
Anytime algorithms for multi-agent
decision making

Intelligent Autonomous Systems research group
Faculty of Science

Reinoud Elhorst

Supervising professor: Nikos Vlassis

4 June 2004

ii

Abstract

Multi-agent systems is an exciting new field with many theoretical and prac-
tical challenges. In this work we are interested in fully cooperative multi-
agent systems where all agents share a common goal. A key aspect in such
a system is the problem of coordination: how to ensure that the local (indi-
vidual) decision making of each agent can produce globally good solutions
for the team.

RoboCup is an effort to build a team of robotic players that will one day
be able to defeat a team of human players in football. This has resulted in
a competition nowadays in which robotic and simulation teams play each
other. In this field (as in others), it is important that the agents coordinate
their actions.

This need for coordination put down a number of problems in the field of
multi-agent system. One of these is how to find the optimal combined action
in a large action space, with many agents, effectively. Several solutions have
been proposed. An obvious approach is to try all possible combinations of
actions of all agents, and from that select the best one. In systems with a
large number of agents, this task will consume too much time to be feasible.

Another approach, variable elimination, has been proposed in [Gue03].
This approach has a worst case time complexity equal to the aforementioned
method of trying all possibilities. In many problems however where direct
coordination is not needed between every two agents, variable elimination
will perform considerably better.

Variable elimination is exact: it will always find the optimal combined
action. However, many applications do not require the optimal action per
se, and a sub-optimal action would suffice in many cases. Especially in cases
where time is limited, one might choose to trade optimality of the action for
running time. Variable elimination does not allow for this.

In this thesis we describe and test a new algorithm, coordinate ascent,
which is an anytime algorithm. We will show that the algorithm returns sat-
isfactory results within only a fraction of the time that variable elimination
takes to find the solution to the same problem.

Another issue put down by the need for coordination is how to make sure
that, once an optimal combined action has been found, all agents will indeed

iii

know which action to follow. It turns out that the problems herein are uni-
versal to all decision-making algorithms, but that deterministic algorithms
have a clear a advantage. We find some problems here when workinh with
anytime algorithms: even anytime algorithms that are traditionally consid-
ered to be deterministic might return different results for different running
times. So, unless specific measures are taken to ensure running times are
always equal, anytime algorithms seem to be less suited for this kind of co-
ordination problems. We will present a system in which coordinate ascent
can still be used in RoboCup.

iv

Acknowledgements

Many people have been working with me and been supporting me in doing
the research for, and the writing of, this thesis. First of all Nikos Vlassis, my
supervisor, who was always available for good advise, and was able to point
me in the right direction many times. Jelle Kok was a big help too, and his
inside knowledge of the RoboCup domain and the UvA Trilearn team, as
well as his knowledge on the broader field of multi-agent systems, saved me
a lot of time.

Furthermore I need to thank my mother who supported me greatly dur-
ing the writing of this thesis and forced me to continue even at times when
things weren’t going so well. And of course my friends who have listened to
my stories of football playing robots over and over again, without actually
understanding what they were about.

v

vi

Contents

1 Introduction 1
1.1 South-East England, Friday afternoon 1
1.2 Multi-agent systems . 2
1.3 A technical look at multi-agent systems 3
1.4 Direction of the thesis . 4

2 Practical application: RoboCup 7
2.1 Introduction . 7
2.2 RoboCup as standard AI problem 7
2.3 A closer look at the simulation league 8

2.3.1 Division into leagues 8
2.3.2 The simulation league 9
2.3.3 Possibilities and constraints 9

2.4 RoboCup at the UvA: Trilearn 10

3 Coordination games 11
3.1 The need to coordinate . 11
3.2 Which decision is good: payoff 13
3.3 Methods of coordination . 13
3.4 Representing the problem . 15
3.5 Decision making . 17

3.5.1 The optimal combined action 17
3.5.2 The role of the context 17
3.5.3 Try all possibilities . 18
3.5.4 Variable Elimination 19

4 Anytime algorithms 21
4.1 Introduction to anytime algorithms 21
4.2 Coordinate ascent . 22
4.3 Deterministic vs. stochastic algorithms 23

5 Experiments and Results 25
5.1 The tests . 25
5.2 Performance of variable elimination 26

vii

5.3 Comparing coordinate ascent and variable elimination 28

6 Conclusions and future work 33
6.1 Conclusions . 33
6.2 Applicability of the results in RoboCup 34
6.3 Future work . 35

A Variable elimination algorithm 37
A.1 Explanation of the algorithm 37
A.2 Example . 38
A.3 Code . 40

B Random problem generation 45

viii

List of Figures

1.1 The need to coordinate . 3

2.1 Examples of different RoboCup leagues 8

3.1 The need to coordinate . 12
3.2 matrix vs coordination graph 16
3.3 A coordination graph of the lovers’ meeting 17
3.4 Establishing context . 18

5.1 Performance of variable elimination 27
5.2 CA-VE comparison with varying numbers of agents. 29
5.3 CA-VE comparison with varying numbers of actions. 30

A.1 Example of variable elimination 39

ix

x

List of Algorithms

4.1 Coodinate ascent . 22
A.1 Guestrin’s variable elimination 41
A.2 The ruleoutmax function . 42
A.3 The split function . 42
A.4 Our variable elimination . 43
B.1 The random problem generator 46

xi

xii

Chapter 1

Introduction

1.1 South-East England, Friday afternoon

The M1 motor way from London to Leeds is for a lot of people one of the
least favourite places to be at 5 PM on an average Friday afternoon. Tens
of thousands of motorists try to make their way home from a week of work
for a relaxing weekend, only to end up in endless traffic jams. Standing at
the M25 flyover an almost endless flow of traffic passes underneath, coming
from 3 directions and trying to squeeze into the too few lanes northbound.
Ironically enough, if we look at the cars as intelligent entities1 with goals,
and priorities attached to these goals, the overpass becomes an excellent
place to explain the basics of multi-agent systems.

In a gross simplification we could assume that every car-entity has just
one goal: get home fast as possible. It is pretty clear what actions the car
should take: overtake as often as possible, squeeze into every little hole and
never let some other car go first. Because every car-entity only cares about
getting home itself, and all cars have to go through the same bottleneck,
the result is competitive and can be modelled by a competitive multi-agent
system.

Grossly simplifying the other way, we can say every car-entity works to-
wards a solution whereby all the cars navigate the bottleneck as efficiently
as possible. In that example every car-entity has the same goal with the
same priority as all others, so everyone works towards that common goal.
It should be noted however that the decision making process is still dis-
tributed: every car-entity has to decide on his own actions, based on the
situation around them and the information he has on the intentions of the
other entities (flashing way-lights, hand-signals). This is basically how a
cooperative multi-agent system works.

1Intelligent, in this context, means that they observe, process, and (re)act.

1

CHAPTER 1. INTRODUCTION

1.2 Multi-agent systems

In the multi-agent domain we call our ‘entities’ or ‘actors’: ‘agents’. An
agent is ‘something’ that observes and acts, this might be either a human, an
animal or a computer. Note that agents usually need to be able to ‘choose’,
so a stone that ‘observes’ it is one foot above the ground and ‘decides’ to
fall is not considered an agent, whereas a bird who is one feet above the
ground and decides to stop flying is an agent. This example also shows that
it doesn’t matter so much whether something actually has a choice in the
sociological sense of the word, but whether it has the physical ability to
choose.2

In order to decide on which action to take the agent needs to have some
preference over the actions in a certain situation; this ‘preference’ is called
‘payoff’ in the multi-agent domain. In the easiest situation this payoff is
only based on the current situation and the agent’s own actions, however
the payoff is often dependent on other agents’ actions as well. (e.g. In our
traffic example, an agent might observe a free space in front and decide to
move there. She3 would do good however first to check whether she is not
going to hit another agent who was going to move there as well.) So, in
general, we might say that every agent has, for each situation and for each
of the other agents’ combination of actions, a payoff for each of her own
actions.

A group of agents (note that this doesn’t necessarily have to be all the
agents in the system) working together towards a common goal are called a
cooperative multi-agent system. Instead of each agent trying to maximise
her own payoff, all agents are trying to maximise the collective payoff, the
sum of all individual payoffs. As we discussed before, the individual payoffs
are dependent on both the own agent’s action and the other agents’ actions
(in a given situation), so the agents need to coordinate their actions in some
way.

In the example of Figure 1.1 we have two lovers trying to meet for a night
together. They have two choices, either meet in the park or at the harbour,
which, basically, means that each of them has a choice to either go to the
park or the harbour, and they need to coordinate their actions in such a
way as to maximise payoff. First they have to select (on basis of the figure)
what the best action for both (this is called the optimal combined action)
would be. It is pretty clear that the best action in this case is: either both
go to the park or both go to the harbour. However in larger problems, with
more agents and more choices, the tables become larger very fast and other

2Clearly this definition does pose a philosophical problem: A computer running a
program (and arguably even the human mind) is nothing more than a large system of
physical processes, extremely more complex, but in basics not unlike, the stone falling to
the ground.

3In this thesis all agents are considered to be female.

2

1.3. A TECHNICAL LOOK AT MULTI-AGENT SYSTEMS

lover2 park harbour
lover1
park 1 0
harbour 0 1

Figure 1.1: The need to coordinate

methods of deciding on the best action have to be employed. For the time
being we skip the subject how they share the decision on where to meet.

