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Abstract

At CWI (Centrum voor Wiskunde en Informatica) a desk-top Virtual Reality appara-
tus, the Personal Space Station, was built which enables its users to interact with a
computer generated 3D scene by manipulating real-world objects. A mirror reflects
the generated scene in such a way that virtual objects seem to coincide with their real-
world counterparts, in personal space, the natural space in which humans for instance
connect two Lego bricks together or place their cups of coffee. The Personal Space
Station (PSS) measures where the real objects are and what their pose is in order to
be able to generate a matching virtual scene. Unfortunately the measurements are not
free of noise: Small, fast oscillations in rotational motion estimates disturb the virtual
reality experience.

To counteract the noise, rotation data can be processed by computationally cheap
linear filters suitable for on-line use, although rotations form a cyclic non-linear space.
Quaternions are a compact and convenient representation of rotations. Their linear tan-
gent spaces are easily entered and left through the quaternion logarithm and exponent,
which is exploited by a method found in the literature ([Lee2002]). It linearizes the fil-
tering task by application of a finite impulse response (FIR) filter in rotational tangent
space.

In this report an automated procedure is described to tune a FIR filter to the appli-
cation using captured motion data from the PSS. The resulting filter is extended with
prediction based on velocity extrapolation and quantitative methods are presented to
evaluate filter performance during the actual use of the PSS. A comparison is made be-
tween performances of the FIR filter and a predictive Double Exponential Smoothing
(DES) and Kalman filter, both acting linearly on quaternion components.

The FIR filter, apart from being the computationally cheapest method, performs
best when the rotational signal is heavily oversampled. DES and Kalman perform
comparably and better than FIR at lower lags, which is useful in applications with less
oversampling. The DES algorithm is extremely memory friendly and has only two free
parameters, whereas the Kalman filter requires much more to be tuned. The standard
Kalman filter used is relatively computation power-friendly while performing at the
same level as DES, although in other work the (extended) Kalman filter is reported to be
extremely expensive compared with DES of the same performance. The experiments
also show that errors introduced by disregarding the non-linear nature of rotations turn
out to be of no significance for the PSS and similar applications if quaternions are
employed.
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Chapter 1

Introduction

This report describes a solution for a problem encountered during the implementation
of a Virtual Reality apparatus that presents the user a 3D depth cued virtual scene.
One or more objects in this scene mimic the motion of their corresponding “input
device”, an object in the “real” world (typically a cube or wand marked with spots).
The user can directly manipulate those devices by holding them in his or her hands.
For the experience in Virtual Reality to be comfortable and convincing the resulting
motion of the manipulated objects in the virtual scene should be like a “shadow” of the
corresponding real world input devices, preferably a shadow that is as tight as possible.

Due to measurement and reconstruction uncertainties the part of the system that
tracks the motion of the input devices suffers from errors that to the user of the Virtual
Reality environment have the appearance of a “tremor”, a relatively fast oscillation that
is added as rotational noise to motion. We would like to reduce this tremor by filter-
ing captured rotational motion data, however the non-linear nature of rotation space
suggests that simply filtering rotational data by traditional means of convolution with
a filter kernel or other linear methods may not yield the expected results.

In section 1.1 the “Personal Space Station” virtual reality apparatus is introduced,
the application in which the filtering algorithm is to be implemented. Section 1.2
sketches the context of the motion tracking errors in a problem statement. In sec-
tion 1.3 the PSS is described in a more functional manner to show from where in the
apparatus the identified problem is going to be approached and in section 1.4 related
work in the field of rotational data filtering is discussed. An overview of the rest of the
report is provided by section 1.5.

1.1 The Personal Space Station

The “Personal Space Station” (PSS) [Mulder2002] is developed as a low-costnear-
field virtual reality apparatus with graspable reach-in user interfacebeing developed
by the National Research Institute for Mathematics and Computer Science in the Nether-
lands (CWI). The PSS consists of a frame on top of which a regular display device
(such as a CRT monitor) is placed with the screen side down. A mirror is mounted
underneath it in order to reflect displayed images into the eyes of the user who is seated
in the front of the PSS. At the rear side of the frame two infra-red sensitive cameras
are placed several decimeters apart aiming at the space below the mirror. The user can
reach into this interaction space to manipulate input devices (objects such as a optically
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CHAPTER 1. INTRODUCTION 5

Figure 1.1:The image of the monitor is reflected by a tilted mirror in order to let the
virtual scene coincide with the (real world) scene in which the user of the Personal
Space Station manipulates input devices.

marked cube or pen). An ultra-sound emitter is oriented toward the user, who wears
virtual reality look-through shutter glasses. To determine the position and orientation
of the user’s head, the glasses have sound sensors attached that pick up the sound signal
from the emitter.

Virtual reality applications fake sensoric stimuli and results of actuator actions.
The user of a VR application experiences the presence of objects in a time, at a place,
scale, or position along an other dimension (e.g. color) that would be different without
intervention of the application. In that perspective a telescope could also be considered
a kind of virtual reality device presenting an alteredvisual space, although it only fakes
the scale or distance of objects and actuation is limited to panning, tilting (spherical
motion) and zooming. A view like this ultimately recognizes the actual “virtualness" of
the reality presented by our busy eyes. However (not to over-complicate things), what
most people refer to when talking about virtual reality are applications that present a
visualvirtual scenein which objects are presented in at least three spatial dimensions,
evoking an ever increasing experience of virtual presence as technology advances.

A near-fieldvirtual reality console presents a virtual scene to its user (theoperator)
in which the interaction with objects within physical reach of the operator is simulated.
Operators can engage in the virtual scene by holding one or more input devices in their
hands and moving them around ininteraction space. Because the (spatial) configura-
tion of the input devices in interaction space is to be tracked by the console, another
space is of importance:tracking space, made up from all object configurations that can
actually be tracked by the sensing facilities of the console.

The design of the PSS is aimed at letting the spaces coincide withPersonal Space,
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the natural space in which humans tend to handle and examine objects, operate de-
vices and make gestures. This space is located in front of the operator with the center
approximately at half an arm’s length. For human beings this is a comfortable space
to interact in, because they can assume a stable posture during actions. When sitting
behind a desk, elbows or upper arms can be supported by the desk and the head can
remain relaxed: To focus on the center of actions, the head and eyes can adopt approx-
imately the same orientations as one automatically adopts casually walking down the
streets or staring at one’s desk during the four-o-clock collapse...

When the user reaches into the PSS, under the mirror, to manipulate the input de-
vices in personal space, his/her view onto the virtual scene is not blocked by the devices
itself or the user’s hands and arms:Visual spaceis effectively altered to reflect the vir-
tual scene, because the user experiences the effect of holding a rigid object in one’s
hand at the same position and in the same orientation as the virtual objects appear to
be by looking into the mirror.

To enhance the realism of the virtual visual space the user wears shutter glasses
which present the image shown in the mirror to the left and right eye of the user in an
alternating manner. Whenever the 3D renderer of the PSS receives a signal from the
glasses that the user’s view is switched it will generate the virtual scene in the correct
projection for the current eye. In this way the eyes are given depth cues improving 3D
realism.

The glasses also measure the time the ultra-sound emitted from the back of the PSS
takes to travel to three sound sensors attached to the glasses in a triangular constella-
tion. With this information the PSS can infer the position and orientation of the user’s
head relative to the frame with which the personal space is aligned. Adaptation of
the projection parameters by the renderer ensures that the experienced configuration of
virtual visual space relative to real virtual space is invariant under head translation and
rotation. In other words, the user can look around objects: the objects seem to remain
in their positions and orientations relative to the real world.

1.2 Problem statement

To determine the configuration of the input devices in interaction space and the location
and aim of the user’s head, properties of the world are measured that bear consequences
of changes in the parameters that are to be tracked (position, orientation and identity
of input devices and the way the user is looking in the mirror). Cameras measure the
amount and distribution of light projected on a rectangular area of a plane at a specific
position, with a specific orientation. The PSS uses two cameras to exploit the combined
geometric constraints on the projections and derives in this way the distances to points
on a tracked object relative to a perception frame (for instance coinciding with the
focal point of one of the cameras). With the use of depth information from three or
more object points the orientation of the object is inferred.

Ultra-sonic distance sensors measure the distance to an emitter somewhat more di-
rectly than a constellation of cameras can, but the described principle for determining
the orientation of an object also holds for this sensing method. In 3D space the config-
uration of a plane is completely determined by specifying three points in a triangular
non-collinear (all points lie in a plane, but not on one line) arrangement, which is the
reason why three points are enough. Theoretically speaking additional points would
be spurious, if coplanar with the other three, and otherwise produce a volume instead
of a plane. In practical applications though, measured point positions will be disturbed
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Figure 1.2:Using stereoscopy to determine the pose of an observed object.

Figure 1.3:Using ultra-sound to determine the pose of an observed object. The sound
sensors are able to distinguish sounds from different emitters, because each emitter
transmits sound with a unique frequency or other modulation.

by noise which introduces uncertainty about the exact configuration of a plane. The
redundancy of extra measurements can help to minimize this.

Monitored properties of the “outside” world will have to be inferred from a compli-
cated chain (or directed graph) of measurements, uncertainties on those measurements,
modeled filters, uncertainty induced by the models used to build the filters and calcu-
lation errors because of the discontinuous nature of the computation device. Uncer-
tainties are recognized in errors and incompleteness and arise in the data during their
progression through transformations, almost always increasing although decreases are
possible by combining different uncertainties of multiple sources or extra measure-
ments.

Because of this chain of derivations it is not surprising that a straight forward ap-
plication of all theories involved is either very complicated to set up. To determine the
nature of the operational uncertainty of an application one can try to calculate the com-
plete graph through or analyse an intersection of the data streams (watching the data at
a point in the graph) that satisfyingly represents the operation of the application.

The most important “intersection” for the PSS itself are the measured spatial con-
figurations of the input devices and the user’s head. The most important intersection for
the complete “application graph” though, which includes the user viewing the virtual
scene and manipulating input parameters of the PSS, is the extent to which the user
experiences the virtual scene to be tightly fixed to and embedded into the real environ-
ment. This observation justifies a rather crude and qualitative evaluation of the user’s
experience to start with.

Using the first version of the PSS application users would notice that virtual objects
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renderer.
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Figure 1.5: Overview of the algorithm which estimates the 3D locations and poses
of observed input devices from infra-red luminance data acquired by a stereoscopic
arrangement of cameras.

float at approximately the same position the input device is held, but that the orienta-
tions of tracked virtual objects seem to oscillate around the orientation which the user
expects the object to have. In addition the PSS sometimes loses track of an input de-
vice, because it is held in a part of tracking space that yields configuration uncertainties
that are too big to be decisive or its appearance to the cameras is too ambiguous to cope
with. The discussed solution only addresses the erroneous oscillation of tracked object
orientation, based on an analysis of the orientation signal coming from the PSS module
that determines the spatial configurations of the input device objects.

1.3 Modules of the Personal Space Station

The PSS roughly consists of an input device and head tracker, and a virtual scene ren-
derer. Figure 1.4 shows these main modules with their data flow relations and indicates
where the orientation filtering module described in this report fits in. Figure 1.5 shows
the sub-modules of the input device tracker which feeds the filter with motion data.
Two infra-red cameras are connected to a PC and provide a stereographic infra-red im-
age oftracking space. Retro-reflective markers on the input devices facilitate image
segmentation which separates the scene background from the pixels whose luminance
is increased by the reflection of infra-red light in the markers. From these image pairs
(one for the left, one for the right camera) the centers of the markers are inferred in
2D image coordinates. A search on the 2D information determines which 3D objects
correspond to the detected coordinates ([Liere2002]). Stereoscopy associates the 2D
origins and orientations of the lines and/or faces found in the left and right image with
3D frames in tracking space. These frames are combined to form the 3D reference
frames of the objects corresponding to the input devices moved around by the user.
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1.4 Related Work

Orientation filtering techniques are inspired by problems in several areas such as com-
puter graphics, robotics and human-computer interfaces, each of which has its own
specific requirements and different methods.

A substantial part of the literature on the filtering of rotational data deals with in-
terpolating orientations in the context of animation. In this context synthesized or cap-
tured motion key frames have to be interpolated to generate smooth trajectories that are
natural to the eye. If the animator defines key frames by hand, interpolation distance
is typically greater than when frames are acquired using a motion tracking system.
Techniques like spline-interpolation or Bezier-curves (described in [Shoemake1985])
can help to produce smooth rotational motion paths from sparse data, but require fine-
tuning by the human operator (adjusting control points, deciding how much informa-
tion the fitting is allowed to introduce to the curves). Spline interpolation minimizes
curve strain energy over the entire data set, which is not very useful for applications
using only a part of the data at one time, but useful for extrapolating motion. Bezier
curves have the advantage that they do not need the entire data set at once (only a few
data points are needed), but they do not take continuity constraints into account at the
end-points of the data used to construct a single Bezier curve.

For methods using this techniques quaternions are suited well, because they are
a compact yet meaningful representation of orientations which eliminates the major
problem experienced with Euler angles or equivalents (gimbal lock). However, some
of the methods apply the curve fitting technique of choice directly on the 4D quater-
nion coefficients. In this way the interpolation curves can diverge from the surface
on the hypersphere which represents orientations. To keep them on the sphere the
resulting vectors are simplyrenormalized. This compresses the curve near the two
end-points and inflates the curve in between, which means that, unintentionally, the
velocity of the motion changes faster near the key frames than it does mid-way. Note
that there always exist three orientations which are in fact correct interpolations using
the renormalization technique (see figure 1.6): the trivial interpolations coinciding with
the endpoint orientationsq(0) andq(1), plus the interpolation exactly mid-wayq(0.5).
Renormalization of interpolated data preserves rotation axes, but the interpolation does
not evenly distribute the rotations as intended.

