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Abstract

In this master’s thesis we are going to study the use of artificial neural networks in the control of a
water vessel process. Water vessel process is highly nonlinear and conventional methods of control
from control theory do not yet provide optimal solutions to the control of such processes. The ability
of artificial neural networks to approximate nonlinear functions could therefore be effectively used
in the optimal control of nonlinear dynamic systems, where the relationship between the state of
the system and the control signals is mostly nonlinear and unknown.

As will be explained later, in this study a simple version of water vessel process is considered
in which only one vessel is to be controlled. The task is to learn the function of the controller using
artificial neural networks. Two types of neurocontrollers are discussed, linear and nonlinear. To
learn the mappings of these neurocontrollers the method of reinforcement learning is used in com-
bination with temporal difference learning. In addition to the experiments with neurocontrollers,
also experiments were performed using conventional P- and PI-Controllers.
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Chapter 1

Introduction

1.1 General Introduction

A conceptual basis for artificial neural networks (also known as parallel distributed processing)
was formed in the 1940s by the researchers who were studying the biological structure of the
human brain. The idea emerged that the network of interconnected neurons in the brain could
be simulated by electronic circuits able to perform simple computational tasks. The research
in this field resulted in building simple artificial neural networks called perceptrons in late 1950s
(Rosenblatt [20]). However, near the end of 1960s the limitations on the performance of perceptrons
on one hand (Minsky & Papert [17]) and the lack of proper technology on the other, caused the
research to slow down in this field. Little progress was made until 1980s, when the availability of
powerful microprocessors and important theoretical breakthroughs opened new doors for artificial
neural networks. Since then this field has been the subject of a great deal of research which has
extended the applicability of neural networks to different classes of learning problems.

An artificial neural network could be classified as a computational model of the human brain.
However, in contrast with the way a computer is ”programmed” to perform a certain task, an
important property of an artificial neural network is that it can "learn” and ”adapt” itself. In an
artificial neural network the nodes represent the neurons in the brain and the arcs (called weights)
between them the synapses between the neurons. The computation in each node takes place as a
response to its inputs. This resembles the reaction of the neurons of the brain to electrochemical
signals sent to them from other neurons through the synapses. The learning involves adjusting the
weights of the neural network as a response to the data presented to it. For a detailed discussion
of different designs and learning methods of neural networks the following books are good sources:
Haykin [12]; Hertz, Krogh & Palmer [13]; Rumelhart & McClelland [21].

Some of the well-known characteristics of artificial neural networks are their ability to learn
mappings based on input-output examples and to generalize upon them. Robustness and fault-
tolerance are also some other useful properties of neural networks. As outlined in Rumelhart
& McClelland [21] artificial neural networks are suitable for learning problems involving pattern
association, auto association and classification. Despite successful applications of artificial neural
networks to different learning tasks it should be added that no matter how ”intelligent” the
behaviour of neural networks might seem, they are still far from being a complete model of the
brain.

In recent years there has been a growing interest in neural networks by the people of control
community. The ability of neural networks to approximate nonlinear functions has made them an
effective tool in optimal control of nonlinear dynamic systems. The conventional methods do not
have solutions to the optimal control of nonlinear systems in a well-understood manner as they
do for linear systems. The optimal control tasks involving nonlinear dynamic systems are usually
faced with two problems:

o Unavailability of a proper system model due to the highly nonlinear and complex dynamics



of the system.

e The mostly time-varying relationship between control signals and the dynamics of the pro-
cess.

Artificial neural networks could be used as means of modeling the nonlinear system or/and the
nonlinear controller which maps the dynamics of the process to control signals. The term neu-
rocontroller is used to refer to a neural network based controller used in a control process. The
research has shown that neurocontrollers are able to perform well in the control of an unknown
process under noise and are adaptive to dynamical changes in the system. Sofge and White discuss
several types of these neurocontrollers in their excellent book [32].

1.2 Water Vessel Process

An example of a nonlinear dynamic process is the so called water vessel process. The water vessel
process consists of four vessels connected with each other as shown in Figure 1.1. The water

P (?x:u Fins Fin, F’Q P2

hy

- - - — - —>

Figure 1.1: Dual cascaded water vessel system.

from a water reservoir is pumped into the top vessels by roller pumps p; and ps. The goal is to
control the level of water h; and hy in the lower vessels by controlling the inflow Fin; and Fing
to each of the top vessels produced by the pumps. The output restrictions of all the four vessels
remain constant during the process. The water vessel process is a highly nonlinear and dynamic
process. There are different aspects of this process which make it interesting as a control problem,
to mention:

1. Nonlinearity in the process.

2. Nonlinearity due to the pump flow range, since it has a maximum and minimum flow capacity.



3. Variable delay caused by the transfer time of water to each of the top or lower vessels.

In this thesis we will be dealing with a simplified version of the water vessel process consisting
only of a single vessel as shown in Figure 1.2.