1.3 A technical look at multi-agent systems

When we look at multi-agent systems from a technical point of view, we see
a quite remarkable feature. Often cooperative multi-agent systems work in
such a way that the same job could have been done by a single computer
(or single ‘maxi’-agent). This would eliminate many problems that have to
be tackled when working with multiple agents. However, the multi-agent
approach has a number of clear advantages [Vla03]. In this section we only
look at cooperative multi-agent systems, since in a competitive multi-agent
systems the agents typically do not have the same goals, and could therefore
not be controlled by a single process.

Robustness Because a multi-agent system contains many agents, all being
different processes, an error, crash or deadlock in one of the agents will
usually result in only a slight degradation of the total effectiveness of
the system, whereas the same sort of problem in a centralised system
might cause the whole system to fail.

Scalability In a centralised system, adding a task, or expanding the tasks
of a certain part of the system, might involve a full overhaul of the
code. In multi-agent systems it is often enough to introduce a new
agent for the task, and make sure that a few of the other agents know
how to work together with the newly introduced entity. This makes
maintaining and expanding the system way easier.

Parallelism In a multi-agent system each agent is a different entity that
can very well be (and usually is) running as a separate process. This
means that we can very easily carry some of the agents to one or more
other systems, hereby sharing the resources of the system. Since agents
interact through communication only, only the communication layer
would have to be adjusted to make this possible. This also means that
we can extend the system indefinitely by adding new agents and having
these run on other systems. A centralised program on the other hand
usually requires special reprogramming to enable it to run in parallel
on several computers.

3

CHAPTER 1. INTRODUCTION

Efficiency It is often easier to design a lot of small, simple processes than
design one large, complex one. Therefore, during the design stage, but
also the maintenance and enhancement stages, one might save a great
deal of time and effort by using a multi-agent system.

In addition to the reasons mentioned above, some cooperative multi-
agent systems simply cannot be replaced by a single centralised system.
This is especially true in environments where observing and acting is done
remotely (e.g. by robots in a room) and the communication possibilities
do not allow all data to be transferred forth and back between the ob-
servers/actors and the centralised system.

One of most exciting applications of cooperative multi-agent can be
found in the RoboCup leagues. Here, robots and computer processes play (a
sort of) football, and obviously need some way to coordinate their actions
with their teammates. A closer look to the RoboCup domain is given in
chapter 2.

1.4 Direction of the thesis

Within the domain of multi-agent systems, many different research direc-
tions exist. In this thesis we focus on the problem of decision making in
cooperative systems: how do the agents know what combined action is the
best in a complicated cooperative multi-agent domain. We look at the re-
quirements the different methods have for the domain (particular in the
area of communication) and introduce a new anytime algorithm for decision
making, that outperforms traditional algorithms in speed, with small loss in
accuracy.

We will also look at the practical implementation of the new algorithm
in RoboCup. The Universiteit van Amsterdam has a team (Trilearn) in the
Simulation League which has performed really well, and was (one of) the
first to implement coordination algorithms in its code. We will see whether,
and how, the new algorithm, and the other findings from this thesis, can be
implemented into this team.

When writing this thesis, the idea was that most parts of it should be
understandable to people without a background in computer science. There-
fore in many cases informal and easily understandable explanatory styles
have been chosen to describe certain problems or situations. By doing so it
sometimes is possible that the explanation in this thesis does not cover the
full formal problem setting. It is important to note that the explanatory de-
scriptions do not mean that the conclusions in this thesis are not applicable
in a larger and formal environment.

This thesis is part of a graduation project and as, such will, contain a
lot of information very specific to the field of computer science. Some parts
of the thesis will therefore be harder to read for people without the proper

4

1.4. DIRECTION OF THE THESIS

background. However the aim is that the main idea behind the thesis can
still be understood if these parts are skipped.

Several of the ideas presented in this thesis will also appear in a separate
paper [VEK04], which has been accepted into the IEEE SMC conference
20044.

4International Conference on Systems, Man and Cybernetics;
http://www.ieeesmc2004.tudelft.nl/

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Practical application of a
cooperative multi-agent
system: RoboCup

2.1 Introduction

“By the year 2050, develop a team of fully autonomous humanoid
robots that can win against the human world soccer champion
team.”

This quote proudly welcomes the visitor to the RoboCup web site1. A
very ambitious project, that so far has resulted in separate leagues in which
robots play other robots, (Figure 2.1 a, b and c) and one simulation league
in which the robots are left out, and agents play a football game against
each other on the computer (Figure 2.1 d).

2.2 RoboCup as standard AI problem

Since the beginning of AI, the field demonstrates its success largely by show-
ing its success in standard problems. One of the most notable examples is
of course Deep Blue’s victory over Kasparov in chess, May 1997. Although
chess is an extremely complex problem, it still is a clearly abstract one: it
has a clear discrete domain, has turn based actions and the situation (i.e.
the location of the pieces on the board) is always known to all players.

In this respect, RoboCup is a lot closer to real-life problems. It deals
with a dynamic environment, in which real-time actions are required. The
environment is not fully observable (i.e. an agent can only look in one direc-
tion at a time, and the data it receives contains a certain amount of noise).

1http://www.robocup.org

7

CHAPTER 2. PRACTICAL APPLICATION: ROBOCUP

(a) Small Size League (b) Medium size League

(c) Four-legged League (d) Simulation League

Figure 2.1: Examples of different RoboCup leagues

Another very interesting aspect of RoboCup is the multi-agent nature of it:
independent agents have to work together as a team, and only have limited
communication available, so a central control is not feasible.2

One of the aims of the RoboCup project is to get RoboCup recognised
as a standard problem in the AI. Whether this will succeed, we will only
know in time, however some of the leagues where robotics are important are
more and more being dominated by major companies, and universities are
increasingly unable to allocate enough funds to compete on that level. On
the other hand, ever more universities are including multi-agent systems in
general (and sometimes specifically RoboCup) into their AI curriculum.

2.3 A closer look at the simulation league

2.3.1 Division into leagues

RoboCup is divided into a number of different leagues. This division allows
for a division of the problem domain, so that not every league has to tackle
all the problems contained in the final goal of realising a team that can take

2Note that not all these features are present in all leagues. See section 2.3.1 for a
quick overview, or the RoboCup web site (http://www.robocup.org) for more elaborate
description.

8

2.3. A CLOSER LOOK AT THE SIMULATION LEAGUE

on the world champions of human football. The different leagues include a
small size league, in which the robots are centrally managed, a four legged
league (or AIBO league), in which the robots are commercially available
products, a mid- size league, where both robot building and robot control
are important, and a humanoid robot league, where the operation of bi-pedal
robots is emphasised.

In addition a simulation league was included, where the robotic element
was totally removed, and the focus is on the operation of the separate agents
into a team. Most leagues use some sort of multi agent decision making, how-
ever the simulation league uses the most advanced implementation. This,
and the fact that the UvA3 has a team that is performing very well in the
this league, made me choose look at this league in this thesis. The methods
discussed in this thesis will be checked against practical applicability in this
league.

2.3.2 The simulation league

In the simulation league, a game is played that somewhat resembles EA’s
FIFA- series of computer games. However, instead of a human controlling
the players, each player is being controlled by a separate process—an agent—
so a total of 22 agents (+ coaches) run to play the game. Obviously each
group of 11 agents have to work together to win the game.

The simulation league is a very popular league, and the largest in RoboCup.
This is partly because all that is needed to develop a team is a computer
running Linux. Even to test one’s team, all one has to do is to download
another team, and run the program. It is also a very interesting league,
since no robotics are needed to participate. Since all players on the field are
equal4, the physical properties of the players are known in advance. Reading
the sensor data and steering the player are relatively simple operations and
programmers can focus on higher level actions, such as tactics. As a result
the tactical game play of the simulation league is more advanced than any
other league.

2.3.3 Possibilities and constraints

To understand how to use coordination and the results of this research in
the simulation league, it is important to understand what is and what is not
possible in the simulation league. It is important to realise that every player
is an agent. The time-domain of 10 minutes is divided into 6000 steps of
100 ms each. At the beginning of each timestep an agent gets her ‘sensor-
information’, and then has to send out ‘action information’ before the end of

3Universiteit van Amsterdam, University of Amsterdam.
4There are different types of players, however every team may make use of the same

types.

9

CHAPTER 2. PRACTICAL APPLICATION: ROBOCUP

the time step. The agent doesn’t receive all the information in the domain—
she can only look in one direction, and even in that direction noise is added
(the further away an object is, the more noise is added). Furthermore there
is a limited form of communication: if an agent ‘says’ something, in the next
timestep all agents within range will ‘hear’ that remark. It is only possible
for each player to ‘say’ a limited number of things during a game.

It will be clear from the description above that the agents have to act
independently to a large extend. As we will see in section 3.3, coordination
without extensive communication possibilities puts strict requirements on
the methods for coordination used.

2.4 RoboCup at the UvA: Trilearn

The Universiteit van Amsterdam (UvA) participates in RoboCup in two
leagues. In the midsize league, the UvA, in cooperation with the Univer-
sity of Utrecht and Delft University of Technology, has developed the team
‘Clockwork Orange’. The Universiteit van Amsterdam also has a team in
the simulation league, ‘UvA Trilearn’. This team was initially developed as
a graduation project of Jelle Kok and Remco de Boer, and has since been
maintained and improved by Jelle Kok as part of his PhD research. This
team has a respectable record as winner of the German Open in the last
three years, and winner of the RoboCup 2003.