To avoid the problems of renormalization efforts are made to use spherical linear
interpolation (slerp,see [Shoemake1985]) with the aforementioned methods:

qt = q0et·log(q−1
0 q1) = q0

(
q−1

0 q1
)t

t = 0→ qt = q0 ·1
...

t = 1→ qt = 1·q1

(1.1)

Slerp does take the curved nature of orientation space into account and can be used with
both unit quaternion and matrix representation of orientations. It exploits the properties
of the exponential map, which is defined for both representations. Taking the inverse
of the exponent, the logarithm, of a rotation from one orientation to another (arela-
tive orientation) yields a 3-dimensional vector from the first to the second orientation.
Scaling the vector with a factor between 0 and 1 interpolates between the orientations
along the shortest geodesic path (for complex numbers the shortest path on the unit
circle, and for quaternions the shortest path on the unit quaternion hypersphere). The
shortest geodesic is a good measure, because its length corresponds in a one-to-one
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q(0.5)

q(0)

q(1)

Figure 1.6: Renormalization of non-unit quaternions distorts the distances between
successive interpolated orientations. This picture shows that renormalization of linear,
non-spherical interpolation (indicated with blue lines) causes the motion to accelerate
in the first half of the travel from q(0) to q(1) and to slow down again in the second
half. Spherical linear interpolation (slerp) interpolates along the arc, the curved path
between rotations (the red and green lines in the figure).

manner with the angle over which the first orientation has to be rotated to coincide
with the second (in the plane through the origin shared by the two orientations).

A recent paper from Lee and Shin [Lee2002] describes a filtering method, inspired
by spherical linear interpolation and the signal processing concept of finite impulse
response linear filters. The method operates in orientation tangent space which is ap-
proximately linear and ensures that the output signal stays in the same rotation-space
on the unit hypersphere.

In [Laviola2003] a predictive double exponential smoothing (PDES) filter was
compared to a predictive Extended Kalman filter and found to yield approximately the
same accuracy using much less computation power. The PDES filter operates in the
euclidean space of quaternion components and therefore renormalization is required
to keep the data on the same rotation-hypersphere. The performance of the double
exponential smoothing depends on a smoothing parameter to be set manually.

In [Azuma2002] a Kalman filter is applied on the quaternion components and the
angular rate of change of a tracked orientation. Renormalisation is used to keep the
quaternions on the unit hyper-sphere, which suffers from the earlier mentioned prob-
lem of distorting the rate of change between to data points. Kalman filtering has some
strong advantages over the other methods described, because it is a filtering technique
that combines model based smoothing (expectations are combined with actual mea-
surements) with (linear) optimal minimization of errors in the expectations the model
provides through on-line adaptation of stochastic confidence in model and measure-
ments.

Because it follows an iterative and automated procedure the Kalman filter is espe-
cially suited for tasks that have to be performed without user intervention as opposed to
the (animator guided) techniques generally used in motion picture animation which are
aimed at synthesizing motion not necessarily tied to a specific motion model and tech-
niques which require tuning parameters not explicitly related to a theoretical model.
The difficulty in employing a Kalman filter lies in finding a system model that is ac-
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curately enough (what can be said about the evolution of things when there is no extra
information from sensors) and that fits into the Kalman equations. Besides that, the
propagation of errors within the context of the system and measurement model has
to be incorporated in the filter to function properly. While the Kalman filter is fairly
forgiving concerning other a priori information not exactly known (e.g. the actual a
priori noise distribution in the system and measurement models) the ratio of system
and measurement model noise distribution magnitudes and the structure of the models
are crucial to the use of the filter.

1.5 Road map

In chapter 2 of this report we will look at the properties and representation of rotational
data, because it can occur to be an obstacle for convenient filtering practice and the
reader may not be familiar with the representation of rotations1 used further on. A
method suggested by Lee and Shin (in [Lee2002]) which linearly filters rotations in
their own space using the correspondence between angular and linear displacements is
explored in chapter 3. In chapter 4 this method is used in the design of an actual filter
and refinements are discussed that could counteract drawbacks of the filter. Chapter
5 presents experimental data to evaluate filter parameters and compare it with other
methods. Chapter 6 summarizes the conclusions drawn throughout the report and lists
recommendations for the use of presented orientation filters in the Personal Space Sta-
tion.

1Quaternions were not addressed in Artificial Intelligence/Autonomous Systems geometry classes.



Chapter 2

Rotations and orientations

2.1 Rotational motion tracking

Near-field virtual and augmented reality applications such as the PSS measure the mov-
ing around and turning ofinput devices(tracked objects) whose location and pose influ-
ence the way virtual objects are presented to the user. To retrieve the location and pose
of an object, several sensing techniques can be employed. Some applications combine
positional information of points on tracked objects to estimate the motion parameters
(e.g. using magnetic markers), others derive them instead (or additionally) from sen-
sors in or on the object itself, using for instance accelerometers (e.g. in [Azuma2002])
and gyroscopes, earth magnetic field sensors or bending energy sensors. The Personal
Space Station uses depth information from stereographic camera images to determine
the location of multiple points per tracked object. Because the objects are required to
be rigid bodies, which means they are solid and cannot be deformed (squeezed etc.),
relative distances of points on the object are fixed. Changes in the 3D constellation
of the points are thus completely determined by changes in location and pose of the
object.

The result of any rigid body motion can be described as a combination of atransla-
tion and arotation of the body. Translational and rotational parts of the motion signal
are often processed separately, because the filtering techniques applied to translational
data are not directly applicable to rotational signals. Rotations differ from translations
because of the “looping” nature of rotations (e.g. the result of a 5 degree turn is nor-
mally indiscernible from the result of a 360+5 degree turn) and because combining
rotations is non-linear (you cannot simply add them). Moreover, selecting a suitable
data representation for rotations is not a trivial matter.

The first issue can be dealt with by ensuring that the rotational signal is conveniently
constrained: Actual rotations can involve multiple revolutions of tracked objects to
achieve the same observed orientation as could be reached in less than one revolution. It
is common to forget about the multiplicity of the revolutions when tracking objects, not
for the least because it complicates tracking algorithms. However, for the estimation
of rotational velocity for instance, one should be careful not to neglect the possibility
of multiple revolutions (because the number of revolutions an object performs within
the sample interval should influence the measured velocity). Fortunately, when we are
looking at orientation differences, if the rotational signal to be tracked does in practice
have an upper bound on velocity of change and the interval between measurements is

12
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small enough to accurately capture the maximum change within one revolution, taking
multiple revolutions into account is not necessary. Because human operators of the
PSS will use their hands to manipulate the input devices, it will be hard (and probably
an indication of system malfunctioning) to encounter a complete revolution within the
typical sampling interval of 1/25 sec.

This report is focused on the last two rotation issues: non-linearity and representa-
tion. We show that a (slight) change of perspective on the signal and the filter enables
us to apply the same linear filtering technique used for translations to rotations. A data
representation is chosen which also facilitates working with rotations.

The termsorientationandrotation will be used to distinguish static (more or less
absolute) situations from dynamic (relative) events comparable with the distinction
betweenpositionandtranslation. The orientation of an object can be characterized by
the rotation that transforms points defined in the local object frame into points relative
to a reference frame (often the “world”-frame) after the origins are made to coincide
by translation. Thus a rotation is regarded as anoperatorand an orientation as avalue:
a rotation maps orientations to other orientations. The following sections will therefore
generally speak ofrotations, in 3-dimensional space, bearing in mind that orientations
are the result of rotations.

When discussing motion signals (varying over time) it is often convenient to speak
of absoluteandrelativeorientations to discern between orientations described as (sin-
gle) rotations relative to a fixed reference pose (the world-frame) and orientations de-
scribed relative to the previous measured orientation.

2.2 The nature of rotations

A rotation turns an object about arotation axisby a certainangle without deform-
ing (sizing, shearing, mirroring or distorting the object’s shape by other means) or
displacing it: Rotation maps are invertible orientation-, angle- and norm-preserving
orthogonal transformations. Elements of the groupSO(3) (the set of rotation ma-
trices) share these properties with rotational operators (rotation maps) having 3 de-
grees of freedom and acting on points in 3-dimensional Euclidean space.SO(n) is
the orientation-preserving subgroup of the special orthogonal group, a subgroup of the
norm-preserving general orthogonal groupGO(3), which in turn is a subgroup of gen-
eral linear groupGL(n) characterized by the set of invertible square matrices. The
general linear group is a member of theaffinegroup to which translations also belong.
Transformations within this group ensure that points that lie on one line, still lie on a
straight line after the transform. Rigid body motion, orEuclidean motion, is an affine
transformation which consists of a rotational and translational part.

Special orthogonal groups contain elements that are reversible under multiplication
and preserve orientations, angles and norms when used as an operator and can thus be
used to describen-dimensional rotations. That rotation maps are reversible means
that whichever rotation is performed, it will always be possible to undo (reverse) it by
applying theinverseof the rotation. Angles and norms are preserved, which means
that all angles in an object will be the same after a rotation (e.g. the “squareness” of
a cube does not change) and that the object retains its size. An example of an angle-
preserving mapping can be found in the painting “Prentententoonstelling” (see figure
2.1) by M.C. Escher. It shows what could happen if the requirement for rotation maps to
be norm-preserving is dropped. That these relaxed constraints include mappings which
only vaguely resemble rotations locally can be seen in figure 2.3, stressing that a truly
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Figure 2.1: The self-referring picture “Prentententoonstelling” (left) made by M.C.
Escher in 1956 seems to have undergone an angle-, but not norm-preserving mapping.
Researchers from Universiteit Leiden [DeSmit2003] discovered that by application of
a rotated and scaled exponential mapping on a rectified version of the image as if it
were the plane of complex numbers, a picture (right, detail) can be produced that very
closely resembles Escher’s distortion. Moreover, they managed to “mathemagically”
fill in the center spot which Escher probably intentionally left blank.

useful representation of rotations must includeall constraining properties essential to
rotation maps.

Rotations are considered to concatenate in amultiplicativemanner,R1∗R2 is the
rotation ofR1 applied to rotationR2, which is the primary reason to stay away from
applying methods for processing linear (e.g. translational) data to a rotational signal.
When rotations are seen as the Lie groupSO(3) however, some “hidden” linearity in
them can be identified using the exponential map, which mapsLie algebrasto Lie
groups. A Lie algebra can be thought of as thetangent spaceto the identity of its
corresponding Lie group. Shifting from a Lie group to a Lie algebra means a reduction
of multiplicativeness towardadditiveness, because of the exponential relation between
them. To help intuition with a lower dimensional example we can look at mapping
elements from the tangent spaceiθ (whereθ ∈ R) onto the unit circleS1 (figure 2.2
illustrates the meaning of theSn notation) in the plane of the complex numbersC by
the exponential functionex. Starting from identity(1,0) the mapped values neatly
follow the curved perimeter of the circle. Adding a value to the variableθ in tangent
space, means moving on the perimeter for a distance equal to the value, measured along
the arc (see equation (2.1) and figure 2.4).

eiθeiϕ = ei(θ+ϕ) (2.1)

That the circle has something to do with the exponent can also be seen in equations
(2.2), the MacLaurin-series (or Taylor-expansions about 0) of the exponent, sine and
cosine functions. The summed absolute values of the sine and cosine coefficients form
the expansion of the exponent function.
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D2

D1
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D3

D4
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0−1 1

Figure 2.2:From left to the right each arrow adds a dimension perpendicular to the
dimensions of the previous sub-figure. The figures show unit spheres of increasing
dimensionality: A unit sphere consists of all points at distance 1 to the origin and is
mathematically denoted asSd, where d represents the number of dimensionson the
surface of the sphere embedded in a d+ 1 dimensional space. The picture showsS0,
S1, S2 and S3. Because it is not so easy to depict a 4 dimensional (hyper)sphere it
is represented here as a film strip from -1 to 1 in the 4th dimension, to illustrate the
same principle as building a 3D sphere from circular slices. Note that the distance-1-
constraint is still respected. If the fourth dimension of a 4D sphere would be time and
we would encounter it in our universe, we would see a small sphere (seemingly 3D, but
it is only a 3D slice of the object) suddenly emerging out of the blue, growing bigger
and bigger to eventually collapse again and disappear in the puff of logic.

) =g(

) =R(

) =f(

Figure 2.3:Mappings f and g that do not preserve norms, and preserve angles locally,
graphically compared to the rotation map R.

ex =
∞

∑
n=0

xn

n!
= 1+x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! + x7

7! + . . .

sin(x) =
∞

∑
n=0

(−1)n x2n+1

(2n+1)!
= x− x3

3! + x5

5! −
x7

7! + . . .

cos(x) =
∞

∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2! + x4

4! −
x6

6! + . . .

(2.2)

In a similar way Lie Algebras toSO(3) resembleR3although not as precise as is
the case forS1: for SO(3) the non-linearity does not entirely disappear when shifting
to Lie algebra which is expressed by exp(u)exp(v) = exp(u+v+w) wherew = 0 for
S1 and w 6= 0 for SO(3). The first (and largest) term ofw is half the vector cross
product ofu andv. This means that for increasing magnitudes ofu andv the error in
assuming tangent space linearity can be expected to increase in proportion (because
(au)× (bv) = ab(u×v), with scalarsa andb).1

1For a nice web resource on Lie groups and other mathematics, see [MathWorld- Lie Group].
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(pi/4) + (−pi/8) = (pi/8)

log exp

=x

Figure 2.4:Illustrating the equation eiθeiϕ = ei(θ+ϕ).

