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Abstract

THE main focus of this thesis is twofold: (i) introduction to Distributed
Perception Networks and (ii) a comparison of distributed inference ap-

proaches.

We introduce Distributed Perception Networks (DPN) which are a MAS-
approach to information fusion with distributed Bayesian networks. DPNs
support fusion of very heterogeneous and noisy information. In addition,
DPN agents can self organize into DPN systems that support correct and
efficient information fusion. Since DPNs can automatically locate and inte-
grate relevant information sources at runtime, they can be used in applica-
tions where information sources are not known prior to the operation. DPN
systems are organized in such a way that fusion results correctly reflect the en-
tire evidence set that has been injected through different parts (i.e. agents) of
a DPN system, without using any synchronization of partial fusion processes.
In addition, DPNs do not require compilation of the global inference structure
at runtime. Instead, they use network fragments which are compiled prior
to the operation. In this way they can adapt to dynamic systems of agents at
runtime.

Next to DPNs, we briefly describe two well known approaches to distributed
inference in Bayesian networks, namely Multiply Sectioned Bayesian Net-
works and Prior/Likelihood Decomposable Models. These three approaches
are compared by focusing on relevant application aspects: problem domain,
model flexibility, (self) configuration, compilation, inference and sequential
processing of information. It turns out that each of the compared approaches
has advantages and disadvantages with respect to these different application
aspects. DPNs support a limited class of models, while they have self organi-
zation capabilities. Consequently, they can easily adapt to changing constella-
tions of information sources and dynamic agent systems at runtime. MSBNs
and PLDMs, on the other hand, can model very complex domains. How-
ever, the modeling flexibility requires computationally expensive preprocess-
ing prior to the operation. Therefore, these approaches are not suitable for
domains where constellations of information sources and processing nodes
change frequently at runtime.
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1 Introduction

REASONING in intelligent systems requires appropriate models that can re-
flect the uncertain nature of real world problems. Such models should

represent the problem domain as concisely as possible without losing rele-
vant information. Including all details about a problem domain in a model
turns out to be often undoable, because uncertain events are subject to numer-
ous exceptions. Not only is the discovery of all these exceptions difficult but
also covering all of them is inefficient with respect to computation. We simply
cannot afford to include all exceptions. Reasoning about uncertainty requires
models that rely on a limited knowledge representation of the problem do-
main.

In general, several different reasoning systems are proposed for handling un-
certain domains. These reasoning systems can roughly be classified into two
classes: procedure-based systems and model-based systems (see [18]). Procedure-
based systems use uncertainty as a truth value attached to formulas where
the uncertainty computation is based on a combination of the truth values of
the subformulas. In model-based systems uncertainty is assigned to possible
states of an event. In both classes the computational efficiency and seman-
tic perspicuousness differ considerably. Procedure-based systems are compu-
tationally efficient, but semantically unclear while model-based systems are
computationally inefficient, but semantically clear. In this thesis we will inves-
tigate the model-based approach Bayesian networks (BNs) used in a distributed
environment.

1.1 Probability Theory and Bayesian Networks
It is generally believed that probability theory was started by the French math-
ematicians Blaise Pascal (1623 - 1662) and Pierre Fermat (1601 - 1665) in the
17th century, while the concepts of chance and uncertainty date back a couple
of millenniums B.C. Nowadays, probability theory is an important mathemat-
ical tool in a variety of disciplines like for example: psychology, astronomy,
biology, economics, medicine, meteorology, marketing, computer science, ge-
netics, etc. Bayesian networks (also called belief networks) are theoretically rig-
orous graphical representations of probabilistic knowledge. BNs can be used
to describe probabilistic causal relations between uncertain events. BNs are
based on graphs whereas nodes correspond to stochastic variables that represent
events or states and directed links represent causal relations. Every directed
arrow in a BN is associated with a probability distribution that reflects condi-
tional uncertainty of relations between events.
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Usually, inference in BNs is based on centralized approaches, which might not
be suitable for a significant class of real world problems, because:

(i) BNs describing real world domains can be complex, which means that
inference can be computationally very expensive;

(ii) Modeled phenomena can be dispersed over a large geographical area.
Using a monolithic BN to describe such a problem domain would be
awkward, because large amounts of information about the observations
must be transported to a central processing unit.

(iii) single point of failures must be avoided and failing of one system may
not jeopardize the overall functioning of the system.

In order to be able to deal with these challenges efficiently, we can distribute
BNs and inference processes throughout systems of networked devices. How-
ever, Distributed Bayesian networks are challenging, since there exist trade offs
between modeling flexibility and processing efficiency.

1.2 Thesis Focus
The main purpose of this thesis is twofold. Firstly, it introduces a distributed
inference approach called Distributed Perception Networks (DPNs). Secondly,
DPNs and two other well known approaches to Bayesian inference in a dis-
tributed environment are compared in the context of different application as-
pects.

1.2.1 Distributed Perception Networks

DPNs are a multiagent systems (MAS) approach to distributed information
fusion of large quantities of very heterogeneous and noisy information to do
state estimation. DPNs support decentralized estimation of the events/states
that cannot be observed directly. Every agent in a DPN system captures part
of the problem domain and is able to communicate with other agents to per-
form a global fusion task. DPNs focus on applications where the information
sources are unknown prior to operation and huge quantities of information
have to be processed sequentially. Consider, for example, a situation where
fire fighters have to respond effectively to a spreading forest fire. In order to
do so, a large sensor network is deployed to measure smoke, heat, wind di-
rection, etc. Moreover, fire watchers will enter the scene with a helicopter and
observe the spreading of the fire. In this way they can provide crucial infor-
mation about the location of the fire. All this information can be fused in a
DPN system to inform the fire fighters about the spreading of the fire. In such
applications DPNs are a useful and unique tool to do robust state estimation.

1.2.2 Comparison of Distributed Inference Approaches

Beside DPNs, there are also other approaches to inference in distributed BNs.
In general, the applicability of different approaches is domain specific. We an-
alyze applicability of DPNs and Multiply Sectioned Bayesian Networks (MS-
BNs) and Prior/Likelihood Decomposable Models (PLDMs) with respect to
the following application aspects:

• Problem domains - what are the characteristics of the problem domain
where the approach is most suitable;

• Model complexity - every approach places different constraints on the
possible distributed graphical models. This in turn affects the complex-
ity of the allowed models;

2



• Configuration - configuration is needed to connect different agents to-
gether to perform global task. Configuration methods differ in their
ability to use autonomous configuration and support for changing agent
systems where agents can join and leave the system of agents;

• Compilation - the graphical model of a BN needs to be converted to
another probabilistic structure that supports efficient inference;

• Propagation - information is propagated through the inference structure
in order to compute probabilities over modeled events;

• Frequent evidence processing - it turns out that some approaches are not
suitable for sequential processing of large amounts of information.

This comparison should give the reader insight into the applicability of each
approach in specific problem domains and should also demonstrate the trade-
off between complexity and flexibility of different aspects in specific problem
domains.

1.3 Thesis Overview
This thesis is organized into two parts: in the first part we review the basic
principles of inference with Bayesian networks in order to facilitate descrip-
tion and comparison of different approaches to inference in distributed prob-
abilistic models. In chapter 2 the concise representation of probabilities with
the help of Bayesian networks is explained. In chapter 3 Bayesian inference
using junction trees is discussed.

In the second part distributed inference approaches will be explained. In chap-
ter 4 DPNs will be introduced. In chapter 5 MSBNs and PLDMs are briefly
described.

In chapter 6 the three distributed inference approaches are compared with
respect to different application aspects.

Finally, this thesis is concluded in chapter 7 with a review of the most impor-
tant observations of DPNs and the comparison between different approaches
to distributed Bayesian inference.

1.4 DPN Publications
The described work on DPNs in this thesis is partially published in proceed-
ings. DPNs are initially presented in An Agent-Based Approach to Distributed
Data and Information Fusion by Pavlin et al. [15]. The inference technique of
DPNs is published in Information Fusion with Distributed Probabilistic Networks
by Oude et al. [3]. The comparison between DPNs and MSBNs is published in
Distributed Bayesian Networks in Highly Dynamic Agent Organizations by Oude
et al. [2]. Moreover, a demo paper about the DPN system is published in A
MAS Approach to Fusion of Heterogeneous Information by Pavlin et al. [16].

Most ideas presented in chapter 4 will be used for a future journal paper about
DPNs.
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Part I

Bayesian Inference Principles
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2 Bayesian Networks

IN this chapter we review basic principles of Bayesian networks in order to
facilitate description and comparison of different approaches to inference

in distributed probabilistic models.

Bayesian Networks (BNs) are graphical representations of probability distri-
butions. They facilitate modeling of causal relations between events with
acyclic directed graphs (DAGs). The direction of the arrows indicates which
node is the effect and which node is the cause. A node with an outgoing ar-
row is called the cause and a node with a incoming arrow is called the effect.
Because we are dealing with uncertainty the occurrence of the effect is, in gen-
eral, not deterministic given that the cause has occurred. In other words, a
certain cause will not always result in the effect. There is a chance that the
effect will happen given the cause.

BNs can be used to reason about uncertain domains. Say that we have mod-
eled an event A in this problem domain. Event A has a finite number of states
and for every state some probability value is assigned. If we know that some
state of event A has taken place we can infer the probability of other events
that are causally related to eventA. This means that the states of these causally
related events get updated probabilities (belief updating).

This chapter is organized as follows: in section 2.1 we review basics of mod-
eling with BNs. This discussion is followed by a formal definition of Bayesian
networks and the chain rule in section 2.2. Moreover, the notions of d-separa-
tion and conditional independence will be clarified.

2.1 Bayesian Probability Theory
We begin the discussion with Bayesian calculus (see [6]) which is also known
as classical probability calculus (like in [4]).

2.1.1 Basics of Probability Theory

In this section we review the basics of probability theory which are needed in
order to understand the principles of Bayesian networks. Let us first list the
three basic axioms of probability calculus for BNs.

7



Basic Axioms Probability theory is based on the three axioms:

Definition 2.1 (Three Basic Axioms) The three basic axioms for Bayesian
networks are:

axiom 1: P (A) ≥ 0;

axiom 2: P (A = ai) = 1 if and only if state ai is certain;

axiom 3: P (
⋃∞

i=1Ai) =
∑∞

i=1 P (Ai) only when
⋂∞

i=1Ai = ∅

Assume an example, where we have a sample space A with a discrete probabil-
ity distribution∗ P (A) defined over the events {a1, . . . , an}we can write P (A)
as a vector:

P (A) =




P (a1)
...

P (an)




If we say that P (A = a1) = 1† we know for certain that event a1 has occurred
and we also know that events a2, . . . , an did not occur given that

∑
i ai = 1

and ∀ai : ai ≥ 0. A probability value between 0 and 1 means that we are
uncertain if an event has taken place. For example, if P (A = a2) = 0.3 we
know that with a chance of 30% event A will result in a2 and with a chance
1 − P (A = a2) event A will not result in a2. This leads us to the two basic
axioms, namely

0 ≤ P (A) ≤ 1 (2.1)
P (A = ai) = 1 if and only if ai is certain (2.2)

The first axiom states that probability values are only defined in the interval
[0, 1] and the second axiom states that when a probability is 1 we know for
certain that this event will take place.

The third axiom states that the belief assigned to any set of events is the sum
of the belief assigned to the mutually exclusive (also disjoint) events. If we have
an event A and another event B that are mutually exclusive, meaning that
they are non-intersecting, the probability P (A ∪B) is equal to:

P (A ∪ B) = P (A) + P (B) where A ∩ B = ∅ (2.3)

The Fundamental Rule The fundamental rule of probability calculus states
that we can rewrite a joint probability as

P (A,B) = P (A|B)P (B) (2.4)

where the probability P (A,B) denotes the joint probability of the joint event
A ∩ B. Probability P (A|B) is called the conditional probability. It is called con-
ditional because it is the probability of event A that is conditioned on the oc-
currence of event B. From equation 2.4 we can conclude the following:

P (B|A)P (A) = P (A|B)P (B) (2.5)

This can be rewritten to

P (B|A) =
P (A|B)P (B)

P (A)
(2.6)

∗ In this thesis only discrete probability distributions are considered
† The probability P (A = a) can also be written as P (a) if there cannot be any confusion.
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The equation in formula 2.6 is known as the Bayes’ rule given in theorem 2.1.
This rule is the most important rule in Bayesian inference. It allows us to
infer the probabilities of other events in a BN. Equation 2.6 states that we can
calculate the posterior belief of B, reflected in P (B|A), by multiplying the prior
belief of B, reflected in P (B), with the likelihood of A given that event B
occurred. The denominator P (A) is just a normalization constant.

Theorem 2.1 (Bayes’ Rule) Let A andB be two events then Bayes’ rule can
be defined as:

P (B|A) =
P (A|B)P (B)

P (A)
(2.7)

Bayes’ rule supports diagnostic reasoning (or retrospective reasoning), where we
reason about the probability of the cause given the effects.

2.1.2 Conditional Probability Tables (CPTs)

If we have a variableA with states a1, a2 and a variableB with states b1, b2, b3,
then we can write P (A|B) as a conditional probability table (CPT) that describes
a conditional probability distribution (CPD):

Table 2.1: Conditional
probability table of P (A|B)

b1 b2 b3
a1 P (a1|b1) P (a1|b2) P (a1|b3)
a2 P (a2|b1) P (a2|b2) P (a2|b3)

For example, the CPT of CPD P (A|B) is given in table 2.2. Notice that the
columns sum up to one, which is, a requirement for (conditional) probability
distributions.

Table 2.2: Conditional
probability table of P (A|B)

b1 b2 b3
a1 0.3 0.1 0.4
a2 0.7 0.9 0.6

Given a CPT, we can easily calculate the joint probability table (JPT) specifying
the joint probability distribution (JPD) by using the fundamental rule that was
given in section 2.1.1. If we have P (A|B) we can calculate P (A,B)

P (A,B) = P (A|B)P (B) (2.8)

To be able to compute the JPT based on the CPT given in table 2.2 the values of
probability distribution P (B) have to be known. Let us assume that the prob-

ability distributions of P (B) =




0.3
0.2
0.5


. Using the probability distribution

of B the JPD can be calculated and will result in the following JPT:

Table 2.3: Joint probability table
of P (A,B)

b1 b2 b3
a1 0.09 0.02 0.2
a2 0.21 0.18 0.3

All values in a JPT sum up to one. Assume that we also want to compute
the probability distribution over A. This distribution can be computed by
summing over all states of variable B in the JPT of P (A,B).

P (A) =
n∑

j

P (A,B = bj) (2.9)

9



This calculation is called marginalization over variable B. We can also say that
B was marginalized out of the joint probability P (A,B). Marginalization is an
important computation because it allows us to calculate marginal probabilities,
as for example P (A) in equation 2.9.

2.1.3 Projections

In the Bayesian network literature projections are used in two different ways:

• Projection corresponding to marginalization (see [6]);

• Projection as potential (see section 2.1.4) entry selection (see [21]).

The meaning of projections corresponding to marginalization is straightfor-
ward. For example, if we have the joint probability P (A,B,C) and we want
to calculate the marginal probability P (A,B), we can write this as:

P (A,B) = P (A,B,C)↓{A,B}

In this example we can also say that we are projecting the probability distribu-
tion P (A,B,C) onto the probability distribution P (A,B). So, the following
expression is valid:

P (A,B,C)↓{A,B} =
∑

C

P (A,B,C)

In other words, projecting down to the set of variables {A,B} is the same as
marginalizing C out of the expression P (A,B,C).

The second type of projection differs from the first in that it is not marginal-
izing any variables out of the probability distribution, but is used to select
entries in the probability distribution or potential. For example, if we have
the set of stochastic variables D = {A,B,C} with an entry d = (a2, b3, c1) and
a set of stochastic variablesE = {A,C} then the projectionE↓d = (a2, c1). This
example shows that the entry (a2, c1) in the set of stochastic variables E is se-
lected by projecting d onto E. In the next section we will show that projections
are a very convenient way to describe potential operations like multiplication
and division.

2.1.4 Potential Algebra

Potentials are used to specify real-valued unnormalized probability tables. Po-
tentials can specify prior probabilities, joint probabilities, conditional proba-
bilities or any combination‡ of these. Every stochastic variable that is defined
in a potential has an attached domain that is defined over the states of the
stochastic variables. For example, if we have the following CPD P (B|A) that
is captured by the potential φ(A,B) = P (B|A) then the stochastic variables of
the potential φ(A,B) are {A,B}. We assume that stochastic variableA has the
states {a1, a2} and stochastic variable B has the states {b1, b2, b3}. The corre-
sponding domains are defined by DA = {a1, a2} and by DB = {b1, b2, b3}, re-
spectively. The potential φ(A,B) uses a combination of the states (also config-
urations) of A and B and is defined over domain D{A,B} = {(a1, b1), (a2, b1),
(a1, b2), . . .}.
The multiplication of potentials can be defined through projections described
in section 2.1.3.

Definition 2.2 (Potential multiplication) Let X ,Y be distinct sets of vari-
ables and Z = X ∪ Y . Let φ(X ), φ(Y) be two potentials. The multiplication
φ(X ) · φ(Y) is a potential φ(Z) such that for each configuration z ∈ DZ ,

φ(z) = φ(X ↓z) · φ(Y↓z) (2.10)

‡ Combination of probabilities is defined through multiplication
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Let’s assume the potential product φ(Z) = φ(X ) · φ(Y) that results in φ(Z)
where X = {A,B}, Y = {B,C} and Z = X ∪ Y . In table 2.4 the values of the
potentials φ(X ) and φ(Y) are given.

Table 2.4: Potentials of φ(X )
and φ(Y)

(A,B) φ(X ) (B,C) φ(Y)
(a1, b1) 0.20 (b1, c1) 0.11
(a1, b2) 0.45 (b1, c2) 0.94
(a2, b1) 0.38 (b2, c1) 1.22
(a2, b2) 0.22 (b2, c2) 0.76

Following definition 2.2 we can compute φ(Z) by projecting X and Y down
to a combination of states z ∈ Z (i.e. configuration).

Table 2.5: Potential product
φ(Z) = φ(X ) · φ(Y)

(A,B,C) φ(Z) (A,B,C) φ(Z)
(a1, b1, c1) 0.022 (a1, b1, c2) 0.188
(a1, b2, c1) 0.549 (a2, b1, c2) 0.357
(a2, b1, c1) 0.042 (a1, b2, c2) 0.342
(a2, b2, c1) 0.268 (a2, b2, c2) 0.167

The potential multiplication is commutative and associative which is defined in
the theorems 2.2 and 2.3.

Theorem 2.2 (Potential product commutativity) Let φ(X ) and φ(Y) be
two potentials, then the product between these two potentials is commutative
and the following holds:

φ(X ) · φ(Y) = φ(Y) · φ(X ) (2.11)

Theorem 2.3 (Potential product associativity) Let φ(X ), φ(Y) and φ(Z)
be three potentials, then the products of these three potentials are associative
and the following holds:

(φ(X ) · φ(Y)) · φ(Z) = φ(Y) · (φ(X ) · φ(Z)) (2.12)

The proof of potential product commutativity and associativity is straightfor-
ward.

In some Bayesian inference algorithms potentials are also divided by each
other. One problem with this operation is dividing by zero (which is un-
defined). In order to deal with dividing by zero two potentials have to be
zero-consistent. Zero-consistency means that if for a configuration z ∈ DZ the
potential φ(X ↓z) = 0 also φ(Y↓z) = 0. When this is the case, potential φ(X ↓z)
is zero-consistent with φ(Y↓z).

Because of zero-consistency the quotient for potentials can be defined as fol-
lows:

Definition 2.3 (Potential quotient) Let φ(X ) be zero-consistent with φ(Y)
and Z = X ∪ Y . The quotient of φ(X ) divided by φ(Y) denoted as φ(X )

φ(Y) is a
potential φ(Z) such that for each z ∈ DZ

φ(Z) =

{
φ(X↓z)
φ(Y↓z)

if φ(Y↓z) > 0
0 if φ(Y↓z) = 0

(2.13)

2.1.5 Complexity of Probabilistic Reasoning

Calculating beliefs over different combinations of variables can be performed
by using the full JPD P (V). This computation is known to be NP-hard (see [1])
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since the complexity increases exponentially with the number of variables in
V , i.e. cardinality.

Let us denote the cardinality of V by n = |V|. The cardinality of the largest
variable space is denoted as d = maxV |DV |. In worst case we need to acquire
O(dn) parameters in order to describe P (V) fully. This problem is referred to
as the acquisition complexity.

Moreover, suppose that we observe state a1 of variable A and we want to
calculate the posterior probability P (B|a1) for B ∈ V . We can do this by
updating the JPD to P (V|a1) and then marginalizing it to get P (B|a1). To
calculate P (V|a1) we can use the product rule:

P (V|a1) =
P (V , a1)
P (a1)

(2.14)

the denominator P (a1) is calculated by just summing over all remaining terms.
Each remaining term is then divided by the sum. This process is called nor-
malization. Notice however, that this operation has complexity O(dn) and is
quite expensive. This problem is referred to as updating complexity.

Finally, marginalization has to be performed by:

P (B|a1) =
∑

V\{B}

P (V\{B}, B|a1) (2.15)

this will result in summing over O(dn) probability values. This problem is
called marginalization complexity.

2.2 Bayesian Networks
We have seen in section 2.1.5 that belief updating using the full JPDs is not
very efficient. BNs on the contrary can be used to perform far more efficient
belief updating by exploiting conditional independence. Graphical models
of BNs capture conditional independence of variables, that is, given a condi-
tional probability P (A|B,C) we know that P (A|B,C) = P (A|B) if variables
A and C are conditionally independent and vice versa. Exploiting conditional
independence between variables can significantly reduce the number of com-
putations needed for belief updating.

