Color based terrain cover classification
for off-road autonomous navigation

An environmental auto-calibrated approach

Paul Jansen
jansenp@science.uva.nl

Artificial Intelligence — Autonomous Systems
October 2004

Supervisor: Drs. Wannes van der Mark

A thesis submitted to the faculty of science of the University of Amsterdam in
partial fulfillment of the requirements for the master of science degree.

Intelligent Autonomous Systems Group Ay O

X
Informatics Institute . .
|| Facalty of Science T- Physics and Electronics Laboratory

X University of Amsterdam Q Electro-Optical Systems






intelligent autonomous systems

Intelligent Autonomous Systems Group
Informatics Institute

Faculty of Science

University of Amsterdam

Kruislaan 403

1098 SJ Amsterdam, The Netherlands

Tel: +31 20 525 74 61 Fax: +31 20 525 74 90

http://www.science.uva.nl/research/ias/

Ry
'550

TNO Physics and Electronics Laboratory
Electro-Optical Systems

Oude Waalsdorperweg 63, P.O. Box 96864
2509 JG The Hague, The Netherlands

Tel: +31 70 374 00 00 Fax: +31 70 374 06 54
http://www.tno.nl/instit/fel/

Signature for approval of submission by thesis supervisor:

Drs. Wannes van der Mark,
October 2004,
Amsterdam.






Abstract

The University of Amsterdam (UvA) and the Netherlands Organisation of Ap-
plied Scientific Research (TNO), developed the Robojeep: a testbed for autono-
mous navigation in unstructured terrain. The Robojeep research is focused on
enabling future robotic vehicles to perform useful and dangerous tasks autonom-
ously. An appealing example is humanitary mine clearing: financial costs as well
as casualty rates can be reduced significantly by automating this dangerous task.

Presently, the Robojeep depends primarily on its range sensors for observing
the terrain conditions. The drawback of these sensors is that they do not provide
information about the material types, such as grass or sand, that are present in
the terrain. Terrain classification is needed for various applications, for example:
identification of false obstacles such as tall grass or dirt road following.

We have developed a color based terrain cover classification algorithm. The
apparent color of terrain types is heavily influenced by lightning, weather type
and other environment conditions. Therefore, for color based classification to be
successful in an outdoor environment, the environment state has to be estimated.
Previous research on terrain cover classification still considered auto-calibration
as an open problem. We were able to solve this problem by assuming that low
variance image regions are heavily influenced by the environment state.

Our approach is able to train and classify without a-priori knowledge about
the environmental state. For each environment state found by our unsupervised
environment cluster algorithm, an environment hypothesis is learned as well as a
terrain cover hypothesis. Both hypotheses learn mixtures-of-Gaussians in color-
space by using a greedy variant of the Expectation Maximization (EM) learning
algorithm. The environment estimation and the terrain cover classification are
both based on Maximum Likelihood principles: classification can be based on
the environment state with the maximum likelihood, and on an interpolation of
environment states.

Our environment auto-calibration classifier performs as well as a ground-
thruth based classifier. The classifier shows very reliable performance when
used for discriminating between drivable and non-drivable areas. Discriminating
between more classed, which are required for improving vehicle navigation or
control, also showed satisfactory results.

The results indicate that a good first step towards a very robust terrain cover
classification algorithm for autonomous navigation has been achieved.

Keywords: color, terrain classification, auto-calibration, environment cluster-
ing, off-road navigation, mixture models, greedy EM.



A paper describing the research in this thesis has been submitted to the IEEE

International Conference on Robotics and Automation (ICRA) of 2005 in Bar-
celona, Spain: Paul Jansen, Wannes van der Mark, Johan C. van den Heuvel,
Frans C.A. Groen, “Colour based Off-Road Environment and Terrain Type
Classification”.



Acknowledgment

In the time I worked on this thesis I was constantly supported by a number of
people. Foremost, I would like to express my gratitude towards my supervisor
Wannes van der Mark. His patient guidance, encouragement and excellent ad-
vice have been constant factors throughout this work. I also learned a great
deal from Prof. Frans Groen. Especially his remarks on how a thesis should be
written were very helpful.

My work experience at TNO-FEL presented me with insights about working
in such a large research company. Moreover, I express my gratitude that they
gave me their confidence to work on their Robojeep project. I would like to
thank my former colleagues for making me feel welcome. Two people stand out:
Johan van den Heuvel for his dedicated guidance on my research project, and
Han van Bezooijen for his encouragement and social diversion.

Nikos Vlassis, Jakob Verbeek and Jan Nunnink provided me with the greedy
EM learning algorithm. I would like to thank them for supplying this algorithm
that was so important for this project.

Finally, I would like to thank the people I love. My mom and dad’s support
went the extra mile. They picked me up when I was down and they kept
believing in me. My girlfriend, Qnita, gave me the push that accelerated the
process of finishing this thesis. I especially value her support in the final two
months were all I could talk about was finishing this project in time.

Paul Jansen;
October 2004;
Amsterdam



Contents

1 Introduction

1.1 Need for natural terrain classification . . . . . . . . . . . .. ...
1.2 Problem statement . . . . . . . . . .. ...
1.3 Overview report . . . . . . . ..o e e

2 Related research

2.1 Geometry features . . . . . .. .. .. oo
2.2 Color features . . . . . . . . . oL
2.2.1 Color physics . . . . ... ... Lo
2.2.2 Color interpretation . . . ... ... ... ... ...
Colorspaces . . . . . . . o oo

2.3 Texture features . . . .. .. . ... ... oo
2.3.1 Feature extraction . . ... .. .. ... ... ... ....
convolving an image with amask . . . . .. ... ... ..

finding frequencies in local image windows . . . . . . . ..

2.3.2 Functional issues . . . . . . . . .. .. ...

2.4 Motion features . . . . . . . ...
2.5 Other sensor features . . . . . . . . ... ... ...
Laser rangefinder features . . . . . .. ... ... .....
multispectral features . . . ... ... ... ... .....

2.6 Classification . . . .. .. .. ...
2.6.1 Decision tree learning . . . . . ... ... ... ...
2.6.2 Neural network learning . . . . . .. ... ... ... ...
2.6.3 Nearest neighbor method . .. .. ... ... .......
2.6.4 Bayesian learning . . . . . ... ..o

EM learning algorithm . . . . . .. ... ... .. .....

EM color constancy extension . . . . . . .. ... .. ...

2.6.5 General learning and classification remarks . . . . .. ..

2.7 Conclusion . . . . .. .. . .

3 Method

3.1 Method overview . . . .. ... ... Lo
3.2 Terminology . . . . . . . . . . ..
3.3 Environment states assumption . . . . . . .. ... .00



3.4 The cluster component . . . . . . ... ... ... .00
3.4.1 Preprocessingsteps. . . . . . . ... oo
3.4.2 Distance calculation . . . ... ... .. ... .. .....

Distance between Gaussians . . . . . . . .. ... ...

Distance between mixtures-of-Gaussians . . . . . . . . ..

Distance between instances . . . .. ... ... ... ...

3.4.3 Tterative clustering steps . . . . . . . ... ... ...
Select instances . . . . . . . ... ...
Mergeinstances. . . . . . ... ... ... L.

3.5 The learning component . . . . . ... ...
Environment hypothesis . . . . . ... ... ... .. ...

Terrain cover hypothesis . . . . . .. . ... ... .....

3.6 The classification component . . . . . .. ... ... L. ..
3.6.1 Calibration part . . ... ... ... ... ... ...
3.6.2 Classification part . . . ... ... .. ... ...,

Calculating class likelihoods . . . . . ... ... ... ...
Relaxationstep . . . . . . . .. . ... ... .. ...
Calibration decision . . . .. ... ... ... ... ...,
Output . . . . . . . ..

Experiments
4.1 Performance evaluation . . .. .. .. .. ... .. ........
4.1.1 Datasets . . . . . . .. L
4.1.2 Class selection and labeling . . . . ... ... .......
4.1.3 Performance metrics . . . . . . .. ... ...
4.2 Experiments. . . . . . . . . ..
4.2.1 Environment cluster experiment . . ... ... ... ...
4.2.2 Environment estimation experiment . . . .. .. ... ..
4.2.3 Terrain classification experiment . . . ... ... .. ...
Quantitativeresults . . . . . . ... ...
Qualitativeresults . . . . .. ... ... .. ... .....
4.24 Postprocessing . . . . . .. ... ool

5 Conclusion
6 Future research

Appendix

A Numerical confidence matrices . . . . . .. .. . ... ... ...

45
45
45
46
47
47
48
50
51
52
93
96

57

60

62



List of Tables

4.1 The resulted environment clusters for varying merge threshold . 49
4.2 Probabilities for all terrain classes . . . ... ... ... .. ... 52
4.3 Probabilities for obstacle detection task terrain classes . . . . . . 53
4.4 Raw and filtered terrain class probabilities . . . . . . .. .. ... 56
Appendix 62
A Numerical confidence matrices . . .. ... . ... ... ..... 62



List of Figures

1.1

2.1
2.2
2.3
24

2.5
2.6

3.1
3.2
3.3

3.4
3.5
3.6

4.1

4.2
4.3
4.4

The Robojeep . . . . . . . . . o 6
Accuracy of distance estimation by stereo-vision . ... ... .. 10
Image color formation in outdoor scenes. . . . . . . . .. ... .. 11
An image showing four manually labeled classes. . . . . . .. .. 14
Manually labeled areas of figure 2.3 plotted in the RGB-space,

rgb-space, opponent-space and CIE LAB-space . . ... ... .. 15
A spot filter and a symmetric Gabor filter . . . . . . .. ... .. 18
Greedy EM example . . . ... .. ... ... ... ... ... 28
Component overview flowchart . . . . .. ... ... ... .... 32
Data representation introduction . . . . . . ... .. ... L. 34
An image with its variance mask as well as the points in RGB-

space and the variance filtered points in RGB-space . . ... .. 35
The cluster component flowchart . . . . .. ... .. ... .... 36
The learning flowchart . . . . . . ... ... .00 40
The classification flowchart . . . . . . ... ... ... ... ... 42
The probabilities P, and P, with varying merge threshold T,

and the corresponding terrain class conditional probabilities . . . 49
The probability for an altering variance threshold . . . . . . . . . 51
Confusion matrices simulating that every class occurs equiprobable 52
The terrain cover classification results . . . . ... ... .. ... 55



Chapter 1

Introduction

This report describes a classification algorithm for natural terrain cover. It has
been developed for the Robojeep: a research platform for autonomous navig-
ation in unstructured terrain. The algorithm should distinguish classes such
as sand, rock, bark, grass and foliage, giving the Robojeep a better sense of
its environment. This chapter introduces the Robojeep vehicle and its possible
applications. Arguments are adduced to show the importance of terrain cover
characterization for the Robojeep’s navigation capabilities, which results in the
definition of the problem statement. Finally, a chapter overview of the report
is given.

This research project is a part of collaboration between the TNO Physics and
Electronics Laboratory (TNO-FEL) and the University of Amsterdam (UvA).
The principal aim of the Robojeep is the development of methods enabling the
vehicle to conduct missions autonomously and reliably in an unstructured en-
vironment, making use of only onboard sensors, intelligence and computing.
Different sensors such as: stereo-vision cameras, ultra-sonic sensors, odometers
and a laser range scanner are applied for this goal. Techniques are developed
by TNO and the UvA for acquiring a reliable representation of the environ-
ment from these sensors. A path can be planned on basis of this environment
representation. This path is converted to control commands for the Robojeep’s
actuators: the gearbox, the steering wheel, the accelerator and the brake pedals.
A picture of the Robojeep is shown in figure 1.1.

The technology developed for the Robojeep could enable future vehicles
to perform dangerous tasks, such as landmine detection and rescue missions
without fear of human casualties. Other applications could be to automate
activities, such as digging on construction sites or harvesting in agriculture.

1.1 Need for natural terrain classification

From a pair of stereo images a height map can be calculated. Such a geometrical
description of the terrain allows path planning avoiding positive and negative



Figure 1.1: The Robojeep

obstacles. This description is suitable for structured environments. An urban
environment has clear geometrical features like roads, houses and walls. A
powerful assumption can be made in this case, namely: everything in the world
is rigid. This means that nothing in the world is penetrable or flexible. Roads
can be robustly followed because they are easily identified, making it a closed
environment. This closed environment enables the knowledge that no harm is
done if one does not leave the road and avoids steep objects; then one does
not drive in to a river and no people or cars are hit. Only much less occurring
scenarios will not hold. For example a cardboard box on a road that is seen as
an object, but in fact is penetrable.

Driving off-road does not restrict the environment very much, making it an
open and not entirely rigid environment. The Robojeep, with its stereo-vision
based navigation method [21], can wander off into all sorts of terrain. Driving
behavior is related to the physical properties of the surface. The geometrical
description gives no information about these properties and so the Robojeep
can not alter its driving behavior to a surface. For example, it will not slow
down when terrain changes from stone to sand. The rigid assumption has an-
other major disadvantage: the geometrical description does not always give the
load-bearing surface (where the wheels touch the ground). Patches of tall grass
are easily traversable without risk of damaging the vehicle. They are however



detected by the stereo-vision algorithm as obstacles thus decreasing the number
of places the jeep can reach. Moreover, lakes and other bodies of water present
a danger because they are difficult to detect with only range information. These
arguments show that the Robojeep needs a terrain cover classification algorithm
next to its stereo-vision based navigation to interact well with its natural envir-
onment.