2.3 The representation of rotations

3D-Rotations can be represented in several ways. Probably the most popular represen-
tation, often encountered in the fields of computer aided animation and aviation, are
Euler angles[MathWorld- Euler Angles]: Any 3D-rotation can be described as con-
secutive (concatenated) rotations about three predefined (orthogonal) axes, relative to
the object’s orientation. This is a compact representation because 3 values describe a
3 degrees of freedom rotation, no variable is “wasted”. One of the problems of Euler
angles is, however, that there are many different conventions about the axes and the
order in which the rotations about those axes have to be performed, which introduces
a lot of opportunities for errors to sneak into calculations. Moreover, Euler angles suf-
fer from a problem calledgimbal lock: a rotation about one axis might align it with
one of the other axes, which reduces the degrees of rotational freedom- information is
lost (see figure 2.5). This is painfully illustrated by the navigational problems of space
crafts using gyroscopes (consisting of threegimbals, two of which can align their ro-
tation axes causing agimbal lock) to determine changes in their attitude (pose). In
an anecdote found at [NASA- Gimbal Lock] a lunar astronaut eventually jokes: “How
about sending me a fourth gimbal for Christmas...” Surprisingly enough it turned out
that adding a fourth (motor driven) redundant gimbal actually was a solution for this
“attitude problem”.

Simply adding an axis and angle did solve the mechanical problem, but it does
not yield a convenient representation to calculate with. If one is not dependent on
mechanical constructions like gyroscopes, the fourth variable could be used in a more
sensible manner. A major theoretical issue of using Euler angles is that it is hard to do
calculations with Euler angles on their own, because of the lack of a solid “Euler angle”
arithmetic. Euler angles cannot simply be multiplied or added together: results would
be only of use in the “neighborhood” of the rotations they was calculated from, because
it would not take into account the strange interactions between the axes. Representing
rotations using rotation matrices (for instance by incorporating the Euler angles into
them) instead does introduce usable arithmetic to calculate with rotations. On the other
hand, a rotation in matrix form uses 9 parameters for 3 degrees of freedom, which
suffers from a lot of distracting interdependencies between the matrix elements.

Probably inspired by the use of Euler’s formulaeix = cos(x) + i sin(x)2 on com-

2Can’t help to mention the simply beautiful identityeiπ + 1 = 0, as found on the MathWorld pages
[MathWorld- Euler Formula], which connects the fundamental numbers 0, 1,e, π, andi...
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a2

a3

a1

a1 a3

a2

Figure 2.5: Gimbal lockoccurs when two rotation axes happen to coincide. This ab-
stract representation of a gyroscope (with threegimbals, the rings in the picture) shows
why this is a problem. Starting with the left picture, imagine that the middle gimbal is
turning about axisa2. Whenever it aligns with the outer gimbal (see the picture to the
right), axisa1 has become useless. The gyroscope cannot detect rotations about the
axis perpendicular toa2anda3anymore. The problem actually increases gradually as
axes are more coinciding:Mechanically, because forces have to “work harder” to get
the gimbals rotating, andcomputationallybecause the representation of a pose gets
more uncertain (due to numerical errors in small angle contributions to the resultant
orientation data) as axes get increasingly ill-aligned.

plex numbers for describing rotations in a plane, Hamilton (an Irish mathematician
who lived from 1805-1865) developed the theory ofquaternions, for which Euler’s
formula holds in the formeIx = cos(x) + I sin(x), whereI is the compound quater-
nion imaginary basisi, j,k (in contrast with imaginary basisi for complex numbers).
Quaternions can compactly describe 3D rotations, using the representation of a single
rotation about a single axis, effectively evaporating the concerns about the choice of
axes and their order. Besides that, quaternion arithmetic with its quaternion product
does take into account the interactions between rotations about single axes when they
are concatenated.

2.4 Quaternions

Quaternions are numbers that have 4 components- a real part and an imaginary part
consisting of 3 mutually orthogonal imaginary unitsi, j andk. Whereas quaternions
can be regarded as 4-dimensional vectors, the complex number-like notation (2.3) may
be preferred, because this representation takes explicitly into account the special imag-
inary arithmetic defined on it.

q = w+xi+y j +zk w,x,y,z∈ R (2.3)

i2 = j2 = k2 = i jk =−1,
i j = k, ji =−k,
jk = i, k j =−i,
ki = j, ik =− j.

(2.4)

An alternative representation separates quaternions into its real part and a 3-dimensional
imaginary vector. The description of the multiplication rules (2.4) in vector arithmetic
(2.6) aims at the geometric interpretation of quaternions.

q = w+xi+y j +zk=

w,

 x
y
z

= (w,u) w∈ R,u ∈ R3 (2.5)
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q3 = q1q2 = (w1w2−u1 ·u2,(w1u2 +w2u1 +u1×u2))

= (1, i, j,k)


w1w2−x1x2−y1y2−z1z2

w1x2 +x1w2 +y1z2−z1y2

w1y2−x1z2 +y1w2 +z1x2

w1z2 +x1y2−y1x2 +z1w2

 (2.6)

These rules also define amultiplicative identityquaternion (2.7), the quaternion
which does not change the value of an other quaternion when multiplied by it and vice
versa. Theinverseof a quaternion (2.8) is the quaternion which can cancel a quaternion
out by a multiplication, resulting in the identityqq−1 = q/q = 1. Quaternions with
length one (unit quaternions) have the pleasant property that their inverses are equal to
theirconjugates(2.9), which can simplify formulas and computations.3

1 = (1,(0,0,0))
(1,(0,0,0))(w,(x,y,z)) = (w,(x,y,z))
(w,(x,y,z))(1,(0,0,0)) = (w,(x,y,z))

(2.7)

1/q = q−1 = (w,(−x,−y,−z))/
(
w2 +x2 +y2 +z2

)
qq−1 = 1

(2.8)

q′ = (w,(−x,−y,−z))
|q|=

√
w2 +x2 +y2 +z2

|q|= 1→ q′ = q−1
(2.9)

Regarding the definition with imaginary axes and the formulas above quaternions
seem to show a close similarity with complex numbers which can represent one-dimensional
rotations in a two-dimensional plane. However, by comparing the rules for quaternion
and complex number multiplication (2.10) it becomes clear that though similarities
exist, there are also important differences.

z1 = a+bi, z2 = c+di, z3 = z1z2 = (ac−bd)+(ad+bc) i (2.10)

(ab) b = 1 b = i b = j b = k
a = 1 1 i j k
a = i i −1 k − j
a = j j −k −1 i
a = k k j −i −1

Table 2.1: Tabular view on the quaternion multiplication rules. The complex num-
ber product involves only the four top left cells. The quaternion product extends the
interdependency of the axes.

Quaternion multiplication introduces a cross product term, or “mingling of the
axes”, which renders the product non-commutative, as opposed to the complex-product.
This corresponds with the fact that arbitrary rotations are commutative in 2D, but not
in 3D (the order of applying rotations influences the result). Whereas the coordinate

3The inverse involves both multiplication and division, where the conjugate only switches the sign of the
(imaginary) vector part of a quaternion, a very cheap operation in terms of computing power.
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axes of a translation are completely independent from each other, coordinate axes do
depend on each other during (successive) rotations, in the typical way reflected by the
quaternion product rules. For instance a rotation in 3D of 180 degrees about an x-axis
(1,0,0) followed by a rotation of 180 degrees about an y-axis(0,1,0), represented by
the quaternions(0,(1,0,0)) and(0,(0,1,0)) respectively, can be described as a single
rotation of 180 degrees about the z-axis, coinciding with the result of the quaternion
multiplication (0,(1,0,0))(0,(0,1,0)) = (0,(0,0,1)) (see table 2.1). In 2D, rotations
can only be performed about a single axis (the one perpendicular to the plane in which
the rotation is performed), which explains why rotation in 2D is commutative in spite
of the fact that general rotation is not.

Quaternions are used to represent three-dimensional rotations in the sense that
whenn is the axis (of unit length) andθ is the angle of any rotation mapRn,θ acting on
vectorv, the quaternionqn,θ that describes the rotation yieldingvrot is constructed as
follows:

Rn,θ ∈ SO(3)
vrot = Rn,θ(v)

(
θ ∈ R,n ∈ S2

)
!

qn,θ =
(
cosθ

2 ,nsin θ
2

)
∈ S3

p = (0,v)
(0,vrot) = qn,θpq−1

n,θ = qn,θpq′n,θ

(2.11)

This formula states that only quaternions that have unit length correspond with
a proper rotation, becauseS3 is the 4D unit hypersphere which consists of all four-
dimensional vectors that have length one. Furthermore the formula shows a two-to-one
correspondence, called theanti-podal equivalence, betweenSO(3) andS3: One can
always find two points on the unit-quaternion sphere that represent the same rotation,
q and−q, because sign changes are canceled out by the double multiplication.

Quaternions of arbitrary length (greater than zero of course) can be used as rep-
resentations for rotations; magnitude evens out in the formula. However, it is still
more convenient to use unit-quaternions, because a fixed length eliminates the redun-
dant scale factor (all quaternions that “point in the same direction” regardless of their
length, correspond to the same rotation) and using length one keeps the fit between
SO(3) and quaternions tight and elegant (becauseS3 is a “basic” manifold andR3with
the cross product is a Lie algebra to it, isomorphic with the algebra toSO(3)).

That (0,vrot) = qn,θ (0,v)q−1
n,θ performs a rotation can be proven by noting that

quaternion multiplication preserves norms, scalar multiplication commutes and a con-
tinuous path from identity to every possible action exists, which excludes reflections.

To show how the quaternion product works geometrically [Berkeley- CS184] we
first note that a vector which is to be rotated aboutn can be decomposed intov =
v‖+v⊥, separating the partv‖ parallel and the partv⊥ perpendicular to axis of rotation
n. Using a third vectorv× = n×v = n×v⊥, perpendicular to bothn andv, the rotated
versionvrot of v can be expressed in a familiar-looking sine-cosine form (resembling
the construction of a circle):

en̂θ = 1+ n̂sin(θ)+ n̂2 (1−cosθ)

n̂ =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 (2.12)

vrot = v‖+v⊥ cosθ+v× sinθ (2.13)

The projection of the vector on the plane perpendicular to the axis of rotation is
rotated in that same plane over the rotation angle. The plane intersects the rotation axis
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v’−(n.v’)n

Figure 2.6: Quaternion rotation: Vectorv′ is vectorv rotated by angle theta about
axis n. The part ofv parallel to n is v‖ = (n ·v)n, the part perpendicular ton is
v⊥ = v−v‖ = v− (n ·v)n.

at the origin, so in order to get the right rotated vector the rotated projection must be
shifted overv‖, the component of the original vector parallel to the axis of rotation.

One characteristic feature of rotations is that all points that lie on the axis of ro-
tation remain unchanged: In quaternion terms this means thatq

(
0,v‖

)
q−1 =

(
0,v‖

)
which is the case if

(
0,v‖

)
would commute withq−1, because thenq

(
0,v‖

)
q−1 =

qq−1
(
0,v‖

)
=
(
0,v‖

)
. The cross product ingredient in quaternion multiplication is the

cause of non-commutativeness, sov‖×n = n×v‖ should be true. It is indeed, because
v‖ andn are parallel to each other and applying the cross product in either way would
always result in 0.

q(
(
0,v‖

)
+(0,v⊥))q−1 = q

(
0,v‖

)
q−1 +q(0,v⊥)q−1 (2.14)

Then if the rotation can be described by (2.14) andq
(
0,v‖

)
q−1 =

(
0,v‖

)
it remains

to be explained thatq(0,v⊥)q−1 is equal to(0,(v⊥ cosθ+v× sinθ)). With the help of
goniometry identities and properties of dot- and cross-product it can be shown that this
is the case:

q(0,v⊥)q−1 =
((

cosθ
2 ,nsin θ

2

)
(0,v⊥)

)
q−1

=
(
−(n ·v⊥)sin θ

2 ,v⊥ cosθ
2 +(n×v⊥)sin θ

2

)
q′

=
(
0,v⊥ cosθ

2 +v× sin θ
2

)(
cosθ

2 ,−nsin θ
2

)
=
(
−n ·

(
v⊥ cosθ

2 +v× sin θ
2

)
sin θ

2 ,cosθ
2

(
v⊥ cosθ

2 +v× sin θ
2

)
+
((

v⊥ cosθ
2 +v× sin θ

2

)
×
(
−nsin θ

2

)))
=
(
sin θ

2 cosθ
2 (v⊥ ·n)+sin2 θ

2 (v× ·n) ,v⊥ cos2 θ
2 +v× cosθ

2 sin θ
2

−
((

v⊥ cosθqi
2

)
×n+

(
v× sin θ

2

)
×n
)

sin θ
2

)
=
(
0,v⊥ cos2 θ

2 +v× cosθ
2 sin θ

2 −v⊥×ncosθ
2 sin θ

2 −v××nsin2 θ
2

)
=
(
0,v⊥ cos2 θ

2 +v× cosθ
2 sin θ

2 +v× cosθ
2 sin θ

2 −v⊥ sin2 θ
2

)
=
(
0,v⊥

(
cos2 θ

2 −sin2 θ
2

)
+2v×

(
cosθ

2 sin θ
2

))
= (0,(v⊥ cosθ+v× sinθ))

We conclude this overview of quaternion arithmetic with the quaternion exponen-
tial map, defined and used in a way similar to its complex number counterpart (2.15):

eq = ew+Iv = e(w,v) = ew
(

cos‖v‖ ,
v
‖v‖

sin‖v‖
)

(2.15)
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From a signal processing point of view ([Dooijes1999, section 3.3])f (t) = xeiΩt =
x(cos(Ωt)+ i sin(Ωt)) describes a periodic signalf with amplitudex and angular ve-
locity Ω (corresponding with a frequency ofΩ/2π Hz provided thatt is measured in
seconds). If such a signal has unit amplitude then the logarithm of the signal valuef̃ (t)
yields the angular displacement (distance) of the signal relative to where the signal
“started” (t = 0), at the complex identityei0 = 1+0i. If the angular displacements are
measured relatively4 from one value to the next instead from identity, they equal the
instantaneous angular velocity (rate of change) of the signal, under the assumption that
velocity remains constant during the time interval between two measurements.

