Evaluation of the world model of
Clockwork Orange

Master’s thesis Artificial Intelligence

University of Amsterdam

Raymond Donkervoort
July 12, 2002

Abstract

The main objective of this thesis is to describe the world model of Clockwork
Orange, the Dutch Robot Soccer Team, and to evaluate its performance. After a
short introduction in autonomous agents, the team will be introduced, giving an
overview of its design and the tasks of the different modules. In describing the
world model, special attention is paid to the important problems encountered
when building a model of the world. The most important aspects are self-
localization, object tracking and the sharing of the world models between the
different agents. While dealing with these problems one has to take into account
that we are acting in a real world domain, so we have to deal with uncertainty
in sensor information.

Self-localization is done by a combination of the odometry sensor and a
vision-based self-localization method. A weighted average of the two sources of
information is used to estimate the new position. For the object tracking, based
on observations made by the vision system of the robot, a linear least squares
algorithm is used, which enables us to do noise-filtering and lag-compensation.
The communication system enables us to share the local sensor information with
the other robots after having converted it (using the self-localization information
of the robot) to world-relative coordinates.

The evaluation of the performance of this world model is based upon the
results of the team during the RoboCup 2001 in Seattle and some testing done
on the field at the University of Amsterdam Robot Lab. The results show
us that the world model gives an accurate and complete representation of the
real world. The self-localization however turned out to pose some problems.
Odometry information is accurate on short distances only. The vision-based
self-localization turned out to be too inaccurate and arrives too infrequent for
the robot to continuously have a good estimate of its own position.

Acknowledgements

There are a few people I would like to thank for their support during the months
of my graduation work. In the first place I would like to thank my supervisor
Frans Groen for his guidance during the work on the software as well as during
the writing of my thesis. Furthermore I would like to thank all the people of
the ClockWork Orange team. To begin with Jeroen Roodhart, for his help
during the first stage of my graduation by helping me undertand the complex
material of his world module. Next the guys from the Delft University for the
good cooperation and pleasant company during the preparation to the RoboCup
2001 tournament and the tournament itself. Most importantly I would like to
thank the guys from Amsterdam, especially Matthijs Spaan and Bas Terwijn
for making the time I spent with them in the Robot Lab a great time. Finally
I would like to thank my family and friends for their support throughout the
years.

Preface

Chapters one and two are a result of a collaboration between Matthijs Spaan,
Bas Doodeman and myself.

Contents

1 Introduction
1.1 Agents L.
1.2 Multi-agent systems oL
1.3 The RoboCup project
1.4 The rules of the middle-size league
1.5 Thisthesis.

2 Clockwork Orange
2.1 Hardware
2.2 Software architecture L.
2.2.1 Virtual sensor/actuator level
2.2.2 Action and strategy levels
2.3 Communicationo o
2.3.1 The message passing system
2.3.2 Deviations from the communication specification

3 World Models
31 Aworldmodel
3.2 Designdecisions L.
3.21 Thesensors oo
3.2.2 Sensor data trackingo
3.2.3 Shared worldmodels
3.2.4 Self-localization techniques
3.3 Approaches of other Middle-size league teams
3.4 Discussiono e

4 The World Module
41 Amodeloftheworld.
4.2 Locating and tracking objects
4.2.1 Dealing with uncertainty
4.2.2 Self-localization L.
4.2.3 Conversion to absolute coordinates
4.2.4 Matching observations to objects
4.2.5 Updating positions Lo,
4.2.6 Speed and heading estimation
4.2.7 Trackingobjects
4.3 Sharing the world model
4.4 Predicting future states

CONTENTS CONTENTS

4.5 Theball 45
46 Arobustmodule L oL oo 46
4.7 Communication with higher level modules 48
Results 49
5.1 Clockwork Orange at RoboCup Seattle 49
5.2 Self-localization e 49

521 Odometry e 50

5.2.2 Vision-based self-localization 52

5.2.3 Combined self-localization 56
5.3 Object detection 58

5.3.1 Object position estimation 58

5.3.2 Object speed estimation. 59
5.4 Sharing world models L. 61
5.5 Discussion e e e e 64
Improving Self-localization 66
6.1 Combination methods 66
6.2 Being observed by other robots 69
Conclusion 72
7.1 Discussion 72
7.2 Futureresearch 73

Chapter 1

Introduction

Imagine being a robot. Not a fancy bipedal human-like walking robot, but a
simple two wheeled one with the appearance of a trash can. Imagine your only
view on the world is from a camera mounted on top of your body that is only
able to look straight ahead. You can’t do anything but rotating your left or right
wheel and folding out your aluminum leg. Finally, you don’t have the luxury
to lean back and relax while a human operator takes some decision about what
to do next, no, you have to figure it out all by yourself. Your masters expect
you to play soccer with your robot friends and beat the other team. Luckily
you can speak with your friends to tell each other where the ball is and discuss
strategy and tactics. Sometimes however you’re not sure where you are on the
field which complicates things considerably.

We hope this little story captures the essence of the problems one is faced
when designing an autonomous robotic soccer player which has to coordinate
its actions with its teammates. We will start by generalizing the concept of a
robot to the one of an agent, consider the case when multiple agents have to
work together in an environment followed by a description of the domain used
for this thesis. We conclude the chapter with an outlook on the rest of the
thesis.

1.1 Agents

We define the term agent as just about anything that can perceive its environ-
ment through sensors and can act through actuators. Examples of agents are
humans, animals but also robots and software agents. The agents that will be
described in this thesis are robots, autonomous agents acting in the real world.
The sensors a robot uses to perceive its environment can be devices such as
cameras, sonars or laser range finders. The actuators can be all sorts of things
like motor driven or pneumatic devices. For an agent to be autonomous it also
has to reason about its environment before acting upon it. This reasoning typ-
ically happens in the software part of a robot. Figure 1.1 shows a diagram of
an autonomous robot and its environment.

There are numerous applications for autonomous robots, both industrial
and domestic. Industrial robots can perform tasks like the assembly of indus-
trial products, intelligent transport systems, bringing medicine to patients in

Chapter 1 Introduction 1.2 Multi-agent systems

Sensor

Agent

Actuator

Figure 1.1: An agent interacting with its environment.

hospitals and guarding buildings. Domestic robots can make life easier by per-
forming tasks such as mowing the lawn, cleaning the house or assisting the
disabled. Robots can also be used in situations which are too dangerous for
humans. Rescuing people from burning buildings, finding people under debris
after an earthquake or sweeping mine fields are examples of that.

1.2 Multi-agent systems

Multi-agent systems are systems in which multiple agents act in the same en-
vironment. An interesting situation occurs when there is no central control,
all agents get their information from the environment from their own sensors
or through communication with other agents, and act upon their perception
of the environment with their own individual actuators. The behavior of the
entire system depends on the behavior of the separate agents. Communication
between the agents plays an important role in multi-agent systems, both in
sharing information from the individual sensors and in communicating behavior
in intended actions. There are several different reasons to prefer a multi-agent
system approach over the single-agent approach:

- Since multi-agent systems are more modular than single-agent systems it
is easier to change a specific part of the system. Instead of having to
change the entire system, just the involved agent has to be adjusted.

- Multi-agent systems are easier to extend by adding a new agent, making
them much more scalable than single-agent systems.

- Multi-agent systems can be very robust, if one of the agents breaks down
the others will continue their job and can possibly still fulfill their task.

- Multi-agent systems can, by all having their own sensors, form a more
complete and accurate model of their environment than single-agent sys-
tems which often only have one perspective at a certain moment of time.
However this does make it harder to form this model since all the data
has to be fused in the right way.

- Some applications consist of parts that keep information hidden from the
other parts and have different goals. This problem would be impossible
to handle with a single-agent system. Every part of the application has to

Chapter 1 Introduction 1.2 Multi-agent systems

be handled by a separate agent who can communicate with the others to
solve the problem. An example is an e-commerce setting in which agents
have to bargain for selling or buying certain services.

The task of the developer of a multi-agent system is to decide in which way
to organize the system. First he should try to decompose the problem into
smaller subproblems that could be solved by separate agents. Then he will
have to decide on the representation of the domain, the architecture to use and
how to program the interaction between the agents and the behavior of the
individual agents. The behavior of an individual agent is determined by a so
called ’decision policy’ which uses the inputs from the sensors to determine the
action of the agent. The architecture of the multi-agent system determines how
the different agents cooperate. There are different possible architectures varying
in complexity and suitability for certain applications.

Centralized single agent control A central controller collects the informa-
tion from the sensors of the individual agents and from these inputs selects the
actions for each agent. The great advantage of this approach is that the best
cooperative policies for the agents will be found. However the system isn’t very
robust, if the central control breaks down the entire system will stop working.
Also the action space in the central controller will be huge, making the system
very complex.

Policy sharing To reduce the complexity of this system, policy sharing can
be used. Each agent now uses the same policy making the agents homogeneous.
A great disadvantage of this approach is that it leaves no room for specialization
of certain agents for specific problems.

Task schedules By computing in advance a schedule of all the tasks the
agents have to perform we can build a system that has very low complexity
and is very fast. However when the environment changes the schedule has to
be computed all over again. This architecture is therefore not suited for very
dynamic environments.

Local agents In this system each of the agents will have to find its own
policy with limited interaction only, thus reducing the complexity of the system
dramatically. But because of the very limited range of view each agent has
it will be very hard to find a good cooperative behavior. If there are many
dependencies in solving parts of the problem this will create difficulties.

Hierarchical systems Instead of completely dividing the problem in local
parts, we could also use a more hybrid approach. In hierarchical systems some
independent parts of the problem are handled by individual agent whereas parts
with dependencies will by handled by multiple cooperative agents. However this
approach requires some sort of central control which could break down, making
the system less robust.

Chapter 1 Introduction 1.2 Multi-agent systems

Shared global world models The information the agents receive about their
environment is shared with the other agents to form a combined global world
model, upon which each agent determines its actions.

Before deciding on which architecture to use in our multi-agent system we have
to describe our domain more carefully. However, from the listed architectures
a central control type of architecture can be labeled as unsuitable beforehand.
Central control is not suited for robust multi-agent systems as it has a single
point of failure. Robots in general and soccer robots in particular are prone to
hardware failures so the system should degrade gracefully. Another disadvantage
of central control is the fact that it does not scale well as the central unit has
to cope with a growing number of clients.

In order to be able to make a well-founded decision on a multi-agent archi-
tecture we need to take a look at the possible domains in which an agent can be
used. As mentioned above, autonomous agents can be used in many different
applications. To make it easier to determine which architecture we should use
for any specific problem, we should have a way of describing the domains. To
do this we can use a number of features:

static vs. dynamic Does the environment in which the agents have to act
change while the agents are in it and do the acts of the robots influence
the environment?

communication Is communication between the agents possible or even desir-
able? In some applications communication between agents necessary, but
in others it is better not to use it since it is liable to interference.

discrete vs. continuous Is it possible to represent the states of the agent in
a discrete manner or is the problem such that it has to be dealt with in a
continuous way?

cooperative vs. competitive Do all the agents in the system have the same
goal or do some have different or even conflicting goals?

completely vs. partly observable Is the environment completely or only
partly visible to the system?

dynamic vs. static agents In some applications the agents have a fixed place
in the environment while in others they can move, introducing the risk of
colliding with objects or even with each other.

dependent vs. independent Is it possible for the robots to fulfill their sep-
arate tasks individually or do they have to work together to complete a
certain part of the problem?

homogeneous vs. heterogeneous Are all the robots in the system the same
or do they have a different design?

The robotic soccer domain this thesis deals with can be characterized in the
features described above: both environment as well as the agents are dynamic,
communication is an option and variables are likely to be continuous. The
multi-agent system is both competitive as well cooperative as two teams play
against each other while the robots in the same team share a common goal. The

Chapter 1 Introduction 1.3 The RoboCup project

environment is only partly observable for a single robot and the observations
contain a certain degree of error. The robots should try to work together, but
strictly speaking the domain is independent as one single robot can score goals.
The multi-agent system is heterogeneous as there are two different teams. A
single team can be both homogeneous or heterogeneous.

Having described the environment using the features mentioned above we
can now choose which of the suggested architectures to use. Some architectures
will be unsuitable for certain types of problems, while they work perfectly for
other types of problems. For instance, in applications in which navigation of the
robots plays an important role, which are dynamic and continuous and contain
dynamic agents, the global world model architecture would be preferable. Task
schedules can be used to divide problems in subproblems or in situations which
consist of lot of dependencies and are also useful for many static problems.
Policy sharing can only be used in situations where homogeneous agents are
adequate. Hierarchical systems are especially useful in situations where agent
behavior has to be coordinated, like robot soccer.

We have chosen to design our system around a shared global world model,
which simplifies team coordination as each robot can reason about a global view
of the world. Sharing the local world models enhances the completeness and
accuracy of the global world model. Each robot itself can be viewed as a multi-
agent system, designed as a hierarchical systems approach which enables us to
have several autonomous software modules in our architecture, each responsible
for its own task. A detailed description of our software architecture is presented
in the next chapter. More information about multi-agent systems in general can
be found in [11, 12].

1.3 The RoboCup project

In the year 1997 the Robot World Cup Initiative ([18, 22] for more information)
was started as an attempt to improve AI and robotics research by providing a
standard problem in which a wide range of technologies can be integrated and
examined. The standard problem that was chosen is the game of soccer. A
game of soccer contains most of the important aspects that are present in a
real world multi-agent application. There are different robots that have to work
together toward a common goal, the domain is continuous and dynamic, there
are opponents whose behavior will not be fully predictable and because of the
competitive element of the game it is necessary to act sensible and fast. This
together with the fact that the game offers a constricted controllable domain
and is entertaining and challenging makes it an ideal test-bed for multi-agent
collaborating robotics research. To keep the game as close as possible to the
real game of soccer, most rules used in human soccer are also used in robot soc-
cer (the rules of the middle-sized league will be described in the next section).
To achieve the goal of an autonomous team of soccer playing robots, various
technologies have to be incorporated including control theory, distributed sys-
tems, computer vision, machine learning, communication, sensor data fusion,
self-localization and team strategies. In order to do research at as many differ-
ent levels as possible several different leagues exist.

Simulation League In this league teams of 11 virtual players compete. The
players in these teams can be either homogeneous or heterogeneous and

10

Chapter 1 Introduction 1.3 The RoboCup project

have various properties such as dexterity and pace. Since there is only a
limited amount of uncertainty in the information the teams have about
the game, compared to the other leagues it is relatively easy to generate a
complete and accurate world model, although communication is limited.
This enables the teams to concentrate on cooperative team behavior and
tactics. The University of Amsterdam also participated in this league [4].

Small-Size Robot League The small-size league (F180) is played on a table-
tennis table-sized field. Each team consists of five small robots. A camera
above the field is used to get a complete view of the game, which is send
to the computers of the teams on the side of the field. From this image
using the color coding of the ball and the different robots a world model is
constructed. Using this world model the actions of the different robots are
determined and send to the robots. Since the world model is complete and
quite accurate research here focuses on robot coordination, team behavior
and real time control. The games in this league are typically very fast and
chaotic.

Middle-Size Robot League In the middle-size league (F2000) teams consist-
ing of four robots, sized about 50x50x80 cm, compete on a field of about
10 meters long and 5 meters wide. The main difference with the small-
size league is that there is no global vision of the field, all the sensors and
actuators for perceiving and acting in the game are on-board. All robots
will have to form a model of the world using only their local sensors and
the information which they receive from the other robots. Besides individ-
ual robot control and generating cooperative team behavior, key research
issues here are self-localization, computer vision and fusion of the sensor
data. This is the league in which the Dutch robot soccer team Clockwork
Orange participates. This team will be described in the next chapter. The
specific rules for this league will be described in the next section.

Sony Legged Robot League On a field, slightly larger than the small-size
league, teams of three Sony AIBO’s (the well-known robotic toy dog)
compete. These robots walk on four legs, and are thus the first ’step’
toward a league of biped humanoid robots. Since every team uses the
same robots, the only difference between the teams is in the software.

Humanoid League Starting in the Fukuoka 2002 RoboCup, this league will
consists of teams of biped humanoid robots.

Since the first RoboCup Event held at the International Joint Conference
on Artificial Intelligence in Nagoya, Japan in 1997, there has been a Robot
Soccer World Cup each year: Paris 1998, Stockholm 1999, Melbourne 2000 and
Seattle 2001. Also an increasing amount of regional competitions are organized,
as there were the European Robot Soccer Championships in Amsterdam 2000,
the Japan Open in Fukuoka 2001 (also host of the 2002 World Cup) and the
German Open in Paderborn 2001 (in which the Clockwork Orange also partic-
ipated). The number of teams attending in the different leagues of RoboCup
has increased dramatically since the first World Cup (from 40 teams in 1997 to
about 100 teams from about 20 different countries in 2001). Over the years the
games also started getting more attention. The number of spectators has in-
creased from 5000 in Nagayo 1997 to 20,000 in Seattle 2001. Also an increasing

11

Chapter 1 Introduction 1.4 The rules of the middle-size league

Figure 1.2: The ball handler rule.

amount of media attention, several different large international newspapers and
television stations have reported on the RoboCup event, including well known
Dutch newspapers De Volkskrant and De Telegraaf. These results show that
the initiative has succeeded in its goal of attracting more attention to and im-
proving AI and robotics research by providing an entertaining and challenging
application. And maybe this will lead to the robotics researchers ultimate goal
of, by the year 2050, building a team of robots that can beat the human world
champion soccer team.