There are a number of examples that illustrate extra benefits of a terrain
cover classification algorithm. Firstly, detecting soil from bushes is important
for autonomous navigation and can not be achieved by range analysis alone.
Secondly, detecting tree lines has a tactical value. Stereo-vision and other range
sensors have a relative small range. An obstacle detection algorithm can pro-
vide the path-planning component with information about obstacles at a larger
range, enabling the path-planning component to look ahead. Thirdly, distin-
guishing between paved and unpaved surfaces is helpful for road following. Fi-
nally, distinguishing between natural and man-made obstacles is important for
interaction with human beings.

1.2 Problem statement

The Robojeep’s terrain cover classification algorithm should satisfy some con-
straints:

1. the algorithm should be able to robustly classify new images as drivable or
non-drivable areas under varying weather conditions, seasons and envir-
onments given a rich enough learning set and information from the stereo
cameras;

2. the algorithm should have a measures that reflect the confidence that it
has in its classification;

3. the algorithm should be fast enough for real-time applications, and

4. the algorithm should be able to be extended with other classification al-
gorithms.

Constraint 1 reflects the primary purpose of the algorithm, but a broader
terrain class taxonomy is preferred. Constraint 2 reflects the fact that outliers,
like houses and people, should be detected. An autonomous system should be
able to react fast enough to its environment, which is captured by constraint
3. Because the first three constraints are very hard to satisfy with just one
classification method, the classification algorithm should be able to be extended
with other classification methods. This notion is captured by constraint 4.

1.3 Overview report

This section provides a general overview of the report. The next chapter de-
scribes a literature study to provide a general, but well founded method for



tackling the problem statement. It focuses on feature selectors and classifica-
tion methods. This research guided us towards developing a color classification
algorithm that is auto-calibrated on the environment state.

Chapter 3 explains the method we used to solve the terrain cover classi-
fication problem. The three main components of our method are described
here, namely: the environment cluster component, the learning component and
the classification component. Moreover, the assumption we made to tackle the
auto-calibration problem is explained.

Chapter 4 describes the experiments we performed to test our method.
Our auto-calibration algorithm matched the results of a ground-thruth based
method. Moreover, the terrain cover classification results indicate we have
achieved a very good first step towards even better performing terrain clas-
sification algorithms.

Finally, chapters 5 and 6 respectively describe the conclusion and future
research possibilities. In the conclusion, we summarize our method and discuss
its advantages and disadvantages. The last chapter describes future research
projects that could improve our method.



Chapter 2

Related research

In this chapter we will review the state-of-art research for outdoor classification
of natural objects. It spans an area from research on statistics of natural images
to a practical implementation of a vehicle somewhat capable of navigating in an
outdoor environment. For robots such as the Robojeep to work well, real world
image processing and classification has to be done in real-time.

The first sections discuss the features. Respectively color, texture, motion,
2D-geometry and 3D-geometry are dealt with respect to how well they represent
the world. This is done in light of their physical properties and the properties
of the natural environment. Next some classification methods are discussed.
The information gathered by this literature research, guides the choices made
in developing our terrain cover classification algorithm, which is described in
the next chapter.

2.1 Geometry features

As discussed in the introduction, the Robojeep is equipped with a stereo cam-
era. Stereo-vision enables autonomous vehicles to infer information on the 3D
structure and distance of a scene using images from different viewpoints [21].
Retrieving a height map from the scene takes two steps:

1. solving the correspondence problem;
2. solving the reconstruction problem.

The correspondence problem is solved by matching pixels in the left image
with the corresponding pixel in the right image. The reconstruction problem is
solved by using basic geometry, and finds 3D locations and structures of objects.

Solving the correspondence problem is computational attractive because of
geometry formed by the stereo cameras. A so called epipolar plane is defined
by three 3D points: the optical centers of the two cameras and a 3D point in
the world. By intersecting the epipolar plane with an image plane, the epipolar
line is found. This epipolar line reduces the search for correspondences to a 1D



problem: a pixel in the left image defines a line in the right image on which the
corresponding point must lie.

Figure 2.1 shows a solution of the correspondence problem. The distance
between the most outer point and the middle point on the image planes (al), is
equal to the middle point and the most inner point (a2). The error in distance
estimations (d1 and d2), however, raises to the square with distance. This
illustrates a major disadvantage of a stereo-vision system: only the distances
of points close to the camera can be accurately estimated. Distance estimation
can be made more accurate by enlarging the distance between the cameras, the
so called baseline, or by using telelenses.

Talukder developed an obstacle detection algorithm that is able to segment
obstacle points into clusters [31]. Because background information is discarded
in the object segmentation, shape-based reasoning is made possible. This facilit-
ates the use of 3D shape and geometrical measures to classify obstacles. Taluk-
der uses a rule-based system to reject obstacles with small bounding volume,
maximum slopes or maximum height. Such systems can also aid the classific-
ation algorithm. Classifications that are incompatible with the shape can be
revised. Common objects, such as stones, can vary significantly in size. This
makes post-processing by means of geometrical data a very object restrictive
operation. Suppose a classification algorithm is unsure about whether an area
is grass or foliage. A rule-based system can label the object as penetrable if its
volume is much smaller than the volume of foliage.

o=optical centre

epipolar line \\\
s

left image plgne right image\plane
baseline

Figure 2.1: Accuracy of distance estimation by stereo-vision decreases at larger
distances.

2.2 Color features
Research in natural image statistics shows that not many colors are necessary

to provide a sparse representation of color images depicting natural scenes.
However, these colors are very important for such a representation, because
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their frequently used [18, 16]. This is a strong argument to investigate the use
of color for a terrain cover classification algorithm.

2.2.1 Color physics

A camera comparable to the human eye senses the environment. In the eye
reflection of the world is continuously projected on the retina covered by a grid
of light-sensitive cells. We can compare this grid very well to video camera CCD
chip rectangle composed from millions of pixels. The principle is simple — each
cell measures the intensity of a range of light frequencies. For a CCD camera
the color and brightness of a point is represented by intensity measurements of
red, green and blue: the RGB values.

The experience of color is a result of how we interpret the wavelengths of ra-
diation found across a range of frequencies in the visible spectrum. The CIE (the
commission international d’éclaire) mapped the wavelengths (400nm-700nm), to
triple number coordinate systems that mathematically define how humans per-
ceive color. The RGB coordinates can be transformed to CIE XYZ coordinates
by multiplication

PXYZ =M - PRGB- (21)

The matrix M has size 3 x 3 and is determined by a reference white.

Color based object recognition can be very complex in outdoor circum-
stances. The apparent color of an object depends on color of the light source, the
reflectance of the object, illumination geometry, viewing geometry and sensor
parameters [25]. Illumination and viewing geometry vary with changes in object
and camera position as well as orientation. A pictorial description of the various
processes involved in the formation of outdoor images is shown in figure 2.2.

Light sources sensor
~sun imaging

~ ambient (sky) parameters

interreflections |

o viewing
illumination geometry

geometry

surface
reflectance

Figure 2.2: Image color formation in outdoor scenes.
In outdoor images, the color of the illuminant varies with the time of day,
cloud cover and atmospheric conditions. The color of daylight varies along a

characteristic curve. This so called CIE daylight curve is defined by

y = 2.87x — 3.022 — 0.275
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in xy-chromaticity space [17]. The xy-space is chosen to represent the chromati-
city space. It intersects the XYZ-space with the plane X +Y + Z = 1. The
apparent color of an object is not only affected by the color of the illumination,
it is also affected by shadows and inter-reflections. [11].

There are two types of reflection: specular and diffuse reflection. The out-
door environment contains only a little amount of shiny surfaces. This allows
omitting of the specular reflectance components in the reflection model. Only
the Lambertian reflectance, having uniform reflectance in all directions, has to
be modeled. For a Lambertian surface, the measured intensity p. of channel ¢,
c=1,2,...,n.is

pe=g /A Fo(VsA)I(A)dA. (2.2)

Here g is an effective light intensity determined by the scene geometry and
the absolute light intensity; f.(A) is the sensitivity function of channel ¢; s())
denotes the reflectance; I(\) represents the normalized light spectrum; and all
of the above variables are functions of the wavelength A. Since we use a RGB
color camera, we can assume n. = 3 hereafter, without loss of generality.

2.2.2 Color interpretation

The physics of color shows that the apparent color can change at different times
of day, under different weather conditions and at various positions and orienta-
tions. Extracting the object color out of the sensor responses without knowing
the spectral composition of either the incident light or the surface reflectance,
is known as color constancy. This is a challenge because numerous combina-
tions of factors can result in the same set of sensor values. The combinations
of factors can cause large variations in perceived color of an outdoor object.
The variation in apparent color of a single surface can even be greater than the
difference between two distinct colors [5]. The variation of the apparent color
of more realistic objects can even be greater.

In the literature there are many traditional color constancy algorithms men-
tioned. These algorithms assume highly restricted images under constrained
lighting. In outdoor circumstances these assumptions and techniques will not
work, and consequently there are no color constancy algorithms that work well
on real images [4, 10].

Colorspaces

The colorspace in which a pixel or region is classified, is of great importance.
Colorspaces can inhibit several invariant properties like: viewing direction, sur-
face orientation, highlights, illumination intensity, illumination direction, color
of the light source and interreflections. Surfaces in natural environments are
mainly matt and consequently will be well modeled by the Lambertian model.
This means there is no essential need for highlight invariance.

12



Colorspaces are not only important for their invariance properties. They
can also make the modeling of the objects simpler. There are three important
object modeling properties:

1. the object model fit;
2. the object model separation, and;
3. the object comparability.

The first property describes how well the data can be fit to a arbitrary model.
This can be a mathematical model such as a normal distribution, and can also
be a decision boundary described by for example a decision tree or a neural
network. The second property describes the separation of different objects.
Two objects that have a large distance from each other are not that easily
confused. The last property describes if the distance in the colorspace is a
fair guide to the significance of the difference between two colors. In a nearest
neighbor comparison this can be of great value. Property two is more related
to the environment, while property three is more related to the physics and
perception of color.

Objects can cluster when larger chromatic variations occur, which can be
caused by different time of day or season, or by changing weather. The Jet
Propulsion Laboratory (JPL) shows that small chromatic variations can be
modeled reasonably well by a mixture-of-Gaussians class likelihood [1]. They in-
crease performance by calibration on an outside reference when larger chromatic
variations occur. Tsin et al. make their classification algorithm more robust to
large chromatic variations by locally estimating the reflectance, geometry and
light spectrum [33]. This estimation is done by locally solving a bilinear model
for color image formation. A linear iterative procedure reduces processing time,
nevertheless not enough for real-time purposes.

Figure 2.3 shows an image in which some areas are manually labeled: sky,
sand, foliage and grass. Figure 2.4 shows the manually labeled areas in various
colorspaces to illustrate the advantages and disadvantages. Here, sand and
grass areas are sublabeled by if they are under influence of direct sunlight or
are subject to shadows. Foliage is not shown for illustration reasons: it is large
geometrical variance causes a distribution that clutters the other objects.

The RGB-space does not contain any invariance properties. In RGB-space,
a object color distribution is not well described by a single Gaussian. A single
object color distribution can produce two very distinct clusters, see figure 2.4.
Both clusters seem to be normally distributed and can be explained by the
incident light. One cluster corresponds to direct sunlight, the other corresponds
to light that is reflected from other surfaces. The figure gives an indication that
an object color distribution can be well fitted by a mixture-of-Gaussians. This
indication is confirmed by research on terrain cover classification with DEMO
III: a research platform of the JPL similar to the Robojeep [1]. Unfortunately
objects are very close to each other, especially in shadow regions, making it hard
to discriminate two classes. Neither is the Euclidean distance in RGB-space a

13



Figure 2.3: An image showing four manually labeled classes: sky, foliage, grass
and sand. Grass and sand have labelled areas in direct and indirect sunlight.

fair indication of color difference. The difference is based on the difference
between power levels of radiation, and not on the perception of color.
An intensity normalized space of the RGB-space, the rgb-space, is defined
by:
B R _ G b— B
""R+6+B Y"R+G+B "  R+G+B

This space is invariant to viewing direction, surface orientation, illumination
intensity and illumination direction [12]. It however lacks important information
about intensities and a supplementary classification is necessary for pixels with
intensities close to zero. Since the r, g, b chromaticity values sum up to one,
the rgb-space can thus be defined by only two variables. Figure 2.4 shows that
modeling the clusters is more difficult. The clusters can not be fitted with a
mixture-of-Gaussians very well and the clusters are not that separated.
The opponent colorspace [34], given by

wbh=R+G+B, rg=R—-G, yp=2B— R -G,

is a linear transformation of RGB that matches the physiology of the human
visual system. Moreover, it is shown that color opponent coordinate systems
can represent natural images very efficient [18]. The three axes represent the
intensity values and two chromatic values. The chromatic values give the red-
green and yellow-blue differences. Opponent colorspaces tend to decorrelate
the RGB components, which is a desirable characteristic for pattern recognition
[32]. As figure 2.4 shows, the opponent space separates the classes well, how
ever they are harder to model.