When represented by an ordered set of quaternions, the values of an orientation
signal lie on the 4D unit hyper-sphere, because we use unit quaternions to represent the
orientation values, just as the values off̃ (t) are bound to the unit circle: our rotation
signal also has “unit amplitude”. The logarithms of these unit quaternions produce their
corresponding angular displacements from the identity quaternion(1,(0,0,0)). Note
that because of the higher order entanglement of the quaternion axes log(q(t +dt))−
log(q(t)) 6= log(q(t +dt)/q(t)). As mentioned in section 2.2 taking the logarithm
means moving from the Lie-group manifold to its tangent space, its Lie-algebra. This
is compatible with the notion of signal velocity when applied to relative orientations.
If the changing pose of an object is represented by quaternions{q0,q1, . . .qi , . . .qn}
that rotate from a fixed reference pose to the orientation of the object at increasing time
instantst(i), then the instantaneous magnitude and direction of the object’s average
angular velocity between time instantt(i) andt(i +1) is equal to (mind the half angle
correspondence) twice the logarithm of the rotation fromqi to qi+1, log

(
q−1

i qi+1
)
, the

magnitude and direction of the tangent to the sphere emerging fromqi and pointing
towardsqi+1.

4
(
log
(

f̃ (t +dt)
)
− log

(
f̃ (t)
)

= log
(

f̃ (t +dt)/ f̃ (t)
))



Chapter 3

Linear filtering of orientation
data

3.1 Key ideas

The orientation filtering scheme proposed by Lee and Shin in [Lee2002] is based on
three key ideas. The first,linearization, is to identify an additive property of the ori-
entation signal that can be associated with a linear signal, which in turn can be filtered
with a Finite Impulse Response (FIR) linear filter. The association itself is achieved
by the second idea:offset filtering. Instead of filtering absolute values, the filtergain
on datarelative to the sample in the center of the filter maskis computed. The third
idea is torewrite filter masksin a way that makes offset filtering computationally more
efficient.

3.1.1 Linearization

For a (maximally) meaningful result of applying a linear filter, the nature of the filtered
signal should be additive. A rotational signal however, does not behave additively, but
multiplicatively. This can be seen by examining the relation between successive signal
values: As opposed to the linear motion (translational) profile (3.1) of an object, the
(discrete) evolution of its orientationqi is not described by sequentially adding orien-
tation differences but by iterative multiplication of the orientation value with relative
orientations, usingq0 as a starting point (3.2).

pi = p0 +(p1−p0)+ · · ·+(pi −pi−1)

= p0 +
i−1

∑
j=0

(p j+1−p j)
(3.1)

qi = q0
(
q−1

0 q1
)(

q−1
1 q2

)
· · ·
(
q−1

i−1qi
)

= q0

i−1

∏
j=0

(
q−1

j q j+1

) (3.2)

From the explanations in section 2.2 and 2.4 it can be concluded that there is actu-
ally an additive property “hiding” in the rotational signal: its tangent. The logarithm

22
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Figure 3.1:An approximation of the instantaneous velocityω j requires the extraction

of the tangentlog
(

q−1
j q j+1

)
between two successive orientationsq j andq j+1.

of a rotation yields a vector in a nearly linear tangent space attached to rotational (mul-
tiplicative) identity indicatingangular displacement,the distance and direction of the
travel in rotation space corresponding with the rotation. This property can be exploited
to express both translational and rotational signals in terms of displacement vectors
with linear behaviour:

w j = −p j +p j+1

pi = p0 +
i−1

∑
j=0

w j

ω j = log
(

q−1
j q j+1

)
qi = q0

i−1

∏
j=0

eω j

(3.3)

The magnitude of the displacement vectorω j corresponds to theslerp-or spherical
quaternion distancetravelled in one time step. If samples are taken equidistant in time
(the sampling rate is constant),ω j can be interpreted as discrete velocity vector. The
anti-podal rotational equivalence of unit quaternions causes the velocity measured in
quaternion space to be twice as slow as observed in the rotation it represents: a rotation
over an angleθ corresponds with traveling over a distance of1

2θ along the surface of
the quaternion sphere.

One of the ideas of the orientation filtering scheme is to couple the multiplicative
angular signal of relative orientations with the corresponding additive linear motion
profile using the linearity of the signal tangents. Displacementω j can be interpreted
as a linear vector, as if it were the linear displacement of additive motion profilep, for
whichω j = p j+1−p j . This leads to a transform (3.4) between the multiplicative signal
q to additive signalp, but note thatepi 6= qi because of the not entirely linear nature of
the algebra to the quaternion unit sphere.

pi = p0 +
i−1

∑
j=0

log
(
q−1

i qi+1
)

= p0 +
i−1

∑
j=0

ω j

qi = q0

i−1

∏
j=0

e(p j+1−p j) = q0

i−1

∏
j=0

eω j

(3.4)
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Figure 3.2: The Lee/Shin scheme first maps relative rotations represented in unit-
quaternion space (S3) into the vector space ofR3. In this space the filter mask is
applied. The convolution mask is constructed to produce the (linear) filter gain on the
data sample in the middle of the filtering window. The gain is in turn mapped back to
S3. Filtering relative orientations ensures coordinate-invariance and reduces the risk
of encountering singularities in the inverse exponential mapping ontoS3.

3.1.2 Offset filtering

When the signalp is filtered by a linear filterF signal valuespi are displaced byfilter
gain F(pi)−pi (3.5). Just like linear displacement, this gain can be transformed to a
rotational gain which can be applied to the rotational signal, yielding a rotational filter
(3.6) based onF : a filtered orientation is the original measurement rotated over an
angular distance equal to the filter gain ofF . Note that the filter gain is computed from
the direct neighbourhood of the sample in the center of the filter mask and that it is
the (local) gain only which couples the linear and angular signals, which respects the
locality of rotational tangent space.

F(pi) = a−kpi−k + · · ·+a0pi + · · ·+akpi+k

=
m=k

∑
m=−k

ampi+m

= pi +(F(pi)−pi)

F(pi)−pi =

((
m=k

∑
m=−k

ampi+m

)
−pi

) (3.5)

H(qi) = qie(F(pi)−pi) (3.6)

If we demand that the filter coefficientsa−k . . .ak sum to one, which makes filterF
anaffine-invariantfilter, we can easily rewrite the filter to act on values relative to the
value of the center sample instead of to the origin, so that both input values and filter
gain appear in the same space originating in the center of the mask:

m=k

∑
m=−k

am = 1
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F(pi) = pi +

((
m=k

∑
m=−k

ampi+m

)
−pi

)

= pi +

((
m=k

∑
m=−k

ampi+m

)
−

(
m=k

∑
m=−k

ampi

))

= pi +

(
m=k

∑
m=−k

am(pi+m−pi)

) (3.7)

H(qi) = qi exp

(
m=k

∑
m=−k

am(pi+m−pi)

)
(3.8)

3.1.3 An efficient offset filtering mask

Becausepi+1−pi = log
(
q−1

i qi+1
)

but in generalpi+m−pi isnot equalto log
(
q−1

i qi+m
)
,

expressing equation (3.8) in angular terms involves the summation of small displace-
ments:

pi+m−pi =



i+m−1

∑
j=i

p j+1−p j , m≥ 1

0, m= 0
i−1

∑
j=i−m

p j+1−p j , m≤−1

=



i+m−1

∑
j=i

log
(

q−1
j q j+1

)
, m≥ 1

0, m= 0
i−1

∑
j=i−m

log
(

q−1
j q j+1

)
, m≤−1

(3.9)

The filter kernel[a−k, . . .a0, . . .ak] can be rewritten in such a way that it incorporates
these sums:

bm =


k

∑
j=m+1

a j , 0≤m≤ k−1

m

∑
j=−k

−a j , −k≤m< 0
(3.10)

With mask[b−k, . . .b0, . . .bk−1], derived from[a−k, . . .a0, . . .ak], an efficient filter
can be formulated for use in situations where only relative data is available or is only
trusted to behave linearly in tangent space:

F(pi) = pi +

(
k−1

∑
m=−k

bmwi+m

)
w j = −pi +pi+1

(3.11)

H(qi) = qi exp

(
k−1

∑
m=−k

bmωi+m

)
ω j = log

(
q−1

j q j+1

) (3.12)
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Figure 3.3: This diagram explains how a convolution kernel is to be modified so
that it can be applied to relative instead of absolute data. It illustrates that the
sums of displacements from equation (3.9) can be incorporated into the filter ker-
nel. The lower sets of arrows represent input data, the upper sets smoothing convo-
lution kernels (as an example). The first (left-most) sets of arrows can be regarded
as convolution kernel[a−2,a−1,a0,a1,a2] and data valuesp1..p5. The second as
[a−2,a−1,a1,a2] and [p1,p2,p4,p5]− p3. The third as[a−2,a−1 + a−2,a1 + a2,a2]
and [p1−p2,p2−p3,p4−p3,p5−p4]. The last (rightmost) sets of arrows represent
[−a−2,−(a−1+a−2),a1+a2,a2] and[p2−p1,p3−p2,p4−p3,p5−p4]. The left-most
convolution yields absolute results (i.e. in the frame of the arrows in the lower set),
whereas the other convolutions generate a filter gain on the center sample (the dashed
arrows). The right-most operation only uses input data that is represented relative to
directly previous data.
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Figure 3.4:The MoLab visual algorithm builder.

3.2 Implementation

The orientation filter was implemented in three application environments: in MatLab,
a Borland Delphi application and the PSS itself. MatLab functions were used to imple-
ment quaternion functions and the filter algorithm, to plot filter and signal properties
and to evaluate the filter quantitatively. In a Borland Delphi application, called “Mo-
Lab” the components of the orientation filter were implemented in a modular fashion
using the Object Pascal programming language (see figure 3.4). The graphical user in-
terface in MoLab represents the components as pluggable (sub-)filters with typed data
inputs and outputs. It was used to get familiar with quaternions and the filter opera-
tions outside the MatLab environment. The source code to the subset of MoLab filters
relevant for on-line filtering was translated into C-code and integrated into the PSS
architecture (by Robert van Liere). Additionally an OpenGL application, called “Mo-
Vis” was built and used to read in motion data files and visualize the data streams in
real-time by moving and rotating cubes, offering the opportunity to monitor the filter’s
visual performance in real-time on a standard PC (independent from the PSS see figure
3.5).

The general scheme of filtering incoming samples is as follows:

• Initialization

– Initialize the convolution kernel, allocate and clear a quaternion and a dis-
placement history, which are first-in first-out shift registers (FIFO buffers).
Displacement history is required to span the width of the used convolution
kernel, whereas quaternion history has to be one step longer than half the
width (the quaternion in the center of filter support is used in the calcula-
tion).

• Calculation step

– A sample is received from the PSS optical object tracker in the form of
a homogeneous matrix or is extracted by MoLab from a file containing
captured motion data (created by the PSS).
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Figure 3.5:The MoVis motion visualization tool.

– The top left 3x3 elements of this matrix carry the rotational information,
from which a corresponding unit- quaternion is computed.

– Because of the anti-podal equivalence of quaternions, a new quaternion
value is negated if its angular distance to the previous value is more than
π/2 along the unit-quaternion sphere (assuming the difference between
consecutive orientations to be less than 2(π/2) radians, i.e. 180 degrees).
The value is appended to the quaternion history. This check can be per-
formed using the quaternion logarithm, but as it’s just a check against an
upper bound, it is probably more efficient to measure the raw Euclidean dis-
tance between quaternions (regarding them as 4D linear vectors) suffices -
it has to stay below

√
2 (or only the sum of squared quaternion components

below 2).

– The angular displacement between the last two quaternions in history is
computed and appended to displacement history.

– The convolution kernel is applied to displacement history, which yields a
gainon the oldest orientation in quaternion history.

– The exponent of this displacement generates a small rotation relative to the
quaternion in the center of filter support, with which it is multiplied.

– The resulting orientation is reported back to the PSS architecture or an
OpenGL renderer by converting it into matrix-form.
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3.3 Discussion

It would be nice if a linear -for instance smoothing- filter could be directly applied
to the unit-quaternion data. A solution of this kind would already have no problems
with gimbal lock. However, the renormalization problem mentioned in section 1.4,
besides incorrectly speeding up and down rotations, brings forth a rather troublesome
singularity when the filtered quaternions are symmetrically distributed over the sphere:
The more symmetric a constellation of quaternions, the more they cancel each other
out; which leads to increasing numerical errors and eventually a zero signal, which does
not have a direction, causing the normalization to fail. Although Lee and Shin use this
as an argument to justify the choice for the more intricate method, it should be noted
that if quaternions are kept tightly together (within angular distanceπ/2, compensating
for anti-podal equivalence) the degenerate case mentioned does not occur. Detecting
whether two quaternions are too far apart can be done without knowledge about the
exponential map nor slerp. Moreover, the trade-off between sampling frequency and
numerical stability is becoming less and less awkward as capture speed gets cheaper,
which means that sampling with current technology is dense enough not to break the
implied angular speed limits.

We have seen that quaternions can be linearized by taking their logarithms. Then
if we cannot filter the raw quaternion coordinates, we could transform quaternions di-
rectly into logarithmic space and apply our linear filter on the resulting values. This
eliminates the need of renormalisation, because working in log-space means staying on
the unit sphere; so the zero-singularity is gone too. Despite these advantages, an issue
remains: such filters would not be coordinate-invariant because the sum of quaternion
logarithms is not equal to the logarithm of the (product) concatenation of those quater-
nions (see section 3.1.3).