P(@
N—
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h
v

Figure 1.2: Single water vessel system.

Boom [7] discusses a simple nonlinear approximation of the water vessel process which is used
in our experiments and will be explained in Section 4.2.

The goal is to design a neurocontroller that learns to control the level of water in the vessel
without using a model of the process and just by gaining experience over time through interaction
with the environment. This method is called reinforcement learning (RL for short). The power of
RL lies in its ability to produce an estimate of the future performance which adaptively improves
with time. At each time-step a control signal is produced which is expected to result in the
improvement of the performance.

1.3 Overview

In Chapter 2 we give a short introduction on control theory and some control laws. In Chapter 3
we discuss reinforcement learning and some of its methods. In the same chapter we will discuss the
CMAC neural networks which are used within the RL-Controller. In Chapter 4 the experimental
setup will be explained and the results of the experiments with different conventional controllers
will be presented and compared to a linear RL-Controller. In Chapter 5 the results of the exper-
iments with a nonlinear RL-Controller are presented. And finally in Chapter 6 we conclude the
research and describe possible future work.



Chapter 2

Control Theory

2.1 Introduction

The purpose of this chapter is to provide some basic knowledge of control theory. It starts with
the definitions of some elementary terms from control theory. Then in Section 2.7 some control
laws are presented and discussed.

The contents of this chapter are mainly based on the material from a number of books. These
are: Amerongen et al. [10], Narendra & Annaswamy [19], Leigh [15], Burghes & Graham [5] and
Dorst [8]. Of course, explicit references will be provided in the text when necessary.

2.2 System

A system is defined as an aggregation of objects united by some kind of interaction or interde-
pendence. When one or more aspects of the system change with time, it is generally called a
dynamical system [19]. To analyze a system, we should first make sure what its relevant inputs
and outputs are and how they are related to each other. The behaviour of a dynamic system is
usually characterized by differential equations that are derived from the properties of the compo-
nents involved and their interactions. We will talk more about these differential equations and the
dynamics of the system in Section 2.5.

2.3 Control Systems

A control system is defined as a system consisting of at least a controller and a process, in which
a certain goal is to be achieved. The process is the part that needs to be controlled. By control of
a process, we mean trying to keep its relevant output within some desired limits. In a very simple
form the system would look like the one in Fig.2.1. The controller uses the value of y(t)gesireq and
produces a control signal u(t) for the process. The goal is to try to drive the process such that
it’s output y(t) equals y(t)gesirea- The controller uses some a priori knowledge to determine the
control signal and is not affected by the actual output of the process. This is called driving the
process.

y(t)desired U(t) y(t)
— 1 Controller Process —

Figure 2.1: A control system which drives the process (also known as open-loop).



2.3.1 Feedforward Control

Driving is one way of ‘control’ which performs well when the process specifications are known
prior to control and there is no noise in the system. Unavailability of the process specifications
and the presence of noise could cause the process to produce undesirable output. In situations
where the noise is known we could improve the performance by using a different form of driving
called feedforward control. Suppose that noise n(t) is measured at time ¢ then Fig.2.2 shows how
a feedforward controller might be used to get a better result.

feedforward noise n(t)
controling
y(t)desired N + y(t)
—1 Controller W, Process .

Figure 2.2: A feedforward controller

In this case we actually use the measured noise to influence the output of the process. However,
just knowing the amount of the noise signal is usually not enough. In order to get satisfactory
results by using feedforward controlling it is necessary to know exactly how the system is influenced
by the noise. Therefore, dealing with a large number of noise signals requires also a large number
of sensors to measure their influences on the system. This makes the use of feedforward control
costly. Besides, it is not always easy to determine the amount and the effect of the noise precise
enough for the controlling purposes.