One major factor in Trilearn’s success has been that since two years
multi-agent coordination is finding its way into the team. Because of the
limited communication possibilities and the lack of common knowledge (each
player receives different noise and therefore has a slightly different world pic-
ture), most teams have each agent decide her own best action, independent
of the others. [KSV03] describes the methods that the UvA Trilearn team
uses to circumvent these limitations.

As noted before, the results from this thesis will be checked against
applicability in the Simulation League in general and the UvA Trilearn team
in particular.

10

Chapter 3

Coordination games

3.1 The need to coordinate

When multiple agents work towards a common goal, they usually have to
work together to reach that goal. In multi-agent systems we call this ‘co-
ordination’. This basically means that some agent will have to coordinate
her actions to one or more other agents’ actions. To give a impression on
how this system works, we continue and elaborate on the example of section
1.2. Two agents are in love, and want to meet that night. In the simplest
situation (Figure 3.1a the choice is just between the park on in the harbour,
and the lovers goal is just to be together. Now we add the fact that both
of them are fish-lovers, and the harbour has great fish-restaurants (Figure
3.1b). Note that they still have the same goal; if for instance one of them
would like fish and the other one hated it, the agents would not be cooper-
ative anymore and totally different methods of coordination / anticipation
would apply. Furthermore it is important to realise that no prior arrange-
ments have been made. In figure 3.1c we complicate things ever further, by
offering the mall as an extra choice, which happens to be next to the park
(so if one would go to the park and the other one to the mall, chances still
are that they’ll meet). Figure 3.1d adds the fact that the harbour is an
extremely dangerous place to be by yourself. Finally, figure 3.1e recognises
that the situation may change on basis of some external factor, called the
‘context’: Since you can sit outside in the park, that location is preferable
in case of sunshine. In case of an overcast sky, the old system remains valid.

Obviously these are relatively easy examples; things can be complicated
by adding extra agents, extra states or extra locations, though this would
not add to the example. Important is to see the necessity of coordinating.
In the example in figure 3.1d, for instance, the lovers could choose to go the
harbour only if they were sure that the other one would do the same. When
in doubt on the other’s intentions, it would be safer for both to go to the
park or the mall.

11

CHAPTER 3. COORDINATION GAMES

lover2 park harbour
lover1
park 1 0
harbour 0 1

lover2 park harbour
lover1
park 1 0
harbour 0 2

(a) (b)

lover2 park harbour mall
lover1
park 1 0 0.5
harbour 0 2 0
mall 0.5 0 1

lover2 park harbour mall
lover1
park 1 –100 0.5
harbour –100 2 –100
mall 0.5 –100 1

(c) (d)

Sunny:

lover2 park harbour mall
lover1
park 3 –100 0.5
harbour –100 2 –100
mall 0.5 -100 1

Overcast:

lover2 park harbour mall
lover1
park 1 –100 0.5
harbour –100 2 –100
mall 0.5 –100 1

e)

Figure 3.1: The need to coordinate: two lovers want to meet, the rows are
lover1’s choice, the columns lover2’s. The value in the table is the collective
payoff. Five different scenarios are discribed by the figures a, b, c, d and e;
see the text for more details

12

3.2. WHICH DECISION IS GOOD: PAYOFF

Obviously RoboCup has more than enough possibilities for coordinating.
Giving the deep pass is only useful when someone is going to run in that
direction. Likewise, in the defence, it should be decided which agent stays
close to which striker, with obviously disastrous results when all defenders
go after one striker, leaving the others alone.

3.2 Which decision is good: payoff

In section 3.1 we looked at some examples on coordination and why it is
important to coordinate. Intuitively we recognise the action combination
with the highest number with it as the best action, however in the computer
world this obviously is formalised a little more. Typically each agent has a
‘niceness parameter’ for each action combination of all agents, which is called
‘payoff’—this value notes how preferable a certain action combination is to
this agent compared to other action-combinations. Typically an agent tries
to choose such an action that her own payoff is maximised. In cooperative
systems however, agents are not trying to maximise their own payoff, but
the collective payoff, which is the sum of the payoff of all agents. Therefore
we sometimes only note the collective payoff in cooperative systems, and
ignore how this payoff is divided over the individual agents.1

Getting the values for the payoff is not a trivial matter. In the examples
of section 3.1, the payoffs could be more or less deducted from the problem
description, for more complicated problems this is not that easy though. It
should be noted that the payoff only is valid for one ‘timestep’2, so high
payoffs should be given to action combinations that will result in a better
strategic position from where to achieve the final goal. In the RoboCup
game for instance the only goal of the agents is to win the match. It is clear
that scoring is a step in the right direction towards that goal, and thus it
gets a high payoff. To score we need the ball, so intercepting a pass from the
opponents gets a high payoff. As we get more into the details it becomes less
and less clear what a good action would be. Several methods are around to
deduct the payoff for each action combination [Vla03] and [SB98]. In this
thesis we will not look into these and assume that appropriate payoffs are
defined beforehand.

3.3 Methods of coordination

We have shown that it is necessary for cooperating agents to coordinate
actions. How this coordination takes place depends on what constraints the
specific problem has. In general we can recognise three ways of coordinating:

1This is what we did in figure 3.1.
2Technically the time-domain doesn’t have to be discrete, however it greatly simplifies

things to assume that it is. In the simulation league the time domain is discrete indeed.

13

CHAPTER 3. COORDINATION GAMES

Centralised One agent might calculate what the optimal actions for all
agents are, and then communicate these actions to the agents. For
this it is needed that communication is available and reliable. In ad-
dition, it is necessary that the agent doing the calculation knows all
payoff-functions for all agents, either by obtaining these though com-
munication, or by knowing them beforehand. When we go back to the
examples of section 3.1 and we would give both lovers a mobile phone,
one could just call the other, ask her preferences, decide and tell the
other one where to meet.

Distributed The agents could work together in a group in finding the
optimal action in such a way that each agent only calculates its own
action. The algorithm needed for this is basically a distributed version
of the centralised algorithm, where, instead of the payoff-functions
being transferred to one agent, each agent keeps its own functions and
does that part of the calculation that need those functions by itself
before sending the results to the next agent. Advantage is that each
agent does approximately the same amount of work, and that some
parts of the calculation could be done in parallel. In addition payoff-
functions which are too large to communicate or are secret do not
need to be transferred. On the downside, this method requires a lot
of communication and communication moments.

Replicated Each agent runs the algorithm that the one agent ran in the
centralised situation, to determine her own optimal action. Although
the agent does not have to run the whole algorithm in all cases and
can stop as soon as she has found her own optimal action, this ac-
tion is usually only determined at the end of the algorithm, and the
running time for each agent is about as long as the running time for
the single agent in the centralised situation. As in the centralised
situation, the agent doing the calculating (in the replicated case this
means all agents) needs to know all payoff functions of all agents. If
these are known beforehand (this is called common knowledge), this
system can work in an environment without communication possibili-
ties. One requisite in this situation is that the algorithm employed is
deterministic.

Since each agent is calculating its own optimal combined action3, and
acting on that result, it is essential that all agents reach the same op-
timal combined action. This is also the case when multiple combined
actions give the same maximum payoff. Hence we need a deterministic
algorithm. Imagine the situation of figure 3.1a, where both the situa-
tion of both lovers in the park and the situation of both lovers in the

3As noted before an agent does not always have to find the complete optimal combined
action, this does not affect the argument though.

14

3.4. REPRESENTING THE PROBLEM

harbour give a payoff of 1. Now if both lovers have this payoff-matrix,
but they have no methods of communication, then one of them might
decide that for both to meet in the park is a good idea, the other one
might choose for both to meet in the harbour is smart, and they’ll miss
each other. A deterministic method might have included a rule saying
that in case of a tie, the park (or the harbour) always has preference.

Throughout this paragraph we have been focussing on finding—and
communicating—the optimal combined action. Later in this thesis we shall
see that in some cases we will have to settle for a solution that is not the
optimal one per se, but still a reasonably good one. The methods of co-
ordinating and the constraints discussed in this paragraph apply in those
situations as well.

3.4 Representing the problem: Matrix vs. Coor-
dination Graphs

In the examples of section 3.1 we looked at some coordination problems and
represented these as matrices. This matrix-notation has the great advantage
that it is easy to spot the maximum—and so the optimal combined action.
When the problem grows, the size of the matrix grows exponentially in the
number of agents. Especially when not all agents have to coordinate with
all others, the matrix will contain a lot of duplicate entries, and an easier
representation is preferable.

The framework of Coordination Graphs with value rules, as presented
in [GVK02], represents coordination between a relatively large number of
agents with limited coordination requirements. A value rule is a rule that
says that in a certain situation a certain payoff will be received. A rule
reading 〈a1 = 0 ∧ a2 = 1 ∧ a5 = 1 ∧ x = 1 ∧ z = 0 : 5〉 means that a
payoff of 5 ‘exists’ when action1 = 0, action2 = 1 and action5 = 1, and the
contexts x = 1 and z = 0 apply. The values for context y, and 4action3
and action4 do not matter. In cases of binary actions and contexts, we
sometimes abbreviate to 〈a1 ∧ a2 ∧ a5 ∧ x ∧ z : 5〉.