1.4 The rules of the middle-size league

The league in which the Clockwork Orange participates is the middle-size league.
Unlike the Sony four legged league, the teams in the middle-sized league are
free to choose the type of robot, sensors and actuators. However there are
some restrictions. The robot (having extendible and retractable actuators and
thus having multiple possible configurations) is not allowed to have a possible
configuration in which its projection on the floor does not fit in a 60x60cm
square. A robot should also have a minimal configuration (with all its actuators
retracted) in which its projection on the floor fits into a 50x50cm square. The
robot may not be any higher than 80cm but should be at least 30cm (so it is
large enough to be perceived by other robots). The ball handling mechanism
should be build in such a way that it is always possible for an opponent to steal
the ball. Therefore a ball handling mechanism may not include the ball for more
then 1/3 of the ball’s size (see figure 1.2). It also is prohibited to fix the ball
to the body by using some kind of ball holding device. These rules also make
it more challenging to let the robot turn and dribble with the ball. The robots
should all be completely black and are supposed to wear some kind of marker
which is either magenta or cyan, depending on the team the robot is in. This
makes it possible for the robots and the audience to see which team the robot is
in. The robots should also carry numbers making it possible for the referee to
tell them apart. Before the start of each game the team leaders and the referee
will decide which team will play with which color.

The ball that is used is a standard FIFA size 5 orange ball. The field is
green and may vary in size between 8 and 10 meters in length and between 4
and 7 meters in width. The lines are white and closely resemble the lines on
a human soccer field. There is a line in the middle of the field, with a dot in
the middle, from which the kickoff is taken, with a 1 meter wide circle around

12

Chapter 1 Introduction 1.4 The rules of the middle-size league

2000
4000-7000

200 g N 1 [25y
: 1000

120 ~Hooa — : 8
Co B000-10000 i

Figure 1.3: The sizes and lines of a robot soccer field

it, which must be empty apart from the taker of the kickoff and the ball when
starting a game. There are penalty dots on which the ball will be positioned
during a penalty shoot-out and there is a goal-area on either side of the field.
The field is surrounded by a wall, so the ball can’t leave the field. There are
two 2-meter wide goals, a blue one and a yellow one, making it possible for the
robots to distinguish their own goal from the opponent’s goal by color.

The rules of the game are comparable to, but not completely the same as
those of human soccer. If all robots would stay in line in front of their own goal
it would be impossible for the opponent to score a goal. Therefore only one
robot in each team, which must be designated as goalkeeper, may permanently
stay in the team’s own goal area. Any other robot may not stay in its own
goal area for more then 5 seconds. Also only one robot at a time may enter
the opponent’s goal area and may stay there for no more than 10 seconds and
is only allowed there if the ball is also in the goal area. This should prevent
obstruction of the opponents goalkeeper and by doing that scoring goals in a
unguarded goal. As in human soccer, a robot will receive a yellow card when
charging an opponent. The game is stopped and the opponent gets a free kick.
When a robot receives a second yellow card this is considered a blue card and
the robot must be removed from the game until the next game restart. If a robot
receives a fourth yellow card this is considered a red card and the robot must
leave the field for the remainder of the game. Other rules, present in human
soccer, like corner kicks, throw-ins and the off side rule don’t apply to RoboCup
at this moment. The duration of a game is 20 minutes, divided in two halves
of each 10 minutes. During a 15 minute half-time break teams can if necessary
change the batteries and fix their robots. The complete FIFA and RoboCup
rules can be found in [19].

13

Chapter 1 Introduction 1.5 This thesis

1.5 This thesis

The main objective of this thesis is to study the performance of the world mod-
ule (i.e. the module responsible for maintaining the world model) of Clockwork
Orange, the Dutch Robot Soccer Team and to come up with possible improve-
ments. The design of the world model and the used algorithms will be described
and all the problems encountered when constructing a world model in a flex-
ible real world domain will be discussed. Special attention will go to the key
aspects such as self-localization, object tracking, dealing with uncertainty and
distribution of the world model.

In chapter 2 a general description of the team will be given. Both the hard-
ware specifications of the robots and the software architecture of the team will
be described. World models in general and some related work will be discussed
in chapter 3. In chapter 4 a detailed description of the world module of Clock-
work Orange will be presented, complete with the chosen software architecture
and the algorithms that are used. Furthermore chapter 5 will give the results of
the world module as we used it during the last RoboCup tournament in Seattle.
In chapter 6 some improvements that could be used will be proposed, results of
these methods will be given and a comparison will be made with the results of
the current world module. The final chapter will consist of the conclusions and
a proposition of some future research topics.

14

Chapter 2

Clockwork Orange

Clockwork Orange [10, 25] is the Dutch RoboSoccer team, named after the nick-
name of the human Dutch national soccer team of the seventies. It is a collab-
oration between the Utrecht University, the Delft University of Technology and
the University of Amsterdam. The team participates in the RoboCup middle-
size robot league. This year Utrecht University could sadly not contribute to
the team during RoboCup 2001 because of severe hardware problems.

This chapter will give an overview of the hardware, software and commu-
nication architecture of the team in order to describe the setting of which the
world module forms a part.

2.1 Hardware

First of all the robots have to be introduced, as no game can be played without
players. Our lineup consists of six Nomad Scouts and one Pioneer 2. Delft
University of Technology and University of Amsterdam both own three Nomad
Scouts adapted for the soccer game while the Pioneer 2 belongs to Utrecht
University.

The Pioneer 2 (figure 2.1) from ActivMedia Robotics [1] uses a laser range
finder, 16 ultrasonic sonar sensors, odometry sensors, and a camera for sensing.
It uses a pneumatic kick device as actuator.

The Nomad Super Scout IT (figure 2.2) from Nomadic Technologies has
odometry sensors, one camera for sensing and a pneumatic driven kick device
as effector. Its 16 ultrasonic sensors and its tactile bumper ring are not used for
RoboCup. The specifications of both types of robots can be found in table 2.1.

A functional overview of the hardware setup of our Nomad Scouts is shown
in figure 2.3. A low level motor board controls the original hardware from
Nomadic Technologies while the high level computer is connected to all the
custom hardware like the camera, the kick device and the wireless Ethernet.
The original hardware includes the motor board, the sonars, the tactile bumper
ring and the motors.

The only hardware sensors we use for RoboCup are the camera and the
wheel encoders. The encoders should be able to tell the amount of rotation of
each wheel from which the robot’s path can be calculated. However, Nomadic
Technologies decided not to return the real rotations of the wheels as one would

15

Chapter 2 Clockwork Orange 2.1 Hardware

Figure 2.1: A Pioneer 2.

Figure 2.2: Three Nomad Scouts.

Camera

\i

Wireless
T Frame grabber
Motors communication 9
Low level High level
- - » Sound system
Sonars motor board computer 4
Bumper ring Kick device Ball holder

~._

Air container

Figure 2.3: Hardware setup of our Nomad Scout.

16

Chapter 2 Clockwork Orange 2.1 Hardware

Figure 2.4: The kicker, ball handlers and the ball handling mechanism.

expect but instead the desired speed as calculated by the motor board. The
motor board calculates these speeds for both wheels to get smooth accelerations
and decelerations when the user sends the desired speed and heading of the
robot. In practice this means one cannot discriminate between normal driving
or pushing against a static object.

The Camera is a color PAL-camera from JAI Camera Solutions equipped
with a lens with a horizontal angle of view of 81.2°. Several features are config-
urable on this camera, such as the auto white balance feature. The configuration
can be set manually or by software through a serial port. For reliable color de-
tection is it necessary that the auto-white balance can be disabled. We use a
standard WinTV Frame grabber which has been set to grab 12 frames per
second in 640 x 240 pixels YUV format at 3 x 8 bits color depth.

Our Nomads have been heavily customized and currently have four actua-
tors: the wheels, the kick mechanism, the ball holder mechanism and the sound
system. The Kick device (figure 2.4) uses compressed air from a 16 bar Air
container on top of the robot. The kicking mechanism is located between two
ball handlers and together they include the ball for 7 cm (one third of the ball
diameter, as specified by the rules, see section 1.4). Our goalkeeper’s kicking
device is half a meter wide (the maximum allowed width), since its objective
is not to handle the ball carefully but just kick it across the field. On top of
the kicker mechanism resides the Ball holder mechanism: a small pneumatic
device used to tap the ball for holding. Current RoboCup regulations have
deemed this device illegal, so we don’t use any more.

The Motors are being controlled by a Motorola MC68332 processor on a
Low level motor board. Motor commands are only accepted five times a
second which severely limits the amount of control one has over the robot. The
Nomad can for instance not be allowed to drive at maximum speed because
when obstacles are suddenly being detected the robot might not be able to stop
in time.

The onboard sensors, Sonars and Bumper ring are being read out by the
Motorola processor. The bumper ring is not used as there are two ball handlers
in front of the robot, preventing the bumper ring from touching any obstacle.
Furthermore, driving backwards is not recommended if your only camera is
facing forward. The sonars are currently not employed as they pose a risk to
the system: the potential difference when in use can cause the low motor board

17

Chapter 2 Clockwork Orange 2.2 Software architecture

Specification Nomad Scout | Pioneer 2
Diameter 41 cm 44 cm

Height 60 cm 22 cm

Payload 5 kg 20 kg

Weight 25 kg 9 kg

Battery power 300 watt hour | 252 watt hour
Battery duration in game | 1 hour 30 min

Max. Speed 1m/s 2 m/s

Max. Acceleration 2 m/s? 2 m/s?

Special sensors Camera Laser + camera

Table 2.1: The specifications of our robots.

to malfunction.

Our software runs on the High level computer, an Intel Pentium 233 MHz
based computer on an industrial biscuit board (5.75” by 8”). Communication
with the low level board is accomplished using a serial port and a PC 104 board
is used to control the kicking mechanism. An onboard sound chip forms our
Sound system together with two small speakers.

For Wireless communication between robots we use a BreezeCOM [7]
IEEE 802.11 wireless Ethernet system with a maximum data rate of 3 Mbps
giving the robot an action radius of up to 1 km outdoors. It uses the 2.4 GHz
band and finds a frequency within this band which is not yet fully utilized
by means of frequency hopping. During tournaments the BreezeCOM system
proved very reliable in contrast with the WaveLan system which suffers heavily
from interference of other wireless networking devices in the 2.4 GHz band.

2.2 Software architecture

Not only do there exist two different types of robots in our team, Delft /| Am-
sterdam and Utrecht also have chosen different approaches in intelligent agent
design. Being a heterogeneous team both in hardware and software makes the
team skills and world models task more challenging, since you do want to act as
one team instead of two sub teams. The team has has not been heterogeneous
this year due to hardware problems of the Pioneer 2, but the team coordination
mechanism should be designed in such a way it can coordinate heterogeneous
teams.

Utrecht University’s Pioneer 2 uses an extended version of the subsumption
architecture [8] in which particular behaviors such as Get_Ball, Dribble, and
Score compete for controlling the robot. All behaviors can react in correspon-
dence to the world model or to direct sensor data provided by the camera and
laser range finder.

The Nomad Scouts operate on a hybrid architecture which looks like a clas-
sical, hierarchical approach but whose units have a high degree of autonomy.
Figure 2.5 depicts a functional composition of this architecture. It can be di-
vided in three levels:

Virtual sensor/actuator level Here reside the virtual sensors and the actu-
ator interfaces to the hardware.

18

Chapter 2 Clockwork Orange 2.2 Software architecture

Reasoning
Team skills
.S - ‘ Team strategy Action selection
8 ~
c
>
£
£ \
o
o
IS]
S | »{ World model | Player skills
9]
£ T ()
/ / Y \
Visio_n ss_alf Vision p_bject Odometry | »| Motion Kicker Sound
localization recognition
Sensors Actuators

Figure 2.5: Functional architecture decomposition.

Action level Control of the local robot on this level, as well as combining
information from the virtual sensors in a world model.

Strategy level Determining the team strategy and the next action of the robot
with respect to his teammates is handled on this level.

A good example of an autonomous unit is the Player skills module. It is a
reactive unit as the arrow toward it from Vision object recognition shows, which
allows it to adjust a direct move command from the Team skills module when
an obstacle appears. Another example is executing a dribble with ball action,
during which fast movement corrections based directly on vision information
have to be executed.

One should keep in mind the architecture has been designed a few years ago
([15], short version appeared in [17]) and evolved during time. Master’s students
from two different universities each worked on their part of the project. A lot of
effort has to be made to coordinate the different modules. The functional decom-
position in figure 2.5 describes the architecture used for RoboCup 2001, given
some minor violations introduced under pressure of oncoming tournaments.

2.2.1 Virtual sensor/actuator level

The lowest level in our software architecture is the link between software and
hardware. These virtual sensors and actuators usually don’t communicate di-
rectly with the hardware but use device drivers from the operating system as

19

Chapter 2 Clockwork Orange 2.2 Software architecture

intermediates. We use RedHat Linux 6.2 as operating system and development
environment.

The Odometry module is a virtual sensor which keeps track of the motion
of the robot. It gets it data from the motor board! and estimates the odometry
error of it. The University of Michigan Benchmark test as described in [5] has
been run to estimate the systematic error, which increases with the traveled
distance. For a typical Nomad this error turned out to be 15 cm after driving
a 3 m square (1.2%).

The camera supplies the data for our two other virtual sensors: object recog-
nition and self-localization. All vision processing uses 24 bit color images of 320
x 240 pixel resolution, half of the original height. This reduction is necessary
because of the limited processing power available. The camera and vision sys-
tem on each robot have to undergo a lengthy calibration procedure every time
lighting conditions change.

Vision object recognition [16] extracts objects like the ball, the goals and
robots from these camera images. This is done via color detection in a pie piece
in UV space with sufficient intensity. In the YUV space Y is the intensity and
the UV space describes the color. In this space we take the point of the white
color as the center. Going out of the center increases the saturation of the color.
Due to specular reflection the saturation of an object can vary, so to determine
its color irrespective of saturation we describe the colors by pie pieces.

Size and position of these objects are estimated [16] and this information is
passed on to the World model and to the Player skills module. The latter is
also notified when a large portion of an image is white, which usually indicates
the robot is standing in front of a wall. The Player skills module can react by
taking appropriate measures to avoid hitting it.

As knowing your own position is crucial for constructing a global world model
we also use the camera for self-localization. Vision self-localization [14] uses
the lines on the field and the goals. The self-localization mechanism involves a
global and a local method. The global method first splits the screen into multiple
regions of interest and finds straight lines in each of these. These are matched
to the world model giving an estimate of the position. Because of the symmetry
of the field multiple candidates are found. We use Multiple Hypothesis Tracking
to follow all the candidates over time, updating them for our own movement.

The local method is used to verify these candidates and to correct for
changes. We check all the candidates, verifying their heading and distance
to the goals and the overall result given to us by the local method. The loop is
repeated until one candidate remains, which is used to update our position.

Our self-localization mechanism requires the robot to move around because
otherwise candidates cannot be discarded. For this reason the Team skills mod-
ule and the world module are notified when we’ve lost our position. To give an
idea of the performance of the self-localization: during a total period of more
than three hours our position was known 49% of the time. Further results can
be found in chapter 5.

Driving is controlled by the Motion module which communicates motor
commands to the low-level processor of the Nomad. These motor commands
are for example the desired speed or acceleration of the left and the right wheel.

IThe Motion module passes this data to the Odometry module, since only the Motion
module can communicate directly with the low level motor board.

20

Chapter 2 Clockwork Orange 2.2 Software architecture

The Kicker module controls the pneumatic kick mechanism used for shooting
at goal. The Sound module plays sounds on request of other modules for
entertaining and debugging purposes.

2.2.2 Action and strategy levels

On top of the virtual sensor/actuator level resides the action level, in which
local control of the robot as well the building and maintaining of a world model
takes place. The strategy level of the software architecture controls the team
strategy and action selection.

The main reactive and autonomous component of our architecture is the
Player skills module [3]. It tries to fulfill the desired actions of the Team
skills module while at the same time keeping in mind its other behaviors, which
have a higher priority. These are the collision avoidance behavior and the li-
cense to kill behavior. The collision avoidance behavior takes care that a robot
does not run into obstacles such as robots and walls. If a robot has the ball
and sees a large portion of the enemy goal the license to kill behavior makes it
shoot at it. These two reactive behaviors get their information directly from the
Vision object recognition system. Other actions include simple Goto(z,y,¢,v),
ShootAtAngle(¢) and Seek(ball) but also more sophisticated actions like Dribble-
ToObject(theirGoal) or GotoObject(ball) are available. The Player skills module
notifies the Team skills module when an action has been completed or aborted,
in which case it specifies the reason.

Below a summary of the available actions is given, in which z,y is a position,
¢ is an angle, v is a speed and object is either ball, yellowGoal or blueGoal:

Turn(¢), rotate the robot around its axis until it reaches the desired heading,
relative to the world. Also turns relative to the current orientation of the
robot can be specified.

TurnToObject(object), turn to face the object.
Shoot(), kick the ball straight ahead at maximum force.

TurnShoot(¢), kick the ball at specified angle. This is accomplished by driving
while turning followed by shot. If the robot thinks it will lose the ball
while turning it will shoot it at that time.

Goto(z,y,$,v), move to specified position while avoiding obstacles. Either de-
sired heading or desired speed at end point can be requested. Forward and
backward motion is supported, but since the robot can only detect obsta-
cles in front of it driving backwards is not recommended during normal
operation.

GotoObject(object), if object is ball move toward the ball and try to control it.
If object is one of the goals move toward it until the robot is one meter
away from them (you usually don’t want it to actually drive across the
goal line).

Seek(object), keep turning until the robot sees the requested object.
Dribble(z,y,v), carefully drive to the requested position trying to keep control
over the ball. If the robot loses the ball don’t immediately declare the

21

Chapter 2 Clockwork Orange 2.2 Software architecture

action a failure but try to regain it. Dribbling with the ball is very difficult
due to the shape restrictions of the ball handling mechanism and the limit
of five motor commands per second.

Dribble ToObject(object), dribble toward one of the goals. The Player skills
module keeps a memory of the relative heading it last saw the goals, in
order to be able to find them again.