2.3.2 Feedback Control

One way of getting around the problem of noise is to use the principle of feedback control. A
simple feedback control system is shown in Fig.2.3 assuming that the noise is included in the
process. Using feedback principle we make the system less sensitive to noise or changes in other
parameters of the system. Here the error in the performance is calculated using the actual output
of the process and its desired output also called setpoint. This error is passed to the controller
which then produces the control signal. Feedback control systems are also called closed-loop as
opposed to open-loop control systems shown in Fig.2.1.

y(t) desir?_\ U(t) y(t)

Controller Process

+

Figure 2.3: A feedback controller (also known as closed-loop)

2.4 Regulators and Servosystems

It was mentioned in 2.3 that the aim of control is to keep the relevant output of the process within
certain limits. If the setpoint (desired output value of the process) is constant the problem is one
of requlation of the system around this setpoint. But if the setpoint is time-varying then we refer
to the problem as tracking. In the former case, the system is referred to as regulator system and
in the latter servosystem.



In servosytems, besides coming to rest at the setpoint it is also very important how that has
been achieved. In other words, how fast a new reference point is reached and how much overshoot
was involved during the transition. We will talk more about these aspects in Section 2.7 when we
discuss different control laws.

2.5 Linearity and Nonlinearity

Before defining the linearity of a system let’s see when a function is called linear. A function f is
said to be linear if the following conditions hold [15]:

1. Homogeneity Condition:

flaz) = af(z) for any z in the domain of f and for any «; (2.1)

2. Additivity Condition:

f(z1 + z2) = f(z1) + f(22) for any z;, 2 in the domain of f. (2.2)

It should be clear that the same conditions could also define the linearity of differential equations
and thus the systems they represent. In that case we say that the system obeys superposition
principles (referring to conditions (2.1) and (2.2)).

Next, two examples of processes represented by linear differential equations are given.

e Radioactive Decay (1°¢ order): The number of radioactive particles that are deteriorated per
time-step is proportional to the number of already existing particles: % =-AN (A>0)
where N is the number of particles, ¢t the time and A the constant of proportionality. The
differential equation representing this decay process is therefore a linear first order equation
given as:

N +AN=0 (A>0) (2.3)
Now N (t) could be easily calculated for the process.

e Object-Spring (2"? order): Another example of a linear system is an object hanging from a
spring moving only in vertical direction. Call the vertical axis as z with positive direction
downwards and its origin 0 at balanced position of the object. Figure 2.4 shows how this
system might look like and:

Mz" + fz' +kz=0 (M >0,f>0,k>0). (2.4)

is its differential equation which is linear and of the second order, where M represents the
mass of the object, f the friction with air and k the constant of the spring. We can easily
calculate z(t) from Equation(2.4) using known methods and use it for control purposes.

If the differential equation of a system is not linear the system is said to be nonlinear, and the
superposition principles do not apply to it. Linear systems are the ones that are best understood
and used in control theory. For nonlinear systems superposition is invalid by definition and that
precludes the direct application of well known linear principles for their control. While the same
type of controllers could be designed for nonlinear systems, no coherent theory of control design
exists at present for any reasonable class of nonlinear systems.

The nonlinear differential equation of the single water vessel system when linearized is reduced
to a first order equation as shown by Boom [7].



0
T z(t)

Figure 2.4: A system containing an object hanging from a spring.

2.6 Adaptive Systems

Many of the real-world processes are of a nonlinear nature. For example in most of the mechanical
devices this is caused by highly nonlinear friction forces. The exact parameters of these processes
are usually not known to us. The behaviour of the process changes with time due to numerous
environmental causes which are not always as easy to measure or detect. Conventional control
theory even when used to design controllers for such systems, may be inadequate for achieving
satisfactory performance of the system for its whole range of parameters’ values. Adaptive control
refers to the control of this partially known systems. The term adaptive system was introduced by
Drenick & Shahbender [9] in control theory to represent control systems that monitor their own
performance and adjust their parameters in the direction of better performance. The following
definition of an adaptive system is taken from Eveleigh [11]:

Adaptive System is a system which is provided with a means of continuously monitoring its
own performance in relation to a given figure of merit or optimal condition and means of
modifying its own parameters by a closed-loop action so as to approach this optimum.

2.7 Control Laws

The controller or control law contains the information about how the control processor produces
the control signals from its input signals. In the following sections some well-known control laws
are presented. These control laws have been primarily developed for controlling linear systems.
They could also be used to control nonlinear systems, in which case the system is linearized first.
As we mentioned earlier, the direct application to nonlinear systems is not well-studied and might
not produce satisfactory results.

In the followings, y4 and y, represent, respectively the setpoint and the current output value
of the plant to be controlled and u is the control signal generated by the controller.

2.7.1 P-Controller

A P-Controller generates a control signal which is proportional to the amount of error. Such a
controller is called proportional controller, or P-Controller for short. The control law will be as
follows:

P: u=K,x(ya—vy) (2.5)

where K, is the proportional gain.