Using a statistical study of uncorrelated color components on a large popu-
lation of typical images, yields an opponent chromatic separation [34]. This so
called Otha space is given by
_R+G+B R-B 2G-R-B

I = I3 = 1

I
1 3 ) 2 3
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Figure 2.4: Manually labeled areas of figure 2.3 plotted in the RGB-space, rgb-
space, opponent-space and CIE LAB-space (from left to right, top to bottom).

Tts results are very similar to the opponent colorspace, thus no further discussed.
One could also decorrelate color components based on the specific environment.
Using a set of natural terrain images, principal-component analysis (PCA) can
align the data with the axes. PCA uses an orthogonal transformation for this
purpose. Non-orthogonal spaces can be even more efficient in describing the
redundancies due to overlap of sensor excitations and across waveband correla-
tions present in natural spectra. Independent component analysis (ICA) finds
a linear non-orthogonal coordinate system, allowing higher than second order
statistics. This can make the data simpler to analyze. Research on outdoor
image statistics shows that both the PCA and the ICA find a colorspace some-
what similar to the opponent colorspace [30, 18]: they find one axis corresponds
to radiance, another describes an opponent blue-yellow channel and the last
describes an opponent red-green channel. These axes are mentioned in order of
decreasing eigenvalue.

As discussed, time of day and shadows respectively influence illumination
color and cause inter-reflections. The m1m2m3-space is also invariant to these
properties; however, it can only describe the difference between surface albedos
and thus contains no information about the actual color of the surface [12]. An
important benefit is that it is not assumed that the neighboring points have the
same surface orientation. The m1m2m3 color model is given by

R%1G%: R#1.p%: G*1 B
my = = = = = = ms3 = = =
'7 RRGs 7P RE:pBE P GE:BE

where #; and #; are image locations of neighboring pixels. There is an indication
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that mammals use the same method: using two surfaces, the spatial ratio of
cone-photoreceptors is almost invariant under illumination changes and under
shadow existence [24]. One can only model object differences, which has the
disadvantage that areas with high variance clutter areas of lower variance. This
disadvantage can be overcome by computing the m1m2m3 values at different
scales, or comparing areas with each other.

One common disadvantage of all above mentioned colorspaces is that colors
can not be compared to each other; that is, all above mentioned spaces are not
perceptually uniform. In 1976 the CIE defined the LAB-space to overcome this
disadvantage. The L*, a* and b* values are calculated in two stages. The first
stage calculates the XYZ values according to function 2.1. The second stage
transforms the XYZ values non-linear to LAB values using;:

1

Y 3
L* = 116 (—) —16;
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where X,, Y, and Z, are the X, Y and Z coordinates of a reference white
patch. Differences in LAB coordinates give a good guide to how different two

colors will look to a human observer. The difference between colors Lia1b; and
Loasby can be expressed as:

AE = /(L1 — L3)? + (a1 — a2)? + (b1 — b2)?.
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The L* represents luminance and ranges from 0 for black to 100 for white in
uniform steps. The a* and b* values are represented as +a/ — a for red-green
differences and +b/ — b for yellow-blue differences. Figure 2.4 shows the LAB
space. The objects are still reasonably well separated, but they are more difficult
to model.

2.3 Texture features

Color can provide valuable information about the environment, nevertheless not
everything is distinguishable by its color. Color has some shortcomings. Firstly,
it can not be used at night. Secondly, it will not allow robust separation of dry
vegetation or tree bark from certain kinds of soil [29]. Finally, as the Lambertian
reflectance model illustrates, the perceived color is a function of the reflectivity
properties of the surface and of the spectrum of the illuminant; this makes color
classification rather hard in circumstances like shading and changing weather
conditions. Other visual features can complement color analysis. For example
texture: the extra information needed apart from color to adequately describe
an image region with local spatial correlations.
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Features are often specified by a few properties called feature descriptors,
namely:

® type;

e orientation;
e scale, and
e color.

Feature types include bars, spots and edges. Feature types can be of different
orientations and different scales. A bar feature can be small and vertical; how-
ever, it could also be large and horizontal. Color transitions can also be of use,
for example in searching for a red bar in a green plane. It is shown that color
opponency is an efficient representation of spectral properties, although uniform
chromatic filters and luminance edge filters are more important in an efficient
coding of natural images [18].

Natural images can be efficiently coded by localized and oriented structures
described by the feature descriptors [26]. The advantage of finding such feature
descriptors in an image is that the local structure of the image becomes clear.
There is a strong response when the image pattern in a neighborhood looks
similar to the searched feature and a weak response when it does not. A benefit
over color classification is that only one channel is required: texture may be
computed on images from single-channel infrared cameras, allowing terrain cover
classification at night. Notice that this is only possible if the resolution and
quality of the infrared camera is sufficiently high.

2.3.1 Feature extraction

There are two principal methods two extract features from an image:
1. convolving an image with a mask, and
2. finding frequencies in local image windows.

A convolution with a mask replaces the pixel value I(Z,j) of an image I with
a weighted sum of the values of I in a neighborhood of (i,j). The weights
are the entries of the mask M. Finding the frequencies can be done by a
Fourier transform. The two methods are related by the convolution theorem:
the Fourier transform of the convolution of image I and mask M is the product
of their Fourier transforms F(I) and F(M).

convolving an image with a mask

Convolution masks can be created in several ways. One way to obtain these
filters is to form a weighted difference of Gaussian filters at different scales. A
spot filter for example, can be made by G = Gg.¢2 — 2G1 + G1.6, where
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Figure 2.5: A spot filter made of the weighted sum of three concentric, symmet-
ric Gaussians at different scales (left), and a symmetric Gabor function (right).

is the symmetric 2D Gaussian kernel, with the filter scale given by o. Figure
2.5 illustrates the spot filter. Bar filters can also be obtained by differentiating
oriented Gaussians.

Another way to build spot and bar filters is to use Gabor filters. Gabor
filters strongly respond at points in an image where there are components that
locally have a particular spatial frequency and orientation. Gabor filters come in
pairs: a symmetric component and an anti-symmetric component, respectively
given by

Gsymmetric (IL‘, y)

2 4,2
cos(kqx + kyy) exp — (%) ,

. z? + 92
Ganti—symmetric (IL', y) sm(szb" + kyy) exp — (73/) .
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The filter scale is given by o. The spatial frequency to which the Gabor filter
responds most strongly is given by (k;,k,). Figure 2.5 shows the symmetric
kernel with ¢ = 1, k; = 4 and k;, = 2. Gabor filters can be thought of as
assemblies of bars: as the spatial frequency increases compared to the scale, the
filter looks for patches of parallel stripes rather than individual bars. This could
be convenient for the classification of grass.

Opponent chromatic edges can be found by applying an edge detector. This
edge detector is not applied on the intensities, but on the wavelengths. An
adjustment of this method can even classify color transitions into shadow-
geometry, illumination and material edges [13]. Incorporating the physics of
light makes the color-texture filter more robust to shadows [15].

Because local features can occur at different orientation, scales and colors,
a collection of filters is required. This collection usually contains spots and
bars filters. It has been shown that implementing rotation invariance degrades
the classifiers performance in the autonomous navigation task [6]. This can be
explained by the fact that certain terrain types have a principal orientation:
grass mostly has vertical edges. Therefore rotation invariance is not discussed
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any further. Moreover, this research reports probability values of 0.70 and
0.68 of detecting correct terrain classes, where the first value is the normal
probability and the second value is the probability given that all terrain classes
occur equiprobable. For the obstacle detection task, where the is little or no
margin for error, higher probability values seem to be a necessity.

finding frequencies in local image windows

Gabor functions filter out spatial frequencies, but these frequencies can also be
found by means of analyzing an area. A Fourier analysis decomposes an im-
age area into an integral over sine and cosine waves. This way, one obtains a
representation of the original image area that allows one to identify which fre-
quencies are contained in the image area. Wavelet analysis is an improvement
over Fourier analysis. In order to isolate signal discontinuities, very short basis
functions are practical. In contrast, in order to obtain detailed frequency ana-
lysis, very long basis functions are convenient. A way to achieve this is to have
short high-frequency basis functions and long low-frequency ones. Wavelets to
exactly this.

Using spectral energy distribution within the Fourier spectrum for color tex-
ture recognition is limited by the impossibility of handling vectors with more
than two components. By reducing the colorspace to two dimensions with
equal significance, accurate spectral techniques can be used on color images
[34]. Wavelets can be used to produce wavelet correlation signatures which
define the energy in each color plane and the cross-correlation between different
planes [36].

2.3.2 Functional issues

Unfortunately finding texture features is computationally quite expensive, whe-
ther this is done by a convolution of a filter with an image or by frequency
analysis on an image area. There are two reasons why it is hard to reduce
the number of features that have to be found. Firstly, these transforms do not
actually reduce the number of parameters needed to code the population of
natural scenes. They only reduce the number of parameters needed to code a
particular instance of a natural scene [9]. A general terrain classification method
needs to work on the whole population, which keeps the number of filters high.
Secondly, to make the texture analysis scale invariant, the image has to be
filtered at different scales. Research in natural image statistics informs about
what frequency steps to use. In natural images, edges are rarely very straight.
Any given edge will typically shift location and orientation across scale. The
degree of predictability is around the 1-2 octave range. This makes localized
and oriented structures sparse when the image is analyzed at frequency steps
that are a magnitude of 2 to 4 apart [7, 8].

Expensive computational approaches, such as extracting texture features,
are unsuited for application on a robot vehicle. If the searched feature size in
the real world is known, it is possible to extract features at the real world scale
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in the image. This can improve real-time computation. For such an adaptive
scale filtering method, range data acquired from a stereo camera pair is sufficient
[27]. There are two disadvantages of this method. Firstly, the searched feature
size is not always known. For example: stones come in different sizes. Secondly,
the uncertainty in range estimation by stereo cameras increases with distance
(see section 2.1). This means this method can only provide enough information
to be used as an obstacle detection algorithm.

A general texture classification algorithm may constrain real-time compu-
tation too much. A more specific classification algorithm may be fast enough
for real-time applications, because less filters are needed. Such an algorithm
can aid the general classification algorithm with valuable information. Suppose
the general classification algorithm has difficulty to robustly separate sand from
grass. A fast grass classification algorithm based on texture features can sep-
arate both classes. De Bonet has developed an algorithm that can characterize
non-homogeneous textures [2]. This includes textures with long-scale structure
that are neither local in space nor local in frequency. Grass is such a texture.
Section 2.6.5 discusses some more general methods to reduce computational
costs.

2.4 Motion features

Motion features can be extracted from spatial and temporal changes occurring
in an image sequence. These changes are caused by a relative motion between
camera and scene. Apparent motion of objects onto the image plane is a strong
visual cue for understanding structure and 3D motion. There will be a brief
discussion of its possibilities, followed by arguments why not to implement it as
a general real-time classification method.

The first essential step is determining the correspondence: which elements
correspond to which elements of the next image. One option is the tracking
texture features, such as corners. Estimating the apparent motion of the image
brightness pattern, the optical flow, is another possibility. Both possibilities
are computational trackable because the images are closely sampled: there are
only small spatial and temporal differences. In the optical flow case, the ap-
parent brightness of relatively moving objects does not change. In the tracking
case, predictions of feature locations can be estimated out of previous feature
locations.

By using motion features it is very difficult to recover a structure. This is
because the baseline between two consecutive frames, regarded as a stereo pair,
is very small (see section 2.1). However, finding the structure of the terrain
may not be necessary. It could be that terrain types leave a specific signature
in motion feature space.

A common concept of motion features is a point called the focus of expansion.
This point occurs if the camera, gets closer to the scene, which is mostly the case
in the terrain navigation task. In this case the motion field is radial, with all
vectors pointing away from the focus of expansion. There are two other motion
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field properties in this case. The length of the motion field vectors is inversely
proportional to the depth and is also inversely proportional to the distance from
a point to the focus of expansion.

There are a number of reasons why not to develop a motion based classific-
ation method:

1. in the known literature to us, there is no well founded indication of use-
fulness of motion features for natural terrain classification;

2. the camera has to move for the algorithm to work;

3. the algorithm has to be invariant to speed, orientation and distance, which
is difficult because of the earlier mentioned motion field properties;

4. the image resolution could be a problem because the images are closely
sampled;

5. a segmentation step has to be performed to find what regions of the image
plane correspond to different objects.

After a preliminary classification, motion features can provide extra information.
However, they are not an attractive first step for terrain classification.

2.5 Other sensor features

Other sensors can also aid in the obstacle detection task. This section briefly
discusses the laser rangefinder, the infrared camera and the near infrared cam-
era.

Laser rangefinder features

The LADAR, an acronym of laser detection and ranging, uses laser light for
detection of speed, altitude, direction and range. It scans the environment in
horizontal and vertical directions, yielding a 3D representation of the terrain.
DEMO IIT uses it not only for a geometrical representation, it is also used
for terrain classification [14]. They make the observation that natural objects
follow characteristic distributions in 3D space. Intuitively, points that are on
a surface will yield “flat” distributions. Points on a elongated structure, like
tree trunks, will yield mostly one dimensional structures. Points in the middle
of widely scattered point clouds, like bushes, will yield distributions that are
roughly equal elongated in all dimensions. Subsequently, neighboring points
with similar shape distributions are grouped into image regions.