The formal description of BNs is given in definition 2.4.

Definition 2.4 (Bayesian Network (BN)) A Bayesian Network is a
triplet of the following form (V , G,P). V is a set of variables. G is a Directed
Acyclic Graph (DAG) whose nodes correspond to members of V such that they
are connected by directed edges. P is a set of probability distributions:

P = {P (Vi|π(Vi))|Vi ∈ V} (2.16)

where Vi denotes a element of V and π(Vi) ⊂ V denotes the parents of V .

In figure 2.1 an example of a BN is given.

In this example the graph is a DAG, because there are no directed cycles and
V = {A,B,C,D,E}. The directed arrows in the BN have attached CPTs to
represent the conditional uncertainties of variables {B,C,D,E}. Variable A
does not have a CPT, but instead, a prior probability distribution.

2.2.1 The chain rule

Given the structure of the BN in figure 2.1 we can calculate the joint probability
distribution P (A,B,C,D,E) by using definition 2.5.
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Figure 2.1: A Bayesian Network ONMLHIJKA
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Definition 2.5 (Chain rule for Bayesian networks) Let a BN be defined
over universe V = {V1, . . . , Vn}, then the joint probability distribution P (V)
can be calculated by multiplying all (conditional) probabilities that are defined
in the BN.

P (V) =
∏

i

P (Vi|π(Vi)) (2.17)

where π(Vi) is the parent set of Vi.

The formula of the joint probability distribution of P (A,B,C,D,E) will be

P (A,B,C,D,E) = P (A)P (B|A)P (C|A)P (D|B,C)P (E|C)

Notice that node A does not have any parents so that P (A|π(A)) is reduced to
P (A).

Definition 2.5 can also be used to compute JPDs over subsets of the universe
V . For example, if we want to calculate P (A,C) we can multiply all potentials
and marginalize over the variables that are not defined in the desired marginal
probability.

P (A,C) = P (A)P (C|A)
∑

B

P (B|A)
∑

D

P (D|B,C)
∑

E

P (E|C)

2.2.2 Evidence

There are different types of observations, namely observations in the form of
hard evidence and soft evidence (also called likelihood evidence).

Definition 2.6 (Hard Evidence) When we receive evidence for a stochastic
variable X we call it hard evidence if the probability P (xi) associated with
one state xi from the domain DX = {x1, . . . , xn} is set to one and the prob-
abilities of other states are set to zero. In other words, if xi is observed with
certainty, we set P (xi) = 1 and ∀xj 6= xi : P (xj) = 0. We represent this
through a hard evidence potential φ(eX ), where the entry corresponding to xi

is a positive number while other entries are set to 0.

Definition 2.7 (Soft Evidence) When we receive evidence for a stochastic
variable X we call it soft evidence if no state from the domain DX =
{x1, . . . , xn} is associated with probability 1. In other words, we do not know
which of the possible states was observed with certainty. We represent this
through a soft evidence potential φ(eX), where the entries have arbitrary posi-
tive numbers.

In figure 2.2 we can see the network from figure 2.1 with two hard evidence
observations eB and eE . This means that one state in variable B and one state
in variable E are associated with probability P (B = bi) = 1 and P (E = ej) =
1, respectively while the probabilities of other states from the domains DB\bi
andDE\ei are all set to zero (i.e. events corresponding to states bi and ej have
taken place).
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Figure 2.2: A Bayesian Network
with hard evidence observations
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With soft evidence, on the other hand, we do not know for certain what we
have observed. For example, when we want to determine the color of a car in
a dark alley. We cannot determine if the car is black or blue with certainty, but
we can merely gather evidence about the degree of the car being blue or black.

Updating beliefs in BNs can be performed by multiplying the evidence vectors
eXi with the potentials of a BN.

P (V|E) · P (E) = φ(V) ·

Evidence set E︷ ︸︸ ︷
n∏

i

φ(eXi) (2.18)

where E = {eX1 , . . . , eXn} is a set of observations and V are all variables de-
fined in the domain. Remember that potential multiplication is not defined
through a matrix multiplication (see definition 2.2 how potentials should be
multiplied).

In section A.2 in the appendix an example is described how updating of beliefs
can be performed after the instantiation of hard evidence.

2.2.3 D-Separation and Conditional Independence

A very important concept in BNs is d-separation, which captures independen-
cies between different variables. Variables A and C are independent given B
if instantiation of A does not effect the belief of C and vice versa.

Definition 2.8 (Conditional Independence) Variable A and variable C
are conditional independent given variable B if the following equation holds:

P (A|B) = P (A|B,C) (2.19)

This can also be written as 〈X ,Z ,Y〉 where A ∈ X , B ∈ Z and C ∈ Y .
〈X ,Z ,Y〉 means that all pairs from X and Y are conditionally independent
given variables from Z (see also definition 3.4 in section C).

In BNs three types of connections can be identified, namely serial connections
(see figure 2.3 (a)), diverging connections (see figure 2.3 (b)) and converging
connections (see figure 2.4).

Figure 2.3: A serial and
diverging connection ?>=<89:;A // ?>=<89:;B // ?>=<89:;C

(a) Serial Connection

?>=<89:;B

%%JJJJJJJ

zzttttttt

?>=<89:;A ?>=<89:;C

(b) Diverging Connection

If we inspect figure 2.3 (a) we can say that variable A is d-separated from vari-
able C by variable B, given that B is observed (i.e. P (B = bi) = 1). Variable
B is blocking evidence from variable A to variable C and that is the reason
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why variablesA and C are d-separated. A result of this is that evidence that is
entered in variable A will not have any impact on the belief over variable C.
We can say the same for diverging connections. In figure 2.3 (b) also variable
A and C are d-separated by variable B, given that B is observed.

Figure 2.4: A converging
connection
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The third type of connection is the converging connection given in figure 2.4.
A connection is not d-separated when variable B is observed. This is differ-
ent from the other two connections where variable B has to be observed in
order for a connection to be d-separated. In this case A and C are said to be
marginally independent when B is not observed.

Definition 2.9 (Marginal Independence) A variable A and a variable C
are marginally independent if the following equation holds:

P (A,C) = P (A)P (C) (2.20)

When variableB is observed, in the BN of figure 2.4, the entered evidence inB
will not block evidence between variablesA and C. If evidence is instantiated
in variable A this will affect the belief of the other parents of variable B (in
this case only variable C). This is called the explaining away effect (see [6]).

In definition 2.10 a formal description is given of d-separation.

Definition 2.10 (D-separation) Two distinct variables A and B are d-
separated in a causal network if, for all paths between A and B there is a
variable V such that the connection is either serial or diverging and variable
V is instantiated or the connection is converging and neither V or any of its
descendants are instantiated (have received evidence).

In section A.3 in the appendix an example is presented of d-separation in a
larger BN and in section B is explained why conditional independence occurs
in given types of connections.

Why is d-separation important? With the knowledge of d-separation we can
minimize the size of JPTs to do belief updating. Using the full JPT over all de-
fined variables in a BN is, in general, unnecessary. Belief updating can be inef-
ficient when a large potential is introduced through multiplication of smaller
potentials. With d-separation we know which of the variables are dependent
and which are not. This qualitative knowledge can be used to identify the
smaller potentials that can be used for efficient belief updating.
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3 Bayesian Inference

IN this chapter we review the basic principles of inference in Bayesian net-
works. In general, BNs explicitly encode conditional independence, which

can be exploited for efficient inference.

There are several approaches to belief propagation in BNs. For singly con-
nected Bayesian networks (poly trees) the approach by Pearl in [17] can be
used. This approach is also known as λ − π message passing. For multiply
connected Bayesian networks cutset conditioning is used (described in [18]).
With cutset conditioning the multiply connected networks are transformed
to several singly connected networks and on these belief propagation is per-
formed.

Another approach to inference in multiply connected BNs is based on Junction
Trees (JTs) proposed by Lauritzen and Spiegelhalter.

Junction Trees (JTs) facilitate efficient Bayesian inference (belief propagation)
in BNs. Every BN can be transformed into a JT in such a way that a signifi-
cant portion of the conditional independence encoded in the BN is preserved.
This qualitative knowledge entails d-separation that is used to form the JT.
After the probabilistic knowledge of a BN is represented in an efficient JT, this
graphical model can be used for efficient belief updating through concise mes-
sage passing. Concise messages contain marginal probability distributions, ob-
tained by marginalization, over a minimal set of stochastic variables, that are
communicated between graphically separated clusters of stochastic variables.
The order in which concise messages are allowed to be passed between sets of
stochastic variables corresponds to an efficient marginalization order. In other
words, JTs impose, on the belief propagation process, an efficient marginaliza-
tion order that is based on the connections between the JT clusters.

In this chapter we will discuss the graphical structure of JTs and how efficient
belief propagation can be performed on JTs. In section 3.1 we will show that
a JT is a special type of constraint cluster graph that enables consistent belief
updating through concise message passing. In section 3.2 we discuss the belief
propagation algorithms.

3.1 Cluster Graphs
In chapter 2 we have shown that conditional independence supports efficient
Bayesian belief updating. Conditional independence in a BN is used to con-
vert this BN to a cluster graph. A cluster graph encodes the conditional inde-
pendence of the BN in a coarser way. When a marginal posterior probability is

16



computed the cluster graph can be used to guide the marginalization order of
variables. Every BN has, in general, several cluster graphs. However, not ev-
ery cluster graph supports efficient and correct belief propagation. The cluster
potentials that are defined for every cluster in a cluster graph should be min-
imal in the number of variables. In addition, most cycles in cluster should be
prevented, because they do not support consistent belief updating.

In figure 3.1 a cluster graph of a BN is depicted. Note that the cluster graph
has undirected edges instead of directed. The undirected edges encode proba-
bilistic dependencies between two subsets of variables∗, which are also called
clusters. Between these two clusters messages with probabilistic knowledge
can be passed. These messages should be of low complexity, which means
that they should not be defined over a large set of variables. If the number of
variables in a cluster is low concise message passing between clusters is possible.

Figure 3.1: A Cluster Graph
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(b) Cluster Graph

From figure 3.1 (b) we see that three clusters are defined over a domain of
variables given in the BN.

Definition 3.1 (Cluster) A cluster Qi corresponds to a set of variables Vi

where Vi can consist of an arbitrary subset of nodes from a BN.

When two clusters have a non-empty intersection they can be connected where
the non-empty set is called a separator of the two clusters. We can see in fig-
ure 3.1 (b) thatQ1 andQ2 have domains {A,B,C} and {B,C,D}, respectively,
and share the separator set Q1 ∩ Q2 = {B,C}. The variables in the clusters
Q1 and Q2 are independent of each other given the variables defined in the
separator. That means that variables A ∈ Q1 and D ∈ Q2 are separated from
each other because they are conditionally independent given {B,C}.
It turns out that not every type of cluster graph is a suitable structure for be-
lief updating through concise message passing. Only a special type of cluster
graphs supports consistent belief updating. In this section different types of
cluster graphs are discussed and finally the requirements on a cluster graph,
which are necessary for consistent belief updating, will be presented.

3.1.1 Cluster Graphs with Cycles

Two different types of cycles can be defined in a cluster graph, namely: non-
degenerate cycles and degenerate cycles. A cycle ρ in a cluster graph is strong
non-degenerate if every separator on ρ is different and a cycle ρ is weak non-
degenerate if every separator Si is different, but

⋂
i Si 6= ∅. In figure 3.2 the two

different non-degenerate cycles are depicted.

It turns out that no matter how messages are passed in cluster graphs with
non-degenerate cycles consistent belief updating is not possible (see [21]).

Another type of cluster graph is a cluster graph with a path ρ where a separa-
tor S on this path is contained in every other separator. Such a path is called a
∗ Directed edges in BNs often correspond to causal relations between variables
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Figure 3.2: A Cluster Graph
with a strong non-degenerate
cycle (a) and a Cluster Graph
with a weak non-degenerate

cycle (b)
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(b) Weak Non-Degenerate Cy-
cle

degenerate cycle. Figure 3.3 shows two different degenerate cycles, namely one
with a strong degenerate cycle and one with a weak degenerate cycle.

Figure 3.3: A Cluster Graph
with a strong degenerate cycle
(a) and a Cluster Graph with a

weak degenerate cycle (b)
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(b) Weak Degenerate Cycle

Note that only cluster graphs that contain degenerate cycles support correct
belief updating. In such cases the cycles can be cut to make a cluster tree. While
it does not matter where a strong degenerate cycle is cut, a weak degenerate
cycle can be cut only at certain separators. This brings us to a special type of
cluster tree.

3.1.2 Junction Trees

It turns out that consistent belief updating is possible in a special type of clus-
ter tree, namely the junction tree (JT)†. JTs have the running intersection property
which is required to do consistent belief updating. Without this property con-
sistent belief updating is not guaranteed.

Definition 3.2 (Junction Trees) A cluster tree is a junction tree (JT) if for
every pair of clusters Qi and Qj , Qi ∩ Qj is contained in every cluster on the
path ρ betweenQi andQj . This is called the running intersection property.

If we return to the cluster graph example given in figure 3.1 (b) we can cut
the weak degenerate cycle. Cutting this cycle between the clusters Q1 and Q2

will result in the cluster tree given in figure 3.4 (a). This cluster tree is not a
junction tree, because it does not have the running intersection property. The
intersection between clusters Q1 and Q2 is Q1 ∩Q2 = {B,C}where {B,C} *
Q3. Cutting the cluster graph between clusters Q1 and Q3 (given in figure 3.4
(b)) or between Q3 and Q2 will result in a junction tree.

In figure 3.5 another example of a junction tree is given. In this figure we can
see that the intersection of cluster {A,B} and cluster {C,E} result in ∅. This
means that this cluster tree is also a junction tree.

† In the Bayesian inference literature the definition of a JT differs. In [21] a JT is a collection of
connected clusters while in [6] a JT is a join tree consisting of cliques with attached potentials. In
this thesis the definition of a JT given in [21] is followed.

18



Figure 3.4: Two cluster trees
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(b) Junction Tree

Figure 3.5: A Junction Tree '& %$ ! "#A,B B
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In appendix C the procedure of building a JT from a BN is explained.

3.1.3 Independence Map

When a DAG is converted to a JT probabilistic independence should be pre-
served as much as possible in order to have an efficient computational prob-
abilistic model. D-separation between variables in a DAG can be extended to
the concept of u-separation for undirected graphs.

Definition 3.3 (U-Separation) Let G be an undirected graph (also Markov
Graph) and X , Y and Z disjoint sets of nodes in G. Evidence is blocked on a
path ρ between nodes X ∈ X and Y ∈ Y if Z ∈ Z is on ρ. Nodes X and Y
are u-separated by Z if for every path between X and Y evidence is blocked.
X and Y are u-separated by Z if for every X ∈ X and Y ∈ Y , X and Y are
u-separated. This is denoted by 〈X |Z|Y〉G

In figure 3.6 a Markov graphG is depicted where the variableB is instantiated
to state b1. According to definition 3.3 variableA is u-separated from variables
{C,D,E} given variable B, hence 〈A|B|{C,D,E}〉G.

Figure 3.6: A Markov Graph ?>=<89:;A
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Conditional independence that is encoded in a BN (see section 2.2.3) needs
to be preserved as much as possible during the transformation to the undi-
rected graph. This can be achieved by keeping the independence map, defined
in definition 3.4, minimal. A minimal I-map means that there is no subgraph
contained in the I-map that is also an I-map.

Definition 3.4 (Independence Map (I-Map)) A directed or undirected
graph G is an independence map or I-map of a domain V if there is a one-
to-one correspondence between nodes of G and variables in V and 〈X |Z|Y〉G
implies I(X ,Z ,Y) for all disjoint subsets X , Y and Z of V .

The notation I(X ,Z ,Y) is used to denote conditional independence between
variable X and Y given Z .
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Adding links to an I-map does not change the I-mapness. However, condi-
tional independence in this I-map will become invisible at the cost of less
efficient belief updating. For example, when we add all possible links that
can be added to some graph G every variable will be connected to each other
variable. This means that all present conditional independence is invisible
and will force us to do belief updating using the full JPD. In a JT we want
to have concise messages of probabilistic knowledge between conditional in-
dependent sets of variables given the separator. When we preserve minimal
I-mapness concise message passing in a graphical structure can be done effi-
ciently.

3.1.4 Potential Assignment

The quantitative knowledge of a BN, that is the defined CPTs and priors,
should be transferred to the corresponding JT. This quantitative knowledge
is represented through cluster potentials. In figure 3.7 (a) we can see a BN
with the corresponding JT with assigned potentials in figure 3.7 (b).

Figure 3.7: Potential
assignment to cluster of a JT '& %$ ! "#A
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These associated potentials are assigned in the following way: give all clusters
and separators in the JT given in figure 3.7 (b) a uniform potential‡ to avoid
biased beliefs. Select a node v from figure 3.7 (a). Determine τ(v) = {v, π(v)}
where π(v) is the set of parent nodes and τ(v) are the parents of v and v it-
self. If τ(v) ⊆ Qi attach the potential P (v|π(v)) to cluster Qi and multiply
φ(Qi) · P (v|π(v)). Do the same for the remaining nodes. It can happen that
some of the determined clusters in a JT do not get a CPT value assigned. In
the example of figure 3.7 the cluster {F,D,E} only has a uniform potential as-
signed. This is because the cluster {F,D,E} doesn’t cover a CPD. The parent
C of variable D and E is not contained in the cluster and one of the parents
of F is also not contained in the cluster. The uniform potential is assigned to
these type of clusters to avoid duplicate specifications of the CPDs which will
result in inconsistent reasoning.

How do the potentials of a JT relate to the JPD of all the variables defined in
the problem domain? In theorem 3.1 the relation between JT potentials and
the full JPD is given.

Theorem 3.1 Let a JT T with a set of clustersQ and a set of separators S be an
I-map over all domain variables V . For each cluster Q, φ(Q) = α1 ·P (Q), and
for each separator S, φ(S) = α2 · P (S) where α1 and α2 are normalization
constants. Then the joint probability distributions over V can be calculated
with

P (V) = α ·
∏

Q∈Q φ(Q)∏
S∈S φ(S)

(3.1)

A proof of this theorem can be found in [21] on page 95.

‡ Every entry in a uniform potential has the value 1
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3.2 Belief Updating in Junction Trees
Whenever we want to calculate a marginal probability of a variable in a cluster
we have to make sure that the JT is globally consistent. Global consistency can
be realized by concise message passing between clusters in a JT. A cluster can
update its belief by considering the beliefs of neighboring clusters and update
their own belief. If every cluster updates its belief in this way the JT will
be globally consistent. Before message passing in JTs is discussed, first the
definition of consistence between clusters should be defined.

Definition 3.5 (Consistence) Given a cluster graphG that contains two ad-
jacent clusterQi andQj with a separator S〈Qi, Qj〉with associated potentials
φ(Qi), φ(Qj) and φ(S). Clusters Qi and Qj are consistent if:

∑

Qi\S

φ(Qi) = α1 · φ(S) = α2 ·
∑

Qj\S

φ(Qj) (3.2)

where α1 and α2 are normalization constants. G is locally consistent if
all adjacent clusters are consistent. G is globally consistent if all pairs of
clusters are consistent according to:

∑

Qi\Qj

φ(Qi) = α ·
∑

Qj\Qi

φ(Qj) (3.3)

Section 3.1.4 discussed how potentials should be assigned to clusters in a
JT. Only assigning potentials to clusters is not enough to calculate correct
marginal posteriors. This is because the JT is not globally consistent. We need
to pass concise messages between clusters in a JT in order to make this JT
globally consistent. The basic operation that is needed to get two clusters con-
sistent with each other is called absorption§.

Algorithm 3.1: Absorption
input : two adjacent clusters Qi and Qj with separator S in a JT with the

following potentials φ(Qi), φ(Qj) and φ(S), respectively.
output: updated separator potential φ′(S) and cluster potential φ′(Qi)
if cluster Qi absorbs from cluster Qj then1

Update φ(S) to:2

φ′(S) =
∑

Qj\S

φ(Qj) (3.4)

Update φ(Qi) to:

φ′(Qi) = φ(Qi) ·
φ′(S)
φ(S)

(3.5)

end3

Two connected clusters are consistent with each other if absorption, given in
algorithm 3.1, is performed on both clusters. In section A.4 in the appendix an
example of absorption is given by using a simple JT with two clusters. When
a JT has more than two clusters all the clusters must be made consistent to
each other. This can be done by performing first the algorithm Collect-
Evidence given in algorithm 3.2 and after that one DistributeEvidence
given in algorithm 3.3. These two algorithms are combined in the algorithm
UnifyBelief given in algorithm 3.4 (algorithms adopted from [21]).

Performing the UnifyBelief on a JT T will bring T into globally consistent
state (see [21] for proof). If T is in globally consistent state correct marginal
posterior probabilities can be calculated of every variable in any cluster.

§ Absorption is based on the Hugin inference approach
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Algorithm 3.2: Collecting evidence to a cluster
procedure: CollectEvidence
input : Qi is a cluster in a JT T . A caller is either an adjacent cluster or T .
if the caller calls Qi then1

Cluster Qi calls CollectEvidence in each adjacent agent except in2

caller;
After each called cluster has finished Qi absorbs from it;3

end4

Algorithm 3.3: Distributing evidence to clusters
procedure: DistributeEvidence
input : Qi is a cluster in a JT T . A caller is either an adjacent cluster or T .
if the caller calls Qi then1

If caller is a cluster, Qi absorbs from it;2

Cluster Qi calls DistributeEvidence in each adjacent cluster except in3

caller ;
end4

Algorithm 3.4: Bring JT into globally consistent state
procedure: UnifyBelief
input : Junction tree T
Select cluster Qi in T ;1

Call CollectEvidence on Qi;2

if CollectEvidence is finished then3

Call DistributeEvidence on Qi;4

end5

The following algorithm can be used to update the beliefs after a set of obser-
vations E are entered into the JT T :

Algorithm 3.5: Instantiating evidence
procedure: EnterEvidence
input : set of observations eXi ∈ E
Find for each Xi ∈ X a cluster Qi in junction tree T where Xi ∈ Qi;1

Replace φ(Qi) with φ(Qi) · φ(eXi );2

Algorithm3.5 is also applicable for soft evidence observations.