To enable a distributed form of control and improve robustness, the World
model is also distributed. FEach of the robots in our team locally maintains a
world model which is shared with the other robots in our team. The design of
the world model is described in chapter 4. The performance of the world model
is discussed in chapter 5.

The task of the Team skills module is twofold: it coordinates team strategy
and it chooses the next action the Player skills should execute. The advantage of
an absolute shared world model is that team coordination is greatly simplified.
We use a global team strategy from which each robot derives its individual role.

The team skills module determines the current team strategy using a simple
finite state machine. Input of the state machine is ball possession: which team,
if any, controls the ball. It outputs the applicable team strategy: attack, defend
or intercept. A team strategy is a distribution of roles over the available field
playing robots. The roles associated with a team strategy have a certain priority
to be able to deal with the possibility of not having three field robots at your
disposal.

There are about half a dozen different roles available, all of which have
an attacking, defending or intercepting purpose. Utility functions are used to
distribute the roles among the team members. The utility functions are based
on the time a robot estimates its needs to reach the ball besides a position
based role evaluation. The first criterion is applicable for offensive roles while
the latter is suited for defensive ones. This dynamic role distribution technique
is similar to the ones used by other participants in the middle-size league [9, 29],
but we have extended existing approaches by adding a global team strategy.

Assigning roles to robots only makes sense if the robot takes its role (and
possibly those of its teammates) into account when selecting the next action it
should take. It should execute the next action which benefits the team the most,
and its role provides the robot with a description of what the team expects of
it. Our action planning approach is similar to the one Tambe [27] described for
use in the simulation league.

Action planning is modeled using Markov decision processes and the role of
a robot determines its action space and influences its reward function. In order
to be able to find a good solution to the Markov decision problem we discretize
the action space (instead of the state space which remains continuous), which
means a robot considers only a finite set of actions at a time. Actions are defined
as having a certain type like move or dribble and certain parameters like target
positions, whose number is potentially infinite. As a solution to this problem we
only consider a finite number of target positions. The size of the set of actions
lies in the order of magnitude of 50. The role of a robot determines the contents
of this set: a defensive role will lead to more move actions than shoot or dribble
actions while an offensive role will contribute more shoot and dribble actions
than plain move actions.

22

Chapter 2 Clockwork Orange 2.3 Communication

Our reward function is designed as follows: estimate the desirability of the
current world state by looking at several soccer heuristics, simulate the action
on this world to obtain a new world state, estimate the desirability of this new
world state, and the difference between the two estimates is the reward. One of
the four soccer heuristics is the position based role evaluation used in the role
distribution mechanism. So to what extent an action is considered beneficiary
to the team partially depends on the robot’s role. The other three heuristics
are about whether the ball is in one of the goals, ball possession and strategic
positioning. A detailed description can be found in [24].

2.3 Communication

Communication between modules is handled by a message passing system. The
system is based on UDP and uses Linux kernel message queues. In a message
passing system processes communicate by sending each other messages. A mes-
sage is an atomic unit with a message type and a string of bits containing data.
The message is sent from one module to another using a method of delivery. In
a message-based paradigm the abstraction is that there are direct connections
between modules that serve as conduits for messages. These conduits do not
necessarily have to exist on physical level. The routing for a message that travels
from one module to another occurs at hardware and lower software levels.

2.3.1 The message passing system

In the message passing system [28] we use, each module has a message queue.
For every module, all incoming messages are stored in their message queue in
FIFO order. When a module is ready to process a message, it will issue a
request for the next message on its queue and process it. This process continues
until all messages are processed or the module terminates. Message queues
allow a module to send information when desirable without having to wait
until the other party is ready to receive. Without some form of buffering,
modules would be subjected to a blocking wait if the other party isn’t ready.
Such a situation can easily lead to a communication deadlock for the involved
modules. The message passing system has been designed with shared memory
capabilities in mind, but so far none have been implemented. Both the intra
robot communication as well as the Inter robot communication is based on
message passing for information exchange.

Communication between modules in different layers of the hierarchy can only
be initiated by the module which is in the higher layer. This ensures that control
always resides with the higher module. In communication between modules in
the same hierarchical layer, each of the modules may initiate communication.
Three different types of communication were defined in our message passing sys-
tem to accommodate for downward and upward communication flows: Orders,
Questions, and Triggered notifications. Orders are intended for the downward
communication flow. Questions and Triggered notifications should be used for
the upward communication flow.

Orders Downward communication through the hierarchy is established by
using the order communication type. The order type is typically used when a

23

Chapter 2 Clockwork Orange 2.3 Communication

module asks another module to perform a specific action. The orders type is used
to send orders toward the actuators. For instance, Team skills action selection
can send orders to the Player skills module (e.g. Dribble ToObject(object)), which
in turn can send orders to the Motion module. It should however not be possible
for the Motion module to send an order to the Player skills module (which resides
on a higher level in the hierarchy).

Two types of communication are used for upward communication though the
hierarchy: questions and triggered notifications.

Questions If a higher level module is interested in information of a lower level
module, the question type will be used to ask for the information. The lower level
module will answer the question. Upward communication through the hierarchy
is less trivial than downward. If it is not allowed for lower level modules to
initiate communication with higher level modules it is a bit tricky to use event-
like constructions for receiving sensor information. Clearly, questions may be
suitable to receive periodic information, but since they cannot be initiated by
lower level modules they can not be used for this purpose. Also, each Question
resembles one piece of information, so one piece of information requires two
messages: one question and one answer. This introduces double latency and
bandwidth, which is no restriction to use it for sporadic or irregular information
exchange. It would, however, not make sense to use the question type for
periodic information, because the question would be repeated periodically, which
is a waste of bandwidth.

Another communication type used in the upward communication flow which
more or less solves these issues is the triggered notification type.

Triggered notifications The triggered notification type can be seen as a
single request for a particular type of information from a higher level module to
a lower level module which honors the request by sending the information to the
higher level module, either periodically or when new information is available.
If the higher level module is no longer interested in the type of information
the lower level module sends, it simply requests the lower level module to stop
sending.

The mechanism we use for the triggered notification communication type in
some aspects resembles a subscription mechanism. A subscription mechanism
is based upon the so-called push strategy: as soon as a producer of data has new
data available it will publish the data so it is locally available to subscribers,
regardless whether a subscriber needs that particular instance of data on that
particular moment. When the moment arrives the subscriber needs the data, it
simply reads the data from its local buffer and continues processing. The main
advantage is that when the data is needed it has already been transferred over
the network, and is locally available to the subscriber. An important difference
between the triggered notification and a true subscription mechanism is that
the latter has anonymous publishers/subscribers. In the mechanism we use the
publisher and subscriber know where the information comes from. Therefore

24

Chapter 2 Clockwork Orange 2.3 Communication

c Team skills
il Q @]
§ -¢ Team strategy = Action selection
=
=}
€
g Q
o
5]
S
g < »| World model Q Player skills
IS
Q) T QT
17 oo Q N
/ Q y
Visi If Visi bject © -
Ision se Ision objec Odometry | "~ | Motion Kicker Sound
localization recognition -
8 = 8”(’135“0” Il not specification compliant
= Order S)
T = Triggered notification I specification compliant

Figure 2.6: Communication details. The directions of the vertices correspond
to the directions of the information flow.

our architecture lacks the increased modularity which architectures based upon
a true subscription mechanism have.

2.3.2 Deviations from the communication specification

Given the types of communication and knowing communication can only be
initiated by the highest module of two communicating modules, it should be
easy to identify which type of communication is used for a vertex in figure 2.5.
Unfortunately this is not the case. In figure 2.6, a more detailed picture of the
communication types used in the architecture is given, in which a distinction is
made between the use of communication types whose usage corresponds to the
specification of the communication types as given in the documentation of the
message system [28] and the use of communication types whose usage does not
correspond to it. Most of the non-compliant usage of the types, is the usage
of the question type for periodic information, which can for instance be seen in
communication between the World model and the Team skills module.

A more serious type of deviation is the reverse of the initiation of communi-
cation which occurs in the communication between the Vision self-localization
and the World model. The initiation of communication by a lower module may
seem very innocent, but in an architecture in which control is arranged hier-
archically, it is very important control does reside with the higher module. If
communication is initiated from below, the higher module has no control over
the information it receives, and therefore is (at least partially) dependent on
when and if the lower module is willing to send information. It becomes unclear
which of the two modules is in control over the other, this is not a problem if the
modules are part of the same hierarchical layer. If however two modules from

25

Chapter 2 Clockwork Orange 2.3 Communication

different layers are involved it should be - metaphorically speaking - always be
clear who is captain on the ship.

26

Chapter 3

World Models

3.1 A world model

In order for any agent to make sensible decisions about the actions it should
take, it should have some information about its environment. In the domain of
robot soccer this means that any player should know where the ball is (or try to
find it when this is unknown) and to score a goal, it would also be useful to know
where the opponents goal is. To be able to perform some kind of cooperative
team behavior it is also necessary to know where the other robots on the same
team are, and finally to introduce tactics it is also necessary to know where
all the opponents are. As we can see here, if the complexity of the desired
behavior increases so does the need for more complete information about the
environment. Every robot has to store this dynamic information internally in a
so called world model. This model of the world will typically contain the objects
in this world with their features, such as the position, orientation, speed and
some form of classification. It is desired that the world model is as complete as
possible, meaning that as much as possible of the relevant objects in the world
are represented in the model. Most of the time it isn’t possible for any player to
completely perceive the entire game because some of the objects will be occluded
by other object or are outside the field of vision of the robot’s sensors. Another
important aspect of a world model is its accuracy. We of course want the state
estimates of the objects in the model to be as accurate as possible. Because
of the inaccuracy of the sensors and noise present in the measurement this will
require special filtering techniques. In order to create an up-to-date model of
the world we also want the delay of the dynamic information to be as small as
possible. This will be achieved by using frequent updates using new sensor data
and by using a system that is capable of processing this data fast enough or by
designing efficient software.

3.2 Design decisions

When designing the software that is used to create a world model several deci-
sions have to be made.

27

Chapter 3 World Models 3.2 Design decisions

3.2.1 The sensors

The design is partly influenced by the sensors the robot possesses. The sensors
are used to detect and recognize the other objects in the game and to perform
self-localization. Some of the sensors often used in the robot soccer domain are:

- Odometry. The odometry sensor counts the number of rotations of the
wheels of the robot using an absolute encoder. This sensor is used by
every robot on every team since it is a very cheap sensor which is very
reliable for a short period of time. However it doesn’t give the absolute
position of the robot.

- Camera. A color camera is often used to detect the objects in the game,
which all have their specific color code (e.g. the ball is orange). Some
teams (including the Clockwork Orange team) also use the camera for
self-localization purposes.

- Omni-directional camera. Self-localization can be done more easily with
an omni-directional camera. A conic mirror hanging above the camera
gives it a 360 degree angle of view, allowing it to see the entire field (as
far as it isn’t occluded by any objects). This way the robot will almost
always see distinctive landmarks such as the goals.

- Sonar. Sending ultra sound waves in up to 360 degrees this sensor scans
the field for objects. This sensor will give a reasonably accurate model of
the field.

- Laser range finder. Using a laser to scan the field will give a very detailed
and accurate model of the field, which makes it an extremely useful sensor
for self-localization purposes 1. However laser range finders tend to be very
expensive. When a system uses this sensor to detect the objects in the
game it has to distinguish these objects by shape, since this sensor won’t
perceive the colors. The laser range finger also only gives an intersection
of the world at a certain height, making occlusion an even greater problem
than it is when using a camera.

- Infra-red sensor. This sensor uses infra-red to accurately determine the
distance to objects.

Each of these sensors has its pre’s and con’s as mentioned above. In the robot
soccer domain self-localization and object detection are the most important
problems. For the self-localization a combination of odometry and a laser range
finder would be ideal (provided that there are walls surrounding the field). The
odometry could keep track of the position for short periods and at a given
interval the laser range finder could give an absolute update of the position.
A camera is preferable to do the object detection. A normal camera is more
accurate but a omni-directional has a larger angle of view, however both are
usable to do the object detection. An omni-directional camera also is very
useful for self-localization, since the omni-directional field of view will increase
the chance of the robot seeing one of the goals making it easier to perform its

IThe absence of walls around the field as prescribed by the new 2002 rules will make it
much harder to perform self-localization using the laser range finder.

28

Chapter 3 World Models 3.2 Design decisions

vision-based self-localization. Since some of these sensors (especially the laser
range finder) are quite expensive most teams will have to make do with a less
than optimal configuration of sensors.

3.2.2 Sensor data tracking

From the data of these various sensors a world model has to be constructed
taking into account the uncertainty of the observations, the noise and possi-
ble delays. It is up to the software constructing the world model to do noise
filtering and lag compensation. Noise can be filtered out by using stored past
observations of the object and assumptions about the objects motion. For in-
stance using the linear least squares approach (described in [11] and [21]), a
line is fitted through these past measurement and the new measurement, using
their error estimates to filter out noise as much is possible. For this approach
we assume that the data can be represented by a linear function.

Another, more dynamic way of updating estimated states of objects and fil-
tering out the noise is the well known Kalman filter (described in many books
and articles, for instance [11] and [13]). The Kalman filter is a recursive, linear
estimator. The filter is supplied with initial information, including the measure-
ment error covariance, and estimates of the initial parameters and associated
error, and these are used to calculate a gain matrix. The error between the
parameter estimates and the measured data is determined and multiplied by
the gain matrix to update the parameter estimate and estimated error. The
updated error and parameters are used as input to a model of behavior, to
predict the projected error and parameters at the next time instance. Initially,
when the model parameters are only rough estimates, the gain matrix ensures
that the measurement data is highly influential in estimating the state param-
eters. Then, as confidence in the accuracy of the parameters grows with each
iteration, the gain matrix values decrease, causing the influence of the measure-
ment data in updating the parameters and associated error to lessen. One of
the great advantages of the Kalman filter over other filtering techniques is its
ability to incorporate the effects of noise from both the modeling and the new
measurements.

3.2.3 Shared worldmodels

As mentioned before, a robot will often perceive only a small part of the en-
tire game, due to the limits of its field of view and parts of the field being
occluded by objects in the field. The completeness of the world model could
be enormously increased by also using the observations of the other robots in
the team to construct the world model. A wireless Ethernet system enables
the robots to communicate with each other, also allowing them to share their
information about the world. This information can either be an entire world
model or just observations or state estimates of individual objects in the game.
Sharing information enables the robots to also keep track of the objects in the
game which aren’t perceived by the robot itself but only by its teammates. Fur-
thermore shared information can be used to increase the accuracy of the state
estimates. In order to share a world model it has to be world-relative instead
of ego-relative. To convert the relative coordinates of the observed objects into
absolute coordinates the robot’s own position is needed.

29

Chapter 3 World Models 3.2 Design decisions

3.2.4 Self-localization techniques

There are many different methods for self-localization of course depending upon
the used sensors. The easiest method for self-localization is using odometry.
The great disadvantage of an odometry sensor however is that its position esti-
mates are based upon the number of rotations of the wheels and not upon the
real traveled distance. When the wheels skid or the robot collides and moves
without turning its wheels, this will result in the odometry position estimate
losing its correct position. Furthermore odometry sensors typically come with
a systematic error. This means that from time to time the information about
the robot’s position has to be updated by an absolute self-localization method.
There are various different possible self-localization methods, largely dependent
upon the type of sensor that is used. Since our team only uses the vision system
to perform this task, only the vision based self-localization techniques will be
described. These can roughly be divided into 3 categories:

Feature based. This approach consists of extracting certain features from the
grabbed images and using them to estimate the robot’s own position. For
instance when the image shows us two goal-posts and we can accurately
determine the positions of these goal-posts and a corner-flag with respect
to the robot, we can use the triangulation technique to determine an
approximation of the robot’s position.

Edge based. Instead of using the objects in the game other features of the field
could also be used. This could be the lines on the field, maybe even in
combination with the walls around the field and the goals. By iteratively
trying to match the perceived lines to an estimated model of the world,
the robot’s position could be calculated. Clockwork Orange, the Dutch
robot soccer team also uses an edge based approach for self-localization
(described in [14] and summarized in [25]).

Appearance based. Opposite to the other approaches, using the appearance
based approach no features are extracted from the image. The entire
image or (to increase efficiency) a lower dimensional representation of the
entire image is used. This image is compared with the images the robot
has in his database to do an estimation of the position. An omnidirectional
camera is highly desirable for this approach.

On deciding which method to use in the robot soccer domain, one has to take
into account the amount of information that will typically be found in an image
captured by the vision system while playing a game of soccer. Since the num-
ber of easily detectable static objects required for the feature based approach is
very limited (only goal-post and corner-posts can be used in current field con-
figurations), this approach is not very suited for robot soccer. The edge based
approach is very suitable for robot soccer since the robot will almost always
perceive some lines of the field which can be matched to a relatively simple
model of the field. However symmetry of the field will, when depending solely
on the lines, result in at least two potential position candidates being found.
To evaluate these position candidates one has to use other information (e.g.
in which direction a goal is seen) or use some kind of tracking method. The
appearance based approach is also usable in robot soccer. However the highly

30

Chapter 3 World Models 3.3 Approaches of other Middle-size league teams

dynamic nature of this domain will make it much harder to use because of the
movable objects on the field disturbing the images.

3.3 Approaches of other Middle-size league teams

The teams differ largely in the way they construct a model of the world. In this
section some examples of used methods by the different teams are given. The
information presented has been taken from the 2001 team description papers
(except for ART, which has been split into several teams), in which references
to information about their specific approaches can be found. Table 3.1 lists the
institute, robot base on which their robots are built and the sensors of each
team. The questions whether or not the teams are homogeneous and if they
communicate are also answered.