The orientation filter proposed by Lee and Shin has some desirable features: It
is flexible, computationally efficient and coordinate- and time-invariant (because filter
support is finite). The filter applies a convolution mask on the (transformed rotational)
input data, which is a widely used linear filtering technique. It is flexible because by
changing the mask the behaviour of the convolution can adopt a wide range of func-
tionality, among others smoothing and sharpening. Convolution involves computation
of a linear weighted sum, it is thus efficiently and easily implemented using additions
and multiplications (with mask size N, N multiplications and N additions are required).
The filter operates on (transformed) relative rotations, measured from the body frame
rather than from the world frame. Because of this the filter is coordinate-invariant; the
response of the filter does not depend on where the world-frame is positioned and how
it is oriented. The filter is also time-invariant, which means that it does not matter (it
does not change the result) whether a (motion) signal appears earlier or later in time.

The Lee and Shin FIR filter computes a filter gain relative to that sample based on
angular differences between successive samples. The exponent of the filter gain is then
applied to the original orientation, which in effect “displaces” the orientation, staying
on the surface of the unit quaternion sphere. The filtered values only depend on samples
in the neighbourhood (under the mask) of the current sample and not on all previous
samples. To be able to apply a convolution mask on rotational input data, Lee and Shin
exploit the one-to-one correspondence between linear and angular velocity, coupling
linear filter gainF(pi)− p and angular filter gainH(qi)/qi using the exponential map.
In this way the non-commutativity of the orientations is taken into account.



Chapter 4

Design of the orientation filter

4.1 Signal properties

Without even looking at actual data from the motion tracker one can already define
some points of focus regarding motion signals when designing a comfortable filter for
specific virtual reality applications. For instance the visual examination of molecule
models (a typical task for the PSS) requires the motion tracker to deliver a stable signal
which preferably does not oscillate when the tracked input device is held still. How-
ever, signal disturbances easily noticed by the user during “calm” motions may not be
noticeable at all when quickly rotating the object to an other viewing pose: the accu-
racy of a filter is more important during the “slow” phases or “plateaus” of the signal,
than during the phases of quick change.

Keeping the signal stable though (throwing away higher frequency components
of motion) may give rise to uncomfortable side-effects in the human operator, when
virtual objects but slowly follow the input motion due to the great size of the filter
support (the signal neighbourhood the filter includes in its calculations, which could
be regarded as the filter’s receptive field). For interactive motion to be accurate and
comfortable the perceived feedback-loop from the operator to the VR-apparatus and
back to the operator again has to be as short as possible.

4.1.1 Properties of human motion

In [VanSomeren1996] frequency domain information is given regarding motion pat-
terns of the wrist in a human subject executing various tasks: finger tapping, diado-
chokinesis (rotating the wrist about the axis along the lower arm), pin-placing (a target-
ing task), tooth brushing, writing and walking. Based on acceleration data the authors
associate frequencies in the range of 0.5 to 11 Hz with motion actually resulting from
muscle force. Furthermore Van Someren et al. identify a low frequency signal compo-
nent in the neighbourhood of 0.25 Hz as gravitational artefact distorting actigraph1 data
for use in human research (e.g. research on sleep, circadian rhythms and aging). For
the PSS the actual orientation of input objects (often physically connected to a human
wrist) is to be measured instead of just the result of muscle activity, whether origi-
nating from translational or rotational forces. Furthermore the PSS has to accurately

1Actigraphy: the long-term assessment of wrist movements by means of a small solid-state recorder and
accelerometers.

30
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Figure 4.1: Frequency spectra of actigraph data (adapted from [VanSomeren1996])
for three different tasks: diadochokinesis (DDK), pin-placing (PIN) and tooth brushing
(BRU). The first three columns represent acceleration data from three orthogonal axes
transverse on the wrist (x), from hand to arm (y) and perpendicular to the wrist (z)
respectively. The last column contains the spectra of theinstantaneous acceleration
vectors(A(t) =

√
x(t)2 +y(t)2 +z(t)2).

reproduce intended motion and not necessarily contributions such as from tremors in
the motor system of the user, which show up in the higher frequency part of the signal.
In [VanSomeren1996] it is noted that in earlier (human) research normal motion of
the wrist is found to predominantly consist of the very low frequencies about 0.25Hz
associated with gravitational artefact. This supports a focus on the lower frequencies
though, if looking for intended motion resulting from both muscular and gravitational
forces.

Whereas the acceleration of motion was measured and not velocity, or pose (as the
Personal Space Station does), the frequency constraints are likely to be applicable to
these other modalities. In the ideal case of a sinusoidal acceleration, its corresponding
velocity signal (obtained by integration) has the same frequency distribution2 which in
turn holds for the double integration yielding the pose signal (seen along its curved ge-
ometry) used in the PSS. The sinusoidicity assumption is plausible for human motion,
because the human body can be mechanically described by a system of weights and
springs.

Concluding, an orientation filter for the PSS should let through as much of fre-
quencies lower than 11Hz as possible. There is a trade-off between also letting through
errors in the signal that contribute to frequencies within this interval and covering less
of the higher frequencies involved with intended motion. In figure 4.1 can be seen that
the main components of characteristic motion rarely have frequencies higher than 8Hz.

2Up to a gradual amplitude attenuation toward the higher frequencies: The Fourier transform of a deriva-

tive: dn f (t)
dtn ↔ (iΩ)n F (Ω)
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4.1.2 Properties of the motion tracker

Captured motion data has passed through several submodules in the PSS before it is
actually used to generate the 3D virtual environment shown to the user. The total delay
between the physical motion and the corresponding response of that particular motion
in the virtual scene is therefore composed of a number of more or less independent
delays propagated from the individual modules (see figure 4.2). For the evaluation of
orientation filtering schemes we group the contributions to the total experienced delay
into four parts:

• A: The time needed to derive orientation data for a specific input device from
camera images;

• B: The calculation time needed to apply the filter on the presented orientation
data;

• C: The signal delay introduced by the filtering method (apart from calculation
time);

• D: The time needed afterwards to render and display the virtual scene.

In its current configuration the PSS is housed in two consumer PC’s. One PC contains
the motion tracker, which is network connected to a second PC taking care of rendering
and displaying the 3D scene. Because the tracker and filtering component are executed
synchronously and serially, the resulting orientation sampling rate depends on the joint
delays in parts A and B. Delays in part D are marginal, because for the sampling rate
only the time needed to queue motion data for transmission to the renderer PC counts.
Delay variation in part A causes the sampling rate to range from approximately 25 to
40 Hz. This is because the time it takes to detect the reflective markers and to match
marker patterns with reference input device models is not constant between models and
over configuration space.

Our orientation filter contributes to parts B and C of this scheme: For the calcula-
tion of the filter output the algorithm uses per time step one dot product, one quater-
nion inverse, two quaternion products, one quaternion exponent and one quaternion
logarithm. The execution time of the algorithm is directly proportional with the width
of the filter kernel (see table 4.1). Memory requirements are also in the order of filter
width and remain constant throughout operation. From this can be concluded that with
current consumer grade computation power and capture rates the delay introduced in
part B, computation of the filter output, is negligible.

Part C on the other hand, generates far more significant time lag. For a causal
(physically feasible) filter, the output signal will always be delayed with respect to the
input signal: the filter has to “collect” data samples from both history and future of a
signal value to perform it’s task correctly. As it cannot look into the future it has to
delay and hold samples, thus shifting the present toward history. For instance for a five
point (fourth order) filter this delay is two samples. Then the actual delay time or time
lag is two times the sampling interval.

4.1.3 Properties of human perception

During on-line tests with orientation filtering it turned out that for the PSS a delay of as
few as two sample points is already noticeable; it lessens the feeling of directness of the
connection between input devices and virtual objects they control. As the tracker was
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dot qinv qprod qexp qlog qfilter: (dot+qinv+2qprod+qexp+qlog)

sign 0 3 0 0 0 3
add w 4 6 3 0 w+19
sub 0 0 6 0 0 12
mul w 4 16 4 3 w+43
div 0 1 0 1 1 3
mod 0 0 0 0 1 1
trig 0 0 0 1 2 3
bra 0 0 0 1 1 2

Table 4.1:Operations needed for the execution of the FIR quaternion filter algorithm
(“qfilter” in this table) per time step (sample), where “dot” stands for the dot-product
needed to apply the filter kernel to angular displacements, “qprod” is the quaternion
product. Variable w is equal to the number of offset filter kernel coefficients. Sin(n)
and cos(n) (row “trig”) are assumed to be calculated in a single operation and the
quaternion inverse (qinv) does not check whether the operand’s length is greater than
zero and therefore doesn’t use branching instructions (bra) for this.

capturing motion data with a frequency of approximately 27Hz at that time this means
that the sum of the delays introduced by parts A, B, C and D should not be greater
than 75 milliseconds. This observation corresponds with the guideline presented in
[Azuma2001] and other work, in which delays in the order of 100 ms are regarded
highly undesirable. Even delays as small as 10 ms have statistically significant negative
effects on the performance of guiding a ring over a bent wire ([Azuma2001]).

Because several components of the PSS are likely to change in response to the
availability of better hardware and/or tracking techniques, the focus of this report is not
on the actual details of this virtual reality console, but on minimizing the delay due to
filtering, guided by empirical data.

4.1.4 Properties of captured data sets

Real-life experimental data were collected in three sessions with the Personal Space
Station at CWI in Amsterdam. Principal investigator of the CWI Visualization and
Virtual Reality group Robert van Liere operated the apparatus (see figure 4.3) wearing
3D glasses by manipulating one or two optically marked input devices (input devices
A andB). Motion data was captured in the form of space separated text files formatted

User motion
Image capture

Marker detection

Rendering the Virtual Scene

Filter delay (kernel width, predicted or not)

Orientation filtering (computation)

Extraction of 3D positions

Matching with object model

tim
e

A
B

C
D

Figure 4.2:Time-line diagram illustrating the propagation and sources of signal delay
between the physical user action and the time at which the user sees the reaction to it
in the virtual scene.
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Figure 4.3:The Personal Space Station presents the user a 3D molecule model, being
examined and cut-through (like in session 2, see table4.3) using twoinput devices
simultaneously: an input cube and wand, labeledA andB respectively for this session.
The data sets presented in this report are captured motion signals from up to two input
devices. The wand on the photograph was not used during captures; another cube was
used instead.
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input device A input device B
timeT translation orientationQ translation orientationQ
seconds meters quaternions meters quaternions
t : x y z ([w] x y z) x y z ([w] x y z)

21.0001 : -0.193 -0.185 0.044 ([0.085335] -0.699060 -0.705084 -0.083000) 0.054 -0.187 0.051 ([0.374793] 0.002215 -0.927106 -0.000763)

21.0640 : -0.193 -0.185 0.044 ([0.084453] -0.698900 -0.705541 -0.081353) 0.054 -0.187 0.051 ([0.375382] 0.003061 -0.926860 -0.002957)

Table 4.2:File format (space separated text) of the motion data recordings. The first
row of the table indicates which input devices the columns represent data for. The
second row lists the measured entities and their units. The next row shows the file
format with the ordering of parameters and the last row contains example data as
actually recorded (the first two entries of session 2).

as shown in table 4.2. The sessions were recorded during different tasks and labeled as
in table 4.3.

In figures 4.5 and 4.6 the rotational part of the captured motion is shown for the
three sessions. The experiments with the filter were conducted on these data sets, each
consisting of a time and quaternion channel (T andQ). Table 4.4 summarizes overall
features of the sets.

Because of a side-effect of the anti-podal equivalence of quaternions (mentioned
in section 2.4), the raw data from the capture files had to be corrected for “sign-flips”
(see figure 4.4) which would otherwise destroy the direct correspondence between the
distance measure ofSO(3) and the measure along the quaternion sphere.

The design of a FIR filter is often based on frequency domain information from em-
pirical data. Multidimensional data, if linear and separable, can be analysed in the fre-
quency domain using channel-by-channel power spectrum estimation ([Azuma1995]).
As linearity and separability are also the constraints for proper operation of the FIR
filtering introduced in chapter??, for frequency analysis we will therefore linearize
the orientation data in the same way, using the angular displacement values between
successive orientations (normalized to sample interval: angular velocitiesV).

Estimating the frequency power spectrum using the fast Fourier transform assumes
a constant sample interval. Oscillations in sampling intervals can cause artifacts in
the power spectrum (see figure 4.7) of the captured signal. Spectra of captured white
noise will not show the artifacts, because the sequence of sampled values of pure white
noise is completely unpredictable and therefore does not contain any periodicity. The
artifacts in spectra of captured motion are likely to average out if spectra of data sets
captured under differing temporal circumstances are combined. Besides oscillatory
temporal effects PSS data sets show differing mean sample intervals. This is easily
compensated for in the power spectrum estimates by scaling the frequency axis in pro-
portion.

Figures 4.8 and 4.9 show frequency power spectrum estimates of sample interval
variations and angular velocities. Note the correspondence between spectrum peaks
in figure 4.1 and the plots forV2,1,2 (manipulating a cutting plane) andV3,1,2 (rotat-
ing a model): Peaks around 0.45π and 0.95π rad/sample forV2,1,2 correspond with
frequencies of approximately 4 and 8,5 Hz. The peaks 0.35π and 0.55π for V3,1,2 cor-
respond with 4,5 and 7,5 respectively (for the sample frequencies, see table above).
This seems to link directly with the actigraph results from [VanSomeren1996]. That
this link must not be taken for granted all too quickly is seen, however, in the obser-
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Data:
T (time)
Q (orientation)

Gesture type Input device

Session 1 - Examination
T1,1,Q1,1,1 Selecting, dragging and rotating a complex

molecule model.

A

Session 2 - Interactive cut-through
T2,1,Q2,1,1 No motion. A
T2,1,Q2,1,2 Manipulating a cutting plane to “cut” through the

outer hull of a multi-layered 3D model.