When a set of observations are processed and algorithm 3.5 will be used to
update the potentials in the JT, it will bring the JT in a non globally consistent
state. After performing UnifyBelief the JT will be in globally consistent
state again and correct (marginal) posteriors can be calculated with all obser-
vations taken into account.
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Part II

Distributed Probabilistic
Inference
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IN the foregoing part of this thesis Bayesian networks were discussed in a
non-distributed environment. However, Bayesian networks used in the

non-distributed environment might not be the most optimal setting. For ex-
ample, when the problem domain is too complex to be modeled in a single
agent because of computational limitations or the problem domain is geo-
graphically dispersed. In such cases it is more natural to model the problem
domain in a distributed manner. However, using distributed algorithms to do
belief updating in BNs can be very challenging: i) Belief propagation has to
be performed in a consistent manner, ii) the belief propagation algorithm has
to be robust against bad communication channels over which belief has to be
propagated between agents, iii) the algorithm needs be robust against failing
agents.

In this thesis three different approaches to probabilistic inference in a dis-
tributed environment are discussed:

• Distributed Perception Networks (DPNs) (see chapter 4);

• Multiply Sectioned Bayesian Networks (MSBNs) (see section 5.1);

• Prior/Likelihood Decomposable Models (PLDMs) (see section 5.2).

Before we talk about multiagent distributed inference using BNs we first de-
scribe the concepts agent and multiagent system. Unfortunately, there is no real
agreement on what an agent exactly is (see [5] for a discussion), therefore we
define an agent in the context of distributed inference.

An agent, that concerns itself with distributed probabilistic inference, is a com-
puter program that is situated in the physical world, is able to receive informa-
tion from sensors or other agents and can act autonomously upon receiving
of relevant information. The task of a probabilistic inference agent is (i) to
compute its local belief with respect to the received information originating
from other cooperating agents and (ii) supply its partial belief to other inter-
ested agents. Given this task, agents have a clear goal-directed behavior and
are able to collectively perform a global task. A multiagent system for proba-
bilistic inference must be able to compute correct posterior probabilities over
certain variables by using the evidence obtained from different cooperating
agents. Of course, these agents have to be connected to each other through
communication channels and should be aware of the agent(s) that are inter-
ested in their local belief.
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4 Distributed Perception
Networks

LATEST development in communication and sensor technology resulted in
numerous easily accessible information sources. For example, buoys that

are dispersed in oceans to observe weather phenomena, tsunami warning
buoys, humans with PDA’s or mobile phones, etc. The information that comes
from these information sources can be used for situation awareness. Au-
tonomous intelligent systems or decision makers can use this knowledge to
respond to relevant aspects in their environments. However, this requires that
information from different sources is mapped to relevant hypotheses about
events that cannot be observed directly. This can be challenging because of:

• Sensor outputs are subject to very noisy or heterogeneous information;

• Relevant information sources must be found and integrated. These in-
formation sources are not known prior to operation;

• The relevant constellation of information sources must be captured. Since
the information sources can become available or unavailable during run-
time;

• The available information is often very uncertain and subjective;

• Huge amounts of information is provided and must be processed, and
consequently, a central model might not be appropriate due to the pro-
cessing and communication overload at the central processing unit.

Distributed Perception Networks (DPNs) [15, 3, 2] are a probabilistic infer-
ence approach that can deal with these challenges. It provides an inference
structure that is able to collect information from relevant information sources
and map them to distributions over hypotheses of interest in a reliable and
efficient manner.

This chapter is organized as follows: in section 4.1 we use an example in or-
der to illustrate the domains were DPNs are applicable. We argue that many
domains can be described through causal models, which in turn facilitates dis-
tributed modeling and inference. In section 4.2 we describe how probabilistic
models can efficiently be distributed throughout a system of independent pro-
cessing units. In section 4.3 we describe algorithms that support automated
assembly of distributed probabilistic models, which support efficient and ro-
bust distributed belief propagation. In section 4.4 we describe inference in
distributed BNs.
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4.1 Causal Models
Causal processes can be viewed as sequences of events∗, where some events
cause other events. That means that these events are causally related to each
other. Such processes can easily be described through causal models. Causal
models are defined through directed graphs where vertices denote events and
directed edges denote cause-effect relations. By using causal models we can
represent different observations and their causes in a systematic way.

Consider a situation were we want to estimate the presence of a lethal concen-
tration of toxic gas GasX in a populated area A. We assume that two types of
sensors are installed in area A. One sensor type detects a lethal concentration
of GasX by measuring the conductivity of the gas mixture and the other sensor
type measures the ionization level. Next to the sensor measurements, humans
that come in contact with GasXwill develop specific symptoms such as cough-
ing, headache, nausea, cyanosis, etc. Such symptoms are observable and can
be used, next to the two sensor types, as possible information sources to detect
GasX. This is possible because these information sources are causally related
to GasX. If GasX is present in area A, the sensors start measuring certain con-
ductivity and ionization levels, humans will smell the gas, etc. In other words,
these observable events were caused by the presence of GasX. Thus, we can
use these observable effects to reason back to the cause. Figure 4.1 shows a
causal model which explicitly describes causal relations between the relevant
events in this example.

Figure 4.1: A causal model that
captures causal relations

between information sources
(like sensors and humans) and

the existence of a lethal
concentration of toxic gas

For the given concentration of GasX, the materials used in gas sensors could
have a certain conductivity that would result in correct detection of GasX with
a high probability if the sensor hardware would work properly. Such a situ-
ation is captured in the model by node labeled Cond. Moreover, a situation
represented by node Cond in combination with air temperature Temp and hu-
midity Hum will result, with a certain probability, in situations, in which the
majority of the measurements obtained with the sensor will indicate the pres-
ence of GasX. We call such a situation sensor status. The model in figure 4.1
contains nodes Scond1 and Scond2, each denoting a sensor status of a sen-
sor that measures conductivity.

Moreover, the sensor status of a particular sensor results, with a certain proba-
bility, in a measurement that will indicate the presence of GasX. For example,
sensor status Scond1 will produce a sequence of measurements denoted by
variables C1i. Because the sensor corresponding to sensor status Scond1 is
inherently noisy, there is a chance that a measurement can still indicate ab-
sence of GasX, despite the fact that the gas concentration exceeded the critical
threshold and the sensor components were working properly.

In general, we assume that the observations resulting from a causal process
are captured through the leaf nodes as for example S1i, C1i, C2i, etc. (see
figure 4.1). Every measurement must be represented by a node in the model.

Node Sion represents status of a sensor that measures the ionization level.
∗ In this thesis an event is synonymous to a realization of a certain situation, i.e. a state of affairs
defined through a set of states.
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Also in the figure we can see node Cyan that corresponds to cyanosis. For
the Cyan node two states are possible: one state represents the presence of
cyanosis and the other the absence of cyanosis. Humans can determine, with
certain probability, when cyanosis is present. The nodes CyanMD and CyanCV
correspond to physicians and civilians that can observe the presence of cyanosis,
respectively. A physician will determine whether cyanosis is the case with
higher certainty than civilians, because physicians are experts. In the same
way the nodes Nausea, NauseaMD, NauseaCV can be explained.

In addition, in the causal model in figure 4.1 there are two types of vari-
ables, namely process variables and environment variables. Process variables
are influenced through a stochastic process, for example the variables Scon1,
Cyan, etc. While environment variables influence the causal process where
the causal process itself does not influence the states of the environment vari-
ables. Examples of environment variables in figure 4.1 are Temp and Hum
which corresponds to the temperature and humidity, respectively. Temper-
ature and humidity can influence the sensitivity of a sensor, but the sensitivity
of the sensor does not influence the temperature or humidity.

4.1.1 Temporal Aspects

Each sequence of hidden states resulting in a particular observation takes
place in a finite time interval. In other words, there exist a finite time inter-
val between the materialization of the hidden state of interest and an obser-
vation of a symptom. Obviously, estimation makes sense in domains where
hidden events are quasi static; i.e. after unobservable states materialized they
do not change before the resulting observations are interpreted and used in a
decision making process. In other words, relations between the hidden vari-
ables capture the so called statistical time (i.e. certain events preceded other
events), however, the sets of the hidden states do not evolve for a certain pe-
riod of time after they have materialized. In this context, we introduce a fusion
time slice, a period of time during which we gather and process observations
whose hidden causes, i.e. sets of hidden states, do not change after they have
materialized.

For example, the causal model in figure 4.1 shows primarily static events (ex-
cept for the leaf nodes), while we could argue that the presence of GasX is in-
fluenced by time. However, we can still model presence of GasX in this way,
because most events have a quasi-static behavior. If we assume that GasX is
present in area A, GasX will cause, with a certain probability, that several hu-
mans suffer from cyanosis. The gas and the presence of cyanosis will exist for
a period of time in area A. Changes in the concentration of the gas will not
influence the existence of cyanosis anymore. Therefore we can model events
like presence of gas and the presence of cyanosis as static events for a finite
period of time. Of course, eventually the gas and the cyanosis will vanish,
hence the name quasi-static events.

Observation sequences introduce dynamics to the model, which can be de-
scribed through a class of dynamic BNs (DBNs) with distinctive topological
features (see figure 4.2).

In order to be able to model quasi-static events and the dynamics of observa-
tion sequences we introduce two types of nodes:

• Quasi-static nodes capture events that do not change during the fusion
process;

• Dynamic nodes capture different types of sensor information, which is
due to the processing noise not 100% reliable.

Figure 4.2 shows a BN modeling two time slices corresponding to t and t+ 1.
In the first time slice a quasi-static event corresponding to node N t

1 causes
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another quasi-static event corresponding to node N t
2. Finally, the event corre-

sponding to node N t
2 will cause an observation represented by node Et. Note

that this sequence of events within a single time slice reflects statistical time.
At the next time slice, there is no connection between the quasi static nodes
N t+1

1 andN t+1
2 , because the event corresponding toN t+1

1 cannot influence the
existence of the event corresponding to N t+1

2 anymore, e.g. after gas caused
cyanosis at time slice t, the cyanosis will continue to exist at later time slices,
independently of the concentration of the gas. But the presence of cyanosis
will cause a new sequence of observations†.

Figure 4.2: Dynamic network WVUTPQRSN t
1

//

��

_^]\XYZ[N t+1
1

WVUTPQRSN t
2

//

��

_^]\XYZ[N t+1
2

��ONMLHIJKEt _^]\XYZ[Et+1

The DBN given in figure 4.2 can be simplified because of the quasi-static
events N t

1 and N t
2. In figure 4.3 the quasi-static nodes N t+1

1 and N t+1
2 are

collapsed onto the quasi-static nodes N1 and N2 respectively. This is possible
because the causal relation between the nodes N t

1 and N t+1
1 and the causal

relation between the nodes N t
2 and N t+1

2 are identities.

Figure 4.3: Static network
equivalent to the dynamic

model depicted in figure 4.2
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This example illustrates the following property:

Proposition 4.1 (DBN Simplification) When in a DBN the non terminal
nodes represent quasi-static events, captured by the nodes {N t

i |1 ≤ t ≤ n, 1 ≤
i ≤ m}, and the leaf nodes represent dynamic nodes then all quasi-static nodes
{N t

i |t ≥ 2} can be collapsed onto node N t=1
i for every i. In other words, every

node Ni is time-invariant.

A proof of this model simplification can be found in [3].

Note that this property is very important, because such a simplification allows
very efficient and robust distribution of probabilistic models and inference
processes through relatively simple modeling fragments (see section 4.4).

4.1.2 Problem Decomposition

Problems that are described through causal models can often be decomposed
in several smaller network fragments because of d-separation (see section 2.2.3).
The causal model in figure 4.1 can be seen as a BN where every causal rela-
tion has an attached CPT. Assume that we try to determine the JPD P (GasX, E)
where E are all observations collected during one time slice. The DAG struc-
ture in figure 4.1 implies a certain factorization for the JPD P (GasX, E) where
each factor is conditionally independent of other factors given the hypothesis
node GasX:
† Note that in this example the variables have only two states representing existence of certain
facts, such as gas concentration is above or below a critical threshold. This model would be
inappropriate if we would reason about the gas concentration, which changes over time.
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P (GasX, E) = P (GasX)P (ECond|GasX)P (ECyan|GasX)
·P (ENausea|GasX)P (EIon|GasX) (4.1)

where ECond, ECyan , ENausea and EIon correspond to the instantiated states of the
evidence nodes in conditionally independent subgraphs connected through
nodes Cond, Cyan, Nausea and Ion to the hypothesis node GasX, respec-
tively. Each factor in equation 4.1 can be computed independently, as for ex-
ample P (ECond|GasX):

P (ECond|GasX) =
∑

Cond

P (EScon2|Cond, eTemp, eHum)

·P (EScon1|Cond, eTemp, eHum) (4.2)

The priors Temp and Hum are observed and instantiated with hard evidence.
This means that we can again identify conditionally independent factors
P (EScon1|Cond, eTemp, eHum) and P (EScon2|Cond, eTemp, eHum) given the hypothesis
node Cond. Each factor corresponds to a single sensor and can again be com-
puted independently:

P (EScon1|Cond, eTemp, eHum) =
∑

Scon1

P (Scon1|Cond, eTemp, eHum)
∏

i

P (C1i|Scon1)φ(eScon1i) (4.3)

and

P (EScon2|Cond, eTemp, eHum) =
∑

Scon2

P (Scon2|Cond, eTemp, eHum)
∏

i

P (C2i|Scon2)φ(eScon2i) (4.4)

If the environment variables Temp and Hum were not observed then the fac-
tors P (EScon1|Cond, eTemp, eHum) and P (EScon2|Cond, eTemp, eHum) would not be con-
ditionally independent and therefore independent computation is not possi-
ble.

The posterior probability distribution P (GasX|E) is computed by using the JPD
P (GasX, E) and normalize with P (E):

P (GasX|E) =
P (GasX, E)
P (E)

(4.5)

4.2 Distributed Models
The factorization properties illustrated in section 4.1.2 suggest that conditional
independence in causal models can be used to identify independent network
fragments which correspond to independent factors. In other words, each
factor can be computed independently of other factors, which implies that
we can easily distribute probabilistic models and belief propagation among
different processing units. These processing units can be represented through
DPN agents.

Definition 4.1 (DPN Agent) A DPN agent Ai is defined through a local
BN ψi, which has a set of variables Vi. Where the root variable R ∈ Vi is the
service concept and the leaf variables Li ⊂ Vi are the input concepts.
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4.2.1 Input Concepts and Service Concepts

Root and leaf concepts of the local DAGs have a very important role in the
DPN organization. These concepts determine how the independent network
fragments can be connected to each other to form the global structure (like the
causal model in figure 4.1). Network fragments can connect to each other if
the root concept or service concept of one fragment is semantically identical (de-
scribing the same event) to leaf concept or input concept of another fragment.
This is called the sharing condition between two network fragments defined in
definition 4.2.

Definition 4.2 (Sharing Condition) Agents Ai and Aj can integrate their
network fragments if the service concept Ri of Ai is identical to an input
concept of Aj :

{Ri} ∩ Lj 6= ∅ (4.6)

where Lj is the set of input concepts of agent Aj .

In figure 4.4 we can see an example of a DPN that is formed by connecting lo-
cal DAGs. The connections between local fragments must result in a separator
defined in definition 4.3.

Definition 4.3 (DPN separator) Given clusters Qi and Qj the separator
S〈Qi, Qj〉 is defined by

S〈Qi, Qj〉 = Qi ∩Qj where |S〈Qi, Qj〉| = 1 (4.7)

That means we can only have a connection between two network fragments
if there is overlap of only one variable according to the sharing condition in
definition 4.2. For example, there exists a connection between cluster Qi =
{GasX, Ion, Cyan, Nausea} and cluster Qj = {Ion, Sion} because |Qi ∩ Qj | =
|{Ion}| = 1.

Figure 4.4: An example of the
distributed GasX and

organization of local network
fragments forming a DPN

Because the network fragments are DAGs and can be described through BNs
we have to assign a potential to every network fragment. This potential is
defined over the variables (events) defined in the network fragment according
to definition 4.4.
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Definition 4.4 (DPN Local BN) A local BN ψi is a tuple ψi = (Gi, ψ(Vi))
in agent Ai. A DPN local DAG Gi contains a single service root node R ∈ Vi

which is an ancestor of the input concept nodes Li ⊂ Vi. The potential φ(Vi)
of agent Ai is defined according to:

φ(Vi) =
m∏

j

P (Vj |π(Vj)) (4.8)

where Vj ∈ Vi, m is the number of variables defined in the BN ψi and where
the probability distribution of the service concept R ∈ Vi is uniform.

According to definition 4.4 only the service concept gets a uniform potential.
Using a uniform potential for the roots will not influence the computation of
the marginal posterior.

Furthermore we define the Distributed Perception Network as follows:

Definition 4.5 (Distributed Perception Network (DPN)) A DPN Do-
main graph Ψ is defined as a quadruplet D = (G,V ,S,P) where Gi ∈ G
is a local DAG. G is the set of local DAGs. V are all the variables defined in
a DPN domain graph and Qi ⊆ V is called a cluster and defines a subset of
variables. Qh ∈ V is the cluster that contains the hypothesis where we want
to reason about. S is the full separator set where every separator Si ∈ S is
defined according to definition 4.3. For every pair of separators Si ∈ S and
Sj ∈ S the intersection Si ∩ Sj = ∅ where i 6= j. In other words every sepa-
rator is uniquely defined. P is the set of potentials defined over the full DAG
and Pi ∈ P are the potentials defined according to definition 4.4 for a cluster
Qi.

4.2.2 Organization Constraints

The assembled DPN structure must support correct belief propagation. Con-
sequently, during self-organization the DPN agents must consider certain or-
ganization constraints:

Definition 4.6 (DPN Organization Constraints) Given a DPN with a set
of clusters Q = {Q1, . . . , Qn} that are directly or indirectly connected, a set
of separators S = {S1, . . . , Sn} and a new cluster Qi. Cluster Qi can be
connected to Qj ∈ Q with separator S〈Qi, Qj〉 if the following two rules are
satisfied:

i) ∃!Qj : (Qi ∩Qj) 6= ∅

ii) |Qi ∩Qj | = |S〈Qi, Qj〉| = 1

The first rule i) is the intersection constraint and states that there exist only one
clusterQj ∈ Qwhere the newly added clusterQi has an intersection not equal
to the empty set. This constraint implies that every separator S〈Qi, Qj〉 ∈ S
is uniquely defined. The second rule ii) is the separator constraint and simply
states that all separators should have size 1. Any cluster that is a candidate
for assembling should satisfy both constraints otherwise it is rejected and not
connected to the DPN.

These design constraints imply the following proposition:

Proposition 4.2 (Preserving Junction Tree) If the assembly rules are such
that a newly added cluster satisfies constraints in definition 4.6, the resulting
distributed model will automatically correspond to a junction tree.
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Proof Given that a new cluster can only be connected to one other cluster
(consequence of rule i) it can never introduce a non-degenerate cycle. More-
over, the new separator will be unique given the existing separators S. This
means that non-adjacent clusters always have an empty separator which
would mean that we still have a JT, because the running intersection prop-
erty is satisfied. In other words the JT property of the DPN domain graph is
preserved. �

4.3 Self Organization Principles
When a query is issued by a DPN user, the DPN should be able to self organize
the DPN agents, that is, establish connections between the relevant process-
ing units in order to answer the query. In this section we will describe the
procedure of self organization with two algorithms and show through an ex-
ample how these algorithms work. We will start with an explanation of the
CNET-protocol which is used in the organization algorithms.

4.3.1 CNET Protocol

Agent organization is facilitated by contract net (CNET) protocol procedure (see
[19]). The CNET protocol procedure uses three types of messages:

• Call for proposal - a call for proposal message is sent by an agent Ai to
all agents {Aj |0 ≤ j ≤ n} that can supply a service that is relevant for
Ai.

• Bid - a bid message is sent from an agent Aj that received a call for
proposal. For now, a bid is only used as a confirmation message that
agent Aj is ready to supply information.

• Fusion contract - when agent Ai received a bid from an agent Aj the
organization constraints in definition 4.6 are verified. When the con-
straints are satisfied a fusion contract is issued by agent Ai to agent Aj .
From this point on agents Ai and Aj are connected and communication
is possible.

To illustrate this procedure see figure 4.5 where two agents A1 and A2 are
depicted. Agent A1 needs a service from A2 and issues a call for proposal to
agentA2 (message 1). When agentA2 receives the call for proposal from agent
A1 it sends a bid (message 2) to A1. When agent A1 receives the bid it sends
back a fusion contract (message 3) to agent A2 if the organization rules given
in definition 4.6 are satisfied.

Figure 4.5: CNET protocol

A1

1: call for proposal

yy
3: fusion contract

%%
A2

2: bid

OO

4.3.2 Organization Algorithms

A DPN system can organize the local DAGs in a top-down or bottom-up man-
ner such that we obtain valid DPN systems satisfying constraints from defi-
nition 4.6. Both ways of organization are concept driven which means that the
input and output concepts of the local DAGs determine how the DPN can
organize itself.
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Algorithm 4.1: Top Down Network Configuration
procedure: TopDownConfiguration(X)
input : X is a query concept
Find a set of agents Aq ⊆ A such that ∀Ai ∈ Aq : Ri = X ;1

foreach agent Ai ∈ Aq do2

Use CNET Protocol to establish a fusion contract with Ai by satisfying the3

organization constraints in definition 4.6;
if fusion contract with Ai is established successfully then4

foreach input concept Li,j ∈ Li from agent Ai do5

in agent Ai call TopDownConfiguration(Li,j);6

end7

end8

end9

The formal description of the illustrated DPN top-down organization is given
in algorithm 4.1.