Figure 3.2a shows a random coordination problem with two possible
states x and x, four agents i = 1, 2, 3, 4 that each have 2 possible actions ai

or ai in matrix notation; figure 3.2b shows a possible coordination graph for
this problem. The nodes in the graph are the agents, and the edges represent
which agents need to coordinate their actions directly; more precisely, the
agent at the point of the arrow should coordinate her action to the action
of the agent from where the arrow originated. Since our problems are of
a cooperative nature, we did not show in our matrix which agent gets the
payoff; this is being shown in the coordination graph, where the total payoff
is distributed among the agents. Therefore from one matrix many different

15

CHAPTER 3. COORDINATION GAMES

x a1 a1

a2 a2 a2 a2

a3 a4 5 7 5 2
a4 5 7 5 2

a3 a4 4 11 0 2
a4 4 11 0 2

x a1 a1

a2 a2 a2 a2

a3 a4 10 0 0 0
a4 10 0 0 0

a3 a4 10 0 0 0
a4 10 0 0 0

(a)

〈a1∧a3∧x:4〉
〈a1∧a2∧x:5〉

〈a2∧x:2〉

G1

G2

=={{{{{
// G3

aaCCCCC

}}{{
{{

{

G4

〈a3∧a2∧x:5〉

〈a3∧a4∧x:10〉

〈a1∧a2∧x:5〉
〈a2∧x:2〉

G1

}}{{
{{

{
!!CC

CC
C

G2
// G3

G4

=={{{{{

〈a1∧a3∧x:4〉
〈a3∧a2∧x:5〉
〈a3∧a4∧x:10〉

(b) (c)

Figure 3.2: A problem in matrix notation, and two possible coordination
graphs for that same problem.

16

3.5. DECISION MAKING

< a1 = h ∧ a2 6= h : −50 >
< a1 = m ∧ a2 = m : 1 >
< a1 = m ∧ a2 = p : .5 >

< a1 = p ∧ a2 = p ∧ S : 3 >

L1
// L2

oo

< a1 6= h ∧ a2 = h : −100 >
< a1 = h ∧ a2 6= h : −50 >
< a1 = h ∧ a2 = h : 2 >
< a1 = p ∧ a2 = m : .5 >

< a1 = p ∧ a2 = p ∧ S : 2 >

Figure 3.3: A coordination graph of the lovers’ meeting; L1 and L2 are lover1
and lover2, a1 and a2 are the actions of lover1 and lover2 respectively; S
represents a sunny day

possible coordination graphs can be made. Another possible coordination
graph of the same problem is being given in figure 3.2c. As with matrices,
we might also produce coordination graphs which do not keep track of which
agents have which value rules. In these graphs the edges have no direction,
and the value rules are noted on a separate list.

The example of the lovers trying to meet, represented by figure 3.1e,
could be described by coordination graph 3.3. In that example, the coordi-
nation graph notation does not make the problem any easier to grasp, and
here we see that in some situations the matrix notation is better. In general
however, in larger systems in which not every agent has a payoff dependent
on every other agent, coordination graphs will greatly improve things.

3.5 Decision making

3.5.1 The optimal combined action

In section 3.3 we discussed methods for achieving coordination. We showed
that one agent could find the (optimal) combined action and communicate
this action to all others, the algorithm could be executed distributed, or each
agent could run the same algorithm, thereby reaching the same solution for
the optimal action.

In that we ignored the problem of how to find this optimal combined
action. This problem is known as the problem of decision making. The
agents need some algorithm to find this optimal combined action—some of
the algorithms for doing this are discussed here.

3.5.2 The role of the context

Before we come to the actual decision making process, first a quick word on
the context. In the examples in the beginning of this chapter, we saw that,
in some cases, context plays a role in decision making. Context is a set of
outside variables, which decide which payoffs are valid and which are not
(as in the example of figure 3.1, where the choice for the park gets extra
payoff in case the sun shines). Variables in the context cannot be influenced

17

CHAPTER 3. COORDINATION GAMES

〈a1∧a3∧x:4〉
〈a1∧a2∧x:5〉

〈a2∧x:2〉

G1

G2

=={{{{{
// G3

aaCCCCC

G4

〈a3∧a2∧x:5〉

((((((〈a3∧a4∧x:10〉

(((((〈a1∧a3∧x:4〉

(((((〈a1∧a2∧x:5〉

����〈a2∧x:2〉

G1

G2 G3

}}{{
{{

{

G4

(((((〈a3∧a2∧x:5〉

〈a3∧a4∧x:10〉

Context: x Context: x
a) b)

Figure 3.4: The coordination graph of figure 3.2b after the context has been
established.

by the agents directly4, and are therefore of no importance in the process of
decision making. As soon as the actual context in a situation is known, all
value rules which are invalid are being removed from the coordination graph
(in some cases this includes removing some edges too). Stripping all these
rules at a given timestep is a trivial operation that can be done in linear
time; in figure 3.4, the coordination graph of figure 3.2b is being shown after
the contexts x (a) and x (b) have been established. For this reason from
this point forward we ignore the concept of context, and assume all value
rules to be valid at the time.

3.5.3 Try all possibilities

When a human is asked to find the optimal solution for the problem of
the lovers in figure 3.1e, he will quickly scan all entries in the matrix, pick
the highest and recommend that as action for the lovers. Computers are
way faster in comparing numbers and finding the highest value in a matrix,
and scanning all possible action combinations to find the highest value is a
simple and effective solution for small problems; even for small coordination
graphs, which are quite easily converted to matrices.

When the problems grow this approach has a serious drawback. Finding
the maximum value in a matrix is of linear complexity in time to the number
of entries in the matrix. The number of entries in the matrix is

∏
|ai|, where

|ai| is the number of possible actions of agent i. In the case that each agent

4Agents can influence the context of future timesteps. For instance, context variable x
might be the player that currently holds the ball in a RoboCup game. By passing the ball
to another player, x will have changed through an action of an agent. Whether this is a
good thing to do or not, is coded in the payoff, and no direct look is given to the possible
payoff in that other situation. As we noted in section 3.2, deciding on the correct payoffs
is a complicated matter which is not covered in this thesis.

18

3.5. DECISION MAKING

has n possible actions, k agents will result in a matrix with nk entries. The
time taken for trying every possibility is therefore exponential to the number
of agents.

3.5.4 Variable Elimination

In section 3.4, we have seen that in problems where not all agents have to
coordinate directly, the matrix notation contains many duplicate entries, and
coordination graphs with value rules manage to note the problem simpler
and shorter. The same goes for the process of decision making, where, using
the coordination graph and variable elimination we will be able to solve
problems faster.

Variable elimination is a process in which the agents are being eliminated
from the value rules one by one, until only one agent is left. This agent then
selects the best action for herself, and reports this to the penultimately
eliminated agent. She then fills in the other agent’s action, which results in
value rules with only one agent left. This process continues until every agent
has an action assigned. An elaborate explanation of the variable elimination
algorithm can be found in appendix A.

Different implementations of variable elimination exist; which one is best
depends on whether communication is available and whether agents know
all payoff functions of all other agents beforehand. These implementations
do not differ sufficiently enough to look at each one separately. In our tests
we used a slightly modified version of the algorithm described in [Gue03],
the modifications to the algorithm are explained in appendix A.

Variable elimination finds the optimal combined action (and the optimal
payoff) in finite time. According to [Gue03], the algorithm has a time-
complexity of at most exponential to the induced width of the coordination
graph5. In the worst case, the case of a fully connected coordination graph,
this method has the same time complexity as the method described in sec-
tion 3.5.3. As we discussed before, many problems have a lower grade of
connectivity and the solution will therefore be found way quicker than trying
all possibilities.

The UvA Trilearn team uses variable elimination to coordinate the ac-
tions of some agents. How this is being done, and how the problems that
arise from this were tackled, is described in [KSV03].

Especially large problems with heavily connected coordination graphs,
will still not perform well with variable elimination. Furthermore, when time
is a constraint, variable elimination is an all or nothing solution: either the
time given to the algorithm was enough and the optimal combined action
has been calculated, or the time was not enough and no result whatsoever
is available. However, in several situations it would be preferable to get a

5The induced width is the maximum number of edges leaving a node at any time during
the variable elimination.

19

CHAPTER 3. COORDINATION GAMES

‘good’, sub-optimal solution in case there is not enough time to calculate the
optimal solution, rather than being stuck with nothing. Anytime algorithms
have that possibility.

20

Chapter 4

Anytime algorithms

4.1 Introduction to anytime algorithms

As discussed before, in cases where we are not sure whether we have enough
time to find the optimal combined action, we might be greatly helped if, after
time runs out, we would have some result that is not necessarily the optimal
result, but still a whole lot better than nothing (or: better than a random
combined action). This kind of algorithm is called an ‘anytime algorithm’.
An anytime algorithm can return a result at any time, and the longer the
algorithm runs the better the result will be, until the optimal result has been
reached. It is not necessary that the optimal result is reached in the same
time as the fastest not-anytime algorithm, as long as the anytime algorithm
will give a result close to the optimal one within a reasonable amount of
time.

To what respect the preceding statement is true, and what is being
meant by ‘a result close to the optimal one’ and ‘a reasonable amount of
time’, largely depends on the problem that one is trying to solve. In some
cases, only the optimal solution is worth mentioning, even if it takes a lot
of time; in other cases, a ‘pretty good’ solution will do the trick. If we look
back at the example of the lovers, they will have a good time, either in the
park, the mall or at the harbour, although only one of these options is their
optimal solution.

One anytime algorithm is the one we discussed in section 3.5.3: looping
over all entries in the matrix to find the optimal solution. It is obvious that
that method will be able to return the ‘best found so far’ at any time, while
eventually reaching the optimal solution. We will introduce a more efficient
algorithm, and see how it performs in relation to variable elimination, and
whether it is usable in practice.