When dealing with linear systems of the second order it is possible to control the behaviour of
the system by selecting appropriate values for K. Without going into the detail of how it is done
I will just mention the three possible cases:



e Damping
A small K, results in damping in which the yq is reached asymptotically and very slow.

e Critical Damping
There is a value of K, for which y4 is reached at the shortest possible time, without over-
shooting the value.

e Quershoot
For large values of K, the system gets rapidly close to the desired value, but oscillates around
it. The relative amplitude of the first oscillation is often called the overshoot.

Note that the value of K, only controls whether or not the system is critically damped, but the
amount of damping is not affected by that and is always equal to a damping constant. One major
drawback of the P-Controllers is that they do not necessarily result in a zero error state. The
reason for this is that naturally when the error is zero the proportional control action will be also
zero which is not always desired. We will see how this problem could be solved when we discuss
PI-Controllers in Section 2.7.3.

2.7.2 PD-Controller

In P-Controller case, we could not control the damping. By adding a term to the controller
proportional to g (the derivative of y) we will be able to control the damping. Such a controller is
called proportional plus derivative controller, or PD-Controller for short. This new controller will
generate the control signal as follows:

PD: u=K,*(ya—y) — Kaq*y (2.6)

where Ky is called the differential gain. Now: if the error is large and the speed at which the
desired value is being reached is slow, the control signal will be high, so the system accelerates; if
the error is small and the speed is high, the control signal will be negative, causing the system to
decelerate. This way the system rapidly homes in on the desired value.

2.7.3 PI-Controller

A problem with P-Controllers is that the asymptotic value (steady state) of the system is not
necessarily equal to the desired value. This is called the steady-state error problem. Since the
problem involves the accumulation of the error we can overcome this by designing a new controller
which generates a control signal dependent also on the integral of the error. This is called propor-
tional plus integral controller, or PI-Controller for short. Its feedback law to generate the control
signal is:

¢
PIl: u=K,*(ya—y) + K, * / (ya — y(7))dr (2.7

0
where K is the gain for the integral factor and ¢ the current time of the system. Now if the

P-part of the controller causes a steady state error making y > y4 then the I-part is negative and
generates a control signal which decreases the error to 0.

2.7.4 PID-Controller

If we combine the properties of PI and PD controllers we will get proportional plus integral plus
derivative controller, PID-Controller for short. This controller would generate the control signal
as follows:

t
PID : u:Kp*(yd—y)—Kd*y'—}—K,-*/ (yqg — y(1))dr (2.8)
0



Chapter 3

Reinforcement Learning

3.1 Introduction

In this chapter the method of reinforcement learning is discussed. We first give a short history
on the psychological background and then go on to explain the characteristics of this type of
learning in Section 3.3. In Sections 3.4 and 3.5 we explain how reinforcement learning could be
implemented by discussing some popular approaches. In Section 3.7 finally the CMAC function
approximator is discussed in some detail due to its importance for this project.

This chapter is by no means a complete introduction to all different methods of reinforcement
learning. The main objective is to give an overview of this learning paradigm and discuss some of
its major designs.

3.2 Animal Learning

In the context of experimental studies related to animal learning the terms reinforcement and pun-
ishment have been used to refer to the events that could affect the stimulus-response relationships
and therefore learning. To see what this means it might be helpful to recall the Thorndikes’s ” Law
of Effect” from 1911 [25]:

Of several responses made to the same situation, those which are accompanied or
closely followed by satisfaction to the animal will, other things being equal, be more
firmly connected with the situation, so that, when it recurs, they will be more likely
to recur; those which are accompanied or closely followed by discomfort to the animal
will, other things being equal, have their connections with that situation weakened, so
that, when it recurs, they will be less likely to occur. The greater the satisfaction or
discomfort, the greater the strengthening or weakening of the bond.

Although later results convinced Thorndike that punishment is rather ineffective in weakening
responses but he strongly believed that reinforcement is critical to learning. Despite all the
controversies, this theory has been one of the most influential learning theories in psychology
because of its common-sense approach.

The term Reinforcement Learning however, is never used in psychology. We could trace its
usage back to Minsky [18], Waltz and Fu [26] in their studies of learning in the fields of AI and
control theory, inspired by animal learning. In the rest of this chapter this approach to learning will
be explained in relation with artificial neural networks. For further discussions on reinforcement
learning, the following material could be used: Barto [3], [2] and Williams [33].