The bottom-up organization procedure given in algorithm 4.2 is useful when
a DPN is used as an alarming system. A single sensor observation can spawn
several DPNs resulting in different hypothesis estimations. The spawned
DPNs try to find as many relevant information sources as possible. This is
to avoid wrong estimations when the DPN is spawned by a faulty sensor.

Algorithm 4.2: Bottom-Up Network Configuration
procedure: BottomUpConfiguration(Rk)
input : Rk is the service concept of the caller agent Ak

Find a set of agents As ⊆ A such that ∀Ai ∈ As : Rk ∈ Li;1

foreach agent Ai ∈ As do2

Use CNET Protocol to establish a fusion contract between the caller agent3

and Ai by satisfying the organization constraints in definition 4.6;
if Fusion contract with Ai is established successfully then4

foreach input concept Li,j ∈ Li from agent Ai do5

in agent Ai call TopDownConfiguration(Li,j);6

end7

in agent Ai call BottomUpConfiguration(Ri);8

end9

end10

In figure 4.6 an example is given of a top-down self organizing DPN following
algorithm 4.1. In figure 4.6 (a) all agents, each having a local DAG, are initially
disconnected and do not know the whereabouts of the other agents with rel-
evant local DAGs. In this example we assume that all the agents have access
to an information source with all the addresses of the agents available in the
DPN, the services they need and the services they can supply.

A user might be interested in the belief of a concept H and a caller agent Ac

calls TopDownConfiguration(H). Ac will find the agent A1. At this point,
the system wants to know the values (soft evidence) for the concepts B and C
and TopDownConfiguration(B) and TopDownConfiguration(C) are
called on agent A1. In figure 4.6 (b) we can see that a connection is established
between agents A1 with A2 and A3. The same process is repeated for agents
A2 and A3 and they find agents A4 and A5, respectively. In agent A2 there is
a concept E for which no agent could be found that can deliver the soft evi-
dence for concept E. A similar situation applies for the agent A3 with concept
G. These concepts do not influence the estimation of P (H). It might hap-
pen that these information sources become available later in the information
fusion process.
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Figure 4.6: An example of self
organization of a DPN
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4.4 Distributed Inference through DPN Network Fragments
Relevant information sources for a DPN fusion task can become available dur-
ing runtime. These new information sources can be found by the DPN system
and integrated into the fusion structure. This means that the network topol-
ogy is dynamic in the sense that network fragments can be added, removed
or changed during the inference process. There are three types of modeling
fragments: static, dynamic and appendable. These modeling fragments are the
three basic building blocks for the DPN global inference structure.

In this section we will explain how inference is performed in the different
types of modeling fragments.

4.4.1 Static fusion algorithm

Static modeling fragments are specified through an arbitrarily complex BN.
The topology of a static modeling fragment remains unchanged during their
lifetime in the inference process.

Definition 4.7 (Model of Static Fragment) The model of a static modeling
fragment in agent Ai is specified through a BN with DAG Gi that has a set
of quasi-static variables Vi. The model potential over variables Vi is defined
according to definition 4.4. Only one of the root concepts Ri ⊆ Vi of Gi can
represent the service concept of agent Ai and its prior probability is uniform.
The leaf concepts Li ⊆ Vi of agent Ai correspond to the input concepts.

In figure 4.7 an example is given of a static network fragment Gi.

Figure 4.7: A DPN static
network fragment Gi
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This network fragment has the root concepts Ri = {R1, R2}. However, only
one root concept can be used as a service concept (denoted with a double
circle) and may connect to another network fragment with the same input
concept. The network fragment Gi of a static network fragment has also three
input concepts Li = {L1, L2, L3}. Leaf concepts, also called input concepts,
may all connect to other network fragments with the same corresponding root
concept (see the sharing condition in definition 4.2).

Belief updating in static modeling fragments is based on multiplication and
division with separator potentials (see algorithm 4.3).

4.4.2 Dynamic fusion algorithm

A dynamic modeling fragment models sequences of observations, originating
from one information source. In general, information sources are inherently
noisy and by processing sequences of observations we can reduce the impact
of observation noise. Given a quasi-static event, the sequences of resulting
observations can be captured by a naive BN. However, this is not practical,
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Algorithm 4.3: Static fusion algorithm
procedure: StaticFusion(φ′(S〈Vi,Vl〉))
input : Separator potential φ′(S〈Vi,Vl〉) over a leaf node (corresponding

to soft evidence)
output : Separator potential φ(S〈Vi,Vj〉) or prior distribution P (R) over

the service root node
Update potential φ(Vi) of graph Gi with the received separator potential1

φ(S′〈Vi,Vl〉) from agent Al with variables Vl with:

φ(Vi) =
φ(Vi)φ′(S〈Vi,Vl〉)

φ(S〈Vi,Vl〉)
(4.9)

where φ(S〈Vi,Vl〉) is the old separator potential;
Set φ(S〈Vi,Vl〉)← φ′(S〈Vi,Vl〉);2

compute φ(R) = φ(Vi)↓R where R ∈ Vi is the root node;3

if some agent Aj has a local DAG Gj with a child node L ∈ Vj , such that L = R‡4

then
send φ(S〈Vi,Vj〉)← φ(R) to Aj ;5

else6

compute the hypothesis belief P (R) = α · φ(R) ;7

end8

since for each new observation we have to change the DAG of the local BN.
Instead, we can obtain identical results by using a simple belief updating al-
gorithm that makes use of a BN consisting of two nodes.

Definition 4.8 (Model of Dynamic Fragment) The model of a dynamic
modeling fragment is specified as a local BN with a DAG Gi that contains
variables Vi in agent Ai. The local BN has a potential φ(Vi) according to def-
inition 4.4. Gi has one quasi-static root node R ∈ Vi corresponding to the
service concept of Ai where the prior probability is initially set uniform, and
one dynamic child node E ∈ Vi corresponding to the input concept, which is
instantiated with hard evidence. The CPT connecting the two nodes captures
observation noise.

Figure 4.8:
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We first explain principles of the dynamic fusion algorithm with the help of an
example. Let’s assume that according to definition 4.8 the local model is spec-
ified through a BN with a simple topology consisting of a single root node R
and a single child node E (see figure 4.8 (a)). These nodes are related through
a CPT P (E|R) and the prior probability of the root node is initially uniform.
When a new observation, encoded through the potential φ(eE) correspond-
ing to hard evidence (see definition 2.6), is received from a sensor or a human
observer we compute posterior probability P (R|eE)

P (R|eE) = α · P (R)P (E|R)φ(eE), (4.10)

‡ i.e. agent Ai and agent Aj have the DPN separator S〈Vi,Vj〉
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where α is a normalization constant. The computed posterior is used as a prior
in the next computation step.

P (R) ← P (R|eE) (4.11)

When a new observation is received from the same sensor or human observer
we can use the updated prior P (R) and the same CPT P (E|R) to compute the
new posterior P (R|eE1 , eE2) and update the prior P (R) again (E1 = E). Now
the prior P (R) corresponds to P (R|eE1 , eE2) which is identical to:

P (R|eE1 , eE2) = α · P (R)P (E|R)P (E|R)φ(eE1)φ(eE2) (4.12)

corresponding to the network in figure 4.8 (b). This process can be repeated
for n updates where we will get an equation that corresponds to the network
in figure 4.8 (c). In other words, by updating the prior we do not have to
specify the actual network topology, but we can simulate it. This means that
the dynamic modeling fragment is using an algorithm that manipulates the
simple BN in figure 4.8 (a) in such a way that the fusion results are equivalent
to inference with the BN in figure 4.8 (c).

Algorithm 4.4: Dynamic fusion algorithm
procedure: DynamicFusion(φ(eEk

))
input : Hard evidence encoded in φ(eEk

)
output : Separator potential φS〈Vi,Vj〉
compute potential φ(Vi) of local DAG Gi with:1

φ(Vi) = P (R)P (Ek|R)φ(eEk
) (4.13)

compute the service concept potential φ(R) with:2

φ(R) = φ(Vi)↓R (4.14)

update prior probability P (R) of local DAG Gi with:3

P (R)← α · φ(R) (4.15)

if some agent Aj has a local DAG Gj with a child node L ∈ Vj , such that L = R§4

then
send φ(S〈Vi,Vj〉)← φ(R) to Aj ;5

compute the hypothesis belief P (R) = α · φ(R) ;6

end7

4.4.3 Appendable fusion algorithm

Appendable fragments support incorporation of information sources that pro-
vide identical services at runtime.

Definition 4.9 (Model of Appendable Fragment) The model of an ap-
pendable modeling fragment in agentAi is specified as a local BN with a DAG
Gi that has a set of quasi-static variables Vi. The model potential over variables
Vi is defined according to definition 4.4. One root node Ri ∈ Vi corresponds
to the service concept of agentAi where the prior probability is uniform. There
can exist an arbitrary set of additional root nodes (R\Ri) ⊂ Vi which are all
instantiated (which we call environment variables). Graph Gi can only have
one leaf node L ⊂ Vi which corresponds to an information source.

§ i.e. agent Ai and agent Aj have the DPN separator S〈Vi,Vj〉)
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We first explain principles of the appendable fusion algorithm with the help
of an example. Let’s assume the network in figure 4.9 (a) that has a service
concept R2 (denoted by a double circle), optional environment variables R1

and R3 (denoted as dashed circles) and the input concepts L1 and L2 corre-
sponding to two information sources providing the same type of information.

Figure 4.9:
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(b) Appendable model

We assume that the environment variables R1 and R3 are instantiated with
hard evidence eR1 and eR3 , respectively. The input variables L1 and L2 are as-
sociated with soft evidence eL1 and eL2 , respectively. Given the evidence and
the BN from figure 4.9 (a) we obtain the following factorization of posterior
P (R2|eR1 , eR3 , eL1 , eL2):

P (R2|eR1 , eR3 , eL1 , eL2) = α · P (R2)φ(eR1 )φ(eR3)
∑

L1

P (L1|R1, R2, R3)φ(eL1)

·
∑

L2

P (L2|R1, R2, R3)φ(eL2), (4.16)

where α denotes a normalization constant. In this factorization we see that the
input variables L1 and L2 are conditionally independent given the variable
R2 which is due to the fact environment variables R1 and R3 are instantiated
with hard evidence. Because of conditional independence we can compute
the potential over the service concept by using a simpler network depicted in
figure 4.9 (b). That is, for each soft evidence eLi we can use this network
to compute the joint probability P (R2, eR1 , eR3 , eLi) = P (R2)φ(eR1 )φ(eR3)∑

L1
P (L1|R1, R2, R3)φ(eLi) over the root variable R2.

Because φ(eR1) and φ(eR3) are hard evidence and P (R2) is a uniform prior
distribution we can easily verify that the following equation holds:

P (R2|eR1 , eR3 , eL1 , eL2) = α′ · P (R2, eR1 , eR3 , eL1)P (R2, eR1 , eR3 , eL2), (4.17)

where α′ denotes a normalization constant. We can extend this approach to
arbitrarily many leaf nodes and instantiated roots (environment nodes):

P (Rs|eR1 , . . . , eRm , eLi , . . . , eLn) =

α′ ·
n∏

i

P (Rs)
m∏

k

φ(eRk
)
∑

Li

P (Li|Rs, R1, . . . , Rm)φ(eLi) (4.18)

Note that repeated multiplications with the service root probability P (Rs) and
hard evidence potentials over environment variables φ(eRk

) in this expres-
sion will not result in an incorrect computation of the posterior distribution
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P (Rs|eR1 , . . . , eRm , eLi , . . . , eLn). Namely, through normalization the uniform
prior P (Rs) and instantiated environment variables do not affect the posterior
distribution P (Rs|eR1 , . . . , eRm , eLi , . . . , eLn).

Algorithm 4.5: Appendable fusion algorithm

procedure: AppendableFusion(φ′(S〈Vi,Vk〉))
input : Separator potential φ′(S〈Vi,Vk〉) over a leaf node (corresponding

to soft evidence)
output : Separator potential φ(S〈Vi,Vj〉) or prior distribution P (R) over

the service root node
Compute:1

φ′k(Rs)←

(
P (Rs)

n∏

p

φ(eRp)
∑

Lk

P (Lk|Rs, R1, . . . , Rn)φ′(S〈Vi,Vk〉)

)↓Rs

(4.19)
if S〈Vi,Vk〉) is from a new information source then

φΨ(Rs)← φΨ(Rs)φ′k(Rs);2

Append uniform potential φk(Rs) to a list of separator potentials of all3

leaf nodes;
else4

φΨ(Rs)← φΨ(Rs)φ′k(Rs)
φk(Rs) ;5

end6

Set φk(Rs)← φ′k(Rs);7

if some agent Aj has a local DAG Gj with a child node L ∈ Vj , such that L = Rs
¶8

then
send φ(S〈Vi,Vj〉)← φΨ(Rs) to Aj ;9

else10

compute the hypothesis belief P (Rs) = α · φΨ(Rs) ;11

end12

4.4.4 Distributed Inference Process

The algorithms 4.3, 4.4 and 4.5 can be used to compute the posterior P (H |E) in
a bottom-up manner. This means that the distribution over the service concept
of agent Ai is sent to agent Aj if this agent has an input concept identical to
the the service concept of agent Ai. Due to the definition of a local BN (see
definition 4.4) the service concept of Aj is ancestor of the service concept of
agent Ai.

In a DPN we are only interested in one hypothesis contained in some agent
Ai which means that there is no need to compute the full joint system poten-
tial (JSP) over all variables defined in a DPN. Computation of the JSP would
require global consistency of all clusters. Avoiding global consistency consid-
erably simplifies the DPN inference algorithm. By only collecting evidence
to agent Ai from adjacent modeling fragments it is possible to calculate the
correct hypothesis posterior based on the instantiated evidence into the DPN.
Note, in DPN only the agents with direct access to information sources, such
as sensors, can have dynamic modeling fragments.

For example, in figure 4.4 the sensor and human observations are directly pro-
cessed by the agents containing dynamic modeling fragments (see, for exam-
ple, the agents on the bottom of figure 4.4). These agents send partial beliefs to
agents with static and appendable modeling fragments. For example agents
with service concepts Scon1 and Scon2 send their partial fusion results to
an agent with an appendable modeling fragment. This modeling fragment
considers observed environment variables Temp and Hum and sends a partial

¶ i.e. agent Ai and agent Aj have the DPN separator S〈Vi,Vj〉
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belief over variable Cond to an agent with a static modeling fragment, which
computes posterior probability distribution P (GasX|E).
After the full evidence set E is propagated through a system of fragments in a
DPN the computed marginal posterior P (GasX|E) will reflect entire evidence
set E correctly.

Proposition 4.3 (Correct Posterior Calculation) Let us assume a DPN Ψ
that computes belief over hypothesis variable H and set of evidence E that is
used for the instantiation of input variables in different agents of DPN Ψ. If the
dynamic modeling fragments are used only in agents that have direct access to
subsets of evidence in E , then after execution of algorithms 4.3, 4.4 and 4.5 on
different agents will result in a posterior P (H |E) which will correctly reflect
the entire evidence set E . This distributed process is equivalent to exact belief
propagation in the monolithic BN that captures the complete causal process.

Proof (sketch) If we investigate the relations between the BN graphical mod-
els and the corresponding factorizations we can observe that the graphical
model, modeling a sequence of events, corresponds to a nested factorization.
Every factor is defined by a summation over factors. For every factor in this
summation we can again identify another nested factorization, etc. There-
fore, the innermost factors will correspond to the leaf nodes of the sequence of
modeled events where evidence is instantiated. The inference is based on the
reverse causal direction between local BN and therefore the agents automat-
ically combine different factors, that will correspond to partial fusion results,
in such an order that the nested factorization is correct. In other words the
encoded conditional independence given the service concept in the graphical
model is directly related to the factorization order. �

In the following example we show that by combining different modeling frag-
ments described in sections 4.4.1, 4.4.2 and 4.4.3, we obtain fusion systems that
guarantee:

• Posterior distribution over a hypothesis variable, which correctly reflects
the entire evidence set that has been injected through different parts (i.e.
agents) of a DPN system.

• Exact belief propagation without compilation of global fusion structures.
Only local models are precompiled independently.

• Fusion results are correct without using any synchronization of partial
fusion processes.

We show that by running an implemented DPN system in a simulation en-
vironment the designed DPN system can detect presence of a toxic gas GasX
(see section 4.1 for more details about this example). In order to get data for
the model we simulated the sensor and human reports by following the pro-
cedure described in section D in the appendix. We assumed that toxic gas
GasX was released and that the DPN, consisted of a system of agents shown
in figure 4.4, could detect this gas.

The outputs of the data generation system were used as inputs to the DPN
system. In figure 4.10 we can see the results of the detection of GasX.

The experiments show that, given a certain evidence set E , the fusion result
P (GasX|E) supplied by this system of agents was identical to the fusion result
of the equivalent monolithic BN, shown in figure 4.1. In addition, we ran sev-
eral experiments with different sequences of the same observation set in order
to show that the fusion results are correct, despite the fact that no synchroniza-
tion of partial fusion processes is used. By using the same set of observations,
we generated different sequences of evidence node instantiations in differ-
ent agents. Independently of the sequence, the distributed inference always
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converged to the correct P (GasX|E), i.e. distribution which was identical to
P (GasX|E) obtained with the monolithic model. This is a convenient property
of a DPN, because we never know in which order the observations will be
processed.

Figure 4.10: The belief P (R|E)
computed for three evidence
sequences in different orders
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Figure 4.11 shows how the DPN agents are organized using self organization
principles described in section 4.3. The arrows indicate the organization direc-
tion, which can be top-down or bottom-up. Because the data was generated
for the observation nodes the associated DPN agents initiated BottomUp-
Configuration described in algorithm 4.2. Therefore, the DPN agent or-
ganization was bottom-up and the arrows point away from the nodes that
correspond to information sources (like NH-nausea-CV, NH-cyanosis-CV,
etc).

Figure 4.11: Organization of
DPN agents

4.4.5 Resetting

A continuous running DPN system has the unfortunate property of becom-
ing irresponsive when the computed posterior beliefs are converged. In this
situation it is difficult to detect unpremeditated changes in the environment
efficiently. To illustrate the problem we are going to use the example described
in section 4.1 again. Assume that we want to measure the presence of GasX
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in a populated area. In this example we first set the ground truth of hypoth-
esis GasX to false and generate 250 observations for the sensor and human
observation nodes (like C1, C2, S1, etc.) in total (following the procedure in
appendix D). When all simulated observations are processed by the DPN sys-
tem we change the ground truth of hypothesis GasX to true (in other words,
there is a toxic gas present in the populated area) and we generate 280 obser-
vations for the sensor and human observation nodes in total. By changing the
ground truth of the presence of GasX we can simulate a changing environ-
ment, during execution of the DPN system.

In figure 4.12 we can see that after 250 updates the converged belief of
P (GasX|E) is irresponsive to changes in the environment. Eventually, the pres-
ence of GasX is noticed by the system, but requires an unacceptable amount
of time.

Figure 4.12: The computed
posterior belief P (GasX|E)

where the ground truth of GasX
was changed after

approximately 250 belief
updates
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In order to reduce the detection time we can use a straightforward solution of
resetting the values associated with the local network fragment (for example,
by setting the prior probability P (R) uniform in algorithm 4.4) of an agent
every ∆t seconds. With resetting we can go back to the initial situation where
the DPN system did not perform any fusion yet.

The DPN resetting algorithm can be initiated with IterativeReset de-
scribed in algorithm 4.6.

Algorithm 4.6: Iterative resetting of a DPN on agent Ai

procedure: IterativeReset
if IterativeResetMessage is received from caller agent Ak then1

Get list of agents Ac where the intersection of the input concepts Li of2

agent Ai with service concept Rj of agent Aj is non empty;
foreach agent Aj ∈ Ac do3

Set BlockFusion(Aj) = true ;4

Send IterativeResetMessage to Aj ;5

end6

Reset values associated with local BN;7

Send ResetConfirmMessage to Ak;8

end9

Let’s assume that agent Ak has sent an IterativeResetMessage to agent
Ai (see message 1 in figure 4.13) after blocking partial fusion result messages
from agent Ai. Consequently, agent Ai will call IterativeReset on itself.
The IterativeReset algorithm will first get a list of connected agentsAc for
which the following condition is true: Li ∩ Rj 6= ∅ (see also sharing condition
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in definition 4.2). For each agent Aj ∈ Ac the fusion messages containing
partial fusion results will be blocked and an IterativeResetMessage is
sent (see message 2 and 3 in figure 4.13). Next, the algorithm will reset the
values that are associated with the local BN in agent Ai. After all values are
reset a ResetConfirmMessage will be sent back to the calling agent Ak (see
message 4 in figure 4.13).

Figure 4.13: Example of the
message sequence of the

resetting algorithm

Ak

1:IterativeResetMessage

%%
Ai

4:ResetConfirmMessage

ee

2:IterativeResetMessage

��

3:IterativeResetMessage

��
A1

________ An

When agentAk received a ResetConfirmMessage it will call ResetConfirm
(see algorithm 4.7) on itself. This will unblock partial fusion result messages
from agent Ai. Consistent reasoning is ensured in agent Ak , because partial
fusion result messages from agent Ai are based on values of the reseted BN
and not on old fusion values.

