + lease mechanism
+ exception handling

+ automatically by Splice daemon

fault-tolerance – lookup service vulnerable part + process replication

synchronization + synchronous communication + global clock
– asynchronous communication

scalability + data representation
– communication protocols

+ communication protocols
– data representation

Table 6.1. Characteristics of NID and Splice. The table shows the characteristics of each system
for the issues discussed in chapter 4. Legend: + favorable; ?  neutral; – unfavorable.

For our comparison, the most interesting issues in table 6.1 are data persistency, adjustability /
flexibility, robustness, real-time performance and scalability. From the table we can
immediately conclude that NID is more flexible and easier adjustable than Splice. The Jini
technology used by NID is specifically designed to interconnect all sorts of devices, and
because each device is accessible through RMI calls, it can be very easily adjusted. Jini’s
leasing mechanism and Java’s exception mechanism make a NID system practically
invulnerable to disturbances. This ensures the NID system’s superior robustness.
Splice, on the other hand, has a more sophisticated mechanism for dealing with data
persistency. The programmer only has to declare whether data is volatile or persistent, and the
Splice daemon automatically ensures the data’s persistency. The table also suggests that the
Splice system has better real-time performance and scalability. This is shown more clearly in
table 6.2.
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NID Splice
data transfer size 240 2400 240 2400
- inter-node (ms) 20,23 55,88 0,84 2,29
- intra-node (ms) 22,56 74,91 0,28 0,42
nr. of processes 5 10 5 10
- time (ms) 8098 22051 5494 5498
- CPU load (%) 32 72 1 1
time increase (ms) 988 3,3
CPU load increase (%) 5,3 0

Table 6.2. Summary of experimental results. This table shows the most
important results from the experiments that were performed in chapter 5.

Real-time performance and scalability are probably the most important issues for our
framework application. Real-time performance is important because the time it takes to send
object information from one camera to another is crucial for object tracking. If that time is too
long, it is impossible to track a moving object. Scalability tells us something about the
number of cameras that we can connect before the system cannot be used any longer. This can
happen if the system gets too slow or if a certain limit in computational power or memory
usage has been reached. For a system with many cameras good scalability is essential.
The results of both experiments that were performed in chapter 5 showed very large
differences in real-time performance and scalability between NID and Splice. In table 6.2 we
can see that an inter-node data transfer with Splice is about 25 times faster than the same data
transfer with NID. The CPU load with 10 processes is 72 % with NID and only 1 % with
Splice. The measured time is also a lot better in Splice. So, Splice clearly shows better real-
time performance.
The increase in time and CPU load per added process shows the largest difference. The NID
system requires 988 milliseconds extra for every additional device to send all messages,
whereas the Splice system only requires 3,3 milliseconds extra. The increase in CPU load was
so small in Splice that it couldn’t be measured. This implies that the Splice system is far better
scalable than the NID system.
Note that the calculated increase in time and CPU load only applies to a system in which each
device communicates with every other device. In practice, every device only communicates
with devices that are nearby. This reduces the increase in time and CPU load, and makes the
system better scalable.

One of the reasons for the large differences is that we performed the experiments mainly on
very slow computers (Sparc5s). If the experiments were performed on faster computers, the
differences would probably be smaller. Nevertheless, the experiments would still show a
substantial difference. The advantage of using slow computers is that it makes very clear that
there is a large difference in performance between the two systems.

We concluded that the main difference in performance between NID and Splice can be
attributed to the difference in message formatting. A significant speed-up of the NID system
can be achieved if we use another way to send data in-stead of RMI. Then, we can circumvent
the object serialization step, which requires a lot of computation. We can use Java’s Socket
class to create custom sockets that allow us to transmit data in raw byte form. However, this
severely complicates all communications and strongly deviates from the NID concept.
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Furthermore, according to Boasson object-oriented programming languages are not suitable
for real-time distributed embedded systems [3]. In such applications, the relationships
between processes is based on the sharing of data, which strongly violates the object-oriented
paradigm. According to this observation, NID is inherently unsuitable for distributing data
between devices, since the NID concept is based on object manipulation.
The results from our experiments certainly coincide with this conclusion. On the other hand,
the comparison in chapter 4 showed that the NID concept has many desirable characteristics
for a system of communicating devices.

We simulated a large system by running several processes on the same computer. This had
some unwanted consequences in both systems, and influenced the results of the experiments.
In experiment 1 we saw that in the NID system an intra-node data transfer took more time
than an inter-node data transfer. The Splice system showed the opposite result. So, when we
performed experiment 2 with more than one process per computer, this had a different effect
on each system. The NID experiment took more time than it would have taken with only one
process per computer and with the same total number of processes. In this case, the Splice
experiment took less time. Hence, Splice seemed more scalable than it really is, and NID
seemed less scalable than it really is in the experiments with several processes per computer.
In a practical application, every device will have its own computer. This reflects the situation
with one process per computer. So, the results of the experiments with more than one process
per computer are not very useful. To make better predictions about systems with a larger
number of processes, we have to redo experiment 2 with a larger number of computers.
Especially predictions about the increase in memory usage of both systems, and the increase
in CPU load of the Splice system, require a larger experiment.

Although the comparison was done for one particular application, the outcome is useful for
the design of distributed embedded applications in general, since the discussed issues are
crucial for every system involving communicating devices.

The parameters that were introduced in chapter 4 can also be used for the design of a new
application. However, this requires some further exploration of the parameters.
The parameters can be used, for example, to show relationships between certain aspects of the
system. It would also be interesting to create a formula from the parameters that predicts
certain performance and scalability aspects of the system. The designer examines a number of
aspects of the system, so that he or she can assign a value to each of the parameters. By filling
in those values in a formula, the designer can then see what the performance of the system is,
without having to implement and test the whole system.
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Chapter 7
Conclusions
In this study we made a quantitative and qualitative comparison of two concepts for
distributing data, namely NID and Splice. The goal of this comparison was to be able to
choose one of the two systems for a certain application. The reason for this study is the
development of a distributed surveillance system. For this application we need a system that
facilitates communication between devices. We identified two candidates: the NID concept
and Splice.

In section 1.2 we described a framework application. We first identified the most important
issues for the design of such an application. Then, we compared NID and Splice for each
issue. We concluded that NID shows better flexibility, adjustability and that it guarantees
slightly better robustness. Splice has better characteristics in the areas of synchronization, data
persistency and fault-tolerance. The issue of security shows no apparent winner.
Chapter 5 shows the results of two experiments that we created to compare the performance
of both systems. The first experiment showed that Splice’s communication protocol is more
efficient than that of NID, and that the message compactness of Splice is also better. Overall
was a data transfer with Splice 25 times faster than with NID. The second experiment showed
that the real-time performance and the scalability of the performance and CPU load was also a
lot better with Splice. The main reason for the difference in performance between NID and
Splice is the NID system’s computationally intensive communication protocol.

The outcome of this study could already be predicted by examining the intended purpose of
each system. Splice is specifically designed for real-time high performance distributed
computing. Whereas the Jini technology used by the NID system is designed for ad-hoc
networks in a heterogeneous environment.
For a relatively static real-time application with substantial communication and performance
requirements, Splice is the best-fit system. This includes our framework application and
applications like robot soccer and traffic control. NID is more suitable for applications
without real-time constraints where devices connect and disconnect frequently. Home
automation, with all sorts of domestic devices that communicate with each other, is such an
application.
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