CS Freiburg [30] Each robot builds and maintains a local world model on the
basis of its own sensor readings (a.o. a laser range finder). This model consists
of the position, speed and heading information of all the objects in the game.
The local world model is extended by the results of a global fusion component
that runs on an off-field computer and combines all estimates from the players.
Observations from different robots with regard to the same object are fused
using Kalman filtering. In addition for the global ball position, a probabilistic
approach known as ’Markov localization’ is employed to exclude observations
from sensor fusion which are most probably entirely wrong.

ART [2] A Hough transform based self-localization technique is used, detect-
ing landmarks on the field (the positions of which are know) and based upon
that estimating the pose of the robot. A Kalman filter is then used to com-
bine this state estimate with the odometry information. Local world models are
communicated with the other robots on the team.

AGILO RoboCuppers [23] A probabilistic vision-based self-localization
method is used to estimate the state of the robot. This method also enables the
robots to track the positions of the other moving objects. Local world models
are shared with teammates to increase accuracy.

GMD [6] This team uses revolving cameras to perceive the world. Although
having only a limited field of view the cameras can, being revolving, be used
to see in all directions without the robot having to change its orientation. This
camera information is used to form a model of the world and estimate the
absolute position of the robot, using the landmarks on the field. The local
world models are shared with the other robots on the team.

CoPS [20] The architecture of CoPS is structured in a reflexive, a tactical and
a strategical layer. The reflexive layer is responsible for sensing and interacting
with the hardware. The the level of the tactical layer, the Scene Detector agent
stores and updates the state of the world. This model is based upon both local
sensor information and communicated information of the teammates. Finally
the strategic layer is used to control the robots in special occasions such as the

31

Chapter 3 World Models 3.3 Approaches of other Middle-size league teams

(re)start of the game. Self localization is based upon scans of the field with a
laser range finder and sonar.

Trackies [26] Every robot has a reactive behavior, which is based upon a
relative world model. The robots don’t communicate which each other, so the
local world models aren’t shared. There also is no form of team behavior, since
the robots don’t know what the other robots on the team are planning to do.
Self-localization is done using omni-directional cameras.

Most of the teams use an approach in which the self-localization has a crucial
role. Knowing the robot’s position, an absolute model of the world can be
constructed, which could potentially be shared with the other robots. This also
facilitates the cooperative team behavior. The main drawback of this approach
is that it relies to heavily on the robot accurately knowing its own position. The
approach the Trackies use relies much less on the self-localization, the robot’s
behavior is largely based on a relative model of the world. However the lack of
communication between the robots will result in a much less accurate and less
complete world model and make team coordination almost impossible.

Team Institute Robot Sensors Homog.? Comm.?
base
CS Albert-Ludwigs- Pioneer 1 laser range yes yes
Freiburg Universitat finder, camera
Freiburg
ART Univ. di {Parma, Custom, camera, Sonars, no yes
Padova, Genova, Pioneer 1 infrared sensors,
Roma “La omnidirectional
Sapienza”}, camera
Politecnico di
Milano
AGILO Technische Pioneer 1 camera yes yes
Universitdt
Miinchen
GMD GMD Custom 360° panning yes yes
camera,
gyroscope,
infrared sensors
CoPS Universitat Nomad laser range yes yes
Stuttgart finder, camera,
sonars
Trackies Osaka University Custom camera, yes? no
omnidirectional
camera
Clockwork Univ. of Nomad, camera yes yes
Orange Amsterdam, Pioneer 2
Delft Univ. of
Technology,
Utrecht Univ.

Table 3.1: Comparison between several middle-size teams

20nly hardware is homogeneous, software is different per robot.

32

Chapter 3 World Models 3.4 Discussion

3.4 Discussion

Now that an overview has been given of the options one has when designing
a world model for a multi-agent system in general and a robot soccer team in
particular, let’s take a look at the choices the Clockwork Orange team made. An
absolute (world-relative) world model was chosen to facilitate cooperative team
behavior and to allow the robots to share the information they have about the
world in order to increase the accuracy and completeness of all of their world
models. In order to construct a world-relative model it is necessary to know
the robot’s own position. A vision-based approach was chosen to perform self-
localization. Given the fact that the field is surrounded by walls, a laser range
finder would have been easier, but the fact that these walls were to be abolished
at some time in the future and the fact that a laser range finder is very expensive
made that a vision-based approach was chosen. A feature based approach turned
out to be unsuccessful, because most of the time too little features are visible.
Currently the team uses an edge based approach, which works quite good, but
still is far from perfect. The appearance based approach will probably be a
good alternative. The performance of the self-localization would certainly get
much better if the team started to use omni-directional cameras. Most other
teams use laser range scanners or omni-directional cameras and seemingly have
less trouble in performing self-localization. A normal camera is used to detect
the other objects in the game. It gives us accurate estimates of the positions of
the objects. An omni-directional camera would considerably enlarge our field
of view (we could detect the ball lying behind us) but would also be much less
accurate. All the sensor information is processed using a linear least squares
filter which makes us less sensitive to noise. Our communications system enables
us to share the local world models with the other robots in the team, which also
increases the accuracy and completeness considerably.

33

Chapter 4

The World Module

In this chapter the world module of Clockwork Orange, the Dutch robot soc-
cer team will be discussed. First the way we represent the real world will be
presented. In the following sections the algorithms used to create and update
a world model and some of the other features of this module will be described.
Special attention will be given to the self-localization because of the importance
of this aspect in building an absolute world model.

4.1 A model of the world

The first thing one has to decide when building a model is how to represent the
real world in the model. We chose an object-oriented approach in our software
architecture (all software is written in the C++ programming language). This
object-oriented approach can also be seen in the way we represent the real world
in our world model. To make the fundamentals of the world model usable for
other applications as well as robot soccer, we use a generic world object. As
could be expected the world consists of a list of objects, the so called world
objects which can be divided into mowvable objects (which can move around in
the world freely) and fized objects (which have a fixed position). All the objects
are given their own unique ID-number (ranging from 1 to the number of objects
in the world) which is used to identify them in the model representation, this
number however is only used internally and is of no interest to the other modules.
For the specific robot soccer domain we use a sub class of the generic world, the
so called soccer world. The main difference between these two classes is that the
soccer world also consists of lists defining which objects belong to which team
and special lists for soccer related objects such as the goals and the lines of the
field. Furthermore the soccer world consists of a list of the objects that are
tracked and a list of the observations which aren’t matched to an object. The
way these lists are constructed and which purpose they serve will be described
later on in this chapter.

All the objects in the world, both movable and fixed, have certain features
that describe the state of the object.

e position Every object has a certain position (the center of the object)
consisting of the x and y coordinates, the heading of the object and un-
certainty estimates for these values. The coordinate system we use in

34

Chapter 4 The World Module 4.1 A model of the world

Generic World ——— 1 World Object

Soccer World Fixed Object Movable Object

Figure 4.1: UML class diagram of the world model.

our robot soccer team is shown in figure 4.2. The x and y coordinates
are measured in millimeters and the heading is measured in units of 0.1
degrees.

e speed The movable objects also have a speed, consisting of a velocity in
the x direction and in the y direction. Furthermore every movable object
has an angular speed. Speeds are measured in millimeters per second and
0.1 degrees per second.

e color Each object has a certain color, for now this feature isn’t used in
this module, but it could in the future be used to distinguish teammates
from opponents by the color of their markers.

e shape The shape by which each object is detected. This could be shapes
like ORANGE_BALL, BLACK_ROBOT etc.

e classification Every object in the game has an unique classification. Robots
are classified by their player number and the team they are on, resulting
in names like OT_PLAYER.1 (meaning player number 1 of our team).

e size The length, height and depth of the object, measured in millimeters.
This can be used for collision avoidance. When we know how large an
object is we know how far we have to stay away from the center of the
object in order to avoid collision.

e validation mask Since we’re dealing with a lot of unknown or uncertain
information it is necessary to keep track the information that is valid and
the information that is invalid. The validation mask tells us for all the
features of an object if they are valid. For instance using only one vision
observation it is possible to estimate the position of the object but it’s
impossible to determine the objects speed. The validation mask of this
object will therefore indicate that the position information of the object
is valid but the speed estimate isn’t.

e qctivity flag For movable objects in a game of soccer this flag tells us
whether an object is participating in the game. This feature is necessary
since any player can be substituted or banned from the game, as a result
of a blue card, and can thus be out of the game for some time.

35

Chapter 4 The World Module 4.2 Locating and tracking objects

angle

Our Goal
°
[]
10095 JBY]

Figure 4.2: The coordinate system

o latest update time Every time we receive an observation of an object we
update the position information of this object, the moment this happens is
known as the latest update time. We use this time for position predictions
and tracking purposes.

The world model is based upon observations of the objects in the world. This
information comes from the virtual sensor modules in the form of a so called
measurement data-structure. This data-structure consists of position, shape,
color and optional classification information. Because of the possible delay in
our communication system it is necessary that every observation comes with a
certain time-stamp telling us precisely when the object was observed.

Because the world module has to handle a lot of incoming information as
well as use this information to update the model and fulfill the information
requests of other modules, a multi-threaded approach has been chosen. The
main thread is the receiver thread which handles all incoming observations.
After some simple operations on this information a different thread uses this
information to update the world model. Other threads are used to handle
data subscriptions and deal with the more complex information requests. This
approach is necessary since the world module should to be able to operate in
the very dynamic domain of robot soccer, where it is essential to have an as
up-to-date model of the world as possible. Whilst increasing speed a major
drawback of multi-threading is that it makes the design of the module more
complex because of the risk of death-locks.

4.2 Locating and tracking objects

The information the world module receives about the world comes from different
origins. First we have the odometry sensor which gives us the robot’s own posi-
tion in absolute coordinates. The world module subscribes itself to observations
of this module. This means that the odometry module will send the latest infor-
mation it has about the position to the world module at a given interval. The
next local source of information is the vision module. The world module also
subscribes itself to information from this module, so that at a certain interval
the vision module will send all the shapes detected in the latest grabbed frame.
Another possible source of incoming data are the other robots in the team. The

36

Chapter 4 The World Module 4.2 Locating and tracking objects

way robots share their world models will be described in section 4.3. All the
information originating from these sensors is handled in the same way, which is
described in section 4.2.3 and further. The final source of information for the
world module is the vision-based self-localization, the way this information is
processed is described in section 4.2.2.

4.2.1 Dealing with uncertainty

Before going any further into the way the new observations are used to form a
model of world, first lets take a look at the aspect of uncertainty estimation.
Because real world sensor data typically comes with some noise and isn’t always
very accurate it is necessary to keep a measure of the accuracy of the estimated
states. In the equations that will be encountered throughout this chapter the
uncertainty estimates will be denoted as Cz, Cy and C#6 indicating respectively
the uncertainty in the x-direction, the y-direction and the orientation. It is
up to the virtual sensor modules to determine the value of these uncertainties.
The values are based upon an error model for the corresponding sensor. The
parameters of this model are estimated based upon experiments. Both in vision
and odometry one can let the sensor do a number of position estimations and
from these measurements calculate the typical standard deviation to the real
position. For instance using the UMBenchmark (as described in chapter 5), in
which the robot drives squares and the error is determined, in order to estimate
the error of the odometry. The odometry sensors estimate the uncertainty
to be about 5% of the traveled distance. The vision system calculates the
uncertainty in the observation of an object using the distance to the object and
the angle in which it is observed. The final source of local sensor information,
the vision-based self-localization doesn’t provide a correct uncertainty estimate.
It always assumes its position estimate to be correct within an uncertainty
region of about 10 cm. Chapter 5 will show us that much of the updates done
by the vision self-localization will be less accurate than this 10cm error region,
S0 a better uncertainty estimate would be very desirable. Also when using the
new observations to update the world model, one has to take into account the
uncertainty estimates, and also update these values.

4.2.2 Self-localization

The robot measures the objects in the world with respect to itself. To share
information about the world with other robots it is necessary have an absolute
model of the world instead of a relative one. When constructing an absolute
world model from relative sensor information it is necessary to know the robot’s
own position. The robot’s own position information is based upon two different
kinds of sensors. The first one is the odometry sensor, which will give us an
absolute position by determining the traveled distance from a known point.
However the position estimate of the odometry is based upon the number of
rotations of the wheels and not the real traveled distance, meaning that it would
completely lose its value when the robot collides, skids or is picked up and placed
somewhere else. Furthermore the systematic error which typically comes with
any odometer causes the accuracy of the position estimates to decrease as the
traveled distance increases making it useful for short distances but much less
useful for use over longer periods of time(more detailed information about this

37

Chapter 4 The World Module 4.2 Locating and tracking objects

can be found in chapter 5). The other source of position information is the
vision-based self-localization. As described in [14] (summarized in [25]) this
method uses the lines on the field to estimate the position of the robot. The great
advantage of this method is that it will give us an accurate absolute position
estimate which isn’t dependent on the traveled distance. The disadvantages are
that it is a very expensive (both in time and resource) method meaning that
can’t be used to update the position at a high frequency and the estimated
position will arrive with quite a large delay. Also this method won’t always be
able to tell us the position since it is very dependent on the number of lines that
are observed by the robot.

In practice the robot’s position will be mainly based upon the odometry
information which the world modules receives very frequently and which is han-
dled using the linear least squares algorithm. From time to time, when the
vision-based self-localization is sure enough about an estimate, this will be send
to the world module, which will use this to reset the robot’s position to an ab-
solute point (which, in the current implementation, is determined by combining
the old estimated position and the new position estimate from the vision-based
self-localization) after which the odometry will start tracking the robot again.
The position estimates from the vision-based self-localization typically arrive
with quite a large delay.

Each of the objects in the world (and thus also the object that represents
the robot itself) has an history of the positions where it was estimated to have
been so far. Every time the objects position is updated this new position is
stored in the objects position history. Let these state estimates over time-span
T be denoted by {pt~7,...,p!~1, p'} where every p is a vector (z,y,0) with an
corresponding uncertainty vector (Cy,Cy,Cy) and t is the time of the latest
position estimate. When a repositioning from the vision-based self-localization
Pext., made at time t—7, arrives, the history is used to determine where the robot
thought it was at time ¢ — 7. This position p’~" is determined by interpolating
between the two positions in the memory that are closest in time to this vision-
based estimate. This interpolated position and the new external estimate then
have to be combined, the method we use is that of the weighted average (where
the uncertainty estimates are used as the weights). The following equations show
how this new position estimate p¢~7 is calculated, with w being the weights.

ﬁtir = ptiT'wpi—" + Pext. Wp, s, (4.1)
Cpe—r
wy-r = 1o — P (4.2)
P Cpi-+ + Cp....
C
= 1o Pt]y, 4.3
wpemt. Cpt—‘r +Cpem. wp ()

The uncertainty estimates of the new combined state are determined in the
same way. A weighted average of the both uncertainty estimates is used in
which the uncertainty estimates themselves are the weights. Using the com-
bined position and and the old interpolated position estimate we can calculate
a position shift telling us the difference between the place the robot though he
was and where he really was at that time.

psnige =p T =P (4.4)
Going through the position history of the object we delete all the position

38

Chapter 4 The World Module 4.2 Locating and tracking objects

prior to the external estimation time, since they have no value any more. All the
newer positions are now translated and rotated according to the position shift.
Now the latest position estimate will give us the current position tracked by the
odometry and adjusted by the vision-based self-localization. The technique we
use here is minus some minor differences comparable to the well-known Kalman
filtering technique.

When we ’reset’ our position this way, we should also take in mind that the
observations of other objects were done relative to the robot and have been con-
verted to world relative coordinates using our former position, which possibly
was incorrect. We could shift the positions of all the observed objects corre-
sponding to our own position-shift, but to keep thing simple, we just delete the
old observations of the objects. So from then on, the position estimates of the
objects will completely be based upon observations done after the resetting of
the robot’s position. This problem could be overcome by maintaining an ego-
relative world model as well (instead of only a world-relative world model). In
this ego-relative world model all the objects’ positions relative to the robot are
being tracked. The accuracy of these position estimates isn’t influenced by the
robot’s self-localization.

Sadly at the time of the RoboCup 2001 in Seattle the local tracking mecha-
nism of the vision-based self-localization couldn’t cope with significant position-
shifts so we used the external position estimate as the combined measure (in
the given equations, this would mean that the weight of the external estimate
is 1 and the weight of the original estimate is 0).

4.2.3 Conversion to absolute coordinates

Now that the robot knows its own position it can use this to convert the incom-
ing observations, originating from a relative sensor, to an absolute coordinate
system. When a new observation arrives at the world module it will first be
checked on its time-stamp. When the observation is too old, which probably
means that the message system had some problems sending the observation, it is
useless for creating a world model and is therefore disregarded. When accepted
the relative observation can now be converted to absolute world coordinates us-
ing the following equations, where P is the position in the camera coordinate
system (i.e. the position relative to the robot), PM is the position in the world
model (i.e. the absolute position), 6 is the orientation of the robot and ¢ is the
absolute position of the robot.

PY = PMcos6— P} sinf +t, (4.5)

T

C _ pMg M
Py, = P, sinf— P, cosf +1,

The uncertainty estimates of the observation also have to be updated when
converting the position to world-relative coordinates. The uncertainty about
the robot’s position has to be added to the uncertainty about the observation
in order to come up with the uncertainty about the position of the object in
the absolute world model. We now have an observation in absolute coordinates
which we can test on being within the boundaries of the field. Since all objects
in the game should also be positioned on the field we can assume that any
observation which is way out of bounds (more than 2 meters) will be due to

39

Chapter 4 The World Module 4.2 Locating and tracking objects

noise an can therefore be disregarded. Another possibility would be that the
observation is out of bounds because the estimated position of the robot itself
is wrong. When encountering a lot of these outliers it would be reasonable to
decrease the certainty about the robot’s position. However at this time this
has not yet been implemented. Having converted and filtered the incoming
observations, we can use them to update the corresponding objects.