21

CHAPTER 4. ANYTIME ALGORITHMS

Algorithm 4.1 Coodinate ascent
define: scope(ρ) is the set of all agents that define an action in ρ
define: ai the action of agent i
define: Ai = Dom(ai)
define: a−i the actions of all agents but agent i
define: a∗ the best combined action found so far
define: ρ(a) is the payoff rule ρ gives, in case of combined action a.

P ← all valuerules
loop

for i ∈ agents do
ai ← random (Ai)

end for
repeat

i← next(agent)
ρ← {ρj ∈ P |i ∈ scope(ρj)}
a∗i ← arg maxai∈Ai(

∑
ρj(a∗−i ∪ ai))

until no agent has changed action since last time i was checked
end loop

4.2 Coordinate ascent

Coordinate ascent is an anytime algorithm. The idea behind it is pretty
straight-forward: One starts with a random choice for a combined action,
then loops over all agents, and each agent will optimise her own action, while
the actions of all other agents stay the same. This looping continues until no
improvement can be made anymore; then a new random starting position is
selected and the process is repeated. The highest value obtained so far will
be returned when an answer is needed. The whole process is described by
the pseudo-code in algorithm 4.1.

Basically, what the algorithm does is looking for Nash-equilibria (NE)1.
When such a NE is found, there is no guarantee that it is Pareto-optimal,
nor is there any way of finding this out. Therefore the code has to run again
and again, because it might always find a better solution. When looking
at the code, one notices quick enough that the algorithm only ends when it
runs out of time. The algorithm has no guaranteed running time in which
the optimal result will have been found.

To the basic algorithm some optimisations can be made. One suggestion
would be to choose the starting values in some intelligent way instead of

1Technically Nash-equilibria need every agent to have her own set of payoff rules. Since
in our situation all value rules are shared, one might think of Nash equilibria as local
maxima of the combined payoff function, whereas the Pareto-optimal Nash equilibrium is
the global maximum.

22

4.3. DETERMINISTIC VS. STOCHASTIC ALGORITHMS

randomly. What an intelligent start is will largely depend on the type of
problem. Although with random problems little can be gained by this, in
some specific situations one might try an expected result as starting position.

Another suggestion would be to only optimise over all the actions of an
agent, if at least one of the agents it has to coordinate with directly (so one
of her neighbours in the coordination graph) has changed her action since
this agent’s last optimisation round.

In section 3.3 we discussed methods for coordinating, and we reached the
conclusion that in case communication possibilities are limited, deterministic
algorithms are needed. In its original form the coordinate ascent algorithm
has four points at which it is non-deterministic. Most obvious the starting
position is currently chosen randomly for every run; using a fixed random
seed would easily solve this problem. Secondly, a fixed order between the
agents must exist, so that the ‘next’ operator loops over the agents always in
the same order. Furthermore, the ‘argmax’ function needs return always the
same result, even if two actions result in the same payoff; having a preference
over the actions in case of a tie would solve that problem. Finally, and most
hidden, an anytime algorithm runs until an answer is needed. Depending on
when this request is done, the algorithm will return different results. This
issue is pretty complicated and will be discussed in section 4.3.

4.3 Deterministic vs. stochastic algorithms

In section 3.3 we showed the need for either a form of communication, or
a deterministic algorithm. We also noted in section 4.2 that the coordinate
ascent algorithm is not fully deterministic, because it uses an external trigger
to decide when to return its results, and this trigger does not necessarily
always come at the same moment. In truth, this is inherent to the nature
of an anytime algorithm: because of its nature it will give different results
at different times, and without some strict constraints on the timer there is
no guarantee that the results will always be the same.

In a communicationless environment, the only way of making sure that
the algorithm is deterministic (and so that the coordination will always
succeed) is by making sure that the algorithm always stops after a fixed
amount of runs. This might be done by hard coding this amount in the
code, or defining the timer in CPU time rather than wall-clock time2. One
of the great advantages of anytime algorithms is, though, that we can run
them right until the moment that we need the result—this advantage is lost
when the running time is decided upon beforehand3.

2Obviously this only works when the algorithm is always run in the same environ-
ment; if one instruction takes one CPU-cycle in one instance, and two cycles in another
environment, the count gets lost.

3This is not quite true; if the agents were to know exactly how much CPU-time they

23

CHAPTER 4. ANYTIME ALGORITHMS

In situations were the aforementioned constraints on the timer are not
possible, one would have to look at the consequences of having a non-
deterministic algorithm playing a part in coordination. If we would assume
that all agents will have approximately the same amount of CPU-time avail-
able for the algorithm (which is the case in many practical applications), the
coordinate ascent algorithm might or might not produce nice results. If two
agents had about the same time for the algorithm, chances are good that
the results they return—albeit different—are part of one route towards the
same local maximum. Depending on the problem this might result in a not
too bad result (imagine a situation where there is a gradual climb to the lo-
cal maximum), or the result might be disastrous (imagine a situation where
close cooperation is essential and if only one agent is not doing exactly what
the others expect problems arise). In addition there is still the risk that one
of the agents is already looking at another local maximum, and the results
of the agents will be totally independent. Once again it depends on the
problem whether the risks are acceptable—one can imagine that a failure to
coordinate between the two lovers of figure 3.1c is an acceptable risk (they
can always meet again next week), whereas for the lovers of figure 3.1d it
would be unacceptable, since one of them might end up in the harbour by
herself.

would get before an action was needed, and this was common knowledge, they could use
exactly that amount and thereby having the algorithm run as long as possible. Also a
very limited communication possibility would enable the agents to coordinate how many
cycles the slowest of them could spend on the problem.

24

Chapter 5

Experiments and Results

5.1 The tests

We want to look at how the coordinate ascent algorithm behaves in rela-
tion to other algorithms, especially variable elimination. We do this in two
stages. In stage one we look at the time-complexity of the variable elimina-
tion algorithm. In stage two we compare coordinate ascent to the variable
elimination algorithm.

To assure the test results are reproducible, we need to specify the kind
of problems we run the tests on. All problems are coordination graphs
with value rules, but even in that domain many different types of problems
exist, many of which might be encountered in practical applications. For
instance large differences might exist in performance when applied to lightly
or densely connected coordination graphs.

A description of the way we generated the problems, including the pseudo-
code for the generator, can be found in the appendix B. It shows that the
generator uses four variables to generate its problems: nri is the number of
agents in the problem, nra is the number of actions each agent can choose
from, nrρ is the number of value rules that are generated per agent, and nrs

is a measure for the connectivity in the accompanying coordination graph.
A value n for nrs, means that the value rules of each agent only contain ac-
tions for that agent self (obviously) and actions for at most n other agents.
Note that a node can still have a degree1 which is higher than n, because
the ‘degree’ measure (and the variable elimination algorithm) makes no dis-
tinction between incoming and outgoing edges. In this chapter we test with
different values for the number of agents and the number of actions per
agent. Furthermore we will distinguish three classes of connectivity: light,
where nrs = 1; medium where nrs = 3 and dense, where nrs = nri − 1.

It should be noted that since we are measuring (relative) times, the re-
sults greatly depend on the hardware, the developing environment, number

1The degree of a node is the number of edges connected to that node

25

CHAPTER 5. EXPERIMENTS AND RESULTS

of optimisations, etc. We do not claim to have used the fastest implemen-
tation possible for all algorithms, nor did we favour any particular imple-
mentation by optimising some code more than other. The pseudo code for
the used variable elimination algorithm can be found in algorithm A.4 on
page 43 of the appendix, the pseudo code for coordinate ascent is available
in algorithm 4.1. We do feel that the results do give a fair image of the
possibilities of the algorithms.

5.2 Performance of variable elimination

We argued before that coordinate ascent is an anytime algorithm that never
really ends. As with all anytime algorithms it is unclear how to define the
time performance of such algorithms. Obviously it will depend on whether
one needs the global maximum payoff, or whether one is satisfied with a
possibly less good (and less costly) result. In the next sections we will
therefore show the performance of coordinate ascent compared to that of
variable elimination. For this to give a clear result, it is important to first
understand how well variable elimination performs.

In figure 5.1, we see how well variable elimination performs in time. We
measured the influence of two different variables on the time the algorithm
took: the number of agents (nri) in plots a, c, d and f, and the number of
possible actions per agent (nra) in plots b and e. We look at this for problems
with light (plots a and b, nrs = 1), medium (plots c, d and e, nrs = 3)
and dense (plot f, nrs = (nri − 1)) connectivity in their accompanying
coordination graphs. Each dot in the plots is the result of one run on a
random problem generated with the parameters specified.

In plot 5.1a we see a nice polynomial relation between the number of
agents, and the time the algorithm takes. If we look at the same data for the
problem with medium connectivity (c and d), one sees that the algorithm
needs more than polynomial time, but less than exponential time. Finally in
the densely connected situation (plot f) we see a clear cut case of exponential
time complexity.

Looking at how well the problem scales to the number of actions, figure
5.1b shows something interesting. It looks like the time scales exponentially
to the number of actions per agent, however we can distinguish (at least)
two clearly different trends, one that climbs steeply, while the other, the
lower one, might even be said not to be exponential at all. One could argue
to see a similar division in figure 5.1e—which contains similar data for the
problem with medium connectivity, however this is less clear. Looking for
the exact causes of these two (or more) different lines falls outside the scope
of this thesis.