B

T2,2,Q2,2,1 No motion. A
T2,2,Q2,2,2 Selecting points (vertices) on the 3D model. B

Session 3 - Pulling some strings
T3,1,Q3,1,1 No Motion. A
T3,1,Q3,1,2 Rotating a model. B
T3,2,Q3,2,1 Selecting and dragging points on the model inter-

connected with elastic edges. Releasing a dragged

point relaxes the model.

A

T3,2,Q3,2,2 Rotating a model. B

Table 4.3:Three capturing sessions were divided into 9 sets of motion data and labeled
according to session, type of gestures and input devices.

data set 1,1,1 2,1,1 2,1,2 2,2,1 2,2,2 3,1,1 3,1,2 3,2,1 3,2,2

number of samples 1551 1001 1587 511 726

mean sample frequency (Hz) 27.5 18.1 29.8 27.1 36.5

mean sample interval (sec) 0.0364 0.0552 0.0336 0.0369 0.0274

stdev sample interval 0.0056 0.0490 0.0053 0.0072 0.0264

mean angular rotation speed (rad/sec) 0.354 0.144 0.542 0.192 0.372 0.067 0.238 0.284 0.014

stdev angular rotation speed 0.267 0.116 0.661 0.138 0.396 0.105 0.289 0.551 0.063

Table 4.4:Overall properties of the data sets. Labels correspond with the first column
of table 4.3. Angular speed is twice as fast as measured along the unit-quaternion
hypersphere.
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Figure 4.4:Data set 1 - Graphs of the quaternion components x, y, z and w indicating
the orientation of a tracked device, captured while examining a molecule model. The
left graph shows that due to equipodal equivalence the raw signal extracted from rota-
tion matrices sometimes “flips” its sign. At these instants the signal seems to “travel”
with great velocity over the unit-quaternion sphere, which has an undesirable effect
on filter output. In the right picture the signal is checked and corrected for such flips
by keeping the distance between successive quaternions smaller than1

2π along the
sphere, which corresponds with an Euclidean distance smaller than

√
2. If the dis-

tance is equal or smaller the complex sign of the quaternion is flipped: the individual
quaternion components are negated. The first quaternion is made to have the least
negative signs in the components by negating when required.

vation that the peaks are most likely due to sample interval variations (as shown in the
∆∆T2,1 spectrum) - at least for the manipulation of the cutting plane. In defense: The
(large) variations are possibly caused by moving an input device into configurations
harder to track. This means that although interval variations are causing the local max-
ima, these may still originate from actual motion. And ascribing all of the peaks to
temporal inaccuracies does not fit in with the plots for set 3,1 (lower left graphic in
figure 4.9), where time is fairly uniform whereas the captured motion does still show a
characteristic peak.

The peaks are not present in no-motion data (noise) likeV2,1,1 captured concur-
rently for the other input device, because the whiteness of noise is likely to conceal
temporal periodicity. In theV2,2,2 plot the effects from sample interval variation are not
distinctively present, because they are much weaker (note the logarithmic dB-scale)
and the dataset has fewer dominant frequencies (compare quaternion plots in figure
4.6). We will not concentrate on these higher frequency details because of the decreas-
ing signal/noise ratio toward higher frequencies and because the mentioned peaks do
occur in but a few of the captures.

4.2 Filter properties

In chapter 3 it was shown how a linear filter can be applied to rotational data using
a discrete convolution kernel (filter mask). To use the filter in an actual application,
suitable filter parameters have to be determined.

A FIR-filter can be implemented by convolving the input signal with the filter’s
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Figure 4.5:Dataset 1 - quaternion components

impulse response. The impulse response of the filter defines its convolution kernel co-
efficients and vice versa. A change in the kernel coefficients is reflected in the impulse
response, influencing thefrequencyandphase responsein the frequency domain. A
priori frequency-domain information about the signal can suggest a desirable response
of the filter. This can be translated back into kernel coefficients used in the filtering
algorithm.

For the kernel coefficients of an FIR-filter several distributions can be chosen,
which have their characteristic effects on the signal. The data in [VanSomeren1996]
and the observation that the virtual objects are “trembling” too much and that, com-
pared to the erroneous tremor, the intended motions are slow, suggests the application
of a low-passsmoothingfilter to the PSS rotational motion signal. The filter has to filter
out the higher frequencies and let the lower through. Frequency domain filter design
techniques are used to validate and refine this intuition.

4.2.1 Using a signal/noise model

In [Press2002] the removal of noise from a signal is demonstrated usingOptimal
Wiener Filtering.From a frequency power spectrum of a measured signal the frequency
profiles of the uncorrupted signal and noise are estimated. The spectrum should show
signal peaks with a “noise tail” which can be extrapolated to generate anoise model.
Subtraction of the noise model from the measured spectrum yields the signal model:
from this frequency domain model the ideal filterΦ(ω) can be found by determining
the ratio between signal and signal-plus-noise power:

Φ(ω) =
|S(ω)|2

|S(ω)|2 + |N(ω)|2
(4.1)

This method assumes that measurements containing both noise and signal are used
and that the noise model is extrapolated by intuition from the frequency spectra of the
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Figure 4.6:Datasets 2 and 3 - quaternion components

measurements (C in figure 4.10). Empirical information on noise is available for the
PSS though, because in the experiments we captured several episodes of “silence”,
without intended motion. If the noise (frequency power) profile|N2 (ω)|2 of errors in
a measurement containing intended motion is comparable with (preferably equal to)
the profile|N1 (ω)|2 of the silent episodes, then the optimal filtering relation can be
rewritten to yield an estimate of the target filter:

Φ̂(ω) = 1− |N1 (ω)|2

|S(ω)|2 + |N2 (ω)|2
, N1 (ω)≈ N2 (ω) (4.2)

It determines the contribution of noise to the total signal, the frequency gain on
the signal leaving the noise. The opposite of this, the total signal (i.e. identity) profile
minus noise contribution is the desired filter gain.

4.2.2 Determining filter coefficients

Filter coefficients can automatically be found from signal-and-noise datac, noise-only
datan and preferred filter ordero as follows:

1. C(ω) = frequency power spectrum estimate ofc.

2. N(ω) = frequency power spectrum estimate ofn.

3. Desired filter gainG(ω) = 1− N(ω)
C(ω) (the signal modelS(ω) is C(ω) multiplied

by G(ω)).

4. ScaleG in a way that the gainG ranges from full to none at all:G(ω) = G(ω)−
min(G(ω)) and thenG(ω) = G(ω)/max(G(ω)).

5. Do this for different combinations of signal-and-noise and noise data sets and
average the resulting filter gains.
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Figure 4.7:If a sinusoidal signal (of frequency fdata plus some white noise) is sampled
evenly (at time instants t(0,n), samples are taken with a constant interval) then the
frequency power spectrum estimate will show a peak at the frequency of the oscillation
in a fairly flat spectrum. If oscillations in sample intervals are introduced (say, of
frequency ftime), the spectra show artifacts that are characteristic for the temporal
oscillations. The signal peak however stays in the same location.

6. Find filter coefficients matching a desired filter ordero (width or support) using
an out-of-the-box filter approximation method like Parks-McClellan’s using the
Remez Exchange Algorithm to find an optimal (equiripple) fit to the target filter
gain (see [Press2002] and the MatLabremez function).

The resulting gain of this filter design is shown in figure 4.12 (marked with squares).

Refining the filter

While the procedure above does produce a low-pass-like filter, it is not really the most
desirable one. We can refine the target filter gainG(ω) (the averaged gain computed
from measured data, see figures 4.12 and??) by enforcing the a-priori knowledge that
we are searching for a low-pass filter:

1. Determine the point(ωcut;G(ωcut)) where gainG(ω) drops below 0.5 (-3 dB)
the first time (from low to high frequencies).

2. Fit a straight line to the gain values from 0 Hz up to the -3 dB point(ωcut;G(ωcut)).

3. Determineωslope: the lowest frequency where the fitted line drops below 1.

4. Determineωzero: the lowest frequency where the fitted line is zero or below.

5. Gain constraintsGconstr(c)= {{ωc,min,gc,min} ,{ωc,max,gc,max}}wherec= {1,2}
are used as piece-wise linear gain specifications to which filter designs must ad-
here to fit the derived data model as described byG(ω) (see figure 4.12). They
are expressed in frequency-gain pairs as follows (frequencies are normalized):

c = 1 c = 2
f requency

gain

(
0 ωslope

1 1

) (
ωzero 1

0 0

)
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Figure 4.8:Frequency power spectrum plots of dataset 1 sample interval deviations
(the change in∆T1,1) and angular velocities (V1,1,1).

6. FeedGconstr(c) into a filter design method (see above) to get the filter coeffi-
cients.

The (filter order 4) result of this is marked with circles in figure 4.12 and has the
following coefficients:

[ 9 12 14 12 9]
56

±0.5%

The binomial kernel

In [Lee2002] a binomial kernel is suggested for smoothing of orientation data. This
distribution of kernel coefficients is interesting because of its smooth and expressive
low pass behaviour in the frequency domain. A binomial filter kernel of order four for
instance contains five coefficients (see figure 4.13) corresponding with the first values
of Pascal’s triangle up to a scale factor:

binomial(4) = [1,4,6,4,1]/16

As can be seen in figure 4.12, the binomial kernel yields a frequency gain curve,
which is smooth and monotonously decreasing, but not as steep as the gains of the
fitted filter kernel of the same order.

4.2.3 Kernel width

In filter design much revolves about accurately describing the signal (thus separating
the signal from noise) while keeping complexity low. This complexity has algorithmic,
spatial (memory related) and temporal faces. The trade-off is amongst others prominent
in choosing the appropriate width of a filter. The described automatic filter design
method and the binomial distribution have one free parameter, the order of the filter,
directly related to the width of a filter constructed along this line: a higher order will
broaden the filter and increase suppression potential of higher frequency components
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Figure 4.9:Frequency power spectrum plots of dataset 2 and 3 sample interval devia-
tions (the change in∆Tdataset,gesture) and angular velocities (Vdataset,gesture,device).

in a signal, whereas lower orders allow for more of the measured signal to pass (see
figure 4.14).

With this in mind one would choose a filter width that tightly fits the properties
of the signal and excludes noise to the greatest possible extent, if complexity was not
an issue. In the context of FIR filters: For many applications (including the one at
hand) the ideal signal is built up from fairly low frequency components and the real
signal is accompanied by higher-frequency noise. Therefore the most accurate filter
kernel would have the maximum amount of coefficients for which the signal is boosted
and not suppressed, because then even noise that is hardly different from the signal3

will still be attenuated. In many applications this is a possibility indeed, but in the
real-time constrained world of virtual and augmented reality a tight fit is often not
desirable. Not (only) because of variation in signal characteristics throughout the use
of the application, but to a more restraining extent because oftemporal complexity:

Data sampled in a real-time situation has the (in some cases annoying) property of
being late. FIR filters acting on data that is behind in time usually make things worse,
because they use (a limited amount of) data around a signal value to calculate the
filter result value. For a linear FIR filter to behave properly in the frequency domain
filter masks have to be symmetric4 which causes the filtered value to be located in
the “center” of the filter, a value valid for a time instant that occurred several sample

3At the right (high-frequency) side of the spectrum in this example, but it extends to band-pass filtering.
4Applying a filter kernel[k−n...,k−1,k0] on the data[dt−n...,dt−1,dt ] within the support of the filter has

the same effect as mirroring kernel and supported data at their endpoints (up to a scale factor equal to the
number of “mirrors” plus one). Due to (higher order) discontinuities in the mirrored signal high-frequency
artifacts are introduced in the filtered signal. These effects are of greater magnitude for asymmetric kernels.

caption for figure: Applying half of a symmetric filter kernel (to samplesdt−n..dt : e.g. [1,4,6]
11 ·

[dt−2;dt−1;dt ]) has the effect of the full kernel (e.g.[1,4,6,6,4,1]/22) on mirrored data (in the last sam-

ple dt : e.g. [1,4,6,6,4,1]
22 · [dt−2;dt−1;dt ;dt ;dt+1;dt+2]), introducing high-frequency artifacts, due to higher

order discontinuities in the mirrored signal.
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Figure 4.10:For Optimal (Wiener) Filtering a signal model is deduced by subtract-
ing an extrapolated spectral noise model from the frequency power spectrum of the
measured signal([Press2002], page 554).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Normalized Frequency  (×π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
/ r

ad
/s

am
pl

e)

Welch PSD Estimate

V
1,1,1

V
2,1,1

V
2,1,2

V
2,2,1

V
2,2,2

V
3,1,1

V
3,1,2

V
3,2,1

V
3,2,2

Figure 4.11:An overlay of the velocity frequency spectrum estimates shows a sketch
of an empirically supported signal/noise model. Data set3,2,2 shows an anomalous
overall spectrum power (though the shape is consistent) caused by episodes where the
tracker could not find the input device (see figure 4.6; indices correspond with data set
labeling in table 4.3). It was included to show the robustness of the filter estimation
method.
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Figure 4.14:A kernel with fewer coefficients yielding a smaller filter shortens time lag
at the cost of attenuation steepness as seen in the frequency power spectra of a signal
filtered at two different filter widths.

intervals in history.
The real-time constraint dictates upper boundaries for the width of useful filters,

filtered data has to be as up-to-date as possible: from a certain point the delay intro-
duced by an increased width renders a filter useless. Regarding the PSS and other VR
applications, filters must not introduce a delay that hinders the human operators in their
interactions with the synthetic world. Unfortunately unwanted effects of delay are typ-
ically noticed on a much smaller time scale than interactive motion signals. Taking the
delay effects into account quickly narrows down the search for a suitable filter width.