This method has a major benefit: tree branches and trunks are recovered
even though they are partially obscured by vegetation. Another benefit is that
the ground level can be robustly detected even though it is obscured by veget-
ation. Unfortunately there are some disadvantages too. Firstly, confidence in
a clagsification stays very low until there is a sufficient density of points in a
neighborhood. This means that an autonomous vehicle is not always able to
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react to its environment. A second disadvantage is that it is hard to select the
size of the neighborhood over what the features are calculated. This is a very
important property for the robustness of the classification. Finally, the classes
2D surface, linear structures and 3D scatter do not represent the environment
very well. Color and texture features are complemented very well by LADAR
features. However, more research on LADAR’s for terrain classification has to
be done.

multispectral features

At wavelengths above 9 micron, the radiant component of the sun is small,
therefore thermal measurements are rather independent of the sun light condi-
tion. This is an advantage with respect to color analysis. Another advantage
is that thermal measurements can be used at night. The emissivity signature
of dry grass and soil are rather distinct in the thermal measurement case, as
opposed to the reflectance in the visible and in the-near infrared spectrum. Liv-
ing vegetation is very reflective in the near infrared spectrum though. These
findings were researched in the DEMO II project [22].

There are some disadvantages to thermal and near-infrared features. Firstly,
more research has to be done to find what bands are needed for for discrimin-
ating among the classes of interest for autonomous navigation. Secondly, the
temperature of the radiating surface determines together with the emissivity
the measured emittance spectrum. Some way has to be found to make thermal
measurements invariant to the temperature of the radiating surface. Robustly
classifying live vegetation, dry vegetation and soil can be of great importance.
Unfortunately it is not enough for a general classifier.

2.6 Classification

The features mentioned in the sections above are input parameters for a clas-
sification algorithm. This classification algorithm must able to map a feature
set to a class, preferably together with a confidence measure. The terrain cover
algorithm should be able to work in all sorts off terrain. It is probably too
cumbersome for a human to deduce classification rules for each terrain type.
Therefore only algorithms that learn a classification hypothesis are discussed.
Learning can be supervised or unsupervised. Supervised learning builds an
hypothesis using classified instances. Unsupervised clustering receives no such
feedback on an outcome. Supervised classification has some advantages over
unsupervised segmentation. Firstly, the final result should be a classification.
Secondly, classification allows more objective performance assessment, since the
results of the classifier can be compared directly the manual labeling performed
by a human operator. Finally, supervised classification generally does not use
time consuming iterative processes. Unsupervised classification can counterbal-
ance instances not present in the training examples. For terrain cover classific-
ation a hybrid classifier can be used [19]. This classifier uses a supervised color
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classification algorithm and a texture cluster algorithm.

In this section decision trees, neural networks, nearest neighbor methods and
Bayesian methods are discussed [23]. This is done in relation to how fast they
classify a new instance, how well they describe the classes in feature space, how
much training data is necessary and whether they allow a confidence measure.
The previous feature sections have shown that one feature method probably is
not enough for a robust classification. This makes the confidence measure of
some importance for fusing the results of various classifications. Of course it
is also important for the vehicle to have a degree of trust in its classifications.
Finally, some remarks are made that relate to all discussed learning algorithms.

2.6.1 Decision tree learning

Decision tree learning is a method for approximating discrete-valued target func-
tions, in which the learned function is represented by a decision tree. Decision
tree methods are among the most popular of inductive inference algorithms and
have been successfully applied to a broad range of tasks. One of the reasons
why decision trees are so popular is that the hypothesis is readable by humans
and thus verifiable. Another reason is that the learning algorithm can handle
errors in the training data.

However, the before mentioned features are all of continuous nature. A way
to incorporate the continuous values can be by dynamically defining new discrete
valued attributes that partition the continuous valued attributes into a discrete
set of intervals. Multivariate decision trees define classes by thresholding linear
combinations of several continuous valued attributes. They create piecewise-
linear approximations to surfaces in feature space by recursively dividing the
feature space with hyperplanes. These hyperplanes are not necessarily perpen-
dicular to the coordinate axes.

Buluswar uses multivariate decision trees to learn regions in RGB colorspace
[5]. He chose this method because it has been shown to produce good classific-
ation results from relatively few training samples. Moreover, they perform well
on arbitrarily shaped clusters in feature space.

2.6.2 Neural network learning

Neural network learning methods provide a robust approach to approximating
real valued and vector valued target functions. For certain types of problems,
such as learning to interpret complex real world sensor data, neural networks
are among the most effective learning methods currently known. The study of
artificial neural networks are inspired in part by the observation that biological
learning systems are build of complex webs of interconnected neurons. In ana-
logy, artificial neural networks are build out of a densely interconnected set of
simple units where each unit takes a number of real valued inputs and produces
a single real valued output. A popular implementation of a neural network is
the backpropagation algorithm. This implementation uses gradient descent to
tune network parameters to best fit a training set of input-output pairs.
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The input attributes in neural networks may be highly correlated or inde-
pendent of one another. In the terrain characterization task this is a benefit,
because it is not exactly known what features are important and how they in-
teract. For instance, input to the neural network can be some color and texture
features not knowing which features are important for classification. The net-
work learns an hypothesis that inhibits a fusion of the input parameters giving
more weight to important features. An extreme example is the ALVINN system
that uses a neural network to steer a vehicle on a road [28]. The 960 camera
outputs are directly fed into the network and the 30 output units encode the
steering direction.

Neural networks can represent the classes very well, but its hypothesis is
harder to interpret by humans. Moreover, neural networks require many training
samples to estimate an accurate hypothesis. This is due to the fact that their
is little inductive bias present in neural networks: the hypothesis space is only
little constrained by the learning algorithm.

2.6.3 Nearest neighbor method

Nearest neighbor learning is the most basic method of the class of instant based
learning methods. These instance based methods generalize only beyond train-
ing samples if a new instance is encountered. Then the relationship to the
previously stored examples is examined in order to classify the new instance.
The k-nearest neighbor algorithm selects the & nearest training samples accord-
ing to the Euclidean distance measure. The new instance is classified as the
most common value of the k neighbors. This method can be refined because
the distances between the to be classified instance and the training samples are
known: more weight can be given to training samples with a smaller distance.
It is robust to noisy training data and quite effective when it is provided
with a sufficiently large set of training data. An advantage of nearest neighbor
methods is that the sample that has to be classified can be considered to gen-
eralize beyond the training data locally. Other learning algorithms generalize
the training data globally because they maximize the performance on the whole
training set. An important disadvantage of nearest neighbor methods is that
the computational costs of classifying new instances can be high. This is due
to the fact that nearly all computation takes place at classification time rather
than when the training samples are first encountered. As mentioned before,
this is a major disadvantage for algorithms that are used in autonomous vehicle
applications. Another disadvantage is that nearest neighbor methods typically
consider all attributes of the instances when attempting to retrieve the similar
training samples. If only a few attributes are important for classification, then
instances that are truly most similar way well be a large distance apart.

2.6.4 Bayesian learning

Bayesian reasoning provides a probabilistic approach to inference. It is based
on the assumption that the quantities of interest are governed by probability
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distributions. When this assumption is valid, optimal decisions can be made by
reasoning about the probabilities together with the observed data.

Bayesian learning has some features that are not present in the above men-
tioned learning algorithms

e Fach observed training example can decrease or increase the estimated
probability that a hypothesis is correct.

e Prior knowledge can be combined with observed data to determine the
final probability of a hypothesis.

e Bayesian methods can accommodate hypotheses that make probabilistic
predictions and thus provide a confidence measure.

e New instances can be classified by combining the predictions of multiple
hypotheses, weighted by their probabilities.

There is a difficulty though: they require initial knowledge of many prob-
abilities. When these probabilities are not known in advance they are often
estimated based on background knowledge or on previously available data, such
as a learning set. Also assumptions about the form of the underlying distribu-
tions are often made. Terrain cover classes are reasonably well fitted by multiple
normal distributions in some colorspaces. This is shown in section 2.2.2. There-
fore, this difficulty can be overcome in some important cases if care is taken.

Bayes theorem is the cornerstone of Bayesian learning methods. In Bayesian
learning methods the most probable hypothesis from some space H is to be
determined given the training data D. In other words, the maximum posterior
probability P(h|D) of hypothesis h is to be found after seeing the training data
D. The posterior probabilities can be calculated by Bayes theorem

P(D|h)p(h)

P(HD) = =5

which is used to find the maximally probable hypothesis called a maximum a
posteriori (MAP) hypothesis

hayrap = argmaxP(D|h)P(h).
heH

The P(D) term is dropped because it is a constant independent of h.

The probability that a new instance x belongs to hypothesis h is described by
P(h|z). By comparing the probabilities of the available hypotheses given an in-
stance z, a confidence measure can be defined. For example, when P(grass|z) <
P(foliage|z), then the classification of the new instance as foliage has a higher
confidence as classifying the new instance as grass.
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EM learning algorithm

The EM algorithm is a widely used approach to learning in the presence of hid-
den variables. This is for example also the case in learning multiple normal dis-
tributions in a colorspace: there are a number of different normal distributions,
and it is not observable which instances where generated by which distribution.
The distributions are described by a model that consists of a weighted sum of
basic model components. Such finite mixture densities are given by

k
fr(x) = ZWW(X; 0;), (2.3)

with x a random vector, k the number of components and ¢(x;6;) the jth
component model parameterized on ;. The mixing weights 7; are subject to
the constraints m + ...+ m =1 and m; > 0.

The multivariate Gaussian density function is defined by

$(x;05) = (2m)~?|8;|7/% exp [-0.5(x — m;)TS} (x —my)] .

The mean m; and the covariance S; are collectively denoted by the parameter
vector §;. A multivariate Gaussian mixture is given by equation 2.3, where the
Jjth component ¢(x; 0;) is the d-dimensional Gaussian density. When such Gaus-
sian distributions are assumed, the hypothesis space only contains the mean and
covariance matrices of the distributions. This is a major constraint of the hypo-
thesis space that allows a smaller amount of training data to learn a hypothesis.

The EM learning algorithm iteratively re-estimates the hypothesis by re-
peating two steps. The first step uses the current hypothesis to estimate the
hidden variables, and is given by

e SHA)
Fr(xi)

This gives an indication of what distribution was used to generate a particular
value. The second step uses the estimates of the hidden variables to calculate
the maximum likelihood hypothesis. The maximum likelihood hypothesis is
the most probable hypothesis given the observed data. It assumes that every
hypothesis is equally probable. The log-likelihood is given by

P(jlx;) = (2.4)

Ly = ZIngk(xi)'

i=1

The task is to estimate the parameters {m;,m;,S;} that maximize the log-

likelihood using the training set {x1,...,x,}. The estimation of the parameters
can be carried out by the EM algorithm using the following iterative update
functions for each component j =1,...,k,
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The EM algorithm is very popular due to its simple implementation and the
guaranteed increase of the likelihood during optimizations of the training set.
There are some limitations though. Firstly, it assumes that the number k of
mixing components is known. Secondly there is no widely accepted method for
initializing the parameters. There are elaborations of the EM algorithm that try
to overcome these problems, for example the greedy EM algorithm, developed
by Vlassis and Likas [35].

The algorithm starts with one component. Regular EM steps are carried out
until convergence. Then a new component is added to the mixture. The optimal
position of the new component is found by first performing a global search among
all input points. Looking at the current mixture fj only m number of candidates
per component are generated. This search step is followed by a local search based
on partial EM steps for fine-tuning the parameters of the new component. This
action is analogous with equations 2.4 to 2.7. An example is shown in figure
2.6. Input to the greedy EM algorithm are the RGB-points that lie in image
areas with low variance. The greedy EM algorithm starts the learning process
by fitting a mixture-of-Gaussians that only contains one component. On each
iteration a component is added until all clusters are represented in the mixture.

EM color constancy extension

The standard EM learning algorithm is used by different researchers to learn
color and texture features for terrain cover classification [1, 6, 19]. Values out-
side a support region are classified as outliers. In the case of color constancy
there is a elaboration that is worth mentioning. Using the insights gained from
Lambertian reflectance (see function 2.2), a separate estimate is determined of
surface reflectance and illuminant. This is a benefit, because once the illumin-
ant is determined this acts as a constraint when determining the surface type
[3]. An iterative inference procedure was developed to speed up the classific-
ation process [33]. A table of typical colors of different material types under
different lightning conditions, the so called mean color chart, is used for initial-
ization. The initial surface reflectance and illumination is retrieved by selecting
the vector in the mean color chart that has the smallest angle with the observed
color vector. This initial step gives a fast classification that performs reasonably
well. The iterative part of this procedure detects the outliers reasonably more
robustly. This iterative inference procedure does speedup the classification, but
not enough for real-time applications.
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Figure 2.6: Greedy EM example. The fitted data points (a), and the other
images represent iterations of the learning process (b to f).
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2.6.5 General learning and classification remarks

When learning a hypothesis some care has to be taken. Firstly, learning al-
gorithms can suffer from local maxima. The algorithm can get stuck in subop-
timal solutions, and not find the best solution.