3.3 Reinforcement Learning

Supervised learning, learning with a teacher, is probably the most common learning method used
in the field of artificial neural networks. In this approach a certain input-output mapping is learned
by some examples which are presented to the network by the teacher. The method of reinforcement
learning could be best explained on the basis of its difference with supervised learning. We will
not however, get into the details and formulations since that will be done in the next section. This
is just to give you an idea of what kind of problems reinforcement learning has to deal with.

It might be helpful to use an analogy to make the idea of reinforcement learning more under-
standable. Consider a learning task in which a student is supposed to improve his grade in an exam.
In a supervised learning method the teacher would give the student the information on his/her
grade plus the feedback on each of the questions, also the correct answers. The student then uses
this information to improve his/her performance in the corresponding areas . On the other hand,
in a reinforcement learning method the teacher would provide only the grading information. Now
the student is faced with the problem of finding out his/her mistakes and the correct solutions
solely based on a single grade, evaluating the overall performance in each of the consecutive exams.

Usually, a system is said to be learning when it improves its performance based on a certain
performance measure. Suppose that the performance measure is calculated as a function of the
parameters of the learning system which represent its current state. For instance, in water vessel
process these parameters could be e the error between the current and the destination height,
hg the destination height, u the inflow signal sent to the pump and maybe some other sensory
information. If we visualize the performance measure as a surface, we can assign to each state of
the system (e, hg,u,...) a point on that surface f(e, hg, u, ...) where f is the performance-measure
function. Now if the system is to improve its performance, the point corresponding to its state on
the performance surface should move towards higher points [3].

The difference between learning tasks is in the type of information available to the system about
the characteristics of this performance surface. For example in the tasks involving supervised
learning the learning system has the gradient information of its performance surface at the point
corresponding to the current state of the system. So the supervised learning system receives
information on how it should adapt itself in order to improve its performance. Notice that the
term ”gradient” is used because it makes better sense in combination with performance ”surface”,
but in general the information feedback to the supervised learning system does not necessarily
have to be of a gradient nature. The key point is that the existence of (input,target-output)
examples provided by the teacher plays a crucial role in supervised learning.

However, the tasks involving reinforcement learning are faced with a problem concerning the
evaluation of their state. The only feedback the system receives from its environment is the value
of the performance measure corresponding to the current state of the system. This scalar value
is usually called (primary) reinforcement signal. It should be mentioned that this reinforcement
signal could also be a vector of values, for example in the reinforcement learning tasks concerned
with more than one performance measure. But in both cases the problem remains that the
reinforcement signal evaluates the performance but does not on its own provide the learning
system with the direct-information on how it should change itself to improve its performance.
Therefore, the main task of the reinforcement learning system is to somehow produce an estimate
of the gradient using the changes in reinforcement during learning.

There are two main types of reinforcement learning tasks as Sutton [23] distinguishes:

e Nonassociative RL, in which the task of the learning system is to find a single optimal action
with reinforcement signal being the only piece of information the learning system receives
from the environment and no other sensory information are available to it. An example
would be a robot trapped in a room trying to free itself by performing a certain action not
known to it. The only input to the robot is a reinforcement signal 0 or 1 representing the
door being closed or open. This signal is presented to the robot after performing an action.

e Associative RL, in which the task of the system is to associate different actions to different
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system states. In this case the system receives some additional sensory information from the
environment regarding the state of the system. Associative reinforcement learning is closer
to Thorndike’s idea and has been the subject of a lot of research in the field of artificial
neural networks.

We will be dealing mainly with the associative reinforcement learning in this chapter since it is
also closely related to the optimal control theory.

Further, it is also useful to divide RL-tasks into two more classes. One in which the rein-
forcement signal is present right after the system has performed an action. Another in which the
reinforcement signal is delayed because it depends on a series of actions performed by the system.
The latter usually occurs when the task involves the optimal control of dynamic systems. In the
rest of the chapter we will be concerned with the delayed RL.

In application to the optimal control problems RL could be formulated in a way that the
long-term consequences of actions are taken into account since in most of the cases the goal is to
design a controller with an optimal long-term performance. The RL-Controller is then designed to
receive a reinforcement signal from the controlled process based on its performed action and the
state of the process. The objective of the learning system is then to either minimize or maximize
the amount of reinforcement signals accumulated in the future, depending on what the signal
represents, cost or benefit. This performance measure is often calculated as a discounted sum of
the future reinforcement signals in which the earlier ones are weighed more.