26

5.2. PERFORMANCE OF VARIABLE ELIMINATION

10
1

10
2

10
0

10
1

10
2

10
3

10
4

nr
i

ex
ec

ut
io

n
tim

e
(m

s)

nr
a
=4, nrρ=10, nr

s
=1

2 4 6 8 10 12
10

0

10
1

10
2

10
3

10
4

10
5

10
6

nr
i
=20, nrρ=10, nr

s
=1

ex
ec

ut
io

n
tim

e
(m

s)

nr
a

Lightly connected, scale agents; Lightly connected, scale actions;
both axes logarithmic y-axis logarithmic

(a) (b)

10
1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

nr
a
=2, nrρ=10, nr

s
=3

ex
ec

ut
io

n
tim

e
(m

s)

nr
i

8 10 12 14 16 18 20 22
10

1

10
2

10
3

10
4

10
5

10
6

10
7

nr
a
=2, nrρ=10, nr

s
=3

nr
i

ex
ec

ut
io

n
tim

e
(m

s)

Medium connectivity, scale of agents; Medium connectivity, scale agents;
both axes logarithmic y-axis logarithmic

(c) (d)

0 1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

10
5

10
6

nr
i
=5, nrρ=10, nr

s
=3

ex
ec

ut
io

n
tim

e
(m

s)

nr
a

4 6 8 10 12 14 16
10

0

10
1

10
2

10
3

10
4

10
5

10
6

nr
a
=2, nrρ=10, nr

s
=(nr

i
−1)

nr
i

ex
ec

ut
io

n
tim

e
(m

s)

Medium connectivity, scale actions; Densely connected, scale agents;
y-axis logarithmic y-axis logarithmic

(e) (f)

Figure 5.1: Performance of variable elimination
27

CHAPTER 5. EXPERIMENTS AND RESULTS

5.3 Comparing coordinate ascent and variable elim-
ination

As we stated before, giving a good rating for how an anytime algorithm
performs is hard. Some hypothetical algorithm might find a combined action
that results in 50% of the maximum payoff in linear time, while it takes
exponential time to find 90% of the payoff, and might not be guaranteed
to reach 100% ever. This example shows that it clearly depends on the
application how to judge the performance of such an algorithm.

Instead of trying to find some manner on which to specify the perfor-
mance of coordinate ascent directly, we compare it to variable elimination.
Typically, the variable elimination algorithm runs for a while and then pro-
duces an answer. Since it cannot give any intermediate result, the payoff
found is zero as long as the algorithm runs, and after it has finished the
payoff jumps to maximum. In the plots comparing variable elimination and
coordinate ascent, we use a scale so that the maximum payoff is 1. The time
axis is scaled so that the time it took the variable elimination algorithm to
complete is called 1. In this way the points in plots can be understood as the
fraction of the payoff and execution time of the variable elimination algo-
rithm. In other words, one can say that the trace of the variable elimination
algorithm is a line from (0, 0) to(1, 0) to (1, 1) per definition.

In figures 5.2 and 5.3 the comparison between coordinate ascent and
variable elimination under different situations is shown. Coordinate ascent
performs pretty well, and in quite some cases the climb of coordinate ascent
was too steep to show on the normal scale, therefore note the scale of the
x-axis in the plots. The plots were generated by solving 4 different randomly
generated problems for each set of parameters. These problems were first
solved by variable elimination once, and then by coordinate ascent 5 times,
with different random seeds each time. Each coordinate ascent result was
then scaled to its variable elimination companion, and the averages of the 20
runs were plotted. The jerky climb in the plots has two reasons. Firstly the
coordinate ascent algorithm typically increases with jumps, and these jumps
are still visible after the averages have been taken. Furthermore, in the tests
with few agents or actions we ran into the limitations of our timing system.
Time measurements had a 1 ms resolution, which proved insufficient in some
cases.

In all plots we see coordinate ascent perform rather well. In all situations,
except the lightly connected one with 100 agents, coordinate ascent had
reached a payoff higher than 99.9% of the maximum payoff after running
the same time as the variable elimination algorithm. More impressively, the
plots 5.2 d and f, and 5.3 b and d show that in situations with many agents
or actions per agent, typically situations where variable elimination takes
long to finish, coordinate ascent reaches near 100% payoff in times ranging

28

5.3. COMPARING COORDINATE ASCENT AND VARIABLE
ELIMINATION

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=20; nr

a
=4; nrρ=10; nr

s
=1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=100; nr

a
=4; nrρ=10; nr

s
=1

Lightly connected, few agents Lightly connected, many agents
(a) (b)

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=10; nr

a
=2; nrρ=10; nr

s
=3

0 0.5 1 1.5 2 2.5 3

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=22; nr

a
=2; nrρ=10; nr

s
=3

Medium connectivity, few agents Medium connectivity, many agents
(c) (d)

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=6; nr

a
=2; nrρ=10; nr

s
=5

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=15; nr

a
=2; nrρ=10; nr

s
=14

Densely connected, few agents Densely connected, many agents
(e) (f)

Figure 5.2: CA-VE comparison with varying numbers of agents.

29

CHAPTER 5. EXPERIMENTS AND RESULTS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=20; nr

a
=2; nrρ=10; nr

s
=1

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=20; nr

a
=13; nrρ=10; nr

s
=1

Lightly connected, few actions Lightly connected, many actions
(a) (b)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=5; nr

a
=2; nrρ=10; nr

s
=3

0 1 2 3 4 5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / VE time

pa
yo

ff
/ m

ax
im

um
 p

ay
of

f

nr
i
=5; nr

a
=7; nrρ=10; nr

s
=3

Medium connectivity, few actions Medium connectivity, many actions
(c) (d)

Figure 5.3: CA-VE comparison with varying numbers of actions.

30

5.3. COMPARING COORDINATE ASCENT AND VARIABLE
ELIMINATION

between 0.015% and 2% of the time that variable elimination needs. With
all these results it should still be noted that coordinate ascent does not
know it has already reached the maximum payoff and will continue looking
for better solutions.

31

CHAPTER 5. EXPERIMENTS AND RESULTS

32

Chapter 6

Conclusions and future work

6.1 Conclusions

From the results of chapter 5, it is not hard to spot that in many situations
coordinate ascent produces extremely good results when compared to vari-
able elimination. In section 5.2 it is argued that variable elimination does
not scale well to the number of agents or the number of actions per agent in
the situations where the accompanying coordination graph is complex (i.e.
problems of medium and dense connectivity). We can see that especially
in those situations (described by figures 5.2 d and f, and 5.3 d) coordinate
ascent performs extremely well, suggesting that it scales considerably better
than variable elimination. Even in the lightly connected case, where vari-
able eliminations scales reasonable well, coordinate ascent produces almost
similar results in the same amount of time, with the added benefactor of it
being an anytime algorithm.

However, coordinate ascent can pose problems when used in distributed
environments where communication possibilities are poor. Section 4.3 ex-
plains these problems, which basically come down to the fact that an anytime
algorithm is very hard to make deterministic. For such an algorithm to be
deterministic, the time that it runs should be deterministic as well, and this
contradicts the idea that an anytime algorithm can run for any time, unless
some very specific measures (with specific constraints) are taken. The prob-
lem with non-deterministic algorithms is that, if they are run in a replicated
fashion, different agents might end up with different solutions, which might
result in a non-coordinated combined action.

Furthermore, the coordinate ascent algorithm does not terminate until
an answer is requested. It has no way of knowing when it has reached the
optimal solution, nor does it guarantee convergence to this optimal solution1.

1Theoretically speaking, one could argue that it does converge, and does terminate
after each possible combined action has been tried as a starting position. However, we do
not treat this as a practical option.

33

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In conclusion we can say that in many cases coordinate ascent proves to
be a very viable option for solving complicated coordination problems under
time constraints, because it quite often reaches optimal (or close to optimal)
solutions in a fraction of the time that variable elimination takes. An added
bonus is that the algorithm returns intermediate results. However, many
problems exist where either the non-determinability of the algorithm, or
the fact that it does not guarantee convergence are sufficiently important
to decide that coordinate ascent is unsuited. Provided that the problems
are not too complicated, or in situations where time-constraints are of less
importance, variable elimination will get the optimal result in finite time.

6.2 Applicability of the results in RoboCup

The RoboCup Simulation League is an excellent example of an environment
which is poor in communication and requires the replicated system of co-
ordination, and at the same time has very strict time constraints on its
calculations. Currently the UvA Trilearn team uses variable elimination for
its coordination efforts, and often time runs out for one of the agents before
the calculation is complete. To avoid this, in the current implementation
the number of used value rules is kept to a minimum. For coordinate ascent
to work in this environment though, the algorithm should be deterministic.

We believe that the algorithm can be made sufficiently deterministic to
work well in the RoboCup environment. Our tests show that especially in
environments with few agents, a high level of connectivity and many different
actions per agent, an environment like the one in which a RoboCup team
needs to coordinate, coordinate ascent performs extremely well compared to
variable elimination. In our tests in similar environments, we saw that the
maximum payoff was always reached in just a fraction of the time needed for
the variable elimination algorithm. When we assume that all agents have
reached the globally maximum payoff before a result is needed, their running
time is of no influence on the result any more, and therefore their running
time is not a factor of non-determinability. This means that, assuming the
coordinate ascent has enough time to reach the maximum payoff, its behaves
as a deterministic algorithm. Because the running time available allows
variable elimination to finish most of the time, the chances that coordinate
ascent will not reach the maximum payoff are negligibly small.

In the future the coordination problems will become more complex, and
the time available for them may decrease. Some simple tests on the problems
should be enough in those cases to determine the chance that one or more
or more of the agents do not find the maximum payoff in time. This way
a risk analysis can decide whether coordinate ascent will be applicable in
those domains.