Secondly, learning techniques are susceptible to overfitting. A hypothesis
that performs much better on the training data than on the unseen test data
usually indicates overfitting of the data. Overfitting can occur when there is
noise in the data set or the number of training samples is to small to generate a
representative hypothesis. Cross-validation is a successful method to overcome
overfitting. Both a training set and a validation set are used for learning. The
hypothesis is learned with the training set, while its performance is evaluated
with the validation data.

The training set learns the hypothesis. Hoewever, evaluation of the hypo-
thesis is done on the validation data. This is done because the validation set
gives a better indication of performance on the unseen data.

There are three ways to increase computational efficiency by reducing the
image areas that have to be classified. Firstly, a region of interest can be estab-
lished once the vehicles path is known. This region is to be classified robustly
with high priority, while other regions can be searched if time allows it. A second
approach to is to only apply more time demanding classification algorithms to
areas with low confidence measures. For example, a texture classification can be
performed in the color classified areas that have a low confidence measures. The
last method is to only classify areas that 3D geometry based obstacle algorithm
classifies as obstacles.

2.7 Conclusion

This exhaustive literature study guided the research toward implementing a
color feature based approach. Color can tackle two frequently occurring prob-
lems. First, the classification by the stereo-vision component of patches of grass
as non-drivable. It is important to minimize the number these false-positive
objects. There are few impenetrable objects that are green and have a low
height. Therefore, color and height information are powerful tools to minimize
the number these false-positive objects. Secondly, bushes can now be separated
from soil. This distinction between piles of soil and bushes is important for the
obstacle detection task and is not achievable by range analysis alone.

Another benefit over other features exist. The benefit of color classification
is that it can look further ahead. On basis of this auxiliary data more efficient
paths could be planned. Possible objects, such as tree lines, can be detected
before they are in the range of the stereo-vision system. The Robojeep can also
gain a better notion of where roads or paths are heading. This could be used
for new applications such as dirt road following.

Other features seem unable to match the color features classification per-
formance. Color is able to combine various aspects that are important in clas-
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sifying terrain for autonomous navigation:
e clear distinction between terrain types;
e performs in a large distance range, and
e no time consuming feature extraction operations have to be performed.

It is very difficult to classify terrain types on only geometry or motion features.
This is also valid for thermal images of infrared cameras. Texture features
are more promising, however, their performance is too low. Also, if stereo-
vision provides the texture algorithm with scale information, still several time
consuming feature extractions have to be performed.

Mixtures-of-Gaussians can model color distributions in certain color spaces
very well and they can provide a confidence measure. The EM learning al-
gorithm is sufficient to learn the mixtures and classify new images. DEMO III
successfully implemented this and also satisfying the real-time constraint [1].

The following chapter presents our method and adds a valuable feature: envir-
onment auto-calibration.
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Chapter 3

Method

In this chapter a method is proposed that could satisfy the problem statements
constraints, as discussed in section 1.2. It is an elaboration of JPL’s work:
colors of the environment are learned in RGB-space using the EM algorithm [1].
Unfortunately, their method relies on advice from an external reference to deal
with larger chromatic variations. In an overview of their recent research [20],
they still consider the color shift caused by atmospheric conditions as an open
problem. These chromatic variations can occur very fast. On windy days the
environment conditions can change from sunny to clouded to rainy within the
hour. If the system must be able to act autonomously, the environment advice
must come from an internal reference. The method described here performs an
environment auto-calibration step before classifying the terrain types.

First an overview of the method will be sketched, followed by a terminology
introduction. Before describing each component of the method, the environment
state assumption is described.

3.1 Method overview

We chose to develop an environment auto-calibrated color recognition algorithm.
From the Lambertian reflectance (equation 2.2) it is know that the variance of
the apparent color of an object can be very large. Therefore, before classifying
a new instance it is important to know the state of the environment. By calib-
rating the obstacle classification on the environment state, more robust results
can be obtained.

The environment calibration algorithm can be split into three components,
which are depicted in figure 3.1.:

1. the environmental cluster component;
2. the learning component, and

e environment learning algorithm;
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Figure 3.1: Component overview.

e terrain cover learning algorithm.
3. the classification component.

e environment calibration;

e terrain cover classification.

The first component groups images based on their environmental states.
For example, sunny images in a particular scenery group together. These sets
of images can be input to the learning component.

The second component learns environment hypotheses and terrain cover hy-
potheses. Input to both learning algorithms are the sets of images found by the
cluster component or by an outside reference. Each image set should represent a
specific environment state. Because both learning algorithms have the same in-
put sets, and thus the same environment state A, environment hypothesis h ()
is linked with cover hypothesis h.(A). The sets H, and H, contain all cover and
environment hypotheses.

The classification component classifies the terrain using H, and H.. The
calibration part sends information about the environment to the terrain cover
classification part. With this information appropriate subset of terrain cover
hypotheses H. can be selected based on environmental states. This subset can
be used to classify new images. Output of this component is a terrain cover
image in which the pixel value defines a label.
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3.2 Terminology

This section introduces various data representations and terms used in the fol-
lowing sections. Figure 3.2 shows three data representations that are frequently
used, namely:

Images and masks An image is the output of a camera. It is a two dimen-
sional projection of 3D objects in the world. Each pixel in the image is
encoded by its color using three color channels. The camera outputs im-
ages in RGB-format, but after transformation the color channels can be in
other formats as well. Images are denoted by capitol letters, for example
I.

The terrain cover masks are manually labeled images that define to which
terrain cover each image area belongs. In such an image a one represents
a pixel that is of the specified class, and a zero represents all other pixels.
The locations of the ones in the classification masks correspond with the
locations of a particular class in the original image.

Masks can also be generated, for example variance masks. In this case the
local variance of an image is calculated. For all intensity pixels in a small
local window A the variance o2 is calculated according to

2 _ 1 L2
o —n_liEZA(z—z), (3.1)

with pixel intensities ¢. Image edges that are outside the filter range are
padded with zeros. The application of a variance filter on a intensity image
I resulting in a variance image I, is notated as I, = F,(Ir).

To create a mask out of an image I;, a threshold operation is performed,
denoted by M = T} (I, min,max). This operation sets all pixels in mask
M to 1 if they are in the range [min, max]. All other pixels are set to zero.

Instances When an image [ is transformed to a colorspace, it is called an
instance and is denoted by i. A mask M can select what points are trans-
formed to an instance, denoted by ¢™. An instance has three dimensions,
one for each color channel. A point in this space thus represents a par-
ticular color. In figure 3.2 the LAB-space is used. Note that there are
3 clusters: one for the sky class and two for grass class. Such clusters
are called elementary clusters. A class cluster i¢ contains all points that
are labeled class c¢. In case ¢ = grass, the class cluster contains two ele-
mentary clusters. One elementary cluster corresponds to grass that is
illuminated by direct sunlight, and the other corresponds to grass illu-
minated by indirect sunlight. A union of multiple instances 73 U. ..Uy, is
called a generalized instance. With the U-operator performed on instances
a concatenation of points is performed, not a union.

Modeled instances An instance i can be transformed to a modeled instance
i by fitting the class clusters by mixtures-of-Gaussians. Each mixture
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i¢ thus represents a class. A hypothesis is a special case of a modeled
generalized instance. A hypothesis h with environment state A contains
all modeled class instances, so h()\) = {i!,...,i"}, with n the number
of classes. Figure 3.2 shows the three elementary clusters fitted by two
mixtures. The first mixture models the sky class with one Gaussian. The
second mixture models the grass class with two Gaussians: one for the
sunny component and one for the shaded component.

3.3 Environment states assumption

For identifying the environment states, stable color features are needed. When
the terrain type or illumination changes, the variance increases. Another source
of variance can be the 3D geometry. In areas with complex geometry the vari-
ance is high. On flat surfaces it can be low. These reasons explain why the
areas with low variance yield small and well separated clusters in colorspace,
illustrated by figure 3.3. We assume that the colors of the low variance image
regions are heavily influenced by the environment state, and thus are important

features for estimating the environment state.
a) b)

Figure 3.3: An image (a) with its variance mask (b) as well as the points in
RGB-space (c) and the variance filtered points in RGB-space (d). The shown
classes are grass (light green), foliage (dark green), gravel (gray) and sky (blue).

The position of a terrain class with low variance in colorspace is thus mainly
due to the class color and the illuminator. The similarity of low variance clusters
of a new image to clusters in a database, informs about the environment state
of the new image. Thus, the color calibration “rig” is the scenery itself. In all
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components of our method these areas of low variance are essential.

3.4 The cluster component

Input to this component is a set of labeled images I,.¢: the original images with
their classification masks. These images can be shot in different environment
states, and this component will group the images with similar environment
states. With respect to the environment state, this clustering is unsupervised.
The clustering component is subdivided in three parts: the preprocessing steps,
the distance calculation and iterative clustering steps. A flowchart is shown in
figure 3.4.
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mask mask transformation masks

— = e
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(image by image)

variance intensity LAB color channel / classification /

| greedy EM learning |

pre-processing steps

clustering steps

| calculate distances |

met
merging of instances I& stop
no criteria

/ sets of similar images /

Figure 3.4: The cluster procedure.

3.4.1 Preprocessing steps

The images are subjected to three processing steps: variance thresholding,
intensity thresholding and a color channel transformation. In the first two
steps the RGB images are transformed to intensity images I;. The operation
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M, = Ty(F,(Ir),0,v:) calculates variance masks M, for an intensity image Iy
using a constant variance threshold v;. This mask is selects those pixels which
are able to estimate the environment state.

The second step performs the operation M; = Ty, (1,0, 1), creating a intens-
ity mask using the constant ;. Pixels with high intensity values are discarded
because the sky tends to be saturated. In figure 3.3 the sky clusters are bend
because of the saturation. These clusters with maximum intensity value causes
distinct sky clusters to come to close to each other and obstruct the cluster
process.

The final step performs a color channel transformation. Because the pixel
data is still in RGB format the colors are not comparable: the distance in the
colorspace is not a fair guide to the difference in color perception. In order to
be able to apply a distance measure successfully, it is essential to transform to
color channels in which objects are comparable. The LAB-space, discussed in
section 2.2.2, is such a space. This transformation is applied on all the images
in the learning set.

The next step transforms the images to instances represented in LAB-space.
For each class in an image a selection mask is generated by intersecting between
the variance mask M,, the intensity mask M; and the requested label mask
M.. This selection mask picks only those pixels of the requested class ¢, have
variance lower than v; and intensity values lower than i;. For every class, the
pixels in the images are transformed to points in 3D LAB-colorspace. So for
every image I op in I the following operation is performed:

Vee C: M, with M = M.N M, N M.

Two steps are performed before fitting class clusters in the instances with
mixtures-of-Gaussians and thus transforming them to modeled instances. First,
all clusters with less than a certain number of points are discarded. This action
makes sure that no Gaussians are fitted on too little data points. The second
action is the cross-validation step. The points in the clusters are randomly di-
vided between a learning set and a test set. An upper bound on the number of
points can be given for both sets. After these steps are performed, the greedy
EM learning algorithm is invoked. This algorithm is described in section 2.6.4.
Input to this algorithm is the learning set, the test set, the maximum number
of components and the number of candidates per component. To estimate en-
vironment states we need to assure that one cluster specific for an environment
state is modeled with one component of a mixture-of-Gaussians. Therefore no
elementary clusters of one class are modeled if the distance between there means
is smaller than a specified value. Notice that the by using the greedy EM al-
gorithm it is not necessary to specify the number of components per mixture,
which is essential for the clustering algorithm. Output of the learning algorithm
are sets of mixture-of-Gaussians. Each mixture represents a class cluster, and
each set represents an instance.
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3.4.2 Distance calculation

The distance calculation between two modeled instances returns two measures.
This is because the distance between two Gaussians can only be calculated
if both Gaussians are of the same class. The first measure is the distance
measure, and the second measure is the unmatched measure. The distance
measure returns the mean distance between corresponding elementary clusters
in two instances. The unmatched measure counts how many Gaussians of a
particular class are present in one instance, that are not present in the other
instance. For example: if the first instance does not contain a grass cluster and
the second does contain one consisting out of two elementary clusters, then its
unmatched value is two. Otherwise, if the first instance would only contain one
elementary grass cluster, its unmatched value would also be one.

In the following sections we describe the distance calculations. The distance
between two Gaussians is described first. This distance is used to calculate the
distance between two mixture of Gaussians. Finally, the distance between two
instances is calculated.

Distance between Gaussians

The distance between two Gaussians is calculated by the Bhattacharyya distance

1 1 -1 1 |l(21 =+ Eg)'
Do = L - )" [—(El ; 22)] (i — o) + Llog IZELE 2L g )
8 2 2 VIZ1] 2]

in which p; and pe are the means of the normal distributions, and ¥; and X,
are the corresponding covariance matrices.