As noted in section 4.1.3, with current sampling frequencies, two samples lag is
already noticeable. This means that the radius of symmetric filters like designed above
should not exceed 2, corresponding with filter orders 2 and 4 (3 and 5 filter kernel
coefficients respectively).

4.3 Lag reduction

4.3.1 Using asymmetric kernels

Kernels discussed above are symmetric and have a maximum in the center which means
that for the bigger part the filter output contains information from the sample in the
center of the filter’s support. By using asymmetric kernels the emphasis can be shifted
toward more recent samples. However, this comes at a cost: lag reduction is traded
for weaker noise suppression, because of the frequency domain effects of asymmetry.
An asymmetric kernel can be formed by truncating and scaling (preserving the sum of
coefficients) a symmetric one. Using the firstk+1 coefficients of an order 1.5k kernel
meets lag and noise reduction mid-way (see figure 4.15).
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Figure 4.15:From left to right: a symmetric kernel (upper picture) of order 4 with a
frequency gain of 1 at the lowest frequency and a gain of 0 at the highest frequency.
The gain decreases smoothly and monotonously. The first 5 coefficients of an order
6 filter form an asymmetric kernel which has a frequency gain that is still smooth
and monotonously decreasing, although the gain does not reach zero at the highest
frequencies. This effect is emphasized with the truncation of higher order kernels. For
comparison the gain of an ordinary moving average kernel is shown. Note that the
graphs are in linear, not (logarithmic) dB-scale.
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4.3.2 Prediction by velocity extrapolation

The observation that acceleration has an upper bound can be used to introduce an ex-
trapolation or prediction step that helps to eliminate the time lag of a filter. For short
time steps there even might be hardly any change in velocity. If the sample interval
of the motion interval is short enough, a predictor could assume constant velocity for
several samples.

A predictor was implemented by calculating a weighed average of past velocity
values and applying this average ¯v to the current orientationτ times.

v̄i =
m=−1

∑
m=−n

amvi+m

q̂i = qi exp(τv̄i)

This predictor uses a FIR filter on velocity rather than measured orientation data.
For the coefficients of the filter, the same distribution as used with the orientation fil-
ter can be chosen, noting that the selection of a weight distribution can be focused on
minimizing lag, which might deteriorate noise suppression power, however if the pre-
diction is performed on already filtered data it has less noise to suppress to start with.
It is a good idea to predictafter noise reduction, because of the predictor’s sensibility
to noise.

4.3.3 Other filtering methods

Low-pass FIR filters are traditionally designed symmetrically, with gradually decreas-
ing coefficients toward the extremes of the filter kernel, the outer non-zero values as
small as possible. This is because the shape of the filter has to be similar to the target
signal. The lag of such filters is proportional to the width of the filter (even, though
to a lesser extent, if asymmetric filters are employed). In search for lower lags we re-
gard Kalman filtering and double exponential smoothing, because they both are able
to focus on recent samples. The second method is included because in a recent paper
([Laviola2003]) it was compared with Kalman filtering and found to be a computation-
ally cheap method capable of producing results similar to those of the more involved
Kalman filter.

Kalman filtering

An out-of-the-box toolkit ([Murphy2003]) was used to Kalman filter the motion data.
The system modelA incorporates the current orientation represented in quaternion
components and their first and second derivative, which for small changes correspond
with angular velocity and acceleration:

xt =

 qt

vt

at

= (qt,w,qt,x,qt,y,qt,z,vt,w,vt,x,vt,y,vt,z,at,w,at,x,at,y,at,z)
T (4.3)
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A =



1 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0

0 1
... 1

... 0

0 1 1
... 0

0 1
... 1 0

0
... 1 1 0

0 1
... 1 0

0
... 1 1

0
... 1 0

0
...

... 1 0
0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



(4.4)

Incorporating acceleration could have a positive effect on state predictions calculated
by the Kalman filter using the system model (cutting down lag and overshoot), keeping
in mind though that higher derivatives are more sensitive to noise. As greater uncer-
tainties are assigned to measurements and the filter relies more on the system model,
the data gets smoother, but overshoot increases. This could be overcome to a certain
degree by including acceleration in the system model. A damping factor on accelera-
tion (natural motion cannot accelerate freely indeed) might counteract this effect to a
greater extent.

Only instantaneous orientation is measured by the PSS so measurement modelH
and statey include just the current orientation value:

yt = qt =


qt,w

qt,x

qt,y

qt,z

 (4.5)

H =


1 0 0 0 0 0 0 0 0 0 0 0

0 1 0
...

...
...

... 0

0 0 1 0
...

...
... 0

0 0 0 1 0 0 0 0 0 0 0 0

 (4.6)

In the literature (for instance in [Azuma1995]) it is concluded that the use of ac-
celerometers can greatly improve measurement and prediction accuracy over measur-
ing orientation alone. This is a plausible observation because the constraints on ac-
celeration of the human end effector (the hand) can be more generally described (by
less convoluted means, using laws of physics on moving bodies) than constraints on its
actual attitude or pose (which are likely to be coordinate- and user-dependent).

Filtered values are normalized as the filter acts on quaternion components inR4 and
the resulting quaternions could diverge from the unit-quaternion sphere. The outcome
of the filter could be used as input to a predictor (e.g. the method described in section
4.3.2).
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Double Exponential Smoothing

A much simpler (computationally cheaper) filtering method is calledDouble Exponen-
tial Smoothing(DES), as found in [Laviola2003]. It mixes the current sample with a
smoothed valueSt . This is the first exponential effect. The second is caused by mixing
St in its turn with the previous double-smoothed valueS′t−1:

St = αqt +(1−α)St−1

S′t = αSt +(1−α)S′t−1
q̂lo,t =

((
2+
(
bτc α

1−α
))

St −
(
1+
(
bτc α

1−α
))

S′t
)

q̂hi,t =
((

2+
(
dτe α

1−α
))

St −
(
1+
(
dτe α

1−α
))

S′t
)

qlo,t = q̂lo,t

|q̂lo,t |
qhi,t = q̂hi,t

|q̂hi,t |
ρ = τ−bτc

qdes,t = qlo,t exp
ρ log

(
q−1

lo,tqhi,t

)

(4.7)

0≤ α ≤ 1
τ ≤ 0

The two parameters,α andτ, control the amount of smoothing and prediction re-
spectively. Lower values ofα cause the filter to rely more on the smoothed values and
the value ofτ determines the number of samples ahead the filter will predict. Parameter
α could be seen as the balancing factor between a system model and measurements,
comparable to the magnitudes of error covariances in a Kalman filter. The double ex-
ponential smoothing algorithm also assumes linearity in quaternion components like
the Kalman filter above, although for the interpolation between predictions of integer
intervals (ofτ) spherical linear interpolation (SLERP) is used.



Chapter 5

Results

5.1 Evaluation method

The results of application of filters to captured data are evaluated in the following
contexts:

• How well does the filter suppress noise frequencies?

• How much time lag does the filter introduce?

• How much overshoot is introduced by the filter?

In the following sections quantitative criteria are formulated for these contexts, noise
reduction, filter lag and overshoot respectively.

5.1.1 Noise reduction

The filter gain model derived automatically in section 4.2 can be used to evaluate the
filter’s capabilities to suppress noise and let the signal through. For this purpose we
first determine the gain of the filter from filtered and unfiltered versions of the same
signal and then compute the error with the gain constraints from the filter design:

1. Gconstr(c) = piecewise linear derived filter gain constraints

2. Pm(ω) = frequency power spectrum density estimate for unfiltered data

3. Pf (ω) = power spectrum estimate for filtered data

4. Gf (ω) =
Pf (ω)
Pm(ω) the observed gain of the filter

5. Gf supp(ω)=
{

1, Gf > 1
Gf , otherwise

gain of the filter without overshoot-effects (mea-

suring frequency suppression only, overshoot is dealt with separately)

6. df ,c ([ωc,min;ωc,max]) = the squared differences betweenGf supp([ωc,min;ωc,max])
and the linearly interpolated gain constraintGcontr(c) (from ωc,min to ωc,max)

50
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Figure 5.1:The filter gain performance measure penalizes gain values differing from
the values at constrained frequencies (solid lines marked with stars). At frequencies
where no constraints are explicitly defined (dotted lines marked with stars) only the
exceeding of interpolated values between filter gain constraints is considered a perfor-
mance cost. In this way the Kalman gain in the picture (line with triangle markers)
gets a higher performance value than the gain of the predicted FIR filter (marked with
circles), as it should.

7. df ,c ((ωc−1,max;ωc,min)) = the squared positive differences betweenGf supp((ωc−1,max;ωc,min))
and the line between the gain constraint values atωc−1,max andωc,min (the ex-
tremities of the space between two constraints): by only counting positive dif-
ferences, where the calculated gain exceeds the constraints, filters are allowed to
be more suppressive in the inter-constraint regions without penalty, while fail-
ure to adhere to the upper bound interpolated between constraint extremities is
discouraged

8. df (ω) combinesdf ,c for all c in Gconstr(c) so that all frequencies inGf are cov-
ered

9. ε f =
√

df the RMS error against the constraints

10. pf = 100·
(

1− ε f
εid

)
the noise reduction performance measure in percents

Gain error measureε f indicates how well the constraints are met. To get a filter perfor-
mance measurepf the ratio betweenε f end errorεid of the identity filter (unit gain for
all frequencies) is used in a way that attributes a value of zero percent noise suppres-
sion to cases where the filter gain is identical to that of the identity filter, and a value of
hundred percent to filters with a gain equivalent to the target gain.

5.1.2 Lag

Because real-time constraints dictate filter lags of order of magnitude 10 or even a
single sample, it is convenient to have a filter lag measure with subsample resolution:
For different relative displacements of the same data, one unfiltered, the other filtered,
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Figure 5.2:The step response of a filter reveals overshoot behaviour (upper pictures).
Note that a slow (low frequency) overshoot (the right picture) can have more impact
than a sharp spike with a high amplitude (top middle picture), as can be seen in the
graph of an actual signal filtered with corresponding degrees of overshoot (lower pic-
ture).

the mean squared error values are computed, the displacement yielding the minimum
value is regarded as the lag value at sample resolution. A second degree polynomial
fit is then performed on this and its neighbouring error values. The location with the
minimum value in this fit is considered the lag value at subsample precision.

5.1.3 Overshoot

A filter that anticipates future values of the signal is not likely to be always right in
its predictions. The signal may show dynamics that are not accounted for in the pre-
diction algorithm. Unforeseen changes in the signal can causeovershoot,in the same
way the estimates of filters that incorporate one or more trends of some order, like dou-
ble exponential smoothers, could diverge from reasonable values. From a frequency
domain perspective, overshoot amplifies frequencies in the signal, in particular lower
frequencies if the overshoot is due to a smoothing (or trend-based) filtering mechanism.

We could examine overshoot effects by looking at filter gains exceeding the value
of one, indicating amplification instead of attenuation of frequencies. However, it is
hard to define a sensible measure to quantify overshoot in this way. For instance lower
frequency overshoot has higher impact than a higher frequency overshoot with the same
frequency power (at lower frequencies the effect is smeared).

The filter’s step responsethough contains better clues about the amount of over-
shoot: AfterWiener filteringa (stair-)step function using the filter gain derived from
the frequency power ratio of measured and filtered signals, a step response plot of a
filter with a large overshoot will show one or more large oscillations before the filter
settles to a stable output value.
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Figure 5.3:Low- and high-frequency overshoot is measured by calculating the RMS
distance of a filtered signal to an “ideal” signal: the measured signal filtered with a
non-causal filter designed using the derived frequency spectrum of the motion signal
(see figure 4.12). In this picture the measured and “ideal” signal are plotted.

To rank the filters depending on the impact of the introduced overshoot the mean
value of the overshoot sensitive region in the step response (the part of the response
that exceeds the minimum value in the response tail) could be calculated. This value
measures the signal power of the filtered step signal. The step function produces a
signal containing both very high frequencies and very low frequencies, but the largest
contribution to total power comes from the lower frequencies. This corresponds with
the notion that low frequency overshoots have a large impact on the signal (see figure
5.2). A problem with this power measure is that it is not only influenced by overshoot,
but also byundershoot, or theattenuationof lower frequencies. Between both low-
pass FIR and DES filters this is not an issue, whereas Kalman filters could lock onto
a band of frequencies not including the lowest, which has a negative effect on the step
response power.

A more usable measure seems the RMS angular distance of the filtered signal to the
signal filtered off-line using an “ideal” filter (see figure 5.3): a non-causal filter of high
order, designed from the derived frequency spectrum of the motion signal. Defined this
way the measure has a clear unit (radians or degrees) and yields comparable values for
low- and high-frequency overshoot corresponding with what one would consider equal
amounts of overshoot just by looking at the data bare-eyed. The measure is applicable
to band-pass as to low-pass filters equally well.

5.2 Experiments

To evaluate filters one dataset, from session 1 (see table 4.3), was filtered using different
methods and parameter values. This dataset was chosen for its temporal stability and
richness of rotational motion (compare figures 4.5, 4.6 and time deviation frequency
power and distribution in figures 4.8 and 4.9). The performance of each filter was
measured by examining noise reduction (resemblance of the resultant filter gain with
the gain design), signal lag and overshoot measure as described in section 5.1. The
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Figure 5.4:Evaluating FIR with prediction: Lighter colors represent higher values.
Colors in the lower right sub-graphs correspond with the colors in the upper left sub-
graphs - indicating noise reduction performance (0-100%). The picture to the left
shows the results for a symmetric versus those for an asymmetric kernel and prediction
window in the picture to the right.

overshoot measure of raw data, RMS deviation to the “ideal" signal, is 0.4 degrees.