Algorithm 4.7: Reset confirmation on agent Ak

procedure: ResetConfirm
if ResetConfirmMessage is received from caller agent Ai then1

Set BlockFusion(Ai) = false;2

end3

To see the effect on the detection time we are going to perform the same ex-
periment on the GasX example by using the resetting algorithm (see algo-
rithm 4.6). The resetting algorithm will be executed every 60 seconds on the
DPN network. In figure 4.14 the results are presented. In this figure we can
see that the change in environment is detected much faster than in the case
where no resetting was used. This illustrates that resetting is an indispensable
tool when changes in the environment need to be detected efficiently.

Figure 4.14: The computed
posterior belief P (GasX|E) using

resetting. The ground truth of
the environment is changed

after approximately 250 belief
updates

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

B
el

ie
f P

(G
as

X
|e

vi
de

nc
e)

Belief Updates

44



5 Alternative Approaches
to Distributed

Probabilistic Inference

BESIDE the DPN, there exist other approaches to probabilistic inference in
distributed systems. In this thesis we compare DPNs with two well known

approaches, namely:

• Multiply Sectioned Bayesian Networks (MSBNs) ([21, 20]);

• Prior/Likelihood Decomposable Models (PLDMs) (see [10, 11, 14]).

In this chapter, we briefly describe the basic principles of the two approaches.

5.1 Multiply Sectioned Bayesian Networks (MSBNs)
In this section MSBNs are presented. MSBNs are an extension of BNs for flexi-
ble modeling of complex domains. By using MSBNs complex domains can be
modeled in a distributed way, such that domain knowledge and inference is
distributed and reliable inference is ensured.

5.1.1 Architecture

The MSBN architecture consists of local BNs that are connected through inter-
faces∗. An interface exists if two local BNs describe the same variables. These
variables describe the domain of the interface. In other words, a subgraph
Gi and another subgraph Gj with variables Vi and Vj , respectively, have an
interface if the following holds: Vi ∩ Vj 6= ∅. However, next to the interface
requirement two graphs also have to be graph consistent.

Definition 5.1 (Graph Consistent) Two subgraphs Gi and Gj are graph
consistent if the subgraphs of Gi and Gj spanned by Vi ∩ Vj are identical.

In figure 5.1 we can see that graph Gi and graph Gj are not graph consistent,
because in graph Gi we have the subgraph B ← E and in Gj the subgraph
B → E spanned by Vi ∩ Vj . Clearly, these two subgraph are not identical.
SubgraphsGi andGk are graph consistent. Definition 5.1 also applies to undi-
rected graphs.
∗ Interfaces are comparable with separators
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Figure 5.1: Graph consistency
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If two graphs are graph consistent we can take the union of these graphs.

Definition 5.2 (Union) Given two consistent graphs Gi = (Vi, Ei) and
Gj = (Vj , Ej), the union is defined by G = (Vi ∪Vj , Ei ∪ Ej) and denoted by
G = Gi tGj .

In figure 5.2 (b) we can see the subgraphs Gi, Gj and Gk of the graph G in
figure 5.2 (a). Notice that the subgraphs are all graph consistent and the union
will result in graph G. We can also say that graph G is sectioned into the sub-
graphs Gi, Gj and Gk.

Figure 5.2: The graph G in (a)
can be sectioned into the

subgraphs given in (b) where
the hypertree of G is given in (c)
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(c) Hypertree of G

When two subgraphs are connected we not only have to make sure that they
are graph consistent but also that the distributed model is an I-map (see def-
inition 3.4). The interfaces should induce conditional independence, that is,
I(X ,Z ,Y), the interface variables should graphically separate X and Y in the
DAG union. Which means that we will have 〈X ,Z ,Y〉 and that the variables
in the interface must be a d-sepset (where every variable is a d-sepnode).
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Definition 5.3 (D-Sepset) Let Gi = (Vi, Ei) and Gj = (Vj , Ej) be two
DAGs such that G = Gi t Gj is a DAG. A node X in the interface
I〈Vi,Vj〉 = Vi ∩ Vj with parents π(X) in G is a d-sepnode between Gi

and Gj if either π(X) ⊆ Vi or π(X) ⊆ Vj . If every node in I〈Vi,Vj〉 is a
d-sepnode, then I〈Vi,Vj〉 is a d-sepset

If we return to the example in figure 5.2 (b) we see that there are two interfaces
I〈Vi,Vj〉 = {B,C} and I〈Vj ,Vk〉 = {E}, where Vi, Vj and Vk are the variables
defined in the subgraphs Gi, Gj and Gk, respectively. To ensure that graph G
is an I-map the interfaces I〈Vi,Vj〉 and I〈Vj ,Vk〉 have to be d-sepsets. Variable
B ∈ I〈Vi,Vj〉 has the parent set π(B) ⊂ Vi and is completely contained in
graph Gi. Variable C ∈ I〈Vi,Vj〉 has its parent set π(C) ⊂ Vj fully contained
in subgraph Gj . This means that all the variables in I〈Vi,Vj〉 are d-sepnodes
and the interface I〈Vi,Vj〉 is a d-sepset. Also the interface I〈Vj ,Vk〉 is a d-
sepset, because the only variable defined in this interface has its parent set
π(E) ⊂ Vj completely contained in subgraph Gj .

Given definition 5.3 we can state the following proposition:

Proposition 5.1 Let Gi = (Vi, Ei) and Gj = (Vj , Ej) be two DAGs such
that G = Gi t Gj is a DAG, then Vi\Vj and Vj\Vi are d-separated by the
interface I〈Vi,Vj〉 = Vi ∩ Vj if and only if I〈Vi,Vj〉 is a d-sepset.

For a proof consult [21] pag. 127.

The requirement on the variables of the interfaces dictates how the multi-
agent dependence structure is formed. The hypertree is another requirement
that is necessary to allow consistent probabilistic reasoning.

Definition 5.4 (Hypertree) Let G = (V , E) =
⊔

i Gi be a graph sectioned
into subgraphsGi = (Vi, Ei). If the subgraphs can be organized as a connected
tree Ψ, where each node is labeled by a Gi and each edge between Gk and Gm

is labeled by Vk ∩ Vm, such that for each i and j, Vi ∩ Vj is contained in each
subgraph on the path betweenGi andGj in Ψ (running intersection property),
then Ψ is a hypertree over G. Each Gi is a hypernode and each interface is
a hyperlink.

The graph in figure 5.2 (c) is a hypertree Ψ over the graph G defined in fig-
ure 5.2 (a). Note that the intersection between Vi from Gi and Vk from Gk is
empty and that means the running intersection property is satisfied, hence Ψ
is a hypertree. The hypernodes in the hypertree G can also be seen as clusters
of a JT only these clusters do not have to contain cliques.

Given the hypertree definition we can define the hypertree multiply sectioned
DAG or simply hypertree MSDAG.

Definition 5.5 (Hypertree MSDAG) G =
⊔

iGi, where each Gi =
(Vi, Ei) is a DAG, is a hypertree MSDAG if and only if (1) there exists
a hypertree Ψ over G, and (2) each link in Ψ is a d-sepset.

The hypertree MSDAG is the basic building block for a Multiply Sectioned
Bayesian Network (MSBN).
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Definition 5.6 (MSBN) A MSBN is defined over a set of variables V called
the domain, and consists of a set of agents A. Each agent Ai ∈ A has knowl-
edge of a subdomain Vi such that V =

⋃
i Vi, and is structured by a DAG G.

The complete MSBN is structured as a hypertree MSDAG Λ =
⊔

i Gi, where
each node is labeled by Gi. Furthermore, each agent defines a joint probability
table (JPT) Pi over Vi, such that Pi =

∏
X∈Vi

P (X |π(X)), where π(X) are
the parents of X in Ai. For each shared variable X , only one agent which con-
tains π(X) specifies the correct CPD P (X |π(X)), and all other agents specify
a uniform CPD. The JPD over V is defined as P =

∏
i Pi.

5.1.2 Compilation

Before inference in a hypertree MSDAG is possible the structure has to be
compiled into a Linked Junction Forest (LJF) with Linkage Trees (LT) as commu-
nication channels before belief updating through concise message passing is
possible (see [21]).

Definition 5.7 (Linkage Tree (LT)) LetG be a subgraph in a hypertree MS-
DAG, I be the d-sepset between G and an adjacent subgraph and T be a JT
converted from G. Repeat the following procedure in T until no removal is
possible:

1. Remove X ∈ I if X is contained in a unique cluster Qi;

2. After removal, if Qi becomes a subset of an adjacent cluster Qj merge
Qi into Qj .

Let L be the resultant cluster graph then L is a linkage tree of T with respect
to I if ⋃

Q∈L

Q = I (5.1)

where each cluster Q in L is called a linkage. A cluster in T that contains Q
is called the linkage host of Q.

Definition 5.8 (Linked Junction Forest (LJF)) A LJF Φ is a tuple
(V ,G, T ,L). V =

⋃
i Vi is the total universe where each Vi is a set of

variables. G =
⋃

iGi where each Gi = (Vi, Ei) is a chordal graph†such that
there exists a hypertree Ψ over G. T =

⋃
i Ti is a set of JTs each of which is a

corresponding JT of Gi. L =
⋃

i Li is the set of LTs. Each Li is a set of linkage
trees one for each hyperlink incident to Gi in Ψ. Each L〈Vi,Vj〉 is a linkage
tree of Ti with respect to a hyperlink Vi ∩ Vj .

The compilation process contains tree steps, namely

• moralization of hypertree MSDAG

• triangulation of moral graph

• compiling to LJF

Moralization The compilation procedure is somewhat similar to the tradi-
tional way of organizing a DAG into a JT. First, all the agents have to be
moralized by cooperative distributive moralization after doing local moralization
within the agent itself. Cooperative distributive moralization between agents
is necessary to do correct moralization over the whole hypertree MSDAG and
means that newly created undirected edges are communicated between adja-
cent agents if both connected variables are in the agent’s interface. The main

† The definition of a chordal graph can be found in section C.2 in the appendix
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algorithm is CoMoralize (see [21] pag. 150) that calls first CollectMlink
and after that DistributeMlink. CollectMlink is a recursive algorithm
that collect links from adjacent agents. If all the links are collected then the
recursive DistributeMlink is called. In this recursive algorithm all the ad-
jacent agents get the collected links communicated. Now all the agents are
correctly moralized.

Triangulation Second, the moralized hypertree MSDAG now needs to be tri-
angulated. Triangulation is performed by elimination where a constraint on
the elimination sequence of variables is used. It will eliminate all the vari-
ables Vi\Ii where Vi are variables in agent Ai and Ii is the agent Ai’s inter-
face to another adjacent agent and then it will eliminate variables in Ii. The
reason for this constraint is to be able to compute a LT when compiling to a
LJF. The triangulation procedure uses an algorithm called CoTriangulate
(see [21] pag. 167) that calls the algorithms DepthFirstEliminate and
DistributeDlink (see [21]). DepthFirstEliminate goes through all the
agents in a depth first manner. If DepthFirstEliminate finishes the re-
cursive algorithm DistributeDlink will be called and communicates the
added edges to the adjacent agents. Sometimes it is required to rerun CoTri-
angulate because not every local moral graph is fully triangulated, which
mean that new edges (also fill-ins) can be introduced by using the elimination
sequence (Vi\Ii, Ii).
Linked Junction Forrest Last, the triangulated graphs have to be organized
into a LJF that supports effective inference with concise message passing. This
is done by first organizing all the local triangulated graphs into their JT rep-
resentation. This transformation can be done locally without any knowledge
from other adjacent agents. Because local JTs in a LJF are connected through
LTs they must be computed from an agent’s JT. This can be done for all agents
and the final structure will be a LJF.

5.1.3 Inference

In this section the inference algorithm for MSBNs performed on a LJF is de-
scribed. The inference algorithm tries to update the full JSP, which means that
all agents should be able to compute their beliefs based on evidence entered
in the variables of one or more subgraphs.

Potentials Theorem 3.1 shows how to compute the joint system potential (JSP)
for JTs. In LJFs we do not have a separator defined between two hypernodes,
but a LT. The potential of a LT L〈Vi,Vj〉 between hypernodes Qi and Qj with
variables Vi and Vj , respectively, is defined in the following way:

φ(L〈Vi,Vj〉) =
∏

m φ(Qm)∏
k φ(Sk)

(5.2)

whereQm represents the cluster of the linkage and k is defined over all indices
of all separators Sk. With the definition of L〈Vi,Vj〉 the JSP φ(V) over LJF Φ
with total universe V can be computed as follows:

φ(V) =
∏

i φ(Vi)∏
k φ(Ik)

(5.3)

where i goes over all JTs Ti with variables Vi in the LJF and k is defined over
all LTs Lk with interface Ik (one for each hyperlink in the hypertree).

The potential assignment for the local JTs in the hypernodes is the same as
explained in section 3.1.4 for the non distributed environment. For the LT
each linkage gets a uniform potential assigned. In doing that the JSP φF (V)
will be equal to the JPD P (V) of the MSBN:

φ(V) =
∏

i

φ(Vi) =
∏

i

Pi(Vi) = P (V) (5.4)
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Extended Linkage Potential Before we can talk about the message passing
algorithm for belief propagation in LJFs we introduce the extended linkage po-
tential. The messages that are passed between agents contain extended linkage
potentials. Extended linkage potentials are computed by dividing the poten-
tial of a linkage by the peer separator.

Definition 5.9 (Peer Separator) Let L〈Vi,Vj〉 be a LT of a local JT defined
between the variables Vi and Vj . Convert L〈Vi,Vj〉 into a rooted tree by select-
ing a linkage cluster Qi arbitrarily as the root and direct links away from it.
For every linkage cluster Qj where j 6= i assign the separator with its parent
linkage as the peer separator.

The extended linkage potential can be computed according to the following
definition:

Definition 5.10 (Extended Linkage Potential) Let L〈Vi,Vj〉 be a LT de-
fined between the variables Vi and Vj with linkage potentials, separator poten-
tials and linkage peers defined. For each linkage ηi in L with peer separator Ri

its extended linkage potential is

φ∗(ηi) =
φ(ηi)
φ(Ri)

(5.5)

For the cluster ηi without peer the extended linkage potential is

φ∗(ηi) = φ(ηi) (5.6)

The linkage potential φ(L〈Vi,Vj〉) of the linkage tree L〈Vi,Vj〉 can alterna-
tively be computed by

φ(L〈Vi,Vj〉) =
∏

i

φ∗(ηi) (5.7)

Messages Passing between Agents The message passing procedure can be
described by two algorithm: AbsorbThroughLinkage and UpdateBelief.

Algorithm 5.1: Absorbtion through linkage
procedure: AbsorbThroughLinkage
/* Let Ai and Aj be two adjacent agents. Agent Ai is

associated with the local JT Ti and LT Li and Aj with
Tj and Lj. Let ηi be a linkage in Li, Ci be the
linkage host of ηi in Ti and ηj be the corresponding
linkage in Lj. When AbsorbThroughLinkage is called on
Ai for Ci to absorb through ηi the following steps are
performed: */

Agent Ai request transmission of φ∗(ηj) from Aj ;1

Upon receipt Ai updates its host potential φ′(ηi) = φ(ηi) · φ∗(ηj)
φ∗(ηi)

;2

Agent Ai updates its linkage potential φ∗
′
(ηi) = φ∗(ηj);3

Algorithm UpdateBelief is analogue to the absorbtion algorithm defined in
algorithm 3.1 but only it is defined for the a distributed environment where
belief is propagated through multiple linkages (hyperlink).

Multiagent Communication Initially a LJF is not in globally consistent state.
In order to bring it into globally consistent state message passing has to be per-
formed. This can be done by organizing the belief communication in the fol-
lowing way: CommunicateBelief (see definition 5.3) is the main algorithm
for belief propagation and calls first the algorithm CollectBelief and after

50



Algorithm 5.2: Updating belief
procedure: UpdateBelief
/* Let Ai and Aj be two adjacent agents. Agent Ai is

associated with the local JT Ti and LT Li and Aj with
Tj and Lj. When UpdateBelief is called on Ai relative
to Aj the following steps are performed: */

Upon request from Ai for each linkage Qj with host Cj in Lj , Aj assigns1

φQj (Qj) =
∑

Cj\Qj
φCj (Cj);

For each linkage Qi with host Ci in Li, Ai call AbsorbThroughLinkage on2

itself for Ci to absorb through Qi;
Agent Ai performs UnifyBelief given in algorithm 3.4;3

that the algorithm DistributeBelief. CollectBelief recursively prop-
agates belief inwards from terminal agents towards an initiating agent, where
CollectBelief is analogous to CollectEvidence for the non distributed
environment proposed by [6]. DistributeBelief recursively propagates
belief outwards from the initiating agent to the terminal agents and is analo-
gous to DistributeEvidence also proposed by [6].

In order to bring a LJF into globally consistent state algorithm 5.3 needs to be
performed.

Algorithm 5.3: Communicating belief
procedure: CommunicateBelief
Choose an agent Ai arbitrarily;1

Call CollectBelief on Ai;2

Call DistributeBelief on Ai;3

Algorithm 5.4: Collecting belief
procedure: CollectBelief
/* Let Ai be an agent with a local JT Ti. A caller is

either an adjacent agent Ac or a system coordinator.
Additional adjacent agents to Ai are denoted by
A1, . . . , An. When the caller calls on Ai the following
steps are performed: */

if Ai has no adjacent agents except caller then1

perform UnifyBelief at Ti and returns;2

else3

for each agent Aj (j = 1, . . . ,m) Ai calls CollectBelief on Aj . After Ai4

finishes, Ai calls on itself to UpdateBelief relative to Ai;
end5

Running CommunicateBelief will bring the LJF into globally consistent
state. Whenever there are new observations, which are injected into the LJF
with EnterEvidence (see algorithm 3.5), the LJF becomes globally inconsis-
tent. By running CommunicateBelief on the LJF will bring it back into a
globally consistent state. This brings us to a very important theorem.

Theorem 5.1 After CommunicateBelief is applied to a LJF representation,
the LJF will be globally consistent.

For a proof of theorem 5.1 see [21] page 198.

When we know that a LJF is globally consistent the potential of every cluster
φQi(Qi) can be calculated by:
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Algorithm 5.5: Distribute belief
procedure: DistributeBelief
/* Let Ai be an agent with a local JT Ti. A caller is

either an adjacent agent Ac or a system coordinator.
Additional adjacent agents to Ai are denoted by
A1, . . . , An. When the caller calls on Ai the following
steps are performed: */

if caller is an adjacent agent then1

Ai calls UpdateBelief on itself relative to the caller;2

end3

foreach agent Aj (j = 1, . . . ,m) do4

Ai calls DistributeBelief on Aj ;5

end6

φ(Qi) = α ·
∑

V\Qi

P (V|E) (5.8)

where V denotes all the variables in the hypertree MSDAG, E denotes the set
of observations and α is a normalization constant.

5.2 Prior/Likelihood Decomposable Models
Large-scale sensor network needs a special approach to distributed proba-
bilistic reasoning that can handle bad communication links between different
nodes in the network, sensor failures and dynamic agent systems. Prior/Like-
lihood Decomposable Models (PLDMs) (see [10, 14]) provide an inference
framework that can deal with these difficulties in a robust manner.

A wide range of problems can be solved by message passing on junction trees.
In this section an architecture is presented where the nodes of the sensor net-
work assemble themselves into a network junction tree. In this junction tree
every node has a clique and set of factors. This architecture adapts to the cur-
rent situation of the environment. In other words, the architecture updates the
network junction robustly with respect to unreliable communication channels
and failing sensor nodes. Using an asynchronous message passing algorithm
on this junction tree the nodes can solve the inference problem efficiently.

Each node in the network junction tree has a set of associated query variables.
After the message passing algorithm converges every node can compute cor-
rect posterior over these query variables. Because convergence of the message
passing algorithm is difficult in dynamic agent systems partial beliefs will be
considered. Partial beliefs combine local information with information that
was received through messages.

In the ideal case the inference algorithm should have the following properties:

• Local correctness - before any communication has occurred, each node
can compute correct posterior of its query variables given its measure-
ments;

• Global correctness - after convergence, each node can compute correct
global posteriors of its query variables given its measurements;

• Partial correctness - before convergence, a node can compute correct par-
tial posteriors of its query variables given the measurements that have
been incorporated in the messages it has received.

In this section an efficient algorithm, called robust message passing, is presented
that satisfies local and global correctness and a relaxed from of partial correct-
ness.
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5.2.1 Inference Problem

In the PLDMs approach a network model is assumed where each node can
perform local computations and is able to communicate with other sensor
nodes through a broadcast channel. The nodes of the network can fail and
new nodes may be introduced. The communication between two nodes can
only be performed when there exist a good link quality between these two
nodes. Link quality is defined through the probability of a successful trans-
mission of a message. These communication links between nodes are wireless
and therefore the link quality can easily change over time. In addition, the
link qualities between node-pairs can be correlated.

The associated random variables of the inference problem can be divided into
two classes of variables: observable and hidden. The observable variables are
denoted withM = {M1, . . . ,Mn} and are called measurement variables. Each
measurement variable corresponds to one of the sensor network nodes. The
hidden variables are denoted with X = {X1, . . . , Xn} and are called environ-
ment variables. These stochastic variables describes the state of the sensor net-
work’s environment. Measurement and environment variables represent the
variables of the problem domain, soM∪X = V , where V is the set of all vari-
ables defined in the problem domain. For each measurement variable Mk we
have a measurement model that is defined through a conditional probability
P (Mk|Bk) where Bk ⊆ X . Given these variables the full joint can be calculated
by:

P (V) =

factorized prior P (X )︷ ︸︸ ︷
α ·
∏

i

φ(Qi) ·
n∏

k

measurement model︷ ︸︸ ︷
P (Mk|Bk) , (5.9)

where each Q ∈ Q is a subset of the environment variables and α is a normal-
ization constant.