4.2.4 Matching observations to objects

Unlike the observations done by the odometry, vision-based self-localization or
other robots, the observations originating from vision will probably lack a valid
classification. The vision module can only detect the so called shapes of the
object in a grabbed frame (more information about the vision system can be
found in [16]). Actually the vision system only detects the colors, however due
to the chosen terminology in the design of the team, these distinctive features
will be referred to as shapes. These shapes could be the things typically found
in a game of robot soccer like, BLACK_ROBOT, ORANGE_BALL or fixed
objects like BLUE_GOAL. It is up to the world module to match these shapes
to any of the objects in the game. The ORANGE_BALL shape is easy to
match since there only is one ball object. However there is a possibility that
the observation is wrong due to noise within the vision system or because an
object with a color closely resembling the color of the ball is on the field (e.g.
brown shoes). Therefore we have to determine whether the observation could
possibly be the ball. To do this we have to check if the uncertainty estimate of
the new observation has an intersection with the uncertainty region of the ball
object in our model, taking into account the predicted motion of ball in the time
between the old position estimate and the observation. The uncertainty regions
are rectangular areas. Because the vision system isn’t able to determine the
orientation of the detected object we don’t use this information in the matching
process. This results in the following equations where At is the time difference
between the position estimate of the object and the new observation, v, and vy
the velocity of the object in the respectively x and y direction and Cx and Cy
the uncertainty estimates:

Tobj + v At — Cmobj —Cops < Tops < Tobj + v At + Cﬂ?obj + Cxopfd.7)

Yobj + vyAt - Cyobj - Cyobs S Yobs S Yobj + vyAt + Cyobj + Cyobs(4-8)

The other movable object, the BLACK_ROBOT shape, is handled the same
way. However it is possible that multiple objects match the observation. There-
fore we have to make a list of all the tracked robots that could possibly match
the new observation (i.e. they fit the rules given above). From the robots in the
list we choose the one that is most likely to match with the observation. We
use a greedy approach to do so. To determine how likely it is that observation
matches an object we use the distance between the estimated position of the
object and the new measurement. If the distance increases the likeliness that
we have a positive match decreases. The measure we use to indicate how good
an observation corresponds to an object is:

|mobj - -:Uobsl + |yobj - yobs|

P=1-
C1'770bj + Cmobs + Cyobj + Cyobs

40

Chapter 4 The World Module 4.2 Locating and tracking objects

Another possibility is that there are no tracked objects that match the obser-
vation. It is possible that the observation corresponds to one of the objects one
would expect in the game, but which isn’t being tracked in the current world
model. In that case we can start tracking the object using the new observation.
For instance, when we are keeping track of three opponents, and we receive a
new observation of a robot, which doesn’t match to any of our teammates nor
to any of the opponents, we can assume that the object corresponding to the
observation is the fourth opponent and start tracking it. This situation typically
occurs at the beginning of a game when the opponents are being observed for the
first time. When the observation is matched to a certain object, it is added to
the object’s measurement memory (which can contain up to 6 measurements).
This memory is ordered chronologically so that the first measurement is the
newest and the last measurement is the oldest. When the memory is full and
we receive a new measurement, we will delete the oldest one.

When all the objects one would expect in a game are being tracked and a
new observation doesn’t match to any, we can’t use it to update any. However
this doesn’t mean the observation is false. It could very well be that the position
estimate of one of the tracked objects is false and therefore doesn’t match the
observation or that there is an unexpected object on the field which doesn’t
normally take part in the game (for instance when the referee enters the field).
It would be a waste of valuable information to throw away the observation.
Observations not matching to any of the tracked object are therefore stored in
an unmatched observations list. The observations in this list can be used for
instance in collision avoidance by the player skills module. If we see another
robot right in front of us but this observation doesn’t fit in our world model it
would still be wiser to drive around it.

4.2.5 Updating positions

Once we matched an observation to an object, we can use this observation to
update the object’s position. To estimate the position, we use the memory of
observations we have about the object. If there are only one or two of these
measurements in memory the only thing we can do is estimate the object to be
at the position of the last observation. If there are more then 2 measurements
in memory the linear least squares algorithm is used to estimate the objects
position at the current time. Using a linear least squares algorithm means that
we assume the motion to be linear (which is a good approximation over short
distances).

The linear least squares algorithm tries to fit a line through the measure-
ments in the memory. Since we are dealing with three dimensions (i.e. x-
direction y-direction and time) with errors in two of these coordinates (i.e. the
x-direction and y-direction) it isn’t straightforward just to fit a line. We will try
to separately fit two lines in respectively the (z, t)-plane (as shown in figure 4.3)
and the (y,t)-plane. Since these straight-line models are first order functions
this results in the following equations, where z and y are the position of the
robot in respectively the x-direction and y-direction and t is the time of the
observation.

z(t) = a+ bt (4.9)
yt) =c+dt (4.10)

41

Chapter 4 The World Module 4.2 Locating and tracking objects

x|

Figure 4.3: Fitting a line through data points in the (z,t)plane. Here a = 2¢.

We will try to fit a set of N data points (x;,t;) and (y;,t;) to the corresponding
line models. From this point only the (z,t) case will be described as the (y,t)
case is handled in exactly the same way. In this approach it is assumed that
every uncertainty estimate o; associated with the measurement z; is known and
that the value t; is known exactly. As a measure to indicate how good the model
agrees with the actual data the so-called chi-square merit function is used. The
lower the value of this merit function the better it agrees with the data.

9 N ;i —a— bti 9
X*(a,b) =Y (——) (4.11)

o
i=1 B

We want the model to be as close as possible to the actual data so the merit
function has to be minimalized by adjusting the a and b parameters. To get the
minimum of the merit function we use the partial derivative of x?(a,b). This
gives us the following equations:

0,2 Nz —a—bt;
0=2X =_9 e 4.12
L=y iy (112
0,2 N ti(z; —a — bty)
0=-2X=-2 Qe v 4.13
6b ; 0_1.2 ()
We will now define the following sums.
Al Nt Yz
S=Y) = Si=) = S, =) = (4.14)
oo ; o ; o
N 9 N
t; tix;
Sp=Y & Spp= ot 4.15
tt pzl 01-2 tz Z:ZI O_ig ()

Chapter 4 The World Module 4.2 Locating and tracking objects

Using these definitions the equations can be rewritten to:

aS +bS; = S, (4.16)
aSt + bStt = Stz (417)

and given the following definition of A:
A = 88y — (S)? (4.18)
The solution is given by:

a= SttSa: - StStz'
A
S5 — St S,
- A
Since the measurements used to form this model of the line have some uncer-

tainty the model should also represent some kind of uncertainty. The uncertainty
estimate of the a and b parameters are given by:

(4.19)

b (4.20)

Oa Stt — Stti
= — 4.21
ob St;— S
— = — 4.22
This results in the following uncertainty estimates for a and b:
St
0'3 = K (423)
S
2
= — 4.24
Op A ()
Where the actual uncertainty estimate of the position is given by:
C =0, +opt (4.25)

Now that we know the model of the line we can, predict the position and
the uncertainty estimate both in the x and y-direction of the object at any
moment in time. The motion of any of the objects in a game of robot soccer
of course seldom is linear, however over very short distances the motion can be
approximated by a linear function.

4.2.6 Speed and heading estimation

Using the measurements in memory we can also try to determine the objects
speed and the direction in which the object moves. Since the model of the line
we use is based upon either the x-coordinate z(t) or the y-coordinate y(t) and
the time ¢, the equations of the line can be formulated as follows, where v, and
vy are the speed of the robot in respectively the x and y-direction:

z(t) = vyt + o (4.26)
y(t) = vyt +yo (4.27)

43

Chapter 4 The World Module 4.3 Sharing the world model

This means that the a parameter as used in the previous section gives us the
speed of the object in either one of the directions. Knowing the speed of the
object in both directions also enables us to determine the heading of the robot
as follows: v

tanf = = (4.28)
Uy

The only thing left to do now is to determine the uncertainty in the heading
estimate of the object. To do so we take use:

vy £Cy

Cy = tan
o vy £ Cy

0 (4.29)
Where the pluses and minuses depend upon the quadrant of the heading.

4.2.7 Tracking objects

By matching the observations to the known objects in the game and updating
their positions through these new observations we can keep track of the objects.
However when we lose an object out of sight it should also be known to the
world module that we no longer know the object’s position but that we do
expect the object to still be in the game. The world module has a list of all the
movable objects in the game which can be tracked, i.e. the ball, a number of
opponents and our teammates who have announced themselves via a broadcast
to us. When one of these objects hasn’t been observed for more then 4 seconds
this object is removed from the list. So the object isn’t deleted and the old
data isn’t thrown away, but since the object isn’t in the list, we know that
its position information is no longer valid and we shouldn’t communicate this
information to other modules. When we receive an observation with the shape
of this untracked object, we can use the old data we still have to determine
whether the observation could possibly correspond to this object (taking into
account the position we last saw it and the estimated uncertainty region and
speed of the object).

4.3 Sharing the world model

One of the great benefits of our absolute world model is that it enables us to
share it with our teammates. Sharing information about the world model will
give us more complete and accurate information about the world. Since every
robot only sees a small portion of the field it will only be able to form an up-
to-date model of a very limited part of the game. By sharing the observations
with the members of the same team, the robots can also include the objects in
their model which they can’t perceive themselves but which are only perceived
by their teammates, making the locally maintained world model much more
complete. Sharing also makes the model more accurate since all the shared ob-
servations can be seen as extra sensor information about the object which will
help us reduce the uncertainty we have about the state of the object. When
sharing the world-relative information about an object, the uncertainty esti-
mate of the object consists of the uncertainty of the vision observation and the
uncertainty of the position of the observing robot.

44

Chapter 4 The World Module 4.4 Predicting future states

The sharing of information can be done in two ways (which both were used
at the same time during the RoboCup in Seattle). The first and most precise
way is to subscribe to each others information. When a robot enters the game it
will send a broadcast to all the robots in the same team telling them it is joining
the game. The robots will then subscribe to each others information. This way
it can be very precisely regulated which information will be send to which robot.
It however makes the module more complex (and thus prone to bugs), since all
subscriptions have to be handled by different threads and all should be neatly
canceled when a robot leaves the game . The second more efficient way is to
send new information directly to all the other robots by broadcast, all the robots
will receive the information and it’s up to them to decide what to do with it.
At this time only information about the state of the ball and the robot’s own
state are broadcasted to the other robots, but this could easily be extended to
the sharing of the information of all the objects in the game.

4.4 Predicting future states

Although it is very difficult to predict the future states of the objects in the
game, the world module contains a very simple feature allowing a peek into the
future. To determine the future state of any of the moving objects in the game,
assuming it has a constant velocity, we simple take the current position and the
speed of the object allowing us to predict the position of the object at any given
time, using the following formula:

TipAt = ’thAt + & (430)
Yerar = vy, At +y; (4.31)

Since the field is surrounded by walls ! the objects won’t leave the field, there-
fore collisions with the wall have to be taken into account when predicting the
movement of the objects . In our simple model we assume the ball to collide
with the wall according the normal physical laws (the angle in which the ball
leaves the wall equals the angle in which it hits the wall). When a robot collides
with a wall it is assumed to stop. To make our model more accurate we could
also take into account the deceleration of the ball. However this would require
extensive testing to come up with an accurate model of the deceleration of a
ball on a RoboCup field including the effect of collisions with different kinds of
objects. To predict the positions of the robots an accurate model of the behavior
of the robots is needed, which, for the robots of the other team, takes us into
the research area of the opponent modeling. These techniques could improve
our predictions a lot, but since we hardly use long term prediction anyway it
isn’t necessary increase the complexity of this feature.

4.5 The ball

One of the most important aspects of playing a game of soccer is knowing who
has possession of the ball. Both individual player and strategic team decisions

1 As mentioned before, in the near future these walls will be removed, making robot soccer
more challenging and increasing the resemblance to human soccer.

45

Chapter 4 The World Module 4.6 A robust module

are based upon who has the ball. Knowing where all the robots and the ball
are, the world module should be able to determine which of the robots is in
possession of the ball. There are, so far, four possible states of ball possession.

e [have the ball. When the ball is within a certain distance in front of
the robot (i.e. the ball is between the ball handlers of the robot), this is
detected by the player skills module (using vision). This module on its
turn sends a trigger to the world module notifying it that the robot is in
possession of the ball. When the ball leaves the ball possession region in
front of the robot a trigger is also sent to the world module notifying that
the robot has lost possession of the ball.

o We have the ball. When one of the robots in the team gets in possession
of the ball it sends a broadcast to all the other robots in the team telling
them that the team is in possession of the ball. Vice-versa, if a robot loses
possession of the ball it also sends a broadcast telling its team members
that the team has lost ball possession.

o They have the ball. Determining whether an opponent has the ball is much
harder since it is almost impossible to detect if the ball is in the opponents
ball handling mechanism. We try to detect ball possession of the opponent
by checking for all the opposing robots that are being tracked in our world
model whether they are close to the ball(less than about half a meter).
If this is the case we compare the heading and speed of the ball with
those of the opponent if they are roughly the same we assume that the
opponent has the ball. This seems to be a reasonable assumption because
the opponent may be expected to get the ball if it remains near it for
some time. In the rare case where both one of our teammates as well as
an opponents seems to have the ball, for instance when they are fighting
over the ball and thus both are near it, we assume that our player has the
ball, and disregard the opponent, which can of course quickly be corrected
should the opponent steal the ball.

e Nobody has the ball. In this final state, there either is no robot near the
ball or we just don’t know where the ball is. In both cases the same
behavior is needed, namely search the ball and try to intercept it, so we
don’t have to distinguish these two situations.

4.6 A robust module

Playing a game in a dynamic real world situation means that the robot can
encounter many unexpected situations. As many as possible precautions have
been taken to make the world module as robust as possible. There are mainly
two kinds of precautions, the first deals with problems in the software, such as
crashes of modules or faults in communication, the other is meant to make the
world module as robust as possible to faulty incoming data. Some examples of
the precautions are:

e heartbeat system. Because of the large dependencies between the different
modules on a robot, the crashing of one the modules will often result in
problems with all of the modules. To detect when any of the modules

46

Chapter 4 The World Module 4.6 A robust module

is in trouble, all the modules will have to send a heartbeat to the coach
module. As soon as any of the modules doesn’t give any heartbeat, which
probably means the module has crashed, all the other modules are neatly
closed down and the software on the particular robot is restarted.

e crashes of team members. Should one of the team members fall out with-
out sending a broadcast telling the world modules on the other robots that
it has left the game, this would cause the other world modules to crash,
due to the subscriptions which are used between the modules, which have
to be neatly cancelled. To deal with this the Msm module (the mod-
ule responsible for starting up and monitoring the other modules) on the
robot which world module has crashed will detect the crash as the module
doesn’t send a heartbeat and will send a broadcast to the other robots
telling them this robot has left the game. A neater way of dealing with
this kind of problems would be to broadcast information instead of using
the subscription mechanism.

e filtering on time. Due to system problems or other unpredictable situa-
tions it is possible that the world module receives more new observations
than it can handle, meaning that the communicating queue fills up. When
the world module finally is ready to handle the observations in the queue
will be aged, and less useful since they will only lead to an out-of-date
world model. To solve this problem, the world module will disregard in-
coming observations that are too old (this of course is very arbitrary, but
at this time, too old means older than 2 seconds). This way the world
module will make up its arrears and only use up-to-date observations to
update the world model.

o lost/found trigger. In the situation that the vision-based self-localization
isn’t able to determine the robot’s position (because and doesn’t see
enough lines or can’t determine which candidate is the best), it is pos-
sible to determine whether the estimated position of the robot is correct
based upon vision information. For instance when the robot’s estimated
position indicates that it should see the yellow goal at 8 meters distance
but in fact it sees the blue goal at 1 meter distance, it would be reasonable
to say that the estimated position is wrong. In that case the vision mod-
ule will send a lost/found trigger to the world module. The world module
will dramaticly increase the uncertainty estimate of its own position in-
formation. The world module should now no longer send the information
it has about the world to its teammates because it is faulty data, and the
team skills module will go into relative mode, meaning that it will make
its actions based upon relative information and no longer based upon the
absolute model of the world.

e bump trigger. The odometry sensor is very sensitive to collisions so it
would be desirable to be able to detect when the robot collides. Sadly
it is not possible to detect all collisions but when the robots gets stuck
to the wall or another robot and spins its wheel without actually moving
(which will cause the odometry sensor to think the robot has moved while
it hasn’t) this will be detected by the player skills module which will
send a trigger to the world module telling it that the position estimate

47

Chapter 4 The World Module 4.7 Communication with higher level modules

based on odometry is no longer valid. The world module will increase
the uncertainty estimate of its own position dramatically. This too will
mean that the team skills module will go into relative mode and the world
module will stop broadcasting information about the world model.

4.7 Communication with higher level modules

In the previous sections the way a world model is maintained, based upon the
incoming sensor data, is described. On the other hand the world module also
has to supply the information of the world to the higher level modules which
determine the actions of the robot both on individual level (Player Skills module)
as well as team strategy level (Team Skills Module). Several interface functions
have been designed.

Read World This function will send the latest update of the entire known
model of the world to the receiver. Because of the message system only
enabling us to send a limited amount of data in each message, this function
will send a concise model, consisting only of the states and classifications
of the 9 objects in the game (i.e. the 8 robots and the ball).

Object info This function will give all the information we have about one
particular movable object in the game. The given information is much
more extensive than the information in a Read World request. It also
allows the request of a prediction of a future state of the object.

Blobs in Range For use in collision avoidance the player skills module will
use this function to get all the objects (except for the ball) and unmatched
observations which are partly or completely within a certain range (i.e.
they are between two relative angels and within the maximum distance).