34

6.3. FUTURE WORK

6.3 Future work

In some of our (unpublished) tests we have seen that coordinate ascent seems
to perform reasonable well with problems of larger complexity; we let the
algorithm run on a densely connected, randomly generated problem of 400
agents and the characteristics of its results suggested that it was finding
results close to the maximum payoff within seconds. We had no way of
affirming this, since the problem is too large to run the variable elimination
algorithm to determine the global maximum in payoff. It would be nice
though to see how the coordinate ascent algorithm behaves in these (and
larger) problems.

The plots comparing coordinate ascent with variable elimination all have
a similar shape. It would suggest that a formula for the performance of
coordinate ascent can be found, and might even be build on a theoretical
analysis of the algorithm. Obviously such a general time-complexity function
would assist greatly in determining runtime how close the algorithm is to
finding the global maximum payoff.

Other anytime algorithms for coordination games have been proposed,
some of which seem to guarantee convergence in limited time. It would
be interesting to see how these algorithms behave compared to coordinate
ascent. Furthermore, the suggestion has been made to port algorithms which
work in Bayesian networks to coordination graphs [VEK04].

35

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

36

Appendix A

Variable elimination
algorithm

A.1 Explanation of the algorithm

Variable elimination and coordination graphs are often used intertwined. It
should be noted however that these are two different things: A coordination
graph is a notation of a decision making problem, variable elimination is a
way to solve this problem. It is true that variable elimination typically takes
a coordination graph as its input, and explaining the variable elimination
algorithm is easiest done by using a coordination graph. This does not
undermine the fact that there are other ways of solving coordination graphs
(coordinate ascent for instance).

The idea behind the algorithm is to take a coordination graph, and
eliminate its nodes (or agents) one by one until only one is left. Obviously,
deciding on the optimal action in a ‘one agent coordination graph’ is trivial.
After this final agent has received its action, the elimination is reversed one
step. We now have a coordination graph with two agents, of which one
has already chosen her action; this one is being removed from the graph,
so we have another ‘one agent coordination graph’ to solve. This process
is continued until all agents have actions assigned, and this is the optimal
combined action.

In the last paragraph we stepped over the question of how to eliminate
agents. We already argued in section 3.4 that, since all agents are only
interested in optimising collective payoff, it doesn’t matter which agent has
which value rule, and that we can move value rules around agents in a
coordination graph. Furthermore we state that any agent not appearing in
any value rules (i.e. without any value rules itself and without any edges in
the coordination graph) is of no interest to the final result and can safely be
removed from the graph.

First thing to do is decide which agent to eliminate first. The order in

37

APPENDIX A. VARIABLE ELIMINATION ALGORITHM

which the agents are eliminated has no effect on the final outcome, but does
affect the speed of the algorithm. It is known that finding the optimal elim-
ination order is an NP-hard problem, so trying to calculate that order first
does not speed up things. A random elimination order will give acceptable
results, however we like to improve on those a little bit by starting with the
node with the least edges. This will be easiest to solve, and will result in
less new edges produced than eliminating a heavily connected agent.

Once we have selected the node to eliminate, we collect all value rules
from all agents that include this agent and transfer them to this agent (note
that we only have to check this agent’s direct neighbours). Now the agent
starts removing herself from the rules. The agent knows the maximum
payoff she can get given a set of actions from other agents, so she changes
the value rules to reflect that. Then she sends the modified value rules to
her neighbours, so that she does not have any rules left and does not appear
in any value rule anymore. Now, she can remove herself. This process
is repeated until we reach the final agent, after which the elimination is
reversed to get all the actions.

Note that this process can be done centralised, but alternatively each
agent can only eliminate herself, so that the process is being done distributed
(albeit not in parallel). For this to work, a lot of communication is necessary.
As described in section A.3, Guestrin’s implementation uses this distributed
method, whereas our own implementation uses the centralised version of the
algorithm.

A.2 Example

Perhaps the best way to get a feeling for variable elimination is to see an
example of the algorithm in action. Figure A.1 shows step by step how
we eliminate the agents in a coordination graph. The example does use the
context (as opposed to what we suggested in section 3.5.2), but only to show
what a minor step it is in the whole process. In this case we have numbered
the value rules, to be able to refer to them in the text.

We start at a with a coordination graph. It is given that the context is
x, so we remove all rules from the graph that are not consistent with context
x and update the graph. b shows that G4 does not have any rules anymore,
and her action does not have an effect on the combined payoff, so she is
eliminated. Next we want to eliminate G3, to which end we collect all rules
with a3 in them at G3, by moving rule 1 from G1 to G3: c. Note that by
doing this the dependence relation between G1 and G3 reverses. Now G3

eliminates herself from these rules.
When eliminating an agent from a set of value rules, the resulting rules

must describe the amount of payoff this agent can get when the other agents
play their actions. In this example, from rule 4 we can see that if G2 selects

38

A.2. EXAMPLE

〈a1∧a3∧x:4〉1

〈a1∧a2∧x:5〉2

〈a2∧x:2〉3

G1

G2

==zzzz
// G3

aaDDDD

}}zzz
z

G4

〈a3∧a2∧x:5〉4

〈a3∧a4∧x:10〉5

〈a1∧a3:4〉1

〈a1∧a2:5〉2

〈a2:2〉3

G1

G2

==zzzz
// G3

aaDDDD

G4

〈a3∧a2:5〉4

(a) (b)

〈a1∧a2:5〉2

〈a2:2〉3

G1

!!DDD
D

G2

==zzzz
// G3

G4

〈a3∧a2:5〉4

〈a1∧a3:4〉1

〈a1∧a2:5〉2

〈a2:2〉3

G1

!!DDD
D

G2

==zzzz
// G3

G4

〈a3∧a2:5〉4

〈a1∧a3:4〉1

〈a2:5〉6

〈a1∧a2:4〉7

(c) (d)

〈a1∧a2:5〉2

〈a2:2〉3

〈a2:5〉6

〈a1∧a2:4〉7

G1

}}zzz
z

G2

==zzzz
G3

G4

〈a3∧a2:5〉4

〈a1∧a3:4〉1

〈a2:2〉3

〈a2:5〉6

〈a1∧a2:4〉7

〈a1∧a2:5〉2

G1

}}zzz
z

G2 G3

G4

〈a3∧a2:5〉4

〈a1∧a3:4〉1

(e) (f)

〈a2:2〉3

〈a2:5〉6

〈a1∧a2:4〉7

〈a1∧a2:5〉2

〈a1:11〉8

〈a1:5〉9

G1

}}zzz
z

G2 G3

G4

〈a3∧a2:5〉4

〈a1∧a3:4〉1

〈a1:11〉8

〈a1:5〉9

〈a2:2〉3

〈a2:5〉6

〈a1∧a2:4〉7

〈a1∧a2:5〉2

G1

G2 G3

G4

〈a3∧a2:5〉4

〈a1∧a3:4〉1

(g) (h)

a1

〈a2:2〉3

〈a2:5〉6

〈a1∧a2:4〉7

〈a1∧a2:5〉2

G1a1

}}z
z

G2 G3

G4

〈a3∧a2:5〉4

〈a1∧a3:4〉1

a1

a2

G1

G2 a1,a2

//____ G3

G4

�����〈a3∧a2:5〉4

〈a1∧a3:4〉1

(i) (j)

Figure A.1: Example of variable elimination. Note that the parts of the
figures noted in grey are the eliminated (yet cached) parts.

39

APPENDIX A. VARIABLE ELIMINATION ALGORITHM

action a2, G3 can receive a payoff of 5 by doing a3, hence rule 6 in figure
d. If G1 chooses action a1, G3 could receive a payoff of 4 by selecting a3

(see rule 1), however will only do that if G2 has chosen a2, since otherwise
action a3 would be selected for a payoff of 5, so we get rule 7.Now G3 sends
the resulting rules to G2 and has eliminated herself from all rules, so from
the coordination graph: e. Note that G3 keeps the original rules in cache
for later use.

Next, G2 eliminates herself in a similar manner, by receiving the rules
(f), creating the new rules 8 and 9 from them (g) and sending them to G1

in figure h.
Now G1 has two rules, which each depend only on her own action. Ob-

viously she selects action a1 for a total payoff of 11. She sends this deci-
sion back to G2, who reactivates her cached rules 3, 6, 7 and 2 (i), and
looks though them to decide that choosing action a2 will result in payoff 11,
whereas selecting a2 will only result in a payoff of 5, hence she chooses a2,
and sends her choice, together with G1’s to G3. G3 looks though her cached
rules, and decides that rule 4 will not work anymore (since that would have
required the action a2), so she has the choice of selecting a3 for a payoff of
4, or a3 for a payoff of 0.

As we discussed before, the action of G4 does not have any influence on
the total result. Obviously a clean algorithm selects an action for G4. Ran-
domly selecting would unnecessarily make the algorithm non-deterministic,
so usually the actions are ordered in some way, and in case of a tie always
the one with lowest number in the ordering is chosen, say a4.

So the optimal combined action is a1, a2, a3, a4. If we fill in these values
in the original coordination graph of figure a, we would see that value rules
1, 2 and 3 are valid, giving a total payoff of 11, not coincidentally the same
as the best choice for the last agent left in h, rule 8.