Every measurement model is stored at the sensor node where the correspond-
ing measurement is retrieved and the factors of the prior P (X ) are partitioned
across the nodes of the network. Every node has a subset of environment
variables Y ⊆ X that are called query variables. The distributed inference prob-
lem is defined by the calculation of P (Y|eM1 , . . . , eMi) after every node has
received its observations. This means that the nodes have to communicate in
order to compute the correct local posteriors of Y for every node.

5.2.2 Distributed Sensor Calibration

An example of a sensor network is given in figure 5.3 where every sensor can
measure its surrounding temperature. A Markov graph depicts the proba-
bilistic dependencies between sensor nodes according to their location in the
map. The temperature measurements of the sensor nodes are correlated, be-
cause the measured temperature at node 54 will say something about the tem-
perature measurement given at node 53. (This correlation between node 53
and 54 is also depicted in the Markov graph in figure 5.3). The task of sensor
calibration is to automatically detect biases of sensors and correct for these
biases. This is possible because the sensors are correlated and the biases are
marginally independent.

For the sensor network in figure 5.3 we can set up the graphical model given
in figure 5.4 (a). Each node has three associated variables: the observable
temperature Mi, the true temperature at its location Ti and the sensor bias
Bi. Here the true temperature variable Ti and the bias variable Bi are the en-
vironment variables. Given the temperature measurements we can compute
the posterior distributions over bias variables to automatically calibrate the
sensors. The joint probability distribution can be calculated through:
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Figure 5.3: A Markov graph of
the nodes’ temperature in the

Intel Berkeley Lab. (Image
taken from [10])

P (V) =

temperature prior︷ ︸︸ ︷
α ·

∏

(i,j)∈E

φ(Ti, Tj) ·
∏

i∈N

bias prior︷ ︸︸ ︷
P (Bi)

measurement model︷ ︸︸ ︷
P (Mi|Bi, Ti) , (5.10)

where N and E are the nodes and edges of the Markov network in figure 5.3,
respectively. Every bias prior P (Bi) is distributed to node i ∈ N and the
temperature prior φ(Ti, Tj) is distributed to node i or node j.

In this example the query variables are Ti and Bi. Therefore, we want to cal-
culate the posterior P (Ti, Bi|eM1 , . . . , eMn) of all observations injected into the
network.

Figure 5.4: A graphical model
for the sensor network given in

figure 5.3 for four sensor nodes.
(Images taken from [10])

(a) distribute model factors to the sensor nodes (b) network links
with good quality

(c) nodes from a
spanning tree

(d) nodes ensure running
intersection

5.2.3 Architecture

The nodes in the sensor network organizes themselves into a JT by running
four algorithms concurrently on each sensor node:
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• spanning tree formation

• junction tree formation

• tree optimization

• belief propagation

Let’s discuss each algorithm in turn.

Spanning Tree Formation Every sensor node in the network chooses a set
of neighbor nodes to form a spanning tree. The set of neighbor nodes is de-
termined by the quality of the links between sensor nodes. For example in
figure 5.4 (b) the sensor nodes discover that there is a bad communication link
between node 3 and 4. The spanning tree algorithm is constantly running in
order to anticipate on changing link qualities. It can happen that a link quality
deteriorates and that the spanning tree must change. The used spanning tree
algorithm will find a stable spanning tree if there exists one.

Junction Tree Formation When the spanning tree is constructed the concur-
rently running junction tree formation algorithm can start constructing a valid
JT. The constructed spanning tree in figure 5.3 (c) is not a valid junction tree
because it does not have the running intersection property (see definition 3.2).
Therefore, it is necessary to run the junction tree formation algorithm.

In the junction tree formation algorithm the nodes collaborate to learn which
variables they should have in order to ensure the running intersection prop-
erty. This algorithm uses message passing along the spanning tree, where the
messages contain information about the neighboring nodes.

For each edge i→ j we define the variables reachable to j from i by

Rij = Vi ∪
⋃

k∈n(i):k 6=j

Rki (5.11)

where n(i) are the neighbors of node i in the spanning tree. Node i computes
Rij by taking the union of all collected messagesRki from its neighbors k and
the variables Vi of node i. A message with reachable variable Rij is sent to
node j.

When a node receives two reachable variables with some variable X , then it
should also contain this variable. The clique at node i is computed by:

Qi = Vi ∪
⋃

j,k∈τ(i):j 6=k

Rij ∩ Rki (5.12)

In figure 5.4 (d) we can see that node 3 received two reachable variable mes-
sages containing variable T2 which is not in V3 = {T1, T3, B3}. T3 is added to
V3 to ensure the running intersection property.

Tree Optimization The found JT in the junction tree formation algorithm is
not always the most efficient JT. When the size of cliques and separators is
small the computation and communication cost in a JT is cheaper. By consid-
ering the size of cliques and separators the tree optimization algorithm tries
to find the most efficient junction tree by swapping edges between nodes.

Belief Propagation In the final algorithm, called robust message passing, the
inference problem is solved. The used algorithm for belief propagation dif-
fers from the standard sum-product algorithm. The proposed algorithm for
PLDMs uses asynchronous message passing and is able to compute partial be-
liefs, that is, at any point of the inference process the calculated beliefs are an
approximation to the correct posteriors. The reason that the standard sum-
product algorithm is not suitable for sensor networks is because it cannot
handle node loss. When a node dies it can take out very important priors
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that are crucial for the computation of the correct posterior. Also, the sum-
product algorithm scales with the size of the cliques and the separators which
in turn means that the computational cost depends on the network topology.
In section 5.2.6 robust message passing algorithm is discussed.

5.2.4 Model Decomposition

The global joint distribution can be decomposed into smaller local priors. For
example, in figure 5.4 (a) we can calculate the prior P (T1, T2, T3, T4) over the
temperature in the following way:

P (T1, T2, T3, T4) =
P (T1, T3)P (T1, T2)P (T2, T4)

P (T1)P (T2)

In this example we see that global joint P (T1, T2, T3, T4) can be decomposed
into the smaller priors P (T1, T3), P (T1, T2) and P (T2, T4). Before we can iden-
tify the local priors we first have to compute the external junction tree. By using
message passing on the external JT we can compute the clique and separator
marginals. The global prior is then represented as:

P (X ) =
∏

i P (Qi)∏
j P (Si)

, (5.13)

where Qi ranges over the cliques of the external JT and Si ranges over the
separators. For the algorithm only the clique priors are of interest and form
the implicit representation of the global prior. The separator marginals do not
have to be specified because they can be recomputed by using the external JT.

5.2.5 Distribution of the Model

After the local priors are identified they must be distributed over the sensor
nodes. One important property of a sensor node is that the local posterior
can be computed (local correctness). This is possible if the sensor node can
access the local prior over the query variables Yi and the parents of Yi: π(Yi).
Consequently, the variables Yi should be located at the sensor node next to
the measurement models of that particular sensor node.

In figure 5.5 (a) the graphical model is given of the sensor node with their
dependencies and good quality links. Figure 5.5 (b) shows the external JT
for this graphical model. In order to determine the cliques that have to be
distributed over the model the external JT computation must be prior to the
actual belief propagation algorithm. Figure 5.5 (c) shows how these cliques are
distributed over the sensor nodes. Sensor node 2 gets the prior P (T2, T3, T5)
with the same variables defined in one of the cliques in the external JT. Besides
that, sensor node 2 also gets the measurement model P (M2|T2) because M2 is
located at that sensor node. Sensor node 2 can now compute its local posterior
correctly.

5.2.6 Robust Message Passing

Every sensor node that participates in the network JT will have a prior and a
measurement model. These two factors can be reorganized into the prior/likeli-
hood (PL) factor, where the measurement variable is instantiated in the mea-
surement model.

Definition 5.11 (Prior/Likelihood (PL) factor) A prior/likelihood (PL)
factor for a set of environment variables C is a pair 〈πC , λC〉 where

• πC is a (possibly approximate) prior distribution for C

• λC is a (possibly approximate) likelihood function P (eMC |C)

〈πC , λC〉 is exact if πC and λC are exact.
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Figure 5.5: Robust message
passing. (Images taken from

[10])

(a) graphical model (b) external junction tree

(c) network junction tree and distribution of the model

Their are two basic operations involved in robust message passing, namely
combination and summarization.

Definition 5.12 (Combination) Let 〈πC , λC〉 and 〈πD, λD〉 be two PL fac-
tors. The combination of 〈πC , λC〉 and 〈πD, λD〉 is:

〈πC , λC〉 ⊗ 〈πD , λD〉 =

〈
πC × πD∑

C\D πC
, λC × λD

〉
(5.14)

Definition 5.13 (Summarization) Let 〈πD , λD〉 be a PL factor and S be a
set of random variables. The summary of 〈πD, λD〉 to S is:

⊕

S

〈πD , λD〉 =

〈∑

D\S

πD ,

∑
D\S πD × λD∑

D\S πD

〉
(5.15)

With the combination rule we can multiply prior probabilities and the likeli-
hoods. The summarization, on the other hand, is used to compute a marginal
prior and computes the marginal likelihood by forming the joint, marginaliz-
ing it down, and dividing out the marginal prior.

The robust message passing algorithm uses combinations and summariza-
tions on PL-factors. A set of PL-factors is called a model fragment factor.

Definition 5.14 A model fragment factor Φ is a collection of PL-factors
{〈πC , λC〉 : C ∈ C}.

Model fragment factors represent the factorization of the model where the
priors are used implicitly to represent the global prior. This global prior can
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be reconstructed by forming a JT and compute the global prior according to
formula 5.13. If we want to compute the posterior distribution represented by
the model fragment factor we need to build a canonical clique tree.

Definition 5.15 (Canonical Clique Tree) Let Φ be a model fragment fac-
tor. A canonical clique tree for Φ is a tree over the PL factors of Φ which has
maximum cardinality variable intersections of neighboring cliques. Φ is con-
sistent if it has a canonical clique tree T such that (1) T satisfies the running
intersection property and (2) the conditional independencies encoded by T are
also encoded by the external junction tree.

When we know the canonical clique tree we can flatten the model fragment
factor to a single PL-factor.

Definition 5.16 Let Φ = {〈πC , λC〉 : C ∈ C} be a model fragment factor. A
PL-factor 〈πV , λV 〉 is a flattening of Φ if it can be obtained in the following
manner:

• Compute a canonical clique tree T for Φ.

• Iterate: let C be a leaf clique of T with neighbor D. Replace C and
D with a new clique C ∪ D whose associated PL-factor is 〈πC , λC〉 ⊗
〈πD , λD〉.

Then, the posterior is computed by simply multiplying πV × λV , the product
of the flat prior and likelihood.

The main operations of robust message passing are combinations and sum-
marizations on model fragment factors. The actual inference is done by using
the summarization operation.

Definition 5.17 (Summary on Model Fragment Factors) Let
Φ = {〈πC , λC〉 : C ∈ C} be a model fragment factor and let S be a
set of random variables. Another model fragment factor Ψ is a summary of Φ
to S iff it can be obtained in the following way:

• Compute a canonical clique tree T for Φ.

• Iterate: let C be a leaf clique of T with neighbor D such thatC ∩S ⊆ D.
If there is no such clique terminate. Update the PL-factor ofD as follows:

〈π′
D , λ

′
D〉 = 〈πD , λD〉 ⊗

(⊕

C∩D

〈πC , λC〉

)
(5.16)

Then remove C from T and 〈πC , λC〉 from Φ.

PL-factors are repeatedly pruned by transferring its likelihood information
onto another PL-factor by eliminating the prior information that is not neces-
sary anymore. The proposed algorithm supports exact inference.
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6 Comparison

IN chapter 4, sections 5.1 and 5.2 three different approaches to distributed
probabilistic reasoning were discussed, namely Distributed Perception Net-

works (DPNs), Multiply Sectioned Bayesian Networks (MSBNs) and Prior/-
Likelihood Decomposable Models (PLDMs), respectively. In this chapter we
will compare these three approaches theoretically. Most existing comparisons
between inference algorithms focus on the architectures and algorithms in
non-distributed environments, for example in [9] and [8]. Another compar-
ison in [22] illustrates different inference algorithms within the MSBN infer-
ence structure. The comparison presented in this chapter is not only based
on the inference architectures and algorithms, but will also focus on challeng-
ing aspects of distributed systems such as self-configuration and compilation,
dynamic agent systems and sequential evidence processing.

In section 6.2 the distributed inference architectures are discussed with respect
to the modeling complexity. Exact inference in a distributed system can only
be achieved if certain constraints are respected when connecting local DAGs.
These constraints limit the modeling complexity, i.e. the repertoire of the do-
mains that can be adequately described with the distributed models. We show
that each of the compared approaches imposes different modeling constraints,
which correspond to different modeling flexibility.

In distributed systems the agents, each supporting only partial fusion capa-
bilities, must discover other agents that can provide the inputs which are re-
quired to perform a global task. Such configuration must result in meaningful
distributed (global) DAG-structures. In addition, a compilation concerns it-
self with the transformation of the DAG-structure to a probabilistic structure
that supports efficient propagation. Section 6.3 discusses the differences be-
tween the three distributed approaches with respect to the configuration and
compilation.

Section 6.4 discusses the different distributed reasoning approaches with re-
spect to the capability to cope with dynamic agent systems. A dynamic agent
system is an environment where agents can join and/or leave a fusion system
at runtime. Beside dynamic agent systems self-configuration of the probabilis-
tic DAG-structure will also be discussed.

Section 6.5 discusses the differences of belief propagation in the three dis-
tributed reasoning approaches. Evidence can be processed simultaneously
or in sequence depending on the problem domain. We show that sequential
processing of evidence with high frequency can cause problems for inference
algorithms. Frequent evidence processing will be discussed in section 6.6.
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6.1 Problem Domains
Before we compare the three distributed inference approaches with respect to
the features described above, we first give an overview of the type of problem
domains that can be solved by using these approaches.

In some problem domains it is not always obvious which of the information
sources will participate in the inference process prior to the operation. For
example, using a large sensor network covering a large geographical area to
do weather predictions. We never know which of the sensors will be available
during the inference process. This requires a probabilistic inference approach
that can incorporate such sensors on the fly and also exclude a sensor when it
becomes unavailable. It turns out that MSBNs or PLDM might not be suitable
for such domains. However, if we are interested in a distribution over a single
variable, then we can show that DPNs support theoretically rigorous exact in-
ference even if the information sources and information demand are unknown
prior to the operation and large amounts of heterogeneous information has to
be processed.

Complex problem domains, as for example monitoring of complex systems,
often require complex and highly connected BNs which encode probabilistic
relations between the states of the different system components. In such appli-
cations we must compute globally consistent distributions (see definition 3.5)
over all variables in the BN. In other words, the posteriors of every variable
describing a component in the system must be based on the entire set of ob-
servations about the system (i.e. evidence) .

In many large (wireless) sensor networks failing communication channels and
sensors are inevitable. This requires an inference approach that is able to adapt
to the environment and is robust for losing important information. PLDMs are
focusing on applications where all potentially useful information sources and
dependencies between their reports are known a priori and certain communi-
cation channels and sensor information sources can become unavailable.

6.2 Modeling Complexity
In general, the model complexity corresponds to the degree of the probabilis-
tic dependencies between the modeled variables. In other words, complex
models correspond to multiply connected graphs. In this section we show
that the three compared approaches to distributed inference impose different
modeling constraints which can reduce the modeling flexibility to a certain
degree.

It turns out that MSBNs and PLDMs can model more general distributed prob-
abilistic models than DPNs.

6.2.1 Distributed Perception Networks

In DPNs, according to definition 4.6, the separator sets must contain only
one variable. In other words, any two network fragments can be connected
through a single directed link which limits the modeling flexibility. Conse-
quently, highly connected Bayesian models are difficult to distribute in a DPN.
In other words, we assume that DPNs are suitable for a significant class of
problem domains which can be described by DAG structures with a signifi-
cant amount of conditionally independent network fragments.

A convenient consequence of definition 4.6 is that the d-sepset, hypertree
and graph consistency requirements between connected DAGs are guaran-
teed without further verification∗.

∗ For a definition of d-sepset, hypertree and graph consistency refer to section 5.1
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6.2.2 Multiply Sectioned Bayesian Networks

MSBNs can deal with highly connected DAG structures, since the separator
sets can be arbitrarily large. In this way local DAGs from different agents can
be connected through multiple links, i.e. each connected pair of DAGs can
share several variables. However, three constraints apply to the separator set
and the distributed DAG structure: (i) every variable in the separator set must
be a d-sepnode (see definition 5.3), (ii) the graph spanned by the separator
set must be identical (see definition 5.1) and (iii) the resulting connected DAG
should be a hypertree (see definition 5.4). The first two properties are required
otherwise the conditional distribution is difficult to define. The third property
ensures that consistent reasoning can be performed.

6.2.3 Prior/Likelihood Decomposable Models

Like MSBNs, PLDMs also allow arbitrarily many d-sepnodes in the separa-
tors. This means that this approach supports complex BNs. Also, the same
restrictions as in MSBNs apply to the separator sets, global DAG structure
and the DAG structure that is spanned by the separator set.

6.3 Configuration and Compilation
In this section we compare the configuration and compilation processes of the
three approaches. Configuration is the process where agents are combined
into agent systems in such a way, that they assemble meaningful distributed
probabilistic models. This process corresponds to the specification of the com-
munication interfaces between the cooperating agents. Compilation of prob-
abilistic structure, on the other hand, is the process where the BN is trans-
formed to another probabilistic structure that exploits d-separations (like JTs
or LJFs) to support efficient inference.

6.3.1 Distributed Perception Networks

In DPNs local BNs are compiled independently of each other prior to the net-
work configuration. The local BNs can be precompiled before the configu-
ration because of the configuration rules given in definition 4.6. These rules
make sure that local DAGs are connected in such a way that the resulting
probabilistic structure automatically corresponds to a JT.

6.3.2 Multiply Sectioned Bayesian Networks

In the MSBNs approach the configuration precedes the compilation process.
Namely, the compilation consists of cooperative distributed moralization and
triangulation (see section 5.1.2), which require knowledge from adjacent local
BNs. This, however, requires that the local BNs are assembled into a global
BN prior to the compilation. Compilation for MSBNs requires the following
steps one after the other: moralization, triangulation and finally compilation
to a LJF. The used algorithms for moralization and triangulation will fully tra-
verse through the distributed network. In MSBN the BNs need to be compiled
before consistent inference can be done. In other words, inference in MSBNs
requires a sequence of different synchronized processes, which can be prob-
lematic in domains where complex MSBN systems are distributed through-
out dynamic agent systems, where agents join and leave a fusion system fre-
quently.

6.3.3 Prior/Likelihood Decomposable Models

In PLDMs the configuration is driven through the quality of available com-
munication links. The configuration is not concept driven, like in DPNs, but
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purely based on the good quality of the communication links. This configura-
tion process is captured in the spanning tree algorithm (see section 5.2.3). Be-
cause the quality of the links determines how the local BNs (in sensor nodes)
are connected, the assembled BN often does not correspond to a JT. There-
fore, the subsequent compilation consists of the junction tree formation and
tree optimization algorithms (see also section 5.2.3). The advantage of PLDM
approach is that configuration and compilation algorithms can be performed
simultaneously.

6.4 Self Configuration and Dynamic Agent Systems
Self configuration is the process where agents discover each others services
and autonomously form meaningful distributed probabilistic models. This is
important in the systems where agents relevant for a particular inference pro-
cess are not known prior to the operation. In addition, agent systems are often
dynamic, since new agents can join a system or agents in a fusion system can
become unavailable due to different processing and communication failures.
Consequently, robust inference approaches should support self-configuration
in order to incorporate new agents joining a fusion system on the fly while
the inference quality should not be significantly reduced if agents become un-
available. In this section we compare the three architectures and inference
algorithms with respect to the self-configuration and dynamic agent systems.

6.4.1 Distributed Perception Networks

DPNs can deal with dynamic agent systems that change rapidly. The DPN
organization constraints given in definition 4.6 ensure that the constructed
model will have separators of size one. Because of that, no significant co-
ordination is required between the agent designers. Moreover, the rules in
definition 4.6 make sure that the resulting structure will always correspond to
a JT. This means that no precompilation of a distributed BN is required. Also,
DPNs are used in applications where distribution over a single hypothesis
variable must be computed; i.e. global consistency is not required. Because
of that the inference process does not require a full traversal through the net-
work. In other words, the computation of the posterior probability can be
efficient and is, in general, not influenced by changing agent systems, which
is the case with MSBNs.

Contrary to the MSBNs and PLDMs, DPN agents can autonomously config-
ure meaningful fusion systems without any prior knowledge of the available
agents and adapt to dynamic agent systems efficiently by using a self con-
figuration algorithm (see section 4.3); i.e. DPNs can autonomously find the
relevant local BNs and adapt to the current environment at runtime.

However, the drawback of the constraints in definition 4.6 is that the assem-
bled models have more limited topologies than models supported by the other
two approaches. In addition, DPNs support only diagnostic inference be-
tween agents.

6.4.2 Multiply Sectioned Bayesian Networks

MSBNs might not be very suitable for dynamic agent systems. In large MSBNs
adding or removing a DAG structure can be a problem because of several
reasons:

(i) The d-sepset of agents can be arbitrarily large which makes them dif-
ficult to connect to other d-sepsets without a significant coordination
between agent designers. Without such coordination, the chance that lo-
cal BNs will support valid d-sepsets, a precondition for successful self-
organization, is very low.

62



(ii) The compilation algorithms CoMoralize and CoTriangulate (dis-
cussed in section 5.1.2) must be executed if the network structure changes.
These algorithms need to be terminated successfully before inference
can be done. In an environment where agents join and leave the sys-
tem very frequently this can be a problem, since the agent system could
change faster than the sequence of configuration and compilation pro-
cesses
would be completed.