Distance between mixtures-of-Gaussians

The distance between two mixtures-of-Gaussians f¢ and g¢ with the number of
components respectively equal to ny and ng is calculated by first calculating all
possibilities. These possibilities are stored in the matrix D¢,

Dy(fe(1),9°(1)) ... Du(f(1),9°(ny))
: : : . (3.3)

Du(fo(ng),g°(1) .. Du(f*(ns),g°(ny))

The smallest n distances in D¢ are returned in a vector v¢ with size n, with
n = min(ng,ng). Intuitively, n is the number of matches between components
when a component can only be matched one time. For example, if ny = 3
and ny = 2 then g has only got two components to match two of the three
from f. The distances between the matched components is returned, as well as
the number of unmatched components for each mixture. These are found by
u$ =ny —n and ug = ng —n. In case the u® values are negative, then they are
set to zero.

De(f%,9°) =
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Distance between instances

Now we have the tools to calculate the distances and the number of unmatched
Gaussians between two modeled instances: ¢ and j. Both instances contain a
set of mixture-of-Gaussians, where each mixture corresponds to a class cluster.
According to the method described above, all distances and unmatched clusters
are calculated for mixtures of the same class. The distances v°¢ are concatenated
to a vector V. The number of unmatched uf and u§ are respectively summed in
u; and u;. For classes that are present in 4 but not in j the number of mixture
components is added to u;, which is also done vice versa. This procedure returns
two variables: the mean distance d(i,j) = V and the minimum number of
unmatched mixture components (¢, ) = min(u;, u;).

3.4.3 Iterative clustering steps

The merging procedure can be subdivided in two parts. The first part selects
what instances to merge. The second part does the actual merging.

Select instances

The first step in selecting what instances to merge is the distance calculation
over all instances. These distances are stored in a set of sparse matrices 9,

0 dlis,is) ... d(is,in)
0 oo 0 dlin_1,in)

where k the minimum number of unmatched mixture components and n is the
number of instances. Thus all distances in d; are subject to the constraint
u(i,7) = k for all ¢ and j in dy.

Three user defined thresholds guide the merging procedure. The first is
the merging threshold T,,. This threshold specifies the maximum distance two
instances may have. To merge two instances ¢ and j, the constraint d(i,j) < Tp,
should be satisfied.

The second threshold is the maximum unmatched threshold T;,. This thres-
hold specifies the maximum number of unmatched elementary clusters for the
merging of two instances. To merge two instances ¢ and j, the constraint
u(i, ) < T, should be satisfied.

Finally, the third threshold is the leave-one-out threshold 7;. This para-
meter deals with high distance values between two instances that are due to a
wrong matching of Gaussians. For example, this is the case when a distance is
calculated between two elementary grass clusters: one in the sun and the other
in the shade. If the number of matched elementary clusters of an element in
0 is higher than the leave-one-out threshold and the distance is higher than
the merge threshold, the following operation is performed: the mean distance
is calculated without using the highest distance between two components and
this distance is inserted in dg41.
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The merging procedure starts with £ = 0. The two instances are selected
that have the smallest distance to each other. If this distance is smaller than
the merge threshold, then both instances are merged and k is set back to zero.
If this is not the case, k is raised by one, and the instances with the smallest
distance in dy, are selected. The merging procedure stops when k is equal to the
maximum unmatched threshold T,.

Merge instances

Suppose the two modeled instances ¢ and j are selected to be merged. Both
modeled instances are removed from the set of modeled instances. A new in-
stance h is created by 7 U j. After modeling h with mixtures-of-Gaussians, h is
added to the set of modeled instances.

Output of the cluster component are |A| sets of images names, where A is the
set of environment states.

3.5 The learning component

The learning component learns coupled environment and terrain cover hypo-
theses. Both hypotheses have |A| sets of modeled generalized instances, where
A is the set of environment states. The set of environment hypotheses is denoted
H, and the terrain cover hypotheses set is denoted H.. The hypothesis h())
is linked with hypothesis h.(A). If he(A) represents dune landscape on sunny
days, then h.()) also represents dune landscape on sunny days. The learning
component is depicted in a flowchart in figure 3.5. The steps of this learning
component are performed for all sets of images.

/ set of images / classification
masks

variance
mask

v

transform images transform images
to unclassified H to classified
generalized instance H generalized instance
greedy-EM H greedy-Em
learning H learning

A | A

environment ' terrain cover
hypothesis S hypothesis

Figure 3.5: The learning procedure

Input to the learning component is a subset I; of images from I, where
every image in I has the same environment state A. This set can be output of
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the cluster component, but it can also be defined by an outside reference.

Environment hypothesis

Before the calibration hypothesis can be learned, masks M, have to be generated
that can select areas of low variance. This operation is the same as described
in the cluster component section.

The next step transforms the images to one generalized instance. In this step
only the variance masks are used, so the pixels have not got a label assigned to
them anymore.

The final step learns the environment hypothesis he(\). First, the points
in the generalized instance are randomly divided between a learning set and
a test set. An upper bound on the number of points can be given. Next the
greedy EM learning algorithm is invoked. This algorithm is described in section
2.6.4. Input to this algorithm is the learning set, the test set, the maximum
number of components and the number of candidates per component. QOutput
is one mixture-of-Gaussians that represents the environment hypothesis he(\):
a modeled unclassified generalized instance.

Terrain cover hypothesis

The learning of the terrain cover hypothesis is essentially the same as described
by Bellutta [1]. It is also very similar to the learning of the environment hy-
pothesis. In case of the terrain cover hypothesis also one generalized instance
he(X) is created.

Here, sets of pixels for each existing label are created using only the label
masks ¢. These masks select only pixels that are of the requested class. For
every image and for all their labeled masks a selection is added to h.(X). The
resulting generalized instance h. is still classified: ﬁil contains all points of class
c.

Finally the terrain cover hypothesis h.(A) is learned. The points of each
class are randomly divided in a learning set and a test set. An upper bound
on the number of pixels can be given for each set of points. The greedy EM
algorithm is invoked using the same input parameters as in the environment
hypothesis case. Output is the modeled generalized instance h.(\). This is a
set of several Gaussian mixtures: one mixture h¢ (A) for each class ¢'.

3.6 The classification component

The last part of the method is the classification component. Its function is to
classify an unlabeled sequence of images Uy, ..., U,. For each input image, two
images are produced: a classification image C' and a certainty image P. In the
classification image the pixel values are integers that correspond to the derived
classes: it defines what terrain classes the areas in the input image are. In the
certainty image the pixels values are real values that correspond to a certainty
measure of the derived classes. The classification component is subdivided in
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two parts: the terrain cover classification part and the calibration part. The
classification component is depicted in figure 3.6. The left hand part shows the
terrain cover classification part from top to bottom. In the right hand side the
calibration part is depicted from bottom to top.

classification calibration
part : part

/ image sequence / :

i=0

i=i+1 . .
H image i

i find the calibration  load
classificatD%——e— hypotheses with calibration
H maximum likelihoods hypotheses

transform
to instance
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variance intensity
mask mask

no : ﬁ -
ok? T image i

yes

/ certainty and
classification
/ images

Figure 3.6: The classification procedure.

3.6.1 Calibration part

Although the classification component does not start with the calibration part,
it is still explained first because of clarity reasons. To determine which terrain
cover hypothesis should be used for image U, the image is first transformed to an
instance 4. The instance is transformed to the same format as the instances used
in learning the environment hypotheses, thus masks that define low variance
areas are generate as well as intensity masks. The same variables are used for
these operations as have been used in the learning of the environment hypothesis.

The final process calculates the likelihood of the points set 4 with every
hypothesis in he. The likelihood of environments is returned in a vector where
Ey = P(al|he())), where X is refers to the environment state.
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3.6.2 Classification part

The image sequence Uy, .. ., U, is read one image at a time. On the initial run of
the algorithm the classification hypothesis is not yet specified. This hypothesis
is called the O-hypothesis and its special case is explained in the discussion of
the decision node.

Calculating class likelihoods

Generally, the calibration part has determined what environment hypotheses
performs best. Output of the calibration part was a vector E, that describes
the likelihood of each environment state. A simple and computationally fast
option is to select one terrain cover hypothesis. This cover hypothesis is linked
with the environment state A that has maximum likelihood max(E). The new
image U is transformed to points in RGB-space 4. For each point 4’ in 4 and
for each class ¢/, all likelihoods in the terrain cover hypothesis are calculated:
1€(@') = P(@'|hS (N)). Bach pixel now has I, . ..,1" likelihoods assigned to it,
with n the number of labels.

This method of finding the label likelihoods belonging to a pixel has some
disadvantages. Because the classification solemnly relies on one environment
state, catastrophic classification results can occur if a wrong environment state
is selected. Also, because the environment states of the to be classified images
are rarely the same as the learned states, there will be suboptimal classification
results.

Our second method of calculating class likelihoods can select more than
one environment state. An environment state X is selected in A’ if it satisfies
E()\) < max(E) - (e;/100 + 1). This operation selects all states that lie within
e:% of max(E). Every state A’ in the set A’ is used to classify the new image.
The likelihood that a pixel in U belongs to class ¢ is calculated by

ey = 3 ronZe,

AeN!

with © = 37y E(\") . In other words, the likelihood is weighted by the
averaged likelihoods of the environments. If this step is performed for every
class and pixel, the same number of likelihoods is returned as in the maximum
likelihood method.

In the next chapter we will present results showing that selecting more en-
vironments states for classification has both benefits and a disadvantage.

Relaxation step

The classes with the highest likelihoods maximum likelihoods could directly be
used for classifying a new image U. However, classification based on one pixel
is noise sensitive. To attenuate this noise, a median filter can be performed for
each class likelihood. The class likelihood value 1€ of pixel (3, j) is subjected to
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a median operation with rectangular box of size m of the same class likelihood
values [. around (i, j).

Calibration decision

After the relaxation step, it is determined if the classification is valid. This takes
two subsequent steps. First, for each pixel the maximum likelihood I,, out of
the set I*,...,I" is selected. These values are summed to yield a likelihood Ias
over the entire image. The second step actually determines if the classification is
valid. If the constraint I3y < Ty is not satisfied, the calibration part is invoked.
In this constraint Tj; is a manually set threshold. The 0-hypothesis always false,
so that in the initial case the calibration part is always called.

Output

The final operation outputs the classification image C and the certainty image
P. The classification image C' contains labels that correspond to the derived
classes. For each pixel in U the class is selected that has the highest likeli-
hood. For each pixel in the certainty image P the values are calculated by
max(l1,...,I")/ > (1%, ...,I"), thus providing a confidence measure.
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Chapter 4

Experiments

This chapter is divided in two parts. The first part discusses the performance
evaluation. Here the used datasets, labeling, taxonomy and the performance
metrics are presented. The second part describes three experiments concern-
ing our auto-calibration method and discusses their results. These experiments
show how well the environment clustering performs and how well the environ-
ment estimation performs. Finally an experiment is performed that compares
our environment auto-calibration method with a method that is given the en-
vironment state. Moreover, this test evaluates how well our method classifies
the terrain. In conclusion, a post-processing step is reported that could boost
the algorithms performance.

4.1 Performance evaluation

4.1.1 Datasets

Several datasets where recorded to evaluate our auto-calibration algorithm. This
section describes the datasets in terms of: content, weather conditions, specific-
ations, classes, training- and testsets.

All images are collected with a camera in the visible spectrum. The used
camera is the Nikon Coolpix 990 set at a resolution of 2048 x 1536. These images
are subsequently scaled to images of size 320 x 240 using a linear interpolation
method.

The images are shot at the Waalsdorpervlakte, a dune scenery nearby the
city of The Hague in The Netherlands. The environment contains several nat-
ural materials and obstacles. Most frequently occurring are sand, grass, bushes,
gravel and trees. Three datasets where recorded in different weather circum-
stances: one with clear sky, one with an overcast, and the last one when it was
drizzling. The number of images in the sets are respectively: 33, 28 and 28.
The images in the datasets contain a number of different situations typically
encountered while driving in vegetated terrain.
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Each dataset is split into a training- and testset to obtain image sets that
are as diverse as possible. These sets are not only used to find the best fitting
mixture-of-Gaussian model using the expectation maximization algorithm, they
are as well used for a quantitative performance measure.

4.1.2 Class selection and labeling

Taxonomy decisions should be driven by the application, selecting as many
classes as deemed appropriate for the task to be carried out. However, a large
taxonomy may simply not make sense, if the classifier is unable to discriminate
among such a variety of classes. Such a situation occurs when a human would
label two regions that have the same color but have different classes.

Six classes of interest have been identified, namely: grass, foliage, sand,
gravel /stone, sky and uncertain. The following arguments, state why this set of
classes is of interest;:

e by finding sand or gravel, dirt roads can be followed;

e it is important to be able to distinct between grass and soil types, such as
gravel, sand and stone, because grass can be misclassified by the stereo-
vision system as an obstacle.

e finding tree lines has a navigational benefit in the sense that the vehicle
will not explore paths that come to a dead end anyway;

e the ability to distinct between sand and gravel/stone classes is important
for controlling the velocity to ensure the safety of the vehicle.

e the sky class is a valuable feature for estimating the environment states,
because

1. the sky is robustly and accurately detectable by the classifier;
2. the sky is almost always present in every image, and

3. the sky has distinct positions in colorspace depending on the weather
circumstances;

e the uncertain class contains all pixels that can not be safely classified into
any of the other classes, and thus have a certainty measure lower than a
specified certainty threshold ¢..