Ball possession information In making team strategy decisions it is ex-
tremely important to know who has possession of the ball. This function
will tell the requester whether the robot itself, the team, the opponent or
nobody has the ball.

Information of Fized Objects Finally the other modules can also request
information about the fixed objects in the game. Questions like: ” Where
is the blue goal”, ”Which goal is ours”, ”Where is the penalty dot” will
be answered.

48

Chapter 5

Results

In this chapter the performance of the world module is evaluated. The data
used in this chapter originates from tests on the UvA robot-lab soccer field and
the log-files created at the the RoboCup tournament in Seattle. Three main
features of the world module will be discussed here: self-localization, object
detection and the sharing of information with the other world modules.

5.1 Clockwork Orange at RoboCup Seattle

As mentioned before, Clockwork Orange attended the RoboCup 2001 event in
Seattle. It participated in the middle-size league which consisted of eighteen
teams divided over three groups of six teams each. The other teams placed
in the group of Clockwork Orange were JayBots(USA), ISocRob (Portugal),
Cops Stuttgart (Germany), Trackies (Japan) and Fun2Mas(Italy). The games
against the Jaybots, ISocRob and Fun2Mas resulted in a win for Clockwork
Orange (respectively 2-0, 3-1 and 5-0). The spectacular game against Cops
Stuttgart ended in a draw (2-2) and the game against Trackies ended in a
dreadful defeat (0-8). Clockwork Orange finished third in this group meaning
that it had to compete with the teams that finished third in the other groups:
GMD (Germany) and Artisti Veneti(Italy), for the two remaining quarter final
places. A win over Artisti Veneti (3-0) and a loss against GMD (1-4) gave
Clockwork Orange their deserved place in the quarter finals. The next opponent,
three time RoboCup champion CS Freiburg, turned out to be too strong, the
match ended in a 0-4 defeat. CS Freiburg reached the finals in which it defeated
Trackies. Being eliminated by the winner of the tournament at the quarter finals
stage means that the participation of ClockWork Orange at the 2001 RoboCup
can be called successful. Part of the information used in this chapter will come
from a representative set of log files of the games against Fun2Mas, Artisti
Veneti, GMD and CS Freiburg.

5.2 Self-localization

Knowledge about the robot’s own position is based upon the information of two
different sensors: i.e. odometry and vision-based self-localization. In this section

49

Chapter 5 Results 5.2 Self-localization

the accuracy and the suitability for robot soccer of both sources of information
and the current combination method will be discussed.

5.2.1 Odometry

As mentioned before, odometry information is very useful when driving short
distances, but it loses its accuracy when driving longer distances. The three
possible causes for the increase in the error in the position estimation by the
odometer are: collision, slip and bias. When the robot is ran into by another
robot this could cause the robot to move without the odometry noticing this
movement. The wheels of the robot skidding makes that the odometry senses
motion while in fact the robot isn’t moving. And finally there’s the systematic
error which occurs in every odometry sensor. The first two of these causes can’t
be easily detected, they require special sensors or very complex vision-based
methods. The systematic error however can easily be determined using the
University of Michigan Benchmark (as described in [5]). This error is caused
by imperfections in the design and mechanical implementation of a mobile robot.
The two main causes for this error are:

o Unequal wheel diameter. The robots use rubber tires to improve traction.
It is however almost impossible to manufacture rubber tires that have ex-
actly the same diameter. Furthermore an asymmetric weight distribution
of the robot will result in differently compressed tires. This will cause
translation faults, meaning that the robot will turn away from a planned
route.

o Uncertainty about the wheelbase. Because the tires have a contact region
instead of a contact point with the ground, it is hard to determine the
effective wheelbase. This causes an orientation fault.

In the UMBenchmark Test the robots drive along a 4x4m square path!.
They do so five times in a clockwise direction and five times in a counterclock-
wise direction. This driving in both directions will avoid underestimating the
error due to the counteracting of the factors mentioned above. Each time the
robot has driven along the path once, the real position (relative position to the
planned end-point of the path) and the position estimation by the odometry are
measured. Subtracting these two will result in the error of the odometry €, and
€y. The results for the robot Nomado are shown in figures 5.2 and 5.1. Using
all five measured errors in one direction we can determine the center of gravity
for the corresponding direction.

n

1
Teg.CW/COW = Z €z;,cwicow (5.1)
i=1
1 n
Yeg.,.cW/CCW = E Z €yi.cw,cow (5'2)
=1

The absolute offset of these two centers of gravity from the origin are given
by:

Te.g ,CW/COW = \/(xc.g.,CW/CCW)Q + Ye.g.,.cw/cow)? (5.3)

1Due to the restrictions of the size of our field, we performed the test using a 3x3m square

50

Chapter 5 Results 5.2 Self-localization

real odometry €X/Y
x Yy w |z y w | € €y €u
-120 | -170 | 70 | -10 | -78 | 28 | -110 | -92 | 42
95 | -180 |80 |-2 |-76| 21 | -93 | -104 | 59
-108 | 150 | 70 | -7 | -73 | 29 | -101 | -77 | 41
-106 | -185 | 70 | -2 | -78 | 23 | -104 | -107 | 47
-130 | -206 | 90 | -5 | -76 | 27 | -125 | -130 | 63

Table 5.1: Clockwise results Nomado(in mm and 0.1°). Shown are the real
position relative to the starting/ending-point, the position estimate from the
odometry and finally the corresponding error in the odometry sensor.

real odometry €X/Y/w
x |y w z |y |w € | € €
51 [-30 | -10 | -7 | 65 | -29 | 58 | -95 | 19
67 | -30 | O -2 |76 | -25| 69 | -106 | 25
61 |-21|-30|-5|73|-36|66|-94 |6
69 | -20 | O -5 | 76| -32| 74| -96 | 32
791-25|0 -7 | 78 | -25 | 86 | -103 | 25

Table 5.2: Comparable to 5.1 only this time the results come from a Counter-
clockwise run.

Finally the maximum of r., cw and 7.4 ccw is defined as the measure of
dead-reckoning accuracy for systematic errors.

Emam,syst = max(rc.g.,C’WQ rc.g.,C’CW) (54)
For our robot Nomado this results in z.., cw = —106.6 and y. 4. cw = —102
for the clockwise direction and z¢.4.,cow = 70.6 and y..,.,cow = —98.8. This

gives us respectively 7., cw = 147.5 and 7. 4. cocw = 121.4. Taking the maxi-
mum of these two allows us to conclude that the systematic error in the odometry
is 147.5 mm. In other words the systematic error is about 1.2% of the traveled
distance of 12 m. Originally a value of 5.0% of the traveled distance was taken
as the uncertainty estimate of the odometry (this includes a safety margin to
cope with small external effects like irregularities of the surface of the field and
minor collisions). However these tests indicate that a smaller value of about
3.6% (three times the systematic error: 30) could also be sufficient.

Given this data and the results given in 5.1 and 5.2 we can conclude that
the error in the x-direction is caused by the fact that the wheels of the robot
skid. And the error in the y-direction is caused by one wheel being slightly
larger or skidding more than the other wheel.

Estimating the robot’s own speed. The estimation of the robot’s speed
is based upon the odometry sensor as well. Using the number of rotations of
the wheels in a certain time interval, the speed can be calculated. We tested
the accuracy of this speed estimation by letting the robot drive along a straight
line for 7 meters. Figure 5.1 shows the estimated speed of the robot from the
odometry. By measuring the time it took the robot to reach the end, the average
speed of the robot could be determined. It turned out to be about 0.75 m/s,

51

Chapter 5 Results 5.2 Self-localization

?

Vx(m/s)
1.0

05

_>
f(sec.)

Figure 5.1: The robot’s speed estimate when driving over a distance of seven
meters. The dotted line indicates the real average speed of the robot.

which corresponds to the average of the speed estimates done by the odometry
sensor. Also the robot’s top speed was measured on a 2 meter long middle
segment of the trajectory. The measured top speed was 0.98 m/s which equals
the odometry speed estimate.

5.2.2 Vision-based self-localization

This vision-based self-localization method is used to correct the odometry posi-
tion from time to time. It is based upon a combination of two different methods.
A global method tries to fit the lines on the field perceived to a model it has of
the field. Ambiguity caused by the symmetry of the field or the lack of sufficient
information will result in multiple position candidates being found (this num-
ber could be reduced by using additional sensors such as a compass). A local
tracking method tries to find which of these candidates is valid by checking the
robot’s former positions and using external information such as which goal is
seen etc. The local tracking method however does require the robot to move
making it almost impossible to do a vision-self-localization when the robot is
standing still, because multiple candidates will be found and it is impossible to
choose which is the right one. When a candidate is finally found which satisfies
all the conditions required for a position to be plausible, it is send to the world
module which tries to combines it with the odometry information as described
in chapter 4. It would have made testing and generating results much easier if
we could test it while the robot was standing still, but since this isn’t possible
we will let the robot drive a pattern across the field and we will compare the
position estimates found by vision with the position estimates of the odometry
and the real position of the robot.

The results are presented in figure 5.2 which gives a graphical reproduction
of the robot’s path and table 5.3 which more precisely allows us to compare
the vision self-localization updates with the odometry and the real position.

52

Chapter 5 Results 5.2 Self-localization

The black line is a rough approximation (up to 20cm) of the robot’s real path.
The dotted line shows the position estimates from the odometry. And finally
the circles represent the positions which were given by the vision-based self-
localization, the line-piece indicating the orientation of the robot. The robot
started on position 1 and was ordered to drive from via-point to via-point, the
via-points being the corners of the goal-areas. As can be seen, the odometry
indicates the robot driving neatly from point to point. However the real position
differs somewhat from the position where the robot thought it was. After driving
the complete path, the difference between the real position and the odometry
estimate was about 40 cm (which is 1.9% of the total traveled distance). As could
be expected the difference increased proportionally to the traveled distance,
and remains within the uncertainty estimate which predicted an uncertainty
region of 106.1 cm(5.0% of the 21.23 m total traveled distance). It also stays
within the 76.6 cm error region we would get if we would use 30 (3.6%) for our
uncertainty estimate, which indicates that this could be a good value. Twenty-
two position updates were sent by the vision system during the 79.2 seconds
of this experiment. This means that on an empty field (i.e. none of the other
objects of the game are on the field) on average once every 3.6 seconds a vision-
based position update is given. Most position estimates seem to lie within a few
centimeters of the robot’s real position (better results may be expected on a field
with better lighting conditions and a better calibration of the vision system). On
average about 5% of the updates can be classified as outliers. A good example
of such an outlier is the ninth update in table 5.3 which is almost a meter from
its real position. The robot also receives some very inaccurate updates when
standing still near position 3 (update VI). Including the outliers the average
error of the vision updates is 367.4 mm. When we discard the outliers during
this fragment the average error is 212.9 mm. These numbers do not correspond
to the uncertainty estimate of about 100 mm provided by the vision module. It
also indicates that the method we were forced to use during RoboCup 2001, in
which the vision-based self-localization is used to reset the position estimate of
the robot, is very incorrect. Using this method we assume the uncertainty of
the vision update to be 0 mm. The vision updates completely determines the
robot’s position estimate while it should, according to its real uncertainty, have
a much smaller influence.

The frequency in which the world module receives new positions from the
vision module depends upon many factors, such as the position on the field,
the number of lines visible etc. During the games played in Seattle the robots
received a number of position updates varying between as few as 46 and as much
as 190 in a game. On average about 81 position updates were done in a game
which on average lasts slightly more than 30 minutes. This means that these
position updates were send to the world module about once every 24 seconds
(which is about 7 times less frequent than on an empty field). Examples of
the spatial distribution of the updates of three of the robots (Caspar, Nomada
and Ronald) during two of the RoboCup games are given in figures 5.4 and
5.5. The graphs don’t give any information about the accuracy of the position
estimates since we don’t have any ground truth about the robots’ locations.
However they do give us some information about the frequency and distribution
of the updates.

In figure 5.4 data from the match against Artisti Veneti is shown. The
updates are quite neatly distributed over the entire field. Caspar received quite

53

Chapter 5 Results

5.2 Self-localization

— real pos.

— - odometry

G-Vision Selfloc.

Figure 5.2: Self-localization test.

estimate and the the vision-based self-localization updates are shown.

The real position, the odometry position

Vision SL. odometry real
z Y €2 €y x Y €2 €y z Y

I -3497 | -1498 | 3 2 -3497 | -1498 | 3 2 -3500 | -1500
II -3001 | -1184 | -1 216 | -3000 | -1480 | O -30 | -3000 | -1450
III -1331 | -614 | -231 | 136 | -1109 | -777 | -9 -27 | -1100 | -750
v 491 265 -209 | 165 | 706 109 -6 9 700 100
A% 2468 | 1223 | 118 | 173 | 2451 | 970 111 | 80 | 2350 | 1050
VI 4132 | -1395 | 1132 | 455 | 3477 | -1435 | 277 | 415 | 3200 | -1750
VII | 1786 | -1173 | 36 327 | 1846 | -1087 | 96 | 413 | 1750 | -1500
VIII | -68 -401 | -18 299 | 73 -294 | 123 | 406 | -50 -700
X -2272 | -629 | -372 | 879 | -1783 | 584 217 | 334 | -1900 | 250
X -3523 | 854 277 | -346 | -3439 | 1452 | 361 | 252 | -3750 | 1200

Figure 5.3: The table shows a representative set of world-relative positions of
the updates and the corresponding odometry estimates (both with their errors
compared to the real position) and rough approximations of the robot’s real

position.

54

Chapter 5 Results 5.2 Self-localization

ronald (67)@ nomada (69)® caspar (83) @

Figure 5.4: Positions (with orientation) of the updates by the vision-based self-
localization during the RoboCup 2001 match against Artisti Veneti.

ronald (71)@ nomada (190)G caspar (79) &
3-

Figure 5.5: Same type of figure as figure 5.4, only here data is presented from
the RoboCup 2001 match against GMD.

55

Chapter 5 Results 5.2 Self-localization

a large number of updates on the opponents half because it was in attack-mode
most of the time. The other two robots received most updates on their own
half of the field because they were in defend-mode. Relatively few updates were
done near the outer sides of the field. This is caused by two factors: the robots
stayed away from the boarding for most of the time and when a robot was near
the boarding it could only perceive a limited part of the field and thus too little
information was found to do a good self-localization.

Figure 5.5 shows data from the match against GMD. As can be seen Nomada
received an extremely large amount of updates. Most of which were near the
same location on the field. It seems that the robot spend most of the time
on that position, where it could also find the desired information to do a self-
localization without this information being occluded by other robots. It shows
us that a much higher frequency of updates can be achieved in a more optimal
situation. Furthermore it is clear that in this figure most updates were done on
the teams own half, which makes sense because the game was played against
the strong GMD team and the Clockwork Orange team was forced to defend
most of the time.

5.2.3 Combined self-localization

During the matches of RoboCup 2001, the vision-based self-localization infor-
mation was used to reset the odometry information. This means that whenever
the vision system finds a plausible position estimate this will become the new
position of the robot. Figures 5.6 and 5.7 give a general idea of how the position
and uncertainty estimates change during a real game of soccer. Presented here is
data from a 190 second long segment of the RoboCup 2001 match against Artisti
Veneti. The black line and the dotted line in figure 5.6 respectively represent
the robot’s estimated x- and y-coordinates. The vertical lines indicate that a
vision-self-localization was done at that moment.The fragment begins just after
a game restart. The robot remains near the center of the field for some time
before it starts moving around. While standing still, a number of vision updates
are done, but they don’t affect the position estimate since it already seems to
be correct. After that the robot drives around for about 40 seconds before the
next vision update is done. As could be expected after driving such a distance,
the vision update differed quite a lot from the odometry position, resulting in
quite a large position shift.

The uncertainty estimates (x, y and orientation as shown in 5.7) increase
proportional to the traveled distance until an update is done. Throughout the
RoboCup 2001 games the uncertainty estimate never exceeded 600 mm in any
direction. This means that no robot ever drove more than 12 meters in any of
the 2 directions (600 mm is 5.0% of 12 m) without getting a new update. On
average the traveled distance between two updates was about 2.5 meters.

A special situation occurs when the game is about 540 seconds old. Ap-
parently the vision system detected that the robot’s position estimate is false
without knowing what the real position should be, for instance because a fixed
object (e.g. a goal) is perceived at a position where it shouldn’t be perceived
given the robot’s supposed position. The world module is notified that its data
is erroneous and it sets the uncertainty estimate to a very high value. Shortly
after this moment a new position update is done making that the position es-
timate used in the world model doesn’t conflict with the objects perceived by

56

Chapter 5 Results

5.2 Self-localization

0 2000 4000
CT

—2000

—4000

450

500

550

600

Figure 5.6: Example of the position estimates (world-relative x and y coordi-
nates in mm) of the robot and the vision self-localization updates against the
time (horizontal axis in seconds). The continuous line is the x-coordinate and
the dotted line is the y-coordinate. The dramatic position shifts caused by the
updates can be clearly seen.

800

600

400

200

O
<

L.

450

550

600

Figure 5.7: The estimated uncertainty in the robot’s position in mm(i.e. 5% of
the traveled distance) with the self-localization updates during the same game
segment as presented in 5.6.

5

7

Chapter 5 Results 5.3 Object detection

vision anymore. The uncertainty estimates are restored to their normal values.

Although we don’t have any ground truth about the robot’s real position,
the data does provide us some information about the error in the odometry
estimates. We know that for the odometry the uncertainty estimate increases
proportional to the traveled distance, so we can deduce the traveled distances
(between the self-localization updates) from the uncertainty estimates as in 5.7.
Comparing the position shifts as shown in 5.6 with the traveled distances gives
us an average error of about about 14% (of the traveled distance) in the x-
direction and 13% in the y-direction. This is comparable to the expected error
we get when we combine the expected 3o (3.6% of the traveled distance) error
in the odometry and the average error of the vision self-localization (212.9mm),
which is about 18% of the traveled distance in both directions. This shows us
that the assumption of the error of the odometry being 3o, is correct.