(iii) The inference algorithm CommunicateBelief in section 5.1.3 calls two
algorithms that traverse the full hypertree (see definition 5.4 for descrip-
tion of a hypertree). When agents leave and/or join the agent system
with high frequency the algorithm cannot bring the hypertree into glob-
ally consistent state. Global consistency is a requirement to compute
correct posteriors from every local BN/agent.

In MSBNs self configuration is not trivial because of the problems (i) and (ii).

6.4.3 Prior/Likelihood Decomposable Models

PLDMs support dynamic agent systems in a limited way. Before reasoning
takes place in PLDMs the Markov graph, showing the probabilistic depen-
dencies between sensor nodes, should be known a priori. From this graph
the external JT can be computed. The external JT gives insight in the kind
of priors that should be distributed over the sensor nodes. When the robust
belief propagation algorithm is running the sensor network can change over
time dependent on the link qualities, but the network cannot add new sensor
nodes that were not there when the external JT was computed. This is differ-
ent from DPNs where agents that are not known a priori can be added during
runtime.

6.5 Exact Propagation
The compared distributed inference algorithms are focusing on exact belief
propagation and can be classified into two types:

(i) Inference algorithms that allow computation of the joint system poten-
tial (JSP), which means that the correct posterior is computed for every
random variable in every local DAG;

(ii) Inference algorithms that support the computation of the posterior dis-
tributions reflecting all pieces of evidence in only one agent.

The inference algorithms of type (i) support global belief consistency (defini-
tion 3.5). Global belief consistency is required for the computation of the JSP.
However, there are problem domains that do not require the computation of
the JSP. Instead, we are interested in the posterior distribution over a single
variable within a distributed system, which means that we can use inference
algorithms of type (ii). Inference algorithms of type (ii) are computationally
cheaper compared to the inference algorithms of type (i).

6.5.1 Distributed Perception Networks

DPNs do not support computation of globally consistent posteriors in all agents.
They belong to the inference class (ii). DPNs can compute the globally correct
posterior of variables within a single BN at the top of the hierarchy of dis-
tributed BNs (see section 4.4); i.e. only posterior distributions within a single
BN (i.e. one agent) are based on all observations injected into a DPN system.
For these variables the evidence must be collected to the correct agent, which
is described in the algorithms 4.3, 4.4 and 4.5. These algorithms can be com-
pared to the algorithm for MSBNs in algorithm 5.4 in that they collect evidence
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to a specified agent. In DPNs collecting evidence to an agent corresponds to
diagnostic reasoning between agents.

The inference in DPNs is robust for two main reasons: (i) a DPN domain often
has a significant amount of independent branches and only diagnostic reason-
ing is performed. These properties make inference robust in a DPN (see [13]);
(ii) failing agents (with important priors) can be substituted by other agents
modeling identical events.

6.5.2 Multiply Sectioned Bayesian Networks

As already mentioned in the previous section, MSBNs try to bring the LJF
(see definition 5.8) into globally consistent state. In other words, MSBNs sup-
port inference algorithms of type (i). To bring the LJF into globally consis-
tent state the algorithm CommunicateBelief defined in algorithm 5.3 has
to be executed. Algorithm CommunicateBelief requires that all messages
are passed in the LJF. If this is not the case important priors, defined in other
hypernodes (definition 5.4) can be lost. Losing important prior can give a
skewed view on the probability of different events. This means that MSBNs
are not suitable in problem domains where we cannot guarantee reliable mes-
sage passing and reliable services provided by agents.

6.5.3 Prior/Likelihood Decomposable Models

Belief propagation algorithm in PLDMs is focusing on three properties, namely
local correctness, global correctness and partial correctness (see section 5.2).
For local correctness this means that every agent can compute the correct local
posterior. Global correctness means that every agent can compute the correct
global posterior after the belief propagation algorithm is finished (the same as
for MSBNs). Finally, the most important property is partial correctness, which
means that at any point during the inference process correct partial posteri-
ors can be computed. The PLDM’s inference algorithm robust message pass-
ing can handle a relaxed form of the partial correctness property. Because
most priors in a PLDM are stored redundantly and the algorithm passes like-
lihoods between agents instead of separator marginals this partial correctness
property makes the PLDM inference algorithm very robust for sensor failures
and bad communication channels.

6.6 Frequent Evidence Processing
In general, the main goal of any inference process is to compute posterior
probability distributions over variables of interest by considering entire evi-
dence. However, in large systems the sensors can provide observations with
high frequency. If for example such a system has 1000 sensors that would
sense something every 0.1 seconds then there will be 18.000.000 observations
every half an hour. Therefore, the computation of posterior distributions that
reflect the complete evidence can be challenging in distributed BNs because
of the following problems:

(i) Communication channels have a limited throughput capacity and can
introduce messaging delays;

(ii) Computational resources are limited and might not be able to cope with
large number of received messages.

In other words, the updating of the posteriors of interest requires a certain
time interval ∆tp for each piece of evidence. Assume that with every ∆tn
a new evidence is obtained and the corresponding variable somewhere in
the distributed BN is instantiated. Whenever we have the situation where
∆tn < ∆tp messages with partial beliefs will be either buffered or they will be
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lost. In large decentralized systems this often cannot be avoided. We can ob-
tain posterior distributions that are based only on a subset of the full evidence
set if either the messages are lost or we cannot wait until all observations are
communicated and processed. Clearly, with the growing numbers of observa-
tions these problems become significant if for the majority of the observations
∆tn < ∆tp.

In addition, algorithms that require global consistency will make the interval
∆tp larger, which will result in a situation where ∆tn < ∆tp is more likely. In
situations where ∆tn < ∆tp global consistency will never be obtained with-
out using synchronization. However, using synchronization to get a globally
consistent model will make the difference between the computable posterior
probability from the globally consistent model and the correct posterior re-
flecting the current situation larger.

6.6.1 Distributed Perception Networks

DPNs are used in application that do not require globally consistent distri-
butions over all variables in a distributed model. Therefore, only a collect
evidence (see section 4.4.4) has to be executed. Consequently, this will make
the situation ∆tn < ∆tp less likely, because evidence can be processed faster
when no global consistency is required. Also, only the last message that is
sent from a sensor is of importance and because of that many previously sent
messages can be dropped. This will also reduce ∆tp.

6.6.2 Multiply Sectioned Bayesian Networks

MSBNs use an inference algorithm that is based on global consistency. Infer-
ence algorithms that use global consistency have difficulties of dealing with
large amount of observations for the reasons indicated before in this section.

With an example we illustrate that instantiating evidence sequentially will
require to rerun the MSBN algorithm CommunicateBelief which again re-
quires a larger ∆tp. The junction tree T in figure 6.1 is used as an inference
structure. The example demonstrates a situation where only two observations
have to be processed sequentially, but when many observations have to be
processed in a sequential order this will inescapably lead to inconsistent be-
liefs.
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(d) DistributeBelief performed on
T

In figure 6.1 (a) we can see the clusters {Q1, . . . , Q8} that are distributed over
a set of agents. In figure 6.1 (a) an observation is received for a variable
E1 ∈ Q8 which updates the cluster potential φ(Q8) denoted by Q′

8 in the fig-
ure. Because of this Q1 can initiate an algorithm like CommunicateBelief
described in algorithm 5.3 for MSBNs to bring T into globally consistent state.
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CommunicateBelief will first call CollectBelief described in algorithm
5.4 that will result in figure 6.1 (b) where the curved arrows indicate that be-
lief is propagated over the associated communication link. Let us assume
that at this point evidence is instantiated at cluster Q5 for variable E2 ∈ Q5

which will update the cluster potential φ(Q5) denoted as Q′
5 in figure 6.1 (c).

At this point, the initiated algorithm by Q1 is still not finished and will run
DistributeBelief described in algorithm 5.5 shown in figure 6.1 (d) after
finishing. Calculating the marginal probability of P (A) where A ∈ Q1 will
only be based on the evidence set E = {E1} and that is clearly incorrect be-
cause we had the actual evidence set E = {E1, E2}. To solve this problem
CommunicateBelief can be rerun to bring T again in a globally consis-
tent state, but in an environment where frequent evidence observations are
processed sequentially there is a high probability that again new evidence is
instantiated during the execution of CommunicateBelief. This makes it dif-
ficult to have a globally consistent JT since we have to rerun Communicate-
Belief frequently.

The inference algorithm for MSBNs are suitable for problem domains where
all the variables in the network are instantiated with evidence simultaneously
or the sequence of observations are sufficiently slow that ∆tn > ∆tp

6.6.3 Prior/Likelihood Decomposable Models

In PLDMs the inference algorithm brings, after convergence, the inference
structure into globally consistent state. However, PLDMs is not fully depen-
dent on global consistency, because the robust message passing algorithm al-
lows computation of partial beliefs (partial correctness). Partial beliefs are an
approximation to the posterior probability after the algorithm is finished and
processed all observations. Although, when correct global posteriors are de-
sired the system needs to be in globally consistent state and the same problems
apply when using MSBNs. Because of partial correctness the situation where
∆tn < ∆tp is not as problematic as in the MSBN case.

6.7 Concise Overview
This section presents a concise overview of the pros and cons of the three pre-
sented belief propagation approaches used in a distributed environment. The
tables 6.1, 6.2 and 6.3 show the advantages and disadvantages of the discussed
inference approaches DPNs, MSBN and PLDM, respectively, with respect to
different application aspects.

Table 6.1: Pros and cons of the
DPN approach

Feature Pros Cons
Modeling com-
plexity

- Limited

Configuration &
Compilation

Precompilation possible;
configuration can be fast

-

Dynamic Agent
Systems & Self
Configuration

Supported -

Exact Propagation Uses asynchronous mes-
sage passing

Only computation of cor-
rect posterior of variables
in one agent; only di-
agnostic reasoning sup-
ported

Frequent Evidence
Processing

Supported -
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Table 6.2: Pros and cons of
MSBNs

Feature Pros Cons
Modeling com-
plexity

Can be complex -

Configuration &
Compilation

- Configuration needed be-
fore compilation; Expen-
sive communication and
compilation becomes in-
tractable in large MSBNs

Dynamic Agent
Systems & Self
Configuration

- Difficult, d-sepsets can
be arbitrarily large which
make them difficult to
connect without high co-
ordination between agent
suppliers

Exact Propagation Brings model into glob-
ally consistent state
which allows computa-
tion of correct posterior
of every variable in each
agent

Can be problematic in
large MSBNs with fail-
ing agents, bad communi-
cation links and frequent
evidence processing

Frequent Evidence
Processing

- Difficult, especially when
computational resources
are limited and globally
consistent beliefs for ev-
ery variable are required

Table 6.3: Pros and cons of
PLDMs

Feature Pros Cons
Modeling com-
plexity

Can be complex -

Configuration &
Compilation

algorithms run concur-
rently; adapts JT to possi-
ble communication links

can be expensive oper-
ation when communica-
tion links do not have sta-
ble quality

Dynamic Agent
Systems & Self
Configuration

Supported Only possible between a
predefined set of agents

Exact Propagation Uses asynchronous mes-
sage passing; calculation
of partial belief (partial
correctness) possible;
propagation robust
against node failures and
bad communication links

-

Frequent evidence
processing

Supported Can be intensive in the
case of many unstable
communication links
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7 Conclusions

THE main purpose of this thesis was twofold. Firstly, it introduced a dis-
tributed inference approach called Distributed Perception Networks

(DPNs). Secondly, DPNs and two other well known approaches to Bayesian
inference in a distributed environment were compared in the context of dif-
ferent application aspects. Conclusions with respect to DPNs are given in
section 7.1 and conclusions with respect to the comparison are given in sec-
tion 7.2.

7.1 Distributed Perception Networks
We introduced Distributed Perception networks (in chapter 4), a MAS-approach
to information fusion using distributed Bayesian networks. We have shown
that DPNs can support (i) fusion of very heterogeneous and noisy informa-
tion; (ii) decentralized self organization of local network fragments to form
a global inference structure; (iii) discovery and incorporation of relevant in-
formation sources, that are not known prior to operation, during runtime; (iv)
correct computation of posterior distributions without synchronization of par-
tial fusion processes and compilation of global inference structures.

7.2 Comparison of Distributed Inference Approaches
Next to DPNs, we have briefly described two well known approaches to dis-
tributed inference in Bayesian networks, namely Multiply Sectioned Bayesian
Networks and Prior/Likelihood Decomposable Models. These three differ-
ent approaches were compared by focusing on different application aspects.
It turns out that each of the compared approaches has advantages and dis-
advantages with respect to these different application aspects. DPNs sup-
port a limited class of models, while they have self organization capabilities.
Consequently, they can easily adapt to changing constellations of informa-
tion sources and dynamic agent systems at runtime. MSBNs and PLDMs, on
the other hand, can model very complex domains. However, the modeling
flexibility requires computationally expensive preprocessing prior to the op-
eration. Therefore, these approaches are not suitable for domains where con-
stellations of information sources and processing nodes change frequently at
runtime.

These conclusions were obtained through analysis with respect to the follow-
ing relevant application aspects:

Problem domains The investigated approaches to distributed inference are

68



typically designed for specific problem domains. MSNBs are designed to deal
with very complex problem domains, while DPNs and PLDMs are more fo-
cusing on problem domains where the agent constellations must change to
capture relevant or available information sources. DPNs support problem do-
mains where evidence needs to be processed sequentially with high frequency
and where no globally consistent models are required. The problem domains
associated with MSBNs and PLDMs require computation of the joint system
potential which in turn requires globally consistent models and prior knowl-
edge of information sources. However, in PLDMs the correct posteriors can
be approximated by computing partial beliefs.

Modeling complexity The modeling complexity is directly related to the num-
ber of variables in separator sets. The more variables are allowed in such sets
the higher the complexity and connectedness of distributed BNs can be. DPNs
allow only one variable in its separator set and therefore it cannot deal with
highly connected BNs. MSBNs and PLDMs allow more variables in their sep-
arator sets and therefore these approaches can deal with highly complex and
connected models.

Configuration and compilation The three discussed approaches to distributed
inference all use a compiled version of the underlying probabilistic DAG struc-
ture. Compilation in MSBNs and PLDMs first require the local BNs to be con-
figured, that is, all the local BNs must be connected to each other to form the
global inference structure. After configuration, a distributed cooperative com-
pilation algorithm has to be executed on the global BN structure. The compi-
lation algorithm for MSBNs is quite expensive with respect to communication
and sensitive to communication failures. Also, all compilation steps have to be
executed in sequence. For PLDMs the compilation algorithm is robust against
communication failures. In addition, the configuration and compilation algo-
rithms can be executed simultaneously. PLDMs require a priori knowledge
about the dependencies between agents in the form of a Markov network.
DPNs supports precompilation of the local BNs before configuration and no
distributed cooperative compilation algorithm is required.

Self configuration and dynamic agent systems DPNs and PLDMs facilitate
dynamic agent systems (see section 6.4) and self configuration. The restric-
tions on the topology of DPNs allow to connect unknown information sources
to the global inference structure while in PLDMs all information sources must
be known a priori. In MSBNs dynamic agent systems and self configuration
are difficult because of the expensive and sensitive compilation algorithm. Be-
side that, the separator sets between local BNs can be arbitrarily large which
make them difficult to connect without high coordination between designers.

Exact propagation The inference algorithms of the three approaches can be
classified into (i) algorithms that focus on the computation of the joint system
potential and (ii) algorithms that focus on the computation of correct poste-
riors over a subset of variables modeled in one agent. MSBNs and PLDMs
use an inference algorithm of the first class and DPNs of the second class. In-
ference algorithms of class (i) are computationally more expensive than algo-
rithms from class (ii), but support computation of correct posteriors of every
variable.

Frequent evidence processing Large MSBNs are not suited to process high
frequency of observations sequentially, because global consistency is required
to compute correct posteriors (see section 6.6.2). DPNs and PLDMs this prob-
lem is relaxed. DPNs do not compute globally consistent distributions over
all variables (note, they compute globally consistent distributions over a few
variables of interest), which in turn means less communication and no syn-
chronization. PLDMs use an inference algorithm that has the partial correct-
ness property where the computed posteriors are, after the robust message
passing algorithm converges, an approximation to the actual posteriors.
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A Examples

In this appendix we describe a few examples that clarifies the concepts dis-
cussed in previous chapters.

A.1 Visit to Asia
In order to clarify BNs let us take a look at an example called the ’Visit to Asia’
example. The following text (from [7]) describes the medical problem domain
for this example:

Tuberculosis and lung cancer can cause shortness of breadth (dys-
pnoea) with equal likelihood. The same is true for a positive chest
X-Ray (i.e. positive chest X-Ray is also equally likely given either
tuberculosis or lung cancer). Bronchitis is another cause of dysp-
noea. A recent visit to Asia increases the likelihood of tuberculosis,
while smoking is a possible cause of both lung cancer and bronchi-
tis.

Given the description of the problem domain we can set up the Bayesian net-
work given in figure A.1.

Every variable in the ’Visit to Asia’ example has only two states. For example
’Does the person smokes?’ can be answered with a ’yes’ or a ’no’. This means
that there are 28 = 256 values to specify for the full JPD in this example.

All the arrows shown in this example have attached CPTs. These CPTs have
to be specified in advance by a domain expert that is familiar with the medical
domain, for example a doctor∗. Next to this the variables VisitToAsia and
PersonSmokes have prior probabilities that also have to be specified by the
domain expert. If we know that a person has visited Asia in the last month
and has dyspnoea we can infer the likelihood that this person has tuberculosis
given the causal model in figure A.1 through belief updating. In other words,
we are calculating the posterior probability of a person having tuberculosis
given the observations that the person visited Asia and has dyspnoea.

A.2 Evidence Updating
Let us assume that we have the simple BN given in figure A.2 with binary

∗ Acquisition of CPT values can also done through batch learning, tuning and adaptation of the
BN. For more details about learning algorithms for BN consider [12, 6]
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Figure A.1: Visit to Asia
Bayesian Network

variables and with the observation eC where the probability of the state c1 is
one, hence P (C = c1) = 1.

Figure A.2: A Bayesian Network
with observation eC
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Probabilities are often converted to potentials to avoid normalization after
each computation. Table A.1 shows the associated potentials φ1(A), φ2(A,B)
and φ3(A,C) for the probabilities P (A), P (B|A) and P (C|A). According to
definition 2.5 we can calculate P (A) by†

P (A) = P (A)
∑

B

P (B|A)
∑

C

P (C|A) (A.1)

This is identical to the potential multiplication:

φ1(A) = φ1(A)
∑

B

φ2(A,B)
∑

C

φ3(A,C)

As already stated earlier using potentials instead of probabilities avoids nor-
malization after multiplication.

Table A.1: Potentials of the BN
in figure A.2

A φ1(A) (A,B) φ2(A,B) (A,C) φ3(A,C)
a1 0.4 (a1,b1) 0.2 (a1,c1) 0.1
a2 0.6 (a1,b2) 0.8 (a1,c2) 0.9

(a2,b1) 0.3 (a2,c1) 0.3
(a2,b2) 0.7 (a2,c2) 0.7

If we want to calculate the posterior belief P (A|E) where E = {eC} is the
evidence set, we can multiply, for example, the potential φ3(A,C) with the

† Keep in mind that multiplication of probabilities and potentials is not identical to vector/matrix
multiplication. For more details about mathematical operations on potentials consult sec-
tion 2.1.4, definition 2.2
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evidence vector eC =
(

1
0

)
which will result in the following potential given

in table A.2:

Table A.2: Potential of
φ′

3(A, C) = φ3(A,C) · P (EC)
(A,C) φ′3(A,C)
(a1,c1) 0.1
(a1,c2) 0
(a2,c1) 0.3
(a2,c2) 0

φ′3(A,C) can be multiplied with either potential φ1(A) or φ2(A,B). In table A.3
φ′3(A,C) is multiplied with φ2(A,B). Notice that this multiplication results
in a new potential φ4(A,B,C) defined over the domain Dφ4 = {(a1, b1, c1),
(a2, b1, c1), . . .}.

Table A.3: Potential of
φ4(A,B, C) =

φ′
3(A,C) · φ2(A, B)

(A,B,C) φ4(A,B,C) (A,B,C) φ4(A,B,C)
(a1, b1, c1) 0.02 (a2, b1, c1) 0.09
(a1, b1, c2) 0 (a2, b1, c2) 0
(a1, b2, c1) 0.08 (a2, b2, c1) 0.21
(a1, b2, c2) 0 (a2, b2, c2) 0

The remaining computation to calculateP (A, eC) = α·(φ4(A,B,C)·φ1(A))↓{A}.
First we multiply φ4(A,B,C) with φ1(A) which result in the potential φ′4(A,B,C)
given in table A.4

Table A.4: Potential of
φ′

4(A,B, C) =
φ4(A,B, C) · φ1(A)

(A,B,C) φ′4(A,B,C) (A,B,C) φ′4(A,B,C)
(a1, b1, c1) 0.008 (a2, b1, c1) 0.054
(a1, b1, c2) 0 (a2, b1, c2) 0
(a1, b2, c1) 0.0320 (a2, b2, c1) 0.210
(a1, b2, c2) 0 (a2, b2, c2) 0

where the projection of φ′4(A,B,C)↓{A} yields the updated potential φ′1(A) =(
0.04
0.18

)
that can be normalized to calculate P (A|eC) =

(
0.1818
0.8182

)
.

According to commutative law of theorem 2.2 it does not matter in which or-
der P (A|eC) will be calculated. However, some multiplication orders will be
more efficient than others. In the used example we saw that a new poten-
tial φ′4(A,B,C) with 8 entries had to be introduced to calculate the posterior
P (A|eC). This computational inefficient potential was unnecessary and can be
avoided by eliminating variables through an appropriate sequence of projec-
tions.