This taxonomy does not only distinct between drivable and non-drivable
areas, it also considers navigational and vehicle control applications. A smal-
ler taxonomy set in combination with a stereo-vision system can be sufficient
to distinct between the drivable and non-drivable areas. This smaller set con-
tains three classes: grass/foliage, sand/stone/gravel, sky and uncertain. Green
colored objects are penetrable if they are below a certain height threshold. In
this case, the green objects can be low grass, patches of high grass or small
bushes. If the objects exceed the height threshold, the green objects could be
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larger bushes or trees. Note that the threshold must be set conservatively. If the
area is classified as sand/stone/gravel, the area is more rigid and thus drivable
if the obstacle is not to steep.

The labeled masks, mentioned in the method chapter, assign a class to an
image area. These are created by labeling an image area by hand. Not all parts
of an image have been hand-labeled because there are situations where any of
the chosen classes does not represent the area well. This is especially the case
near region boundaries, where an area contains colors from more than one class,
and therefore should not be used for learning.

4.1.3 Performance metrics

The classification results on the labeled regions are collected in suitable matrices:
so called confusion matrices introduced by Castano et al. [6]. The entry, C'Mj
of such a matrix represents the number of times a pixel labeled as j has been
classified as k. The confusion matrices provide three quantitative performance
measures. The first quantitative assessment measure is the number of correctly
classified points over the total number of points in the complete training set:

Py — 2 OM;j; _
Zj,k CMj,k
An estimate of the probability of correct classification for each class j is given
by:
: CM; ;
P(Clj) = .
2 CMjk
A problem with the global measure P¢ is that it is biased toward the the
class that occurs most in the training set. Therefore another global measure
is introduced that gives the probability of correct classification assuming that

the classes are equiprobable. This measure P¢ corresponds to the average of
P(C5).

4.2 Experiments

This sections discusses the experiments and results of our auto-calibrated terrain
cover classifier. The first test discusses how the environment cluster component
performs. The second experiment discusses the results of the environment as-
sessment. The final test compares the our calibrated environment method with
a method that is given the environment state. This experiment evaluates how
well our method classifies the terrain types as well. After these experiments, a
post-processing method is discussed to boost the performance.

Before these experiments were conducted, a small test was performed com-
paring the RGB, rgb, opponent, Otha and LAB spaces. The result of this exper-
iment was that no colorspace increased the performance over the RGB-space.
JPL concluded the same in their research on terrain cover classification [1]. In
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the following experiments the cover hypotheses are represented in RGB-space.
The cluster component still uses LAB-space.

4.2.1 Environment cluster experiment

In this experiment the cluster component is tested with regard to its performance
and robustness. The task of this component is to group images with similar
environment states. The results of the final terrain cover classification depend
a great deal on the environment clustering.

If only images are merged that are very similar, there will be a lot of clusters
containing few images. A disadvantage of a small similarity threshold is that
some terrain types will not be represented well in the cover hypotheses. However,
only grouping very similar images has the benefit that sub-environment types
can be found. This is an advantage because the environment state chances
significantly if the vehicle drives into a forest. Also, environment states that
should not be part of any environment set can be filtered out. If images that are
less similar are also grouped, there will be less clusters containing more images.
In this case, the cover hypotheses are more likely to have a good representation
of each terrain type.

Note that these arguments place the environment “ground-thruth” as a sub-
ject under discussion. The extra degree of freedom provided by the environment
cluster component could make the terrain cover classification perform better
than a classification based on the ground-thruth environment states. This is
the reason we prefer the term given environment state over the term ground-
thruth.

The merging of similar images is controlled by the merge threshold T,,,
described in section 3.4.3. A small merge threshold will only merge images that
have a small distance to each other. Other parameters that guide the cluster
process, described in the same section, are the maximum unmatched threshold
T, and the leave-one-out threshold 7;. The maximum unmatched threshold
describes how many unmatched mixture components are allowed for clustering.
The leave-one-out threshold controls how many matched components are needed
to discard a large distance between components.

Only the merge threshold T, is varied in this experiment. The other thres-
holds T, and T; are set to the constant value 2. The terrain classification
component interpolates between environment states using e; = 10. So all envir-
onment states within 10% of the maximum likelihood are considered for classi-
fication. The Waalsdorpervlakte dataset is split into a training and testing set.
Environment clustering and terrain cover learning are performed on the training
set, while terrain cover classification is performed on the test set.

Table 4.1 presents the clusters found for different T;, values. As expected
the number of clusters gets lower when the merge threshold increases. At most
three images are part of an environment set that was not present in the original
sets.

Figure 4.1 shows P, and P, measures for an increasing T},,. When there are a
lot of small clusters, the P, value is high and P, is low. This can be explained as
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Tm Il 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5

sunny (16) 14x1, 5x1, 3x1, 1x1, 1x2, 1x2, 1x2, 1x1, 1x43
1X2 1%3, 1%2, 1%2, 1x15/1 1Xx16/2 1x15/1 1x16/1
1x8 1x3, 1x12
1X8
cloudy (14) 10x1, 2Xx1, 1x1, 1x1, 1x1, 1x13/1 1x13/1 1x13/1 1x1
1x4 1x2, 1x2, 1x2, 1x13/1
1x4, 1x11 1x13/2
1X6
rainy (14) ax1, 1x1, 1x1, 1Xx13 1x13 1X13 1X13 1X13 0
1x2, 1x4, 1x13
2x4 1x9

Table 4.1: The resulted environment clusters for varying merge threshold, where
n X m/o mean n clusters of m images of which o do not belong to the original
state.

follows. The classes that occur frequently are well represented in the hypotheses
and are classified correctly. The classes that occur less frequently are not that
well represented. The conditional probabilities, on the right hand side of the
same figure, show that P(C|gravel) and P(C|sand) have much lower values at
T.. = 0.5 than at T}, = 3. It is impressive though that the interpolation of
environment states has such a high P, value as a result.

At T,, = 0.5 the difference of the maximum likelihood to the other envir-
onment likelihoods is small: most hypotheses do not represent the data well.
When the clusters become larger, more classes are represented better. The
gravel and sand class probabilities rise, and with them rises P,. In contrast, P,
descends due to a drop of the conditional probability of grass. Because grass
areas have much low variance values than foliage areas, the auto-calibration al-
gorithm selects mostly hypotheses in which grass is well represented. For higher
T, values more foliage is present in the cover hypotheses. Section 4.2.3 shows
that a considerable amount of grass pixels is misclassified as foliage, thus for
higher T, values, grass has more competition from foliage.

Between T, values 2 and 4, the main environment states are all fully grown:
each class is represented well and the maximum P, and P, values are reached.
For comparison, if the three original clusters are used for learning the probabil-
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Figure 4.1: The left figure shows the probabilities P, and P, with varying merge
threshold T},,. The right figure shows the corresponding terrain class conditional
probabilities.
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ities are: P, = 0.84 and P, = 0.83. Figure 4.1 shows that these are comparable
to the generated environment sets.

At T, = 4.5, the original environment sets are merged to one set in which all
environments are represented. Wrong environment states are used for classifying
new images, which explains the drop in all probabilities.

The cluster component performs very well for values of T}, between 2 and 4. In
this wide range the terrain cover probabilities P, and P, are higher than 0.8,
indicating robust environment clustering results. Unfortunately no sub-terrain
set where found that improved the classification results. Some images where
filtered out, but this had no significant effect on the final results.

4.2.2 Environment estimation experiment

This experiment investigates the auto-calibration algorithm. Incorrect envir-
onment estimations have a large negative impact on the results of the terrain
cover classification. This experiments tests the performance and robustness of
the auto-calibration algorithm.

The auto-calibration algorithm was run with different variance threshold
values. The variance threshold v; selects the image areas that have low enough
values to be suitable for estimating the environment state. If only a few areas
are selected, some classes will not be used for environment estimation. If too
many areas are selected, a class will spread out more in colorspace and will not
represent the typical class color in an environment state. Both cases will reduce
the number of correctly estimated environment states.

The environment and terrain cover hypotheses are learned for every v; value.
Classification is performed with corresponding values. The original dataset of
the Waalsdorpervlakte is used. Again, learning and testing are performed on
different sub-datasets. Only the environment state with the maximum envir-
onment likelihood is used for classification. Figure 4.2 shows the percentage of
correct environment classifications. Note that for the same reasons as described
in the previous experiment, the notion of “correct” environment state is some-
what a subject under discussion. In this experiment the original clustering can
serve as a ground-thruth without out any problems though.

As stated before, if v; is too small then not enough calibration areas are used
for successful environment assessments.

The constant correctness percentage of about 85% at v; < 5, can be ex-
plained as follows. With this low variance threshold, only sky areas are selected
for the environment assessment. The sky clusters in different environments are
well separated from each other, leading to stable environment estimations.

More classes are selected for environment assessment when v; > 5, improv-
ing the percentage of correctly estimated environments. The auto-calibration
algorithm misclassified at most 2 out of 44 images for v; values higher than
15. Because most classes are less well separated than the sky class, some noise
is introduced due to random processes in the learning and estimating of the
environment states.
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correct %

Figure 4.2: The probability for an altering variance threshold.

The percentage of correct environment assessments remains high for very
large v; values. The performance reduces only little if no variance threshold is
used for assessment of the environment state. Probably the areas of low variance
coincide in colorspace with high density areas. The greedy EM algorithm learns
these densities, taking over the the role of the v; parameter.

The auto-calibration algorithm has high performance values in a wide range of
variance thresholds, making it a robust algorithm. The percentage of correct
environment estimations does not drop under 95% for variance thresholds higher
than 15.

4.2.3 Terrain classification experiment

This experiment investigates the performance of our terrain classification com-
ponent. Its performance in distinguishing between drivable and non-drivable
areas is considered, as well as its performance in distinguishing between ter-
rain classes suitable for navigational tasks, such as dirt road following. Our
auto-calibration method is compared to a method that is given the environment
state.

The method that is given the environment state is our implementation of the
color classification algorithm of JPL’s autonomous vehicle DEMO III [1, 20].
This method uses no environment calibration, so it is given the environment
state belonging to the original set of the new image. In other words, the en-
vironment “ground-thruth” is given. For learning JPL uses the standard EM
algorithm with 3 to 5 components per class. In our implementation of their
algorithm 4 components per mixture are used.

The results of our implementation of the DEMO III approach are compared
with two variants of our environment auto-calibration method. The first method
selects the terrain cover hypothesis belonging to the environment with maximum
likelihood. The second variant interpolates between the cover hypotheses using
€y = 40.
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The hypotheses all learn and test on the same Waalsdorpervlakte datasets.
The DEMO IIT method uses the original clustering, while our methods use the
clustering of merge threshold value 2.5 which is generated in the environment
cluster experiment.

Quantitative results

The probabilities of the methods are shown in table 4.2. In this test, the stand-
ard EM algorithm used in our implementation of the DEMO III system is run
only once and could have learned a sub-optimal solution. However, the test given
environment state was also performed using the greedy EM learning algorithm,
which led to no significant performance boost.

| Pe | Pe | P(Clsky) | P(C|gravel) | P(C|grass) | P(C|foliage) | P(C|sand)
0.83 0.94 0.73 0.79 0.77 0.79
0.85 0.99 0.72 0.77 0.83 0.80
0.84 0.96 0.74 0.77 0.80 0.80

given env.
maximum env.

0.80
0.82
interpolating env. 0.82

Table 4.2: Probabilities for all terrain classes.

These quantitative results show a maximum difference of only 6% between
the methods. This small maximum difference illustrates that the environment
auto-calibration is a powerful technique for outdoor terrain classification and
in no means is inferior to an external reference method. Auto-calibration even
outperforms the method where the environment state is given on P,, P, and
most of the conditional probabilities. Only the maximum conditional probability
value for the grass is higher. This could be an indication that the environmental
cluster algorithm boosts performance even further when more elaborate datasets
are used.

Figure 4.3 shows normalized confusion matrices of the three tested meth-
ods. These matrices are normalized so that every class occurs equiprobable.
The numerical results are shown in appendix 6. The first thing that attracts
attention is the fact that there is no significant difference between the matrices.
The largest percentages are all on the diagonal, illustrating that the labels are
mostly classified correctly.

Figure 4.3: Confusion matrices simulating that every class occurs equiprobable.
From left to right: given environment, maximum environment auto-calibration,
interpolating environment auto-calibration.
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In general, the sky label misclassifies a small portion to gravel, mostly due to
the color resemblance between the sky in a rainy environment and gravel. Gravel
also loses portions of correct classifications to the foliage and sand labels. For
the obstacle detection task, misclassifying gravel as foliage is a problem because
stones can be classified as green penetrable objects. Grass and foliage are mostly
misclassified as each other, which is not a problem for the obstacle detection
task: green objects with low height can be safely classified as penetrable. Most
of the misclassifications of sand are classified as gravel which is also no problem
for the obstacle detection task. However, some portions are also classified as
grass and foliage.

The required taxonomy for distinguishing between drivable and non-drivable
areas allows that some of the classes are merged. In this obstacle detection case,
the gravel and sand classes are merged as well as the foliage and grass classes.
Table 4.3 shows that the obstacle detection task performs significantly better
by using a smaller taxonomy. These results show that color features perform

|| Pe | Pe | P(Clsky) | P(Clgravel U sand) | P(C|grass U foliage)
given env. 0.90 | 0.89 0.94 0.84 0.90
maximum env. 0.93 | 0.92 0.99 0.86 0.92
interpolating env. 0.92 | 0.91 0.96 0.85 0.91

Table 4.3: Probabilities for obstacle detection task terrain classes.

very well in discriminating obstacles in natural terrain. Especially if one takes
into account that not all misclassified terrain types are potential obstacles.