5.2.1 Predictive FIR filtering

In these experiments a FIR filter was applied to the signal using the tangent-space (off-
set) filtering method described in chapter??. It was configured to use a filter kernel
refined as described in section 4.2.2. Using various parameter values from the intervals
[0;3] for the number of samples to predict (Predicted Steps) and[5;50] for the number
of samples the prediction is based upon (the prediction support orPrediction Trace
Length) the motion signal was filtered. Two sets of results are shown in figure 5.4. One
set using a symmetric filter kernel and prediction trace and one set using an asymmetric
kernel (of order 6, designed as described in section 4.2.2, truncated and renormalized
to the first 5 coefficients) and trace (binomial distributed) as suggested in section 4.3.1.
Viewing the graphs of the results for predictive FIR filtering the following can be ob-
served:

• Noise reduction performance decreases with more prediction and/or prediction
based on shorter signal traces (upper left sub-graphs);

• Signal lags are lower where more is predicted based on more recent history (ac-
tual lag reduction follows the amount of predicted steps, see upper right sub-
graphs);

• Prediction causes overshoot (lower left sub-graphs);

• As more values in history are used to predict (longer prediction trace), overshoot
increases (lower left sub-graphs), and prediction strength diminishes (upper right
sub-graphs);

• The use of an asymmetric kernel lowers lags with half a sample interval while
decreasing noise reduction performance only slightly;
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Figure 5.5:Evaluating the Double Exponential Smoothing filter: Lighter colors repre-
sent higher values. Colors in the lower right graph correspond with the colors in the
upper left graph - indicating noise reduction performance (0-100%).

• Shorter asymmetric prediction traces have a greater negative impact on noise
reduction performance, longer traces show less overshoot than their symmetric
counterparts.

To examine the advantages of filtering in orientation tangent space as opposed to renor-
malizing the results of quaternion component filtering, motion data were also filtered
with a traditional (euclidean) predictive FIR filter directly on quaternion components,
using the same set of parameters as with its spherical counterpart described above.
Visually the result graphs are indistinguishable (also see section 5.2.5).

5.2.2 Predictive Double Exponential Smoothing

For the predictive DES experimentsα was chosen to vary from 0.1 to 0.4. Value 0
and 1 were excluded because they represent the degenerate cases where no signal gets
through and where the algorithm is undefined (because of a division by zero, see section
4.3.3) respectively. Values above 0.4 were not included because their noise reduction
performance is below 50% (and the graphs are more readable when they are left out).
Prediction parameterτ was evenly sampled from[0;3] with distances of 0.5. Viewing
figure 5.5 the following can be observed:

• The lower theα factor, the more the filter smooths, suppressing noise (upper left
graph);

• Both heavy smoothing and predicting increase overshoot (lower left graph);

• Signal lags are low where less smoothing is performed or more is predicted (the
actual reduction in signal lag follows the specified prediction time parameterτ,
see the upper right graph).
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Figure 5.6:Evaluation: Kalman filtering without (left) and with (right) acceleration
in the system model. Lighter colors represent higher values. Colors in the lower right
graph correspond with the colors in the upper left graph - indicating noise reduction
performance (0-100%).

In equation 4.7 the filtered quaternionqdes,t is calculated using slerp interpolation, as
proposed by [Laviola2003], along the quaternion sphere. An approximation ofqdes,t

could be obtained by linear (euclidean) interpolation and renormalization:

q̂′des,t = qlo,t +ρ(qhi,t −qlo,t)

q̂des,t =
q̂′des,t

|q̂′des,t |

This approximation introduces small errors into the filtered signal, however the
increase of angular RMS errors for the conducted experiments stays below 3· 10−15

degrees.

5.2.3 Kalman filtering

Using the system model with and without acceleration a Kalman filter was applied
as described in section 4.3.3. The error covariance magnitudes for the system model
were taken from the range[0.0003;0.02], the measurement error covariance magni-
tudes were varied from 0.01 to 1. Additionally the same prediction method and param-
eters as used with the FIR scheme were applied to a Kalman filtered signal (see sections
4.3.2 and 5.2.1). The predictive filter had no acceleration in its system model, because
the advantage of acceleration is not clear when looking at corresponding noise reduc-
tion levels (in fact, Kalman without can achieve the maximum reduction of Kalman
with acceleration having a mere tenth of a sample more lag and less overshoot). The
results are plotted in figures 5.6 and 5.7:

• Smaller model error and greater measurement error covariance magnitudes yield
stronger noise reduction (upper left sub-graphs);

• If acceleration is included in the system model, the filter produces much less
overshoot, though at the expense of noise suppression for corresponding param-
eters;

• The predictive Kalman filter has a sub-sample lag at maximum performance;
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Figure 5.7:Evaluation: Predictive Kalman filtering without acceleration in the model.
Lighter colors represent higher values. Colors in the lower right graph correspond
with the colors in the upper left graph - indicating noise reduction performance (0-
100%).

• Remarks about prediction in section 5.2.1 also hold for predictive Kalman, be-
cause the same predictor was used.

5.2.4 Computational cost

To indicate the computational cost of each method, time of execution was measured
during the experiments (see figure 5.8). Although (even standard non-extended) Kalman-
filtering turns out an expensive method, execution times for the lightest and heaviest
method did not diverge by more than one order of magnitude.

5.2.5 Euclidean vs. spherical

The hassle with logarithms and exponents may give rise to questions on what is gained
with it, compared with quaternion component-wise, euclidean filtering. Therefore the
RMS spherical differences (angular deviation, see figure 5.9) between spherical and
renormalized euclidean FIR filtered data were measured along with their deviations
from the given ideal signal described in section 5.1.3. The angular differences between
the methods are small (below one fifth) compared to their angular deviations from the
ideal signal. The differences are in the order of 0.01 degree.

5.3 Discussion

The performances of the filters overlap partly and have similar shapes, as seen in figure
5.10 and 5.11. Nevertheless some observations can be made:
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filter lag noise reduction deviation parameter parameter
(samples) (%) (degrees) 1 2

PFIR -0.3 89 1.2 3.0 40
PDES -0.3 86 0.96 0.2 1.5
PKF-A -0.3 87 0.77 1.0 30

PFIR -0.5 84 1.0 3.0 20
PDES -0.8 84 1.1 0.2 2.0
PKF-A -0.7 84 0.92 1.5 20

PFIR - - -
PDES -1.2 82 1.3 0.2 2.5
PKF-A -1.2 83 1.1 2.0 20

Table 5.1:Best noise reduction results for a lag just below zero (top rows), best results
for 84% noise reduction and overshoot of approximately 1 degree (center rows, mini-
mum lag for PFIR above 80%), best results for heavy prediction (bottom rows, PFIR
cannot has no matching result above 80%). Columns “parameter 1” and “parameter
2” show the filter parameters: predicted steps, prediction trace for PFIR and PKF-A,
andα, τ for PDES respectively.

• If noise suppression and minimum overshoot are the focus then the FIR filter
performs best: none of the other filters can achieve noise reduction of more than
90% percent while deviating a mere 0.2 degrees from the ideal signal, although
at a lag of 1.5 samples (which corresponds with the half order truncation of the
filter kernel);

• Double exponential smoothing manages to achieve more than 90% for lower
lags, though with much more deviation (such as 92%, -0.1 sample lag, 1.2 de-
grees deviation);

• Extrapolation of the results (see the dotted and dash-dotted lines) indicates that
for lags below zero predictive Kalman can achieve lower lags with less deviation
than predictive FIR with comparable noise reduction performance;

• For lags below zero double exponential smoothing may be seen as a compu-
tationally cheap alternative for the predictive Kalman filter, although Kalman
performs better (see also table 5.1). However, predictive FIR is even cheaper,
with comparable results for lags near zero.

In [Laviola2003] it is concluded that with a computational cost over a hundred times
lower than for (extended) Kalman filtering, predictive double exponential smoothing
(PDES) can yield comparable results. However, in the experiments conducted above
even a standard (linear) Kalman filtering corresponding with a relatively low compu-
tational cost (see figure 5.8) can outperform PDES in the sense of several tenths of a
degree overshoot and one percent of noise reduction (see table 5.1).

Euclidean predictive FIR filtering is about 4 times cheaper than its spherical coun-
terpart and PDES, which may advocate its use in applications which do not require
much prediction, for instance embedded devices with limited calculation power but
fast data acquisition. Speaking of limited resources: although not as cheap computa-
tionally, PDES requires only a very small signal memory of 2 quaternion values. An
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Figure 5.10:Combined overview of all results. Note the common shape of the curves
for the different methods. Connected points have the same amount of prediction (num-
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tively. In the upper right picture dotted and dash-dotted lines extrapolate the outline of
results for these two filters.
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Figure 5.11: Overview of results showing a lag below zero, noise suppression per-
formance of 70% or higher and deviation (overshoot measure) of 1.5 degrees or less.
Filters not adhering outside these requirements are not likely to suffice in a practical
situation.
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other disadvantage of predictive FIR and Kalman in the comparison with PDES is that
the latter only requires two scalar parameter values (i.e. smoothing factorα and predic-
tion strengthτ) to be adjusted to the context in which it is used, whereas kernel width,
kernel coefficient distribution, prediction strength and prediction window length and
shape are adjustable for PFIR, as model matrices, covariance matrices and the predic-
tion parameters (like PFIR’s) are for predictive Kalman.

Tests with the MoVis application (see section 3.2) point out that differences of
2% noise reduction for performance values about 80% are already visually noticeable.
Values below 80% leave much of the unwanted oscillations through. Deviations in the
neighbourhood of 1 degree seem visually agreeable. In this light predictive FIR does
not perform badly at all (see the top row of table 5.1).

Answering questions involves raising new ones: Now that common overshoot (de-
viation) levels have been quantitatively determined, user tests could shed a light upon
the actual impact of overshoot during practical use. Refining the underlying system
and noise models could improve rotational motion prediction, although more is likely
to be gained from higher sampling rates. The different filtering schemes could also
be applied to translations. FIR filtering in tangent space might be applicable to other
domains than orientation filtering as well.



Chapter 6

Conclusion

The Personal Space Station is a near-field virtual reality console with a reach-in gras-
pable user interface and is designed to be compact and affordable. Therefore cost effec-
tive means are sought to reduce erroneous oscillations present in captured orientation
data. This report explores a solution where a signal processing filter is used to achieve
this goal. In existing work offline or computationally expensive on-line methods were
used to filter orientations or the geometry of rotations was not adhered to. A paper from
Lee and Shin did offer a computationally cheap method respecting rotational geometry,
which was easily transferable to on-line use.

The quaternion representation of rotations was identified to be a compact, handy
and forgiving way to describe rotations and to calculate with them. Coordinate invari-
ant angular differences and velocities became almost trivial to use and it turned out
relatively simple and computing power-friendly to stay in or get back to rotation space
by renormalization. The errors due to quaternion renormalization were avoided by the
use of the Lee and Shin linear finite impulse response (FIR) rotational filter working in
quaternion tangent space.

Coordinate invariant linear measures such as angular speed (velocity magnitude)
can be used to analyse rotational motion in the frequency domain and relate findings
to results in research on human motion such as [VanSomeren1996]. An automatic
procedure for designing a FIR filter based on empirical frequency domain data was
described and executed. Because of the real-time constraints on the PSS application
we explored options to reduce signal lag: the use of asymmetric filter coefficients,
a velocity based predictor and the use of alternative filtering methods: Kalman and
double exponential smoothing. Quantitative measures were presented to evaluate the
orientation filters for their noise suppression, signal lag and overshoot behaviour.

For practical applications renormalization errors might turn out mission-insignificant
as the computational cost of going to and from tangent space is not likely to counter-
weigh error reduction in current technology. The conducted experiments show that
almost four times the computing power was traded against an overall signal accuracy
improvement of a mere twentieth of a degree spherical RMS error, which is nothing
compared to deviations introduced by for instance prediction (as in an order of magni-
tude).

This is also reflected by the performance of a standard linear Kalman filter on
quaternion components in euclidean space. This filter is computationally much cheaper
than the (extended) Kalman filter reported of in [Laviola2003], where it was compared
to a predictive double exponential smoothing (PDES) method. PDES and Kalman were
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said to perform equally, while PDES was calculated more than a hundred times faster
than the Kalman filter. The experiments in this report show that the much cheaper non-
extended Kalman filter also performs comparably using only slightly more than two
times the calculation time needed for PDES.

Predictive double exponential smoothing turned out very flexible and compact in
memory requirements and tuning parameters: with two free parameters and two signal
values to store during operation it manages to reduce noise heavily at low lags with
agreeable overshoot and performs well with lags as low as -1 sample. For lower lags it
is advisable to switch to the presented predictive Kalman filter.

Very high noise reduction performance at a neglectable overshoot (of 0.2 degrees)
is only achieved by predictive FIR filtering, which is nice because it is the cheapest
method, but at the cost of signal lag: this solution is only suitable for applications where
the tracked signal is relatively slow or sampling is fast. Using asymmetric kernels
1.5 times the sampling interval should be less than the maximum acceptable lag time,
known to be 10 ms for critical hand-eye coordination (resulting in sampling frequencies
of 150Hz minimally if noise properties are retained, i.e. constant in the frequency
domain on sample basis, not time).

Recommendations for applications such as the PSS:

• Increasing the sampling frequency (like doubling it) has a positive effect (for
all filter methods) on prediction performance because it decreases the maximum
lag in seconds to start with and because there is less motion dynamics going on
between samples.

• Predictive double exponential smoothing is resource-friendly, requires only two
parameters to be (maybe adaptively) tuned to the application context and per-
forms only slightly worse than predictive Kalman or FIR at extremes (strong
prediction or ultra low overshoot).

• If sampling frequency is higher than 150Hz, predictive FIR filtering would be a
good choice, because it is cheapest by far when used on quaternion components
directly (which can help to maintain the high sampling frequency) and it reduces
overshoot to a minimum. The total end-to-end delay can drop below 10 ms this
way.
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