A.3 Code

Because we use the variable elimination algorithm as a basis on which to
test the performance of the other algorithms, it is important to check exactly
which algorithm we used. In addition it would be interesting to check the full
implementation, however it would be too much to include the full listing of
the program. It will suffice to say that the implementation of the algorithm
was done in the same language (Java) as the implementation of coordinate
ascent.

As we noted before, the original algorithm from [Gue03] uses a dis-
tributed (however not parallelisable) way to compute the optimal action.
The pseudo-code for this algorithm can be seen in algorithm A.1, which
makes use of the functions in algorithm A.2 and A.3.

Our implementation uses a slightly modified version of the algorithm,

40

A.3. CODE

Algorithm A.1 Guestrin’s variable elimination
define: scope(ρ) is the set of all agents that define an action in ρ
define: ai the action of agent i
define: a∗ the optimal combined action
define: Pi all rules currently held by agent i
define: ρ(a) is the payoff rule ρ gives, in case of action a.

each agent runs:
i← this agent
ε− ← the agent in the elimination order that comes before this one
ε+ ← the agent in the elimination order that comes after this one
if ε− 6= ∅ then

wait for a signal from ε−

end if
//collect all rules containing i from neighbours
ρ← ∅
for j ∈ neighbours do

ρ
∪← {r ∈ Pj |i ∈scope(r)}

end for
ρ′ ← rulemaxout(i, ρ)
for r ∈ ρ′ do

j ← one element from(scope(r))
send r to j
add edge from k to j for each k ∈ scope(r), k 6= j

end for
delete i and all edges to or from i from coordination graph
if ε+ 6= ∅ then

send signal to ε+

wait for signal from ε+

receive a∗ from ε+

else
a∗ ← ∅

end if
a∗i ← arg maxai∈Ai(

∑
ρ(a∗ ∪ ai))

a∗
∪← a∗i

if ε− 6= ∅ then
send signal to ε−

send a∗ to ε−

end if

41

APPENDIX A. VARIABLE ELIMINATION ALGORITHM

Algorithm A.2 The ruleoutmax function
define: ai the action of agent i
define: Ai = Dom(ai)
define: ρ = 〈c : v〉 ⇒ c =actions(ρ) and v =payoff(ρ)

function rulemaxout(i, ρ)
ρ′ ← ∅
//add completing rules
ρ

∪← {〈ai = k : 0〉|k ∈ Ai}
//Summing consistent rules
while there are two consistent rules ρp and ρq do

if actions(ρp) = actions(ρq) then
replace ρp and ρq by 〈actions(ρp) : payoff(ρp) + payoff(ρq)〉

else
replace ρp and ρq by split(ρp 6 actions(ρq))∪ split(ρq 6 actions(ρp))

end if
end while
//Creating the rules without ai

repeat
if there are rules 〈c ∧ ai = m : vk〉,∀m ∈ Ai then

remove these rules from ρ and add rule 〈c : maxkvk〉 to ρ′
else

select two rules ρp = 〈c1 ∧ ai = m : v1〉 and ρq = 〈c2 ∧ ai = n : v2〉
so that c1 is consistent with c2, but c1 6= c2 and replace them by
split(ρp 6 c2) ∪ split(ρq 6 c1)

end if
until ρ = ∅
return ρ′

Algorithm A.3 The split function
define: scope(ρ) is the set of all agents that define an action in ρ
define: ρ = 〈c : v〉 ⇒ c =actions(ρ) and v =payoff(ρ)

function split(ρ 6 b)
c← action(ρ)
if c is not constistent with b then
{ρ}

else if scope(b) ⊆ scope(c) then
{ρ}

else
{split(r 6 b|r ∈split(ρ 6 Y)}, for some Y ∈ (scope(b) - scope(c))

end if

42

A.3. CODE

Algorithm A.4 Our variable elimination
define: scope(ρ) is the set of all agents that define an action in ρ
define: ai the action of agent i
define: ρ(a) is the payoff rule ρ gives, in case of action a.

ε← elimination order, so that ε1 is first agent to be eliminated
P ← all valuerules
j = 1
while j < |ε| do {loop over all but one agents in the elimination order}

i← εj++

ρi ← {r ∈ P |i ∈ scope(r)}
P ← P − ρi

ρi′ ← rulemaxout(i, ρi)
P

∪← ρi′
end while
a∗ ← ∅
while j > 0 do {loop over all agents reversed order}

i← εj−−
a∗i ← arg maxai∈Ai(

∑
ρi(a∗ ∪ ai))

a∗
∪← a∗i

end while

which is not distributed. Which approach is better fully depends on the
possibilities and constraints of the environment in which the algorithm is ex-
ecuted. A situation where the agents will have to perform a lot of other tasks
as well, or have partially hidden payoff functions, will be better served by the
former method, whereas the latter method works better in a communication-
poor environment. Our version of the algorithm is in algorithm A.4. Note
that it uses the same ‘split’ and ‘rulemaxout’ functions as Guestrin’s version.

43

APPENDIX A. VARIABLE ELIMINATION ALGORITHM

44

Appendix B

Random problem generation

When comparing algorithms it is important to clearly note the kind of prob-
lems one tests the algorithm on. Some algorithms might perform really well
on one sort of problem, while other might be better suited to tackle another
sort of problems. Multi-agent systems is such a large field that there is no
standard problem one can test against. For the tests run in this thesis, we
used problems that were generated by our random problem generator. Algo-
rithm B.1 contains the pseudo code for used problem generator. This pseudo
code is kept easy-readable, to use it to generate highly connected problems
some optimisations are suggested (and were used). These fall outside the
scope of this document though.

The input to the random problem generator are values for the number
of agents, the number of different actions per agent, maximum number of
parents (incoming edges) an agent has and the average number of value rules
that are being generated per agent. The output of the algorithm is a list
of value rules for each agent. These lists were then fed into the decision
making algorithms.

We did believe that these aspects of the problem define how complicated
a problem is. Therefore we have tried to do scaling tests on each of these
aspects. We have not tried whether scaling on other aspects of the problem
(e.g. length of each value rule) has an effect on performance.

45

APPENDIX B. RANDOM PROBLEM GENERATION

Algorithm B.1 The random problem generator
define: ai the action of agent i
define: random(a, b) selects a random integerin the interval [a, b]
define: randomvaluelength(n) selects a random integer; each number k
has a chance of (

n
k

)
2n

of being returned. This allows for a fair random selection between all
possible value rules
define: ⇐ and ⇒ denote in- and output respectively

nri ⇐ the number of agents
nra ⇐ the number of actions per agent
nrs ⇐ maximum number of parents per agent
nrρ ⇐ number of value rules per agent
MINPAY OFF ← 1
MAXPAY OFF ← 10
I ← set of nri agents
Ai ← set of nra actions for each i ∈ I
for i ∈ I do

S ← set of nrs agents from I − {i}
ρ← ∅
for j = 1 to nrρ do

valuerulelength←randomvaluelength(nrs)
v ←random(MINPAY OFF,MAXPAY OFF)
S′ ← random set of valuerulelength agents from S
c← {ai} ∈ Ai ∪

⋃
s∈S′({as} ∈ As)

ρ
∪← 〈c : v〉

end for
ρ⇒ valuerules for agent i

end for

46

Bibliography

[Gue03] C. E. Guestrin. Planning under Uncertainty in Complex Struc-
tured Environments. PhD thesis, Stanford University, Com-
puter Science Department, Stanford University, August 2003.
http://robotics.stanford.edu/˜guestrin/publications.html#thesis.

[GVK02] C. E. Guestrin, S. Venkataraman, and D. Koller. Context-specific
multiagent coordination and planning with factored MDPs. In
Proc. 8th Nation. Conf. on Artificial Intelligence, Edmonton,
Canada, July 2002.

[KSV03] J. R. Kok, M. T. J. Spaan, and N. Vlassis. Multi-robot decision
making using coordination graphs. In Proc. 11th Int. Conf. on
Advanced Robotics, Coimbra, Portugal, June 2003.

[SB98] R. S. Sutton and A. G. Barto. Reinforcement Learning: An In-
troduction. MIT Press, Cambridge, MA, 1998.

[VEK04] N. Vlassis, R. K. Elhorst, and J. R. Kok. Anytime algorithms for
multiagent decision making using coordination graphs. In Proc.
Int. Conf. on Systems, Man and Cybernetics, The Hague, The
Netherlands, October 2004. (To appear).

[Vla03] N. Vlassis. A concise introduction to multiagent systems and
distributed AI. Informatics Institute, University of Amsterdam,
September 2003. http://www.science.uva.nl/˜vlassis/cimasdai.

47

	Introduction
	South-East England, Friday afternoon
	Multi-agent systems
	A technical look at multi-agent systems
	Direction of the thesis

	Practical application: RoboCup
	Introduction
	RoboCup as standard AI problem
	A closer look at the simulation league
	Division into leagues
	The simulation league
	Possibilities and constraints

	RoboCup at the UvA: Trilearn

	Coordination games
	The need to coordinate
	Which decision is good: payoff
	Methods of coordination
	Representing the problem
	Decision making
	The optimal combined action
	The role of the context
	Try all possibilities
	Variable Elimination

	Anytime algorithms
	Introduction to anytime algorithms
	Coordinate ascent
	Deterministic vs. stochastic algorithms

	Experiments and Results
	The tests
	Performance of variable elimination
	Comparing coordinate ascent and variable elimination

	Conclusions and future work
	Conclusions
	Applicability of the results in RoboCup
	Future work

	Variable elimination algorithm
	Explanation of the algorithm
	Example
	Code

	Random problem generation