Qualitative results

Figure 4.4 shows some classification results. The first column depicts the original
RGB images. The rainy images were shot in very dark circumstances, making it
hardly possible for a human to discriminate the classes. For illustration purposes
these images are shown brightened.

The second column shows the results achieved by our implementation of the
JPL method, which requires the environment state as an external reference. The
third column shows the results of our automatic environment calibrated system
using the terrain cover hypothesis based on the maximum environment likeli-
hood. The fourth column shows the results for the same system using terrain
cover interpolation during classification. In this case, the hypotheses are selected
that are within 40% percent of the environment hypothesis with the maximum
likelihood. These classification results expose some benefits and shortcomings
of the used methods that will be discussed in the following paragraphs.

Firstly, interpolating between different terrain cover hypotheses can boost
performance. Images 1 and 6 show cases where the interpolation method results
are better than the method that selects the hypothesis corresponding with the
maximum environment hypothesis. In case 1 more grass is recognized, whereas
in case 6 the gravel is recognized. In these cases, the performance improve-
ment is mostly due to supplementing the terrain cover hypothesis with class
hypotheses that are not well represented in the terrain cover hypothesis corres-
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Maximum Interpolating
Given environment environment environment
Original Image state calibration calibration

Figure 4.4: The terrain cover classification results (blue = sky, light green =
grass, dark green = foliage, gray = gravel, yellow = sand and red = uncertain).
Images 1 to 5 are captured in a sunny environment, 6 to 9 in a cloudy environ-
ment and 10 to 13 are captured in a rainy environment. The dark rainy images
are shown brightened for illustration purposes.
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ponding to the maximum environment likelihood. For example, in case 6 the
gravel class is ill defined by the maximum environment terrain cover hypothesis.
By interpolation with other hypotheses, the gravel class is defined better. Case
10 shows that interpolation between terrain cover hypotheses does not always
lead to better results. Unfortunately, there are no images available that are shot
in intermediate weather circumstances. However, in these cases it is expected
the interpolation method outperforms the other methods.

Secondly, cases 2 and 5 show that heavy shadows on grass are misclassified
as foliage. This explains the high number of misclassifications of grass as foliage
in the quantitative performance measures. Case 2 also shows that other classes
have less trouble with shadows: sand is correctly classified when it is directly
and indirectly illuminated.

Finally, patches of high grass can easily be misclassified as foliage because
in both cases there is a lot of self shadow casting. Cases 2, 8 and 9 show that
the methods mostly correctly classify these patches of high grass. The darkest
parts are unfortunately be misclassified as foliage.

To ensure the safety of the vehicle, their is only a small margin for error. For the
obstacle detection task, which discriminates between drivable and non-drivable
areas, the P, and P, probabilities are higher than 0.9. If navigational and
vehicle control tasks are also required, for example to be able to follow dirt
roads, these probabilities do not drop under 0.82.

4.2.4 Post-processing

The results are very encouraging, but a minor adaption may boost performance
even more. The classification images contain a lot of pixel noise. By applying
a filter on all terrain cover likelihoods, and then selecting only the pixels with
the maximum likelihoods, can remove this pixel noise.

| Pe | Pe | P(Clsky) | P(Clgravel) | P(C|grass) | P(C|foliage) | P(C|sand)
raw 0.84 | 0.82 0.96 0.74 0.77 0.80 0.80
filtered 0.86 | 0.84 0.96 0.77 0.79 0.83 0.85

Table 4.4: Raw and filtered terrain class probabilities.

In this test, the results of the classification based on interpolation of the
previous section is filtered with a median filter of box size 5. Table 4.4 shows
the raw results as well as the filtered results. The P, and P, probabilities are
both boosted 2%. For better results one should vary the filter box size and find
the box size with the best results. Pre-processing the original RGB data is likely
to produce the same results.
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Chapter 5

Conclusion

The University of Amsterdam (UvA) and TNO Physics and Electronics Labor-
atory (TNO-FEL), part of the Netherlands Organisation of Applied Scientific
Research (TNOQO), developed a testbed for autonomous navigation in unstruc-
tured terrain, called the Robojeep. The Robojeep research is focused on devel-
oping technology that will enable future robotic vehicles to perform useful and
dangerous tasks. An example is humanitary mine clearing: financial costs as
well as casualty rates can be reduced significantly by automating this dangerous
task.

Presently, the Robojeep depends primarily on its range sensors for observing
the terrain conditions. Based on the geometrical model returned by the stereo-
vision component, steep object can be evaded. The drawback of these types of
sensors is that they do not provide information about the material types, such
as grass or sand, that are present in the terrain. Terrain classification is needed
for various applications, for example: identification of false obstacles such as
tall grass or dirt road following. Adding terrain cover classification to a robot
vehicle will enable it to perform its tasks in unstructured terrain more safely
and efficiently.

We have developed a color based terrain cover classification algorithm. The
apparent color of terrain types is heavily influenced by lightning, weather type
and other environment conditions. Therefore, for color based classification to
be successful in an unstructured outdoor environment, the environment state
has to be estimated. Previous research on terrain cover classification, still con-
sidered auto-calibration as an open problem [20]. We were able to solve this
problem by assuming that low variance image regions are heavily influenced
by the environment state. We learned that color image pixels in low variance
regions often correspond to points in high density clusters in the colorspace,
which are more suitable for probabilistic modeling.

Our unsupervised environment cluster algorithm groups images with com-
parable environment states, making learning and classifying possible without
a-priori knowledge of the environmental properties. For each environment state
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found by the cluster algorithm, an environment hypothesis is learned as well as a
terrain cover hypothesis. Both hypotheses learn mixtures-of-Gaussians by using
a greedy variant of the EM learning algorithm [35]. The environment estima-
tion and the terrain cover classification are both based on Maximum Likelihood
principles.

Three experiments were performed to test our method. The first test evalu-
ated the environment cluster component. The second experiment assesses the
performance of the environment estimation. The final test investigated the per-
formance in classifying the terrain types compared to a method that is given the
environment state. For the latter approach, the environment state is provided
by some external reference source such as a human.

The cluster component of our method performs very well. Besides providing
reliable terrain classification results, it proved to be very robust in a wide range
of parameter settings. The performance of the classifier, which uses automatic
environment clustering, is competitive to that of the other method which is
given the environment state. For more elaborate datasets, we expect that en-
vironment states based on our clustering method will perform even better. The
cluster components provides an extra degree of freedom that able is to group
sub-environment states or filter out images that are not part of any frequently
occurring environment state.

The auto-calibration algorithm also performs very well. The percentage of
correct environment estimations did not drop under 95%, when it was compared
to the method that was given the environment state.

The final experiment, terrain type classification, also produced promising
results. In distinguishing drivable from non-drivable areas, the reliability prob-
abilities did not drop under 0.9. If navigational and vehicle control tasks are
included, to follow dirt roads for example, the reliability probabilities did not
drop under 0.82. For both tasks, our auto-calibration algorithm produced clas-
sification results that are competitive with the results of the method that is
given the environment state.

In the introduction of this report, the problem statement was presented. For
clarification reasons the problem statements constraints are repeated here:

1. the algorithm should be able to robustly classify new images as drivable or
non-drivable areas under varying weather conditions, seasons and envir-
onments given a rich enough learning set and information from the stereo
cameras;

2. the algorithm should have confidence measures that reflect the confidence
that it has in a classification;

3. the algorithm should be fast enough for real-time applications, and

4. the algorithm should be able to be extended with other classification al-
gorithms.
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Concerning the first constraint: since the safety of the vehicle is critical there
is only a small margin of error. However, the terrain cover experiments show
that a very promising first step towards a more advanced obstacle detection
algorithm has been made. Especially if one considers that not all classified
terrain classes are obstacles.

Constraints 2 and 4 are solved simultaneously by providing a confidence
measure. This measure enables more sophisticated fusion of classification res-
ults, and also provides a measure of terrain type certainty to the vehicle control
components.

The final constraint is shown satisfied by the Jet Propulsion Laboratory’s
(JPL) research on autonomous navigation. They demonstrated that ML classi-
fication with mixtures-of-Gaussians can be used for real-time autonomous navig-
ation tasks [1]. Besides the ML classification, we provide a classification method
that interpolates between different environment states. This method requires
additional classification passes and so it is still to be proved that this method
can satisfy the real-time constraint.

The color feature was not only chosen for its potential to satisfy the problem
statement. A major benefit of color classification is that it can look beyond
the range of other sensors such as the stereo-vision cameras. On basis of this
auxiliary data more efficient paths could be planned. Possible objects, such
as tree lines, can be detected before they are in the range of the stereo-vision
system. Autonomous vehicles can also obtain a better notion of where roads or
paths are heading. This could be used for new applications such as dirt road
following.

Some open problems still remain. Firstly, The misclassification of gravel or sand
classes as grass or foliage classes is a problem. Secondly, the system is not able
to detect of bodies of water. Another disadvantage of this method is that a lot
of labeled images have to be input to the learning algorithm. Creating these
labellings can be a tedious job.

However, both the results of the experiments and the mainly solved problem
statements indicate that a good first step towards a very robust terrain cover
classification algorithm for autonomous navigation has been achieved. False
positive obstacles such as patches of tall grass, can now be safely identified.
Also, more advanced navigational and vehicle control abilities are now well
within the grasp of autonomous vehicles operating in rough terrain.
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Chapter 6

Future research

This chapter proposes some research ideas to improve terrain cover classifica-
tion. The first method to improve terrain cover performance, is to complement
the color features with texture features. Methods that can distinct gravel from
grass will improve the performance of obstacle detection. For navigation, the
distinction between grass and foliage is interesting. JPL experimented with fus-
ing color and texture features [19]. The classification performance did increase,
however, they were not able to satisfy the real-time constraints. If two notions
are taken into account, this real-time constraint can probably be satisfied. The
first notion is that the amount of possible obstacles in the robot’s vehicle path
is small. The second remark is that the stereo-vision system can provide the
texture filters with a distance estimation, and thus filter scale information [27].
By applying texture extraction given a specific scale on small regions of interest,
a significant speedup can be gained.

Another idea worth investigating is trying to reduce the number of hand-
labeled training examples. Time-lapse cameras could take pictures on different
times of the day and under varying weather conditions. If the camera always
focuses on the same scenery, one hand-labeling will label all the pictures taken.
Research must show how well the cluster component can group the resulting
environment states. It also must be tested how well the hypothesis based on
the time-lapse training data classifies the variety of images typically seen by an
autonomous vehicle navigating through unstructured terrain.

Experiments may show that classification based on interpolation of environ-
ment states is too slow. To gain a speedup, research can investigate the possib-
ility that terrain cover mixtures belonging to the different environment states
are merged. By interpolating the environment states at the hypothesis level,
only a single pass for the calculation of pixel likelihoods has to be performed.

Finally, our method incorporates no feature to label obstacles that are un-
known to the terrain hypotheses. Terrain types where the maximum likelihoods
is below a certain threshold can be labeled unknown. The choice of this thres-
hold is problematic because likelihood is not a intuitive criterion. The likelihood
threshold can be linked to a probability value, making a more intuitive thres-
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hold parameter [20]. We propose to incorporate this approach to robustly detect
unknown terrain types.
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Appendix A

Numerical confidence
matrices

Labels
Classifications H sky gravel grass foliage sand
sky 93.74% 0.81% 0.00% 0.05% 0.00%
gravel 5.44% 73.35% 0.07% 1.39% 5.17%
grass 0.00% 0.09% 78.53% 9.27% 1.74%
foliage 0.00% 13.37% 13.04% TT.27% 3.72%
sand 0.00% 7.92% 1.78% 2.01% 79.29%
low confidence 0.81% 4.46% 6.57% 10.02% 10.08%
Labels
Classifications H sky gravel grass foliage sand
sky 98.62% 5.63% 0.01% 0.04% 0.00%
gravel 0.00% 71.73% 0.13% 0.32% 6.32%
grass 0.00% 0.27% 77.06% 8.56% 1.65%
foliage 0.55% 4.16% 15.19% 83.28% 3.17%
sand 0.00% 10.75% 1.92% 1.07% 80.18%
low confidence 0.82% 7.45% 5.70% 6.72% 8.68%
Labels
Classifications H sky gravel grass foliage sand
sky 96.47% 3.07% 0.01% 0.04% 0.11%
gravel 1.94% 74.23% 0.13% 1.15% 5.42%
grass 0.00% 0.00% TT.47% 8.51% 1.63%
foliage 0.55% 5.04% 14.20% 80.39% 3.08%
sand 0.00% 10.89% 2.04% 1.60% 80.01%

low confidence 1.04% 6.76% 6.16% 8.31% 9.75%

Numerically shown confusion matrices simulating every class occurs equiprob-
able (see section 4.2.3). From top to bottom: given environment, maximum
environment auto-calibration and interpolating environment auto-calibration.
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