Throughout the games of RoboCup 2001, the robots thought (using the
lost/found trigger as described in 4.6) their position to be false for 51% of the
total time. This is quite a large amount of time, but occlusions of large parts
of the field by the other robots make that it is hard for the vision system to
come up with self-localization updates (as the frequency of one update every 24
seconds already indicated). This together with the fact that odometry quickly
loses its accuracy, especially in an environment as dynamic as RoboCup, where
the robot will collide quite often, explains why the robots thinks their position
to be false for such a large amount of time.

5.3 Object detection

Of course knowing your own position isn’t enough to be able to play a good game
of soccer. Knowing where the ball is and where the other players are is just as
important. This section will present the performance of the world module on the
aspects of determining the position of a perceived object, estimating the objects
speed and telling objects apart when multiple similar objects are perceived at
the same time.

5.3.1 Object position estimation

To test the accuracy of the estimation of the position of the other objects by the
world module we placed the ball at 12 predefined positions (as shown in figure
5.8) and compared the position estimates with the real positions. The results are
shown in table 5.9. The accuracy of the position estimates decreases when the
object is placed further away from the center of the robot’s field of vision (this
could be due to lens abberation as described in [11]). It also decreases when the
object is placed further away from the robot. As can be seen in table 5.9, the
errors in the position estimates are all neatly within the expected uncertainty
region. The uncertainty region increases when the object moves further away
from the robot or is placed near the edges of the robot’s field of vision. It is
also influenced by the motion of the object or the motion of the robot (the
position estimate being relative to the robot makes that these to have the same
effect). When the object is further away from the robot, a small amount of noise
will result in quite a large estimated speed of the object, explaining why the
uncertainty estimates in the x-direction increase more on the larger distances

58

Chapter 5 Results

5.3 Object detection

im ~m
10 1 12
pos. # | € €y Czx Cy
Im 1 68 | 100 | 206 | 160
2 118 | -31 | 211 103
= ™ = 3 69 -166 | 207 171
7 8 ? 4 147 | -165 | 839 | 517
- 5 140 | -63 | 710 | 240
6 268 | 200 | 871 | 614
7 96 | -89 | 1100 | 510
. " " 8 215 | -104 | 1156 | 303
9 436 | -331 | 1199 | 629
Im 10 280 | -199 | 1440 | 488
11 315 | -175 | 1297 | 289
- - . 12 649 | -384 | 1498 | 634
I 2 3
ml Figure 5.9: The errors in the posi-
tion estimates of the observed object
m and the corresponding uncertainty es-

timates.

Figure 5.8: The 12 predefined posi-
tions of the ball.

then would be expected based upon the actual errors. It might be expected that
additional experiments with robots or other black objects of which the diameter
is known, will give results which are comparable to this test with the ball.

Since there are multiple robots on the field and they all are black it makes
sense to take a look at how well the robot can distinguish them. Three robots
were placed on the 12 predefined positions (as in 5.8) and the world module was
consulted on where it thought the robots to be. Figure 5.10 shows the results in
various situations. The circles indicate which of the robots were detected, the
crossed out circles indicate that the robot on that position wasn’t detected as
being a separate robot. The first situation shows us that the robot is able to
distinguish two other robots at a distance of about one meter, when the distance
between them is as small as 5 cm. However a robot being partly occluded by
another robot will in most cases result in the furthest robot being interpreted as
being a part of the closer robot and thus not being detected as a separate object.
When two objects are at medium distance another robot at a large distance is
perceived between, then the furthest robot will be detected as a separate object
as shown in the last situation. This problem will be partly solved by sharing
the local world models with the other robots of the team.

5.3.2 Object speed estimation.

In order to evaluate the speed estimation of the other objects in the field, a
method had to be found to determine the real speed of the object (in this case
the ball). The test setup shown in figure 5.11, where the ball rolls down a slope
and passes the points A and B, was used to make sure the ball had the same

59

Chapter 5 Results 5.3 Object detection

——— — = ———
im im im m im im
.
10 1 12 10 11 12 10 1 @
im m im
| |] | | | |} | | |
7 8 9 7 8 9 7 8 9
im im im
|]]] |}]
® 5] ® Q] Q 5 6
im m im
.
3 2 3 1 3
m m im
Jom J Rabet

Figure 5.10: Distinguishing other robots in various situations. The circles rep-
resent the observed robots being detected as a separate robot. The crossed out
circles indicate that this robot wasn’t detected as a separate robot.

60

Chapter 5 Results 5.4 Sharing world models

2m

Figure 5.11: Test-setting for testing the speed estimation.

speed at all the tests. The time it took the ball to roll from point A to point B
(which are 2 meters apart) was measured in order to calculate the speed. The
average real speed of the ball was about 2.3 m/s. Two different type of tests
were done with the robot.

In the first test the ball passed from left to right in front of the robot. On
average the robot estimated the speed of the ball to be -2.6 m/s in the robot-
relative y-direction (meaning that the balled was estimated to roll from left to
right relative to the robot) and on average about 0.2 m/s in the robot-relative
x-direction, which indicates that the robot is capable of detecting even small
speeds, in this case caused by minor deviations from its planned straight path.

The second test was used to determine the accuracy of the speed estimation
in the robot-relative x-direction. The robot was placed next to the slope, so
the ball would suddenly appear in the robot’s view and roll away from the
robot. The average speed estimate done by the world module was 2.3 m/s
in the robot-relative x-direction (meaning that the ball rolled away from the
robot) and about 0.1 m/s in the y-direction. At the end of the trajectory the
ball bounced against a wall and rolled back. This could also be detected in the
robot’s speed estimate. First the speed dropped to zero and after that the ball
got a negative speed estimate.

5.4 Sharing world models

Having an absolute model of the world allows us to share it with the other robots
in our team to increase the accuracy and completeness of the world models on
all the robots. Figure 5.12, shows the world model of the robot Caspar during
a 30 second period in the RoboCup 2001 match against GMD. The positions of
the shared objects are shown (i.e. the three field players in the team and the
ball). As mentioned in the previous chapter, information about the opponents
isn’t being shared so there’s no need to show that data in these figures. We use
this figure to give a general idea of the situation on the field during the fragment
we want to use for comparing the world models.

The information on which the world model is based comes from two kinds
of sources. The first kind is the local source (vision information for the other
objects and odometry for the robot’s own position) and the second one is infor-
mation shared by the other robots (each of the robots shares the information it
has about the position of the ball and its own position).

61

Chapter 5 Results 5.4 Sharing world models

Figure 5.12: A 30 seconds long fragment from the RoboCup 2001 match against
GMD, the way Caspar saw it.

The fragment shows Nomada standing in its own goal area, apparently being
stuck or just not knowing what to do. This situation is also shown in 5.5 where
the great number of updates is caused by Nomada being in this position for
quite some time. Furthermore we see Caspar drive to the ball, having it in
possession for some time and then losing it. Finally Ronald starts on its own
half of the field, drives around a bit and goes to the opponents half.

Now lets compare the world models of the different robots. To begin with
the position of the ball according to the different robots as shown in figure 5.13.
Since we have no ground truth it is impossible to say how correct the estimates
are, but we can conclude that the the world models correspond quite good to
each other. The difference in the ball position estimates by the different robots
stays within a distance of half a meter. In the beginning of the fragment the
position estimates of the robots are based upon both their own observations and
the information shared by the other robots, so the estimates will differ slightly.
At the end of the fragment only one robot sees the ball, this will result in the
estimates of the ball’s position done by all the robots being equal, since they
all their estimates are based upon the observations from that one robot. The
fact that the world models correspond nicely in this situation has everything
to do with the robots quite accurately knowing their position. If any of the
robots would completely lose its own position, this would result in a estimated
ball position that is totally different from the other robots’ estimates since this
robot would rely on its own perception of the ball and ignore (not being able to
match it to its own world model) the information sent by the other robots.

Figure 5.14 (and more clearly in 5.15 and 5.16) shows the position of Ronald
according to the different robots. The position estimate of Ronald itself is
completely based on its own self-localization. The estimates of Ronald’s position
done by the other robots is based upon a combination of the information Ronald
sends them and their own observations of black objects which they match to
Ronald. Figure 5.17 shows the differences between the estimates of the different

62

Chapter 5 Results 5.4 Sharing world models

ronald —-—nomada — — caspar —

Figure 5.13: The position of the ball in the same fragment as in 5.12 according
to Ronald, Caspar and Nomada.

ronald —-—nomada — — caspar —

Figure 5.14: The position of Ronald in the same fragment as in 5.12 according
to Ronald, Caspar and Nomada.

63

Chapter 5 Results 5.5 Discussion

4000
4000

2000
2000

%

0

—2000
~2000
T

—4000
—4000

L L L L L L L L L
85 90 95 100 105 110 15 85 90 95 100 105 110 115

Figure 5.15: The estimates of the Figure 5.16: The estimates of the
x-coordinate of Ronald done by the y-coordinate of Ronald done by the
three robots. three robots.

robots and the average of these estimates.

These results show that as long as all robots know their own positions the
world models correspond very well (they differ less than one meter for all the
shared objects, which corresponds to the uncertainty estimates). When a robot
doesn’t have a correct estimate of its own position anymore it will stop sending
information to its teammates so it won’t influence their world models anymore,
however it will still receive their information and it will also still maintain its
own local world model, which of course will differ from the world models of
the other robots. Inconsistency between the robot’s own and the other robots’
estimates of the position of the ball, could be used as an indication that the
estimate either one of the robots has of its own position is incorrect.

5.5 Discussion

Evaluating these results we can say that the world module gives quite an accu-
rate and complete representation of the real world. Sadly the self-localization
remains a big problem. The odometry gives us a good estimation for some
time but loses its accuracy after longer periods of driving. The originally taken
uncertainty measure of 5% of the traveled distance proved to be to loose, a
tighter measure of about 3% could be deduced from our experiment. The vi-
sion updates do provide some extra information from time to time. However
these updates are done too infrequently in a real game to continuously have a
good estimate of the robot’s position. The average error of 213 mm (not even
taking into account the outliers) in an optimal situation (no other objects on
the field) indicates that the resetting method as used during RoboCup 2001
doesn’t perform good enough. A correct method for combining the odome-
try and the vision updates will have to be found. An option would be to let
the vision module send all its potential position candidates given by its global
method to the world module. The world module can then use some form of
multiple-hypothesis-tracking (e.g. a particle filter) to estimate the robots ac-
tual position. Furthermore it is very necessary that the vision module provides
an accurate uncertainty estimate with its updates. It is impossible to correctly
combine an update with the old position estimate, if we don’t know how accu-
rate the updates is. Finally additional sensors, like a compass, would make the

64

Chapter 5 Results 5.5 Discussion

400 600 800 1000
T T
| |

200

Figure 5.17: The deviations (in mm) from the average of the estimates of the
position of Ronald done by the three robots plotted against the time (in sec-
onds).

self-localization task much easier. Knowing the exact orientation of the robot
at all time, dramaticly decreases the number of potential position candidates.

The tracking the other objects however went very well. The robots were
very capable of distinguishing the other objects and estimating their position
and speed. Also the uncertainty estimates correspond to the real error in the
estimated positions. Noise in the observations of objects perceived at greater
distance will, although filtered out largely by the linear least squares approach,
result in the incorrect assumption that the object is moving which will increase
the uncertainty estimate too dramaticly. Also given that the robots all know
where they are, their world models correspond nicely to each other (i.e. the
differences are proportional to the uncertainty estimates).

65

Chapter 6

Improving Self-localization

The previous chapter shows us that the the self-localization is the major prob-
lem in constructing an world-relative model of the world. In this chapter al-
terations to the currently used algorithms are discussed that could improve the
self-localization. No new algorithms or sensing techniques will be presented in
this chapter.

6.1 Combination methods

Given the two current sources of information for self-localization, what is the
best way to combine them? As mentioned in the previous chapter we planned to
use a weighted average of the two. However the vision-based self-localization not
being able to cope with this and also not being able to provide us with accurate
uncertainty estimates meant that we weren’t able to use this technique during
the real games. In this section this combination method will be compared to the
used resetting method and the odometry-only self-localization. This evaluation
of the different methods will be based upon the results of the test as described
in section 5.2.2 and shown in figure 5.2, since this is the only test in which an
approximation of the ground truth about the robot’s position was present. The
test data being based on an approximation means that the results presented
here are also based upon an approximation.

¢ Odometry only. When the robot’s self-localization would be based on
the robot’s odometry sensor only, one would expect the error in the po-
sition estimate to increase proportional to the traveled distance. Figure
6.1 shows the error in the x- and y-direction over the traveled distance
(21.255 m).

¢ Resetting odometry on every vision update. In the games during
RoboCup 2001 we used the vision updates to reset the odometry, com-
pletely ignoring prior odometry information. Using this approach in our
test would result in the errors in the position as shown in 6.2.

o Weighted Average. Since neither one of the self-localization informa-
tion sources is perfect, a combination of the two should be used to increase
the accuracy. Given that both have a correct uncertainty estimate, this

66

Chapter 6 Improving Self-localization 6.1 Combination methods

—ex ---ey
-~ unc.=5%
unc. =3.6%

ex,ey (mm)
7
5
8

200

10k

50 - 100 5 0
—
Distance (m)

Figure 6.1: The error in the self-localization when based on odometry solely. The
original uncertainty estimate of 5% of the traveled distance and the proposed
3.5% uncertainty estimate are also shown.

uncertainty estimate could be used as the weights for a weighted average
of the two estimates (as described in 4.2.2). Since the vision updates do
not come with a good uncertainty estimate, we will use the outcome of the
test as described in 5.2.2; and assume (disregarding the potential outliers)
the uncertainty to be about 213 mm, which is the average error of these
updates. The errors in the position using this combination method are
shown in 6.3.

e Using a threshold. Given that no collisions occur we know that the
odometry sensor is very accurate for short distances. If we would have
reliable information about the accuracy of the odometry data, which we
would have using our “lost-found trigger” and a collision detection mech-
anism, we could rely on our odometry solely and only combine it with
the vision updates if the uncertainty estimate exceeds a given threshold
value. This will make the system less prone to the outliers in the vision
updates. Given a threshold of for instance 1.5 times the average error of
the vision updates (1.5 x 213mm = 320mm) this would, in the current
example, result in the errors in the position as shown in 6.4.

The error of the odometry-only self-localization increases when the traveled dis-
tance increases. The resetting method doesn’t perform much better. Especially
in the first segment of the trajectory it performs significantly worse than the
odometry. The outliers of the vision updates can very clearly be seen in this
figure. The weighted average method works much better in the first segment
because the (at that moment) very accurate odometry information is also taken
into account. Also the outliers have a slightly less dramatic effect on the robot’s
position estimate. Using the threshold method increases the accuracy after a
game (re)start but throughout the rest of the game is similar to the weighted
average approach. It is clear that, of the methods discussed here, the threshold
method has the best performance. It however remains very sensitive to colli-
sions and requires the uncertainty estimates of both odometry and vision-based
updates to be very accurate.

It would be very desirable to have a method to detect outliers in the vision
self-localization system. This way, when an update is received that could be

67

Chapter 6 Improving Self-localization 6.1 Combination methods

—ex ---ey

ex,ey (mm)

L Il
50 100 150 200
—
Distance (m)

Figure 6.2: The error in the self-localization when resetting the odometry when
a vision update is done.

—ex ---ey

ex,ey (mm)
g
T
T

I |
50 100 150 200

-
Distance (m)

Figure 6.3: The error in the self-localization when using a weighted average of
the odometry and the vision updates.

—ex ---ey

ex,ey (mm)
8
T
\

L Il
50 100 150 200
—
Distance (m)

Figure 6.4: The error in the self-localization when only combining the odometry
and vision updates if the odometry uncertainty estimates exceeds a threshold
of 1.5 times the average error of the vision updates.

68

Chapter 6 Improving Self-localization 6.2 Being observed by other robots

classified as an outlier it could be rejected or be given a high uncertainty value,
minimalizing its influence on the robot’s position estimate. Since we have proven
the 30 uncertainty estimate to be quite accurate, a possible indication that an
update is an outlier could be that the update isn’t within the uncertainty region
of the robot’s position. This of course only is an indication that it could possibly
be an outlier, since the robot’s position and corresponding uncertainty region
could also be false because of a collision and we thus have no certainty that the
update is incorrect.

6.2 Being observed by other robots

Up until now we did not study one final source of information the robots (in
their current configuration) have about their own position: the position the
other robots estimate them to be. As the other robots do an observation of our
robot they could send the position of this observation to our robot and we can
use this to increase the accuracy of our own self-localization. Given that there
are four robots in a team on a relatively small field, it will be likely for every
robot to be observed by at least one other robot for most of the time. This
source of information could therefore prove to be very useful.

Additional self-localization data. The information sent by the other robots
could be used as extra information about the robot’s position. This way, the
other robots could be seen as an additional sensor of the observed robot, pro-
viding information about an object (i.e. the observed robot itself).

The data sent by the other robots should come in the form of raw estimates
done by their vision sensor converted to world-relative coordinates (as described
in 4.6). We only want to use the raw vision data because the position estimates
maintained in the world models are also based upon information shared by
the observed robot itself (its self-localization information). This would mean
that the observed robot would receive an estimate of its own position by the
observing robot which is largely based upon its own estimate. Since this is not
desirable, the vision data will be shared directly after it has been matched to
the robot. The uncertainty of this information will consist of the uncertainty
in the vision observation and the uncertainty the observing robot had about
its own position. Data originating from an observing robot that knows its own
position to be very inaccurate will therefor have a higher uncertainty estimate.