If we investigate the BN given in figure A.2 again we can see that only vari-
ableC has received hard evidence. This means that the formula given in equa-
tion A.1 can be simplified, because B is a barren node where

∑
B P (B|A) = 1.

P (A) = P (A)
∑

C

P (C|A) (A.2)

This shows us that the potential φ2(A,B) is not needed in the computation
of P (A) which means that only 4 entries instead of 8 were required to do the
computation.

A.3 D-Separation
To clarify how d-separation works in a larger BN let’s consider the BN de-
picted in figure A.3. In this example we have the following hard evidence
observations eC and eE for variables C and E, respectively.
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Figure A.3: Example Bayesian
network with observations
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From definition 2.10 we know that the diverging connection D ← E → F d-
separates variable D from variable F . Also in the serial connection B → C →
G we can see that variable B and G are d-separated, but because we have
also the serial connection B ← D ← G where variable D is not instantiated
B and G are not d-separated. So, in this example only variables {E,F} are
d-separated from the rest of the network through variable D. This can also
be written as 〈{A,B,G,D}|{C,E}|{F}〉which means that the set of variables
{A,B,G,D} and {F} is d-separated given the set {C,E}. Notice that variables
C andD are not d-separated by variableG, because there is also the diverging
connection C ← B → D.

A.4 Absorption
In this example, given in figure A.4, absorption is explained and how a JT can
be made globally consistent through concise message passing.

Figure A.4: Junction Tree of a
serial connection ?>=<89:;A // ?>=<89:;B // ?>=<89:;C

(a) Serial Connec-
tion

Q1 : P (A)P (B|A)

�
�
� S

�
�
� Q2 : P (C|B)

�
�
�

'& %$ ! "#A,B B
'& %$ ! "#B,C

(b) JT

In this example all the variables have binary states, namely ’y’ or ’n’. Table A.5
lists the values for all the potentials that are defined in figure A.4.

Table A.5: Potentials of JT in
figure A.4 (b)

(A,B) φQ1(A,B) B φS(B) (B,C) φQ2(B,C)
(y,y) 0.03 y 1 (y,y) 0.05
(y,n) 0.44 n 1 (y,n) 0.33
(n,y) 0.38 (n,y) 0.23
(n,n) 0.76 (n,n) 0.45

From table A.5 we can verify if the two clusters Q1 and Q2 are consistent by
calculating:

∑

Q1\Q2

φQ1(A,B) 6=
∑

Q2\Q1

φQ2(B,C)

(
0.03 + 0.38
0.44 + 0.76

)
6=

(
0.05 + 0.33
0.23 + 0.45

)

(
0.41
1.20

)
6=

(
0.38
0.68

)
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Clearly clusters Q1 and Q2 are not consistent with each other, which means
that the JT is not locally consistent and this in turn implies that the JT is not
globally consistent. In order to make the two clusters consistent the algorithm
Absorption given in algorithm 3.1 has to be performed twice. First, we are
going to perform absorption from Q2 to Q1 or in other words Q1 absorbs Q2.
This means that the updated separator potentials have to be calculated by
using the first step of algorithm 3.1.

φ′S1←2
(B) =

∑

Q2\S

φQ2 (B,C)

=
(

0.05 + 0.33
0.23 + 0.45

)

=
(

0.38
0.68

)

In the second step of algorithm 3.1 the potential φQ1(A,B) is updated.

φ′Q1
(A,B) = φQ1(A,B) ·

φ′S1←2
(B)

φS(B)

=
(

0.03 0.44
0.38 0.76

)
·

(
0.38
0.68

)

(
1
1

)

=
(

0.0114 0.2992
0.1444 0.5168

)

All the current values are given in table A.6.

Table A.6: Potentials of JT in
figure A.4 (b) after Q1 absorbs

Q2

(A,B) φQ1 (A,B) B φS(B) (B,C) φQ2(B,C)
(y,y) 0.0114 y 0.38 (y,y) 0.05
(y,n) 0.2992 n 0.68 (y,n) 0.33
(n,y) 0.1444 (n,y) 0.23
(n,n) 0.5168 (n,n) 0.45

The two clusters are still not consistent with each other.

∑

Q1\Q2

φQ1 (A,B) 6=
∑

Q2\Q1

φQ2 (B,C)

(
0.0114 + 0.1444
0.2992 + 0.5168

)
6=

(
0.05 + 0.33
0.23 + 0.45

)

(
0.1558
0.8160

)
6=

(
0.38
0.68

)

In order to get the clusters consistent the absorption algorithm has to be per-
formed in both directions. That means the adsorption from Q1 to Q2 also has
to be performed. For the separator φ′′S2←1

(B) we get:

φ′′S2←1
(B) =

∑

Q1\S

φQ1 (A,B)

=
(

0.0114 + 0.1444
0.2992 + 0.5168

)

=
(

0.1558
0.8160

)
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and for the potential φ′Q2
(B,C):

φ′Q2
(B,C) = φQ2(B,C) ·

φ′S2←1
(B)

φ′S1←2
(B)

=
(

0.05 0.33
0.23 0.45

)
·

(
0.1558
0.8160

)

(
0.38
0.68

)

=
(

0.0205 0.1353
0.2760 0.5400

)

For the calculation of φ′Q2
(B,C) we can see that we must divide through

φ′S1←2
(B). If we would ignore this division we are actually propagating the

information gathered from cluster Q2 back to itself. Dividing by φ′S1←2
(B) re-

moves the gathered information from cluster Q2 and the multiplication with
φ′S2←1

(B) only incorporates the information from cluster Q1.

After absorption is performed in both directions the clusters are consistent
with each other.

∑

Q1\Q2

φQ1(A,B) =
∑

Q2\Q1

φQ2(B,C)

(
0.0114 + 0.1444
0.2992 + 0.5168

)
=

(
0.0205 + 0.1353
0.2760 + 0.5400

)

(
0.1558
0.8160

)
=

(
0.1558
0.8160

)

In table A.7 all the current values of the JT are given.

Table A.7: Potentials of JT in
figure A.4 (b) after Q1 absorbs

Q2 and Q2 absorbs Q1

(A,B) φQ1(A,B) B φS(B) (B,C) φQ2(B,C)
(y,y) 0.0114 y 0.1558 (y,y) 0.0205
(y,n) 0.2992 n 0.8160 (y,n) 0.1353
(n,y) 0.1444 (n,y) 0.2760
(n,n) 0.5168 (n,n) 0.5400

A.5 Independence Map
In figure A.5 (a) a BN G is depicted. According to definition 2.10 we can say
that 〈B|A|C〉G is true, because when variable A is observed B and C are d-
separated, but notice that 〈B|{A,D}|C〉G is not true. This is because variable
D is observed and makes B and C dependent on each other. Given the d-
separation of G we want to know if the graph in figure A.5 (b) is an I-map. We
can see that 〈B|A|C〉G is true and that should imply I(B,A,C). This is not the
case in figure A.5 (b) because in this figure variableB is only d-separated from
C if variablesA andD are instantiated, hence I(B, {A,D}, C). 〈B|{A,D}|C〉G
was not true in G and therefore figure A.5 (b) is not an I-map for graphG. The
graph figure A.5 (c) however is an I-map for graph G.

75



Figure A.5: Example I-map ?>=<89:;A
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B Why BNs Encode
Conditional

Independence?

Why does d-separation occur in the three possible connections of a BN in sec-
tion 2.2.3? It can be shown mathematically by using the examples given in
figure 2.3 and figure 2.4 for the serial, diverging and converging connection.
First we show it for the serial connection.

If we want to calculate the joint probability P (A,B,C) then the chain rule can
be used.

P (A,B,C) = P (A)P (B|A)P (C|B) = P (A,B)P (C|B)

We want to show that P (C|A,B) = P (C|B). This can be shown by rewriting
the above equation:

P (C|B) =
P (A,B,C)
P (A,B)

=
P (A,B)P (C|A,B)

P (A,B)
= P (C|A,B)

For the diverging connection a similar way of rewriting can be used. What
about the converging connection? The joint probability of that example can be
written as

P (A,B,C) = P (A)P (B)P (C|A,B)

We want to show is that P (A|C) = P (A) which is similar to proving that
P (A,B) = P (A)P (B).

The chain rule of example in figure 2.4 looks like:

P (A,B,C) = P (A)P (C)P (B|A,C)

Because the distributive law holds in probability multiplications (see [6]), we
have
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P (A,C) =
∑

B

P (A)P (C)P (B|A,C)

= P (A)P (C)
∑

B

P (B|A,C)

= P (A)P (C)

Variable A and C are independent if we do not know variable B. In other
words the variable B is a barren node, because

∑
B P (B|A,C) = 1 and makes

variables A and C marginally independent.

The above mathematical equations show that d-separation is encoded into the
chain rule.
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C Building a Junction Tree

Compiling a BN into a JT requires three steps,namely:

• moralization

• triangulation

• organizing cliques into a JT

Let’s discuss each step in turn.

C.1 Moralization of a BN
The first step in organizing a BN into a JT is moralization. Let us explain the
process of moralization through an example given in figure C.1 which is the
example ’Visit to Asia’ from appendix A.1. All the variables in this example
are replaced by stochastic variables {A,B,C,D,E, F,G,H}. From figure C.1
(a) we can say that 〈D|C|E〉 implies I(D|C|E) is valid. Also 〈C|{D,F}|G〉
implies I(C, {D,F}, G) holds. However we can not say that 〈B|∅|D〉 implies
I(B, ∅, D), because when we know F , variables B and D are dependent on
each other. This is also called induced dependence and needs to be encoded into
the undirected representation of the BN. We know that 〈B|∅|D〉 and ¬〈B|F |D〉
can not be shown simultaneously in an undirected graph. Because we can
have an induced dependence between B and D we must connect them by
adding an undirected link. This can also be seen as negating 〈B|F |D〉. If we
do the same with F andE and drop the direction of all the arrows the resulting
graph is called a moral graph given in figure C.1 (b). Given definition 3.3 of u-
separation a new probabilistic dependency structure is created.

It is proven that a moral graph of a DAG is a minimal I-map (see [21]).

C.2 Triangulation
We know from definition 3.3 that pairwise connected nodes do not allow
graphical separation. A set of nodes is called complete if they are all pairwise
connected. A maximal set of nodes that is complete is called a clique. Every
clique in an undirected graph has to be organized into a cluster of a JT, because
the set of variables in a clique do not allow graphical separation. It turns out
that whenever a JT can be computed from an undirected graph, this graph has
to be triangulated in order to identify cliques that can be organized into a JT.
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Figure C.1: The moralized
graph of the visit to Asia DAG ?>=<89:;A

��

?>=<89:;C

~~~~
~~

~~
~~

~

��
@@

@@
@@

@@
@

?>=<89:;B

��
@@

@@
@@

@@
@

?>=<89:;D

~~~~
~~

~~
~~

~
?>=<89:;E

��~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~

?>=<89:;F

��~~
~~

~~
~~

~

  @
@@

@@
@@

@@

?>=<89:;G ?>=<89:;H

(a) DAG
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(b) Moral Graph

Definition C.1 (Clique) A clique is a set of variables V that form a maximal
complete set based on a given undirected graph G. The set of variables V do
not allow any graphical separation.

A graph that is triangulated is called a chordal graph or just simply triangulated
graph. A graph G is chordal or triangulated if every cycle ρ of length bigger
than or equal to 4 has a chord. This means that two non adjacent nodes on ρ
have a link between them. If we look at the moral graph of figure C.1 (b) we
can see that the cycle F −E−C−D−F is a chordless cycle which means that
the moral graph is not a chordal graph. To make this graph chordal we need
to add a fill-in to make the cycle F − E − C −D − F a cycle with a chord. In
this case only one chord will suffice to make the cycle chordal. However, it can
happen that multiple fill-ins have to be added before all chordless cycles are
removed. In order to find these fill-ins we can use the technique triangulation
by elimination to make a graph triangulated.

Before we are going to use the technique ’triangulation by elimination’ we first
want to know if some graph is triangulated. There is a simple procedure in
order to see if a graph has that property. If we have a graph G with nodes V
we can search the nodes for a simplicial node, that is a node where its adjacent
nodes are complete. If found, then delete this node and try to find another
simplicial node. If all nodes can be eliminated graph G is called eliminatable
and the graph is chordal. If no simplicial node can be found in V then G is not
a chordal graph. In algorithm C.1 this procedure is summarized.

If graph G is not chordal it can be triangulated by node elimination. Let us
consider the example in figure C.1 (b) again. We start by eliminating all sim-
plicial nodes until no simplicial nodes can be found. In this case that means
that we first eliminate node G1. This is followed by A. Next, B can be elim-
inated because F and D are in the same complete set. Finally we can delete
G. We end up with the chordless cycle F − E − C −D − F . Say, we want to
eliminate F . This means that the nodes D and E need to be connected by in-
troducing a fill-in. F can be eliminated and finally the rest of the nodes can be
eliminated as well. By introducing a fill-in between D and E the moral graph
given in figure C.1 is a chordal graph. The resulting chordal graph is given in
figure C.2.

The example used in figure C.1 is an example of an unlucky moral graph
which is not a chordal graph. However, it can be the case that a moralized
BN is already a chordal graph. In such cases no triangulation is necessary
in order to find its JT. In the case were a moral graph is not a chordal graph
the number of fill-ins that are needed in order to make the graph eliminatable
should be minimal. When fill-ins are added to a graph some of the present

1 Note that the procedure triangulation by elimination is an ambiguous process
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Algorithm C.1: Checking if graph is chordal
procedure: IsChordal(G)
input : Graph G = (V,E)
output : True or false
/* Given a graph G with a set of nodes V . Repeat the

following steps until no nodes from V can be
eliminated. */

for i = 1 to |V | where Ni ∈ V do1

Search for Ni that is simplicial;2

if simplicial node found then3

eliminate simplicial node;4

else5

G is not chordal;6

end7

end8

if all nodes are eliminated then9

G is chordal;10

else11

Go to step 1;12

end13

Algorithm C.2: Converting graph to chordal graph
procedure: GetChordalGraph(G)
input : Graph G = (V,E)
output : Chordal graph G′ = (V,E ∪ F )
/* Given a graph G with a set of nodes V and a set of

edges E. */
Set F = ∅;1

for i = 1 to |V | where Ni ∈ V do2

Search for Ni that is simplicial;3

if found simplicial node then4

eliminate simplicial node Ni;5

else6

Select a node Nj to eliminate and add the necessary fill-ins to F ;7

end8

end9

Return G′ = (V,E ∪ F );10

Figure C.2: A Chordal graph ?>=<89:;A ?>=<89:;C
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conditional independence is hidden which in turn makes belief updating less
efficient.
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C.3 Organizing cliques into a JT
In the last step of the compilation process of organizing a BN into a JT is find-
ing the cliques that form clusters in the JT. There are different algorithms to
organize the found cliques into a JT. In this thesis the procedure from [21] is
followed.

In figure C.2 we can identify the following cliques: {A,B}, {G,F}, {B,D, F},
{F,E,H}, {F,D,E} and {D,E,C} given in figure C.3. These cliques are the
maximum complete sets in figure C.2

Figure C.3: Cliques of ’Visit to
Asia’ DAG ?>=<89:;A
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How should the cliques be connected to form a JT? One clique is selected,
say {B,D, F} then we can determine the separators with other cliques. The
clique with the highest separator weight will be connected, where the separa-
tor weight w(S) is defined as follows:

w(S) = |S| (C.1)

The intersection of {B,D, F} with {A,B}, {G,F}, {F,E,H}, {F,D,E} and
{D,E,C} results in the following separators: {B}, {F}, {F}, {F,D} and {D}
respectively with the corresponding weights: 1, 1, 1, 2 and 1 respectively. This
means that {B,D, F} is connected with {F,D,E}. Another clique can be con-
nected to {B,D, F} or {F,D,E} with also a maximum separator weight. The
final structure is called a maximum cluster tree and corresponds to a JT (See
figure C.4 for a possible JT). The reason why it is called a maximum cluster
tree is because w(T ) =

∑
i w(Si) is maximum, where T is the JT and Si are the

separators of this JT. In [21] it is proven that the found maximum cluster tree
is always a JT.

Figure C.4: A Junction Tree of
’Visit to Asia’ DAG

'& %$ ! "#D,E,C

'& %$ ! "#F,D,E

ssssssssss

KKKKKKKKKK

'& %$ ! "#B,D, F '& %$ ! "#F,E,H

'& %$ ! "#A,B '& %$ ! "#G,F

In figure C.4 we can see that any intersection of two cliques will result in a set
that is contained in every cluster on the path between these two clusters. For

82



example, the intersection between {B,D, F} and {F,E,H} results in the set
{F} which is contained in the cluster {F,D,E}. The cluster tree in figure C.4
has the running intersection property and therefore it is a JT.
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D Sensor Data Simulation

In this appendix we show how sensor outputs can be simulated for the obser-
vation nodes in figure D.1 (like S1i, C1i, C2i).

Figure D.1: The used network
for experiments

In order to generate sensor observations in the causal model of GasX a causal
process can be simulated by instantiating the root GasX concept. In other
words, a lethal concentration of toxic gas is present or absent. The children of
GasX, which are variables Cond, Ion, Cyan and Nausea, can also be instan-
tiated by considering the corresponding CPT P (Cond|GasX). For example, if
we want to instantiate node Cond we use the CPT shown in table D.1. If GasX
is instantiated to true, (i.e. the ground truth of the presence of GasX is true)
then we can select the column in which GasX is true and generate a value for
Cond according to the distribution (0.7, 0, 3). This means that in 70% of the
cases node Cond is instantiated to true, which corresponds to a conductivity
that indicated the presence of GasX, and in 30% of the cases to false, which
corresponds to a conductivity that indicated the absence of GasX. After Cond
is instantiated we can do the same for the children of Cond, which are Scon1
and Scon2. This process of instantiating nodes is repeated all the way down
to the leaf nodes S1i, C1i, C2i, etc. The generated values for the leaf nodes can
be used as simulated outputs for the information sources in figure 4.4.

Table D.1: The CPT of
P (Cond|GasX) Cond\GasX GasX = true GasX = false

Cond = true 0.7 0.1
Cond = false 0.3 0.9

In section 4.1.1 two type of nodes were discussed: quasi-static and dynamic
nodes. In figure D.1 the leaf nodes are all dynamic while the other variables
are quasi-static. Therefore, generating a value for a dynamic node must be
regenerated every time a new value is required. However, for quasi-static
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nodes a value is only generated once, because the events, corresponding to
these concepts, do not change for a period of time. In other words, quasi-
static nodes are all instantiated once, while values for dynamic nodes are re-
instantiated, by considering the associated CPT, every time a new value is
needed.
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E List of Notations

Below a list of frequently used terms and notations throughout this thesis is
given. In addition, a separate list of notations is given for every distributed in-
ference approach. Some terms and notations are ambiguous, but its meaning
is always clear from the context.

V An event
v A state of event V

P (A) Probability distribution over stochastic variable A
P (a) Probability of the state a

P (A|B) Conditional probability of event A given event B
P (A,B) The joint probability of event A and B
φ(A,B) A potential defined over variables A and B

G A set of graphs {G1, . . . , Gn}
Gi A DAG i
V A set of variable sets {V1, . . . ,Vn}
Vi A set of variables {V1, . . . , Vn}
A A set of agents {A1, . . . , An}
Ai An agent i
Q A set of clusters {Q1, . . . , Qn}
Qi A cluster i with stochastic variables {V1, . . . , Vn}
E A set of evidence {eV1 , . . . , eVn}
eV Hard evidence for variable V
eV Soft evidence for variable V∑

B P (A,B) Summation (marginalization) over variable B∏
i φ(Qi) A factorization over all potential Qi

P (A,B)↓A Projection down to variable A
DX The domain {x1, . . . , xn} of variable X

Vi ∪ Vj The union of variable sets Vi and Vi

Vi ∩ Vj The intersection of variable sets Vi and Vi

Vi\Vj The variables in Vi that are not in Vj

V ∈ V V is an element of V
|V| The number of elements in V

〈X |Z|Y〉 Variables in X are d-separated from variables in Y
given Z

I(X ,Z ,Y) Variables in X are conditionally independent from
variables in Y given Z

π(V ) The parents of variable V
τ(V ) The parents of variable V and V itself

α A normalization constant
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DPN

R root concept or service concept
L a set of leaf concept or input concepts
ψ A Bayesian network

S〈Vi,Vj〉 Separator defined by Vi ∩ Vj

MSBN

E A set of edges
T A junction tree

I〈Vi,Vj〉 Interface I defined by Vi ∩ Vj

L〈Vi,Vj〉 Linkage L defined by Vi ∩ Vj

φ ∗ (η) Extended linkage potential

PLDM

M Set of measurement variables
Mi A measurement variable
X Set of environment variables
B Set of bias variables
B Bias variable
T True temperature variable
E A set of edges
N A set of nodes
πC Prior distribution for C
λC Likelihood function

〈πC , λC〉 PL-factor
〈πC , λC〉 ⊗ 〈πD, λD〉 Combination of two PL-factors⊕

S〈πC , λC〉 Summary of PL-factor to S
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F List of Abbreviations

BN Bayesian Network
CPD Conditional Probability Distribution
CPT Conditional Probability Table

DAG Directed Acyclic Graph
DBN Dynamic Bayesian Network
DPN Distributed Perception Network
JPD Joint Probability Distribution
JPT Joint Probability Table
JSP Joint System Potential

JT Junction Tree
LJF Linked Junction Forest
LT Linkage Tree

MSBN Mutiply Sectioned Bayesian Network
PLDM Prior/Likelihood Decomposable Model
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