The robot which receives the shared information could process this in differ-
ent ways. It could be handled the same way as its own odometry information.
The data is inserted in the measurement memory at the right place and will be
then be used in the linear least squares algorithm to get an as correct as possi-
ble estimate of the robot’s own position. Another possibility would be to take
a weighted average between the new observation and the robot’s own position
estimate. This would be comparable to the way vision-based self-localization
updates are handled.

To answer the question whether this new source of information will really
improve the robot’s self-localization we’ll first need to take a look at the uncer-
tainty of this information. Too much uncertainty about the data will, given the
used combination methods, mean that it hardly has any influence on the robot’s
self-localization. Examining the log-files generated at the RoboCup 2001, it can

69

Chapter 6 Improving Self-localization 6.2 Being observed by other robots

be seen that as long as the robots think their own position to be correct (49%
of the time) the uncertainty estimates of the observations are reasonably low
(on average about 480 mm). Knowing that the average uncertainty a robot
has about its own position estimate is about 300 mm, it can be expected that
information sent by other robots will have quite a large influence on the position
estimate of the observed robot. Using a weighted average, the new estimate of
the observed robot’s position will for about 38% be determined by the external
information and for about 62% by the local self-localization information. So,
given that the external information is sent frequently, it will certainly have a
noticeable influence on the robots position estimate.

Based on the log-files it is impossible to give any exact results about the
increased accuracy of the self-localization, since we don’t have any ground truth
knowledge about the robots’ positions. The differences between the estimates
that the different robots have about the position of any one of them (as shown
for instance in 5.17) will decrease, and it is plausible that this will mean that
the accuracy of the self-localization increases.

Outlier detection. Apart from adjusting the robot’s position estimate, ob-
servations by teammates could also be used to detect outliers generated by the
vision self-localization system. If the vision system sends an estimate which is
located outside the uncertainty region of the odometry, information of other
robots could be used to detect whether the update is an outlier or whether the
odometry data is false. If one or more of the other robots on the team esti-
mate the observed robot to be at the same point at which the observed robot’s
odometry expects it to be, the update probably is an outlier. On the other
hand, if the other robots estimate the observed robot to be near the position
estimated by the vision self-localization, this will probably mean that something
went wrong with the observed robot’s odometry. A nice example to show the
benefits of this technique can be seen in the following example.

Presented is the situation we encountered before in section 5.4, a 30 sec-
ond long fragment from the RoboCup 2001 game against GMD. Figure 6.5
shows the x-coordinate of robot Ronald as seen by the three robots. Figure 6.6
shows the y-coordinate. When the game is about 91 seconds old a sudden shift
can be seen in one of the lines representing the x-coordinate. This line is the
position according to Ronald itself and the sudden shift is caused by a vision
self-localization update. This shift of about one meter is much larger than would
be expected from the uncertainty estimate of the odometry which at the time
was about 30 cm. The other robots also don’t seem to agree with the sudden
change in the position of Ronald. They all estimate Ronald to be at the position
where Ronald’s odometry estimates him to be as well. It therefor is very likely
that the update should have been classified as an outlier (and its uncertainty
estimate should thus be increased dramaticly). Using the information of the
other robots on the team, it would have been classified as an outlier and would
not have this big an influence on Ronald’s position estimate.

It is hard to tell exactly how well either of the techniques mentioned above
would perform in a real game since the presence of many moving robots on the
field and the fact that the observer itself will be probably be moving as well
will make that correctly matching an observation to the corresponding object

70

Chapter 6 Improving Self-localization 6.2 Being observed by other robots

4000
4000

2000
2000

%

0

—2000
~2000
T

—4000
—4000

L L L L L L L L L
85 90 95 100 105 110 15 85 90 95 100 105 110 115

Figure 6.5: The estimates of the x- Figure 6.6: The estimates of the y-
coordinate of Ronald done by the coordinate of Ronald done by the
three robots. three robots.

could be difficult. Uncertainty about the observers position and long distance
observations will cause a very high uncertainty, which on its turn will mean that
this shared information will hardly have any influence on the observed robot’s
self-localization.

As goes for all techniques where data from various sensors is combined, it
is crucial to have correct uncertainty estimates. It doesn’t matter when the
actual position estimate is very inaccurate as long as this inaccuracy is known,
so that its influence on the combined estimate isn’t larger than it should be.
Given that this condition is fulfilled and that the matching of observations to
the corresponding objects works correctly, even in a situation in which there
is a large number of moving robots on the field, the presented methods could
certainly contribute to a better self-localization. It would be a good idea to
implement this method in the near future to see the effect it has in a real game
of robot soccer.

71

Chapter 7

Conclusion

7.1 Discussion

In this thesis Clockwork Orange, the Dutch Robot Soccer Team, has been pre-
sented, with special attention to its world model. The methods that are used
to construct a model of the real world have been discussed and the performance
of the world model has been evaluated. This thesis made it clear that it is far
from simple to construct an accurate model of a highly dynamic domain such
as robot soccer with limited sensor capabilities.

As one could expect, the performance of the world model completely depends
upon the ability of the low-level sensor modules to provide information about
the world and supply correct information about their accuracy. When given
this data the world module is very capable of constructing an as complete and
accurate as possible model of the world. The tracking of objects works quite
good, however a less greedy approach to the matching of observation to the
object in the model could enable the world module to get better at dealing with
ambiguity. The sharing of the local information with the other robots works
very good even though at this time it is restricted to the ball and the robot’s
own position only, but this could very easily be extended with information about
the other objects as well. The self-localization remains the major problem for
our team. Given our current configuration of sensors it is very hard to come up
with a correct estimate of the robot’s own position.

The odometry sensor is only accurate on short distances. The results pre-
sented in chapter 5 show that 3.6% of the traveled distance is a more accurate
uncertainty estimate for the odometry sensor than the originally used 5%. With
an average error of about 20 cm (disregarding the outliers), the vision-based
self-localization turned out not be very accurate. This would not be a very
big problem if only a good uncertainty estimate was provided with the updates.
Since this is not the case (and since we have to use the vision updates to reset the
odometry information), combining the vision updates and the odometry data
after driving short distances will often decrease the accuracy of the robot’s po-
sition estimate instead of increasing it. However after driving longer distances
the vision updates most of the time do increase the accuracy of the position
estimate, because in this case the odometry would have become too inaccurate.

There are a number of possible approaches that could improve the self-

72

Chapter 7 Conclusion 7.2 Future research

localization considerably. The alternative combination methods, as described
in chapter 7, already slightly improve the performance. Especially incorporating
information sent by the other robots in the team could possibly benefit the self-
localization. Other completely new algorithms could also be used to improve
the performance. If the vision system would send the position candidates gener-
ated by the global method to the world module, a multiple-hypothesis tracking
algorithm (e.g. a particle filter) could be used to track them and eventually
determine which is the best estimate. Additional sensors could also help enor-
mously. A compass for instance could make sure that the robot at all times
accurately knows its orientation. This would reduce the number of potential
position candidates.

Of course many possible more complex models of the position, uncertainty
and motion could be used to increase the accuracy even further. One has to
make a tradeoff between making things as accurate as possible and keeping
things simple since we want a efficient system that works and that is relatively
transparent for its users. The world model with its current design has all the
features to deal with the real world problems without using very complex math-
ematical models, which would complicate things considerably without any real
gains in our performance as a team of soccer playing robots.

One should also take in mind that our RoboCup project is a real world
project, in which we have to work with real robots which can break down and
present the users with all kinds of other difficulties. Working on a team that
wishes to participate at certain events also means that we had to cope with
deadlines. Often the weeks before a tournament or an important demonstration
were spent on getting the system to work, often done by extensive bug-fixing in
all kinds of modules and sometimes by fixing them with quick hacks. Finally
the fact that we worked with quite a large team, divided over two universities
meant that a lot of time was spent in meetings and waiting for the other people
on the team to perform their tasks required to be able to proceed yourself.

Looking at the way the team and in particular the world model performed
during the tournaments at which the team participated we can say that it did
quite good. A consistent and relatively accurate world model was present on
all of the robots for most of the time. Even given the problems we have with
the self-localization (due to having to cope with relatively cheap and primitive
sensors) we were still capable of playing a reasonable game of soccer.

7.2 Future research

Although the world model of Clockwork Orange did perform quite good, there
is always room for improvements. In this section I will make some suggestions
for future work. Some of these suggestions will have a greater impact than
others, but all will presumable have a positive influence on the performance of
the world module.

Maintaining a relative world model. Since our self-localization methods
can’t always give us a good estimation of our position, it is sometimes impossible
to construct a correct absolute world model. The vision module compares the
estimated position of the robot with the features extracted from the image
from the camera. If the image indicates that the position is wrong, the vision

73

Chapter 7 Conclusion 7.2 Future research

module will send a trigger to the team skills module to go into relative mode.
When the team skills module is in relative mode it makes its decisions based
upon information of vision which is relative to the robot and no longer based
upon the absolute world model maintained in the world module. This “vision-
only-based” relative model of the world this way lacks many of the advantages
of the world module such as noise filtering, object tracking, speed estimation
and prediction of future states. It would therefor be preferable that the world
module not only keeps track of an absolute world module, but also of a relative
one which can be used when the robot isn’t able to determine its own position.

Furthermore this will facilitate keeping track of the other objects in the game
whenever the position estimate of the robots is updated by the vision system.
Instead of having to translate and rotate all the objects according to the position
shift, we only have to convert the relative position to absolute ones (using the
new position estimate of the robot), making it much easier to adjust the entire
model.

Sharing the complete world model. Instead of just sharing the ball and
our own position with the other robots in our team, we should also share the
estimated positions of the other objects in the game. As described in the previ-
ous chapter, sending information about the position of our teammates will also
give them extra information for self-localization. Also information about the
opponents can be used to increase the consistency of the world models of the
different robots in our team and thus making it easier to make tacticle decisions.
The sharing of the world models should be done by broadcast.

Observance the original architecture of the team. Some tasks are per-
formed by the wrong modules. For instance, at this time the global method
of the vision-based self-localization comes up with multiple position candidates
which are all tracked by the local tracking mechanism of the vision software.
This local tracking of the multiple candidates should (also according to the orig-
inal design of the team) actually by done by the world module, since this is the
module which has the most information about the position and is therefore the
most suitable module for this task. The idea is to let the vision module send all
candidates to the world module which on its turn uses for instance a particle
filter approach to track all possible positions.

Multiple Hypothesis Tracking for matching observations. Matching
incoming observations can sometimes give us more then one potential candi-
date. For now we just match the observation with the object that has the
highest probability. All the other candidates are just being thrown away. This
is however a waste of valuable information since it could very well be that the
observation should have been matched to another object and that we will get
evidence for this later on. We should keep track of all the possible candidates
for an observation, resulting in a tree of potential world models, each of which
has its own probability. Since we have limited system resources and trees of this
kind tend to grow very fast, we need good pruning methods to make sure the
trees will not get too big.

74

Chapter 7 Conclusion 7.2 Future research

Opponent Modeling. In order to make good predictions of future states of
the world it isn’t good enough to assume linear motion for all the objects in the
game, like we do now. It may work quite good for the ball, but robots tend to
move around in a much more complex way. If we could find a way to model the
behavior of the opponents, then we could use this model to predict the moves
an opponent will make based upon the state of the world and this would mean
that we could make much better predictions much further into the future.

Alternative sensors. The task of selecting which of the position candidates,
generated by the global vision self-localization method, is the best, could be
facilitated by using a compass. When we accurately know the orientation of
the robot, the number of remaining possible positions will decrease dramaticly.
Self-localization could also be improved by using an omni-directional camera
instead of a normal one. A omni-directional camera will considerably increase
the chance of perceiving a distinct landmark such as one or both goals. Also
more lines will be seen, providing extra information for our vision-based self-
localization.

75

Bibliography

[1]
[2]

[3]

[10]
[11]

ActivMedia Robotics. http://www.activrobots.com.

G. Adorni, A. Bonarini, G. Clemente, D. Nardi, E. Pagello, and M. Piaggio.
ART’00 - Azurra Robot Team for the year 2000. In P. Stone, T. Balch,
and G. Kraetzschmar, editors, RoboCup 2000: Robot Soccer World Cup
1V, volume 2019 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
2001.

W. Altewischer. Implementation of robot soccer player skills using vision
based motion. Master’s thesis, Delft University of Technology, 2001.

R. de Boer, J. Kok, and F. Groen. UvA Trilearn 2001 team description. In
A. Birk, S. Coradeschi, and S. Tadokoro, editors, RoboCup 2001. Springer-
Verlag, to appear.

Johann Borenstein and Ligiang Feng. Measurement and correction of sys-
tematic odometry errors in mobile robots. IEEE Transactions on Robotics
and Automation, 5, October 1996.

A. Bredenfeld, V. Becanovic, Th. Christaller, H. Giinther, G. Indiveri,
H.-U. Kobialka, P.-G. Ploger, and P. Scholl. GMD-robots. In A. Birk,
S. Coradeschi, and S. Tadokoro, editors, RoboCup 2001. Springer-Verlag,
to appear.

BreezeCOM. http://www.alvarion.com.

R.A. Brooks. Achieving artificial intelligence through building robots. MIT
AI Lab Memo 899, 1986.

C. Castelpietra, L. Tocchi, M. Piaggio, A. Scalzo, and A. Sgorbissa. Commu-
nication and coordination among heterogeneous mid-size players: ART99.
In P. Stone, T. Balch, and G. Kraetzschmar, editors, RoboCup 2000: Robot
Soccer World Cup IV, volume 2019 of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, 2001.

Clockwork Orange website. http://www.robocup.nl.

J.van Dam, A. Dev, L. Dorst, F.C.A. Groen, L.O. Hertzberger, A. van Inge,
B.J.A. Krose, J. Lagerberg, A. Visser, and M. Wiering. Organisation and
Design of Autonomous Systems. Lecture notes. University of Amsterdam,
1999.

76

BIBLIOGRAPHY BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley, 1999.

P. Goel, S. Roumeliotis, and G. Sukhatme. Robust localization using rela-
tive and absolute position estimates, 1999.

F. de Jong, J. Caarls, R. Bartelds, and P. P. Jonker. A two-tiered approach
to self-localization. In A. Birk, S. Coradeschi, and S. Tadokoro, editors,
RoboCup 2001. Springer-Verlag, to appear.

P. P. Jonker. On the architecture of autonomously soccer playing robots.
Technical report, Applied Physics Department, Delft University of Tech-
nology, 2000.

P. P. Jonker, J. Caarls, and W. Bokhove. Fast and accurate robot vision for
vision-based motion. In P. Stone, T. Balch, and G. Kraetzschmar, editors,
RoboCup 2000: Robot Soccer World Cup IV, volume 2019 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2001.

P. P. Jonker, W. van Geest, and F. C. A. Groen. The Dutch team. In
P. Stone, T. Balch, and G. Kraetzschmar, editors, RoboCup 2000: Robot
Soccer World Cup IV, volume 2019 of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, 2001.

Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi
Osawa. RoboCup: The robot world cup initiative. In W. Lewis Johnson and
Barbara Hayes-Roth, editors, Proceedings of the First International Con-
ference on Autonomous Agents (Agents’97), pages 340-347. ACM Press,
1997.

Gerhard Kraetzschmar. RoboCup middle size robot league (F-2000) rules
and regulations for RoboCup-2001 in Seattle. http://smart.informatik.
uni-ulm.de/ROBOCUP/£2000/rules01/rules2001.html, 2001.

R. Lafrenz, M. Becht, T. Buchheim, P. Burger, G. Hetzel, G. Kindermann,
M. Schanz, M. Schulé, and P. Levi. CoPS-Team description. In A. Birk,
S. Coradeschi, and S. Tadokoro, editors, RoboCup 2001. Springer-Verlag,
to appear.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes: The Art of Scientific Computing. Cam-
bridge University Press, Cambridge (UK) and New York, 2nd edition, 1992.

RoboCup official site. http://www.robocup.org.

Th. Schmitt, S. Buck, and M. Beetz. AGILO RoboCuppers 2001 utility-
and plan-based action selection based on probabilistically estimated game
situations. In A. Birk, S. Coradeschi, and S. Tadokoro, editors, RoboCup
2001. Springer-Verlag, to appear.

M. Spaan. Team play among soccer robots. Master’s thesis, University of
Amsterdam, 2002.

7

BIBLIOGRAPHY BIBLIOGRAPHY

[25]

[26]

[27]

[28]

[29]

[30]

M. Spaan, M. Wiering, R. Bartelds, R. Donkervoort, P. Jonker, and
F. Groen. Clockwork Orange: The Dutch RoboSoccer Team. In A. Birk,
S. Coradeschi, and S. Tadokoro, editors, RoboCup 2001. Springer-Verlag,
to appear.

Y. Takahashi, S. Tkenoue, S. Inui, K. Hikita, and M. Asada. Osaka Univer-
sity “Trackies 2001”. In A. Birk, S. Coradeschi, and S. Tadokoro, editors,
RoboCup 2001. Springer-Verlag, to appear.

M. Tambe and W. Zhang. Towards flexible teamwork in persistent teams:
Extended report. Journal of Autonomous Agents and Multi-Agent Systems,
3(2):159-183, 2000.

W. J. M. van Geest. An implementation for the Message System. Delft
University of Technology, 2000.

Th. Weigel, W. Auerbach, M. Dietl, B. Diimler, J. Gutmann, K. Marko,
K. Miiller, B. Nebel, B. Szerbakowski, and M. Thiel. CS Freiburg: Doing
the right thing in a group. In P. Stone, T. Balch, and G. Kraetzschmar,
editors, RoboCup 2000: Robot Soccer World Cup IV, volume 2019 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2001.

Th. Weigel, A. Kleiner, and B. Nebel. CS Freiburg 2001. In A. Birk,
S. Coradeschi, and S. Tadokoro, editors, RoboCup 2001. Springer-Verlag,
to appear.

78