In the following sections we will describe how this is done. To relate the discussion to our
experiments we will assume that the reinforcement signal represents a certain cost(in contrast to
benefit). And of course we assume that no model of the process is available and the learning
occurs real-time without it.

The material used in the following two sections are based on the works of Sathiya & Ravin-
dran [14], Sutton [23][24] and Watkins [27]. References will be provided explicitly where necessary.

3.4 Evaluation Function

Recall that the goal of reinforcement learning is to find a policy for selecting actions in a way that
the selected sequence of actions will be optimal according to a certain performance measure. Now
we are going to formulate these ideas.

Consider the RL-Controller is used to optimize the control of a discrete-time dynamical system.
Let z(t) represent the system state at time ¢ and u(z(t)) the selection policy for actions based
on the state of the system. We will be only concerned with a stationary policy meaning that the
actions are selected based on the current state of the system and not the previous ones. In other
words we assume that the transition probability of the current state z to y in the next time-step
is only dependent on the current state and action.

Suppose the system starts at ¢t = 0. Then g(z(t),u(z(t))) represents the cost (reinforcement)
received by the learning system after performing action u(z(t)) at state z. We will take the
performance measure to be the discounted sum of the future costs which should be minimized for
the system to perform optimal. From now on we call the function representing this performance
measure the evaluation function and define it for a given policy u as:

T (@) = E |Y_'a(e(t), u(@()))e(0) = = (3.1)

The summation term is called the cumulative discounted cost. E is the expectation operator and
~ the discount factor that can take a value in 0 < v < 1, typically 0.95. v = 1 is not used because
of the problems it might cause with the convergence of the sum. The value of 7 represents to
which extent the learning system is concerned with the consequences of the control actions.

The optimal evaluation function J* could be calculated by:

J*(z) = min J*(z) V= (3.2)

u
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In order to calculate J*, we first need a method of approximating J*. Since the actual outputs
of the evaluation function involve future data not available to the learning system immediately,
we require learning methods specialized to deal with delayed rewards. We discuss these next.

3.4.1 Approximating Evaluation Function

The goal is to find an approximation of J*(.) in (3.1). We call this approximation J(.; W), where
W is the parameter set of the function approximator. A good approximation of J*(.) is important
since it could be used to check the optimality of the policy v and if necessary adapt it to get
a better policy, as we will see later. In this section we are going to discuss three methods of
approximating the evaluation function.

We take 7 to represents the number of time-steps elapsed after the system was in state z. For
the clarity of writing we use ¢(t) instead of g(z(t),u(z(t)).

N-step Truncated Return
We define the following:

Ty = Y 7a() (33

The summation term is the n-step truncation of the sum in Eq. 3.1. Now the approximation J of
J* could be calculated by .

J(z; W) == E(Jy(z)) Vz (3.4)
where F is the expectation operator. In cases where a system model is not present or the calculation
of the expectation is costly we could simply use

J(z; W) = I (@) (3.5)
where J[’;] (z) is calculated using real-time data over n time-steps. However, notice that the

expectation in (3.4) covers all possible states that could be reached in n time-steps and the
method used in (3.5) is restricted to only a specific set of states visited in on-line experiments.
Therefore, J(z; W) in (3.5) will not be a good approximation of (3.4) unless it is averaged over a
large number of trials. One way of achieving this averaging is to use the following learning rule
based on the supervised-learning update rule

J(@; W) := J(x; W) + afJm(z) — J(z; W)] (3.6)
with a being the learning rate.

Corrected N-step Truncated Return

A variation of the method mentioned above is to add a correction term to J[’; ] (z) to make up for
the terms left out due to truncation.

iy (2) = i ¥ a(r) +~" I (@(n); W) (3.7)

where z(n) represents the state of the system after it has passed state z, n time-steps. Also notice
that the rest-term added to the sum for correction involves the approximator J that we actually
are aiming to find. J is always available. Although it might not be a good approximation for
J* at the beginning, as learning progresses this approximation improves. J# , is considered to be
more appropriate than J['ib ] and this could be justified by looking at the following two cases:

o Jisa good approximation of J*. Then Jgin) will be an ideal choice to use with a small n.
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e Jisnota good approximation of J*. Then we have to use a large n in both J(“n) and J[“n]

to get good results. When n is large the rest-term 'y"j in (3.7) is negligible meaning that
both approaches will produce the same results.

Ideally, the learning rule would be:

A

J(@; W) == E(J,y(2)) Ve (3.8)

Following the same line of arguments used in Section 3.4.1, for obtaining the approximation in
(3.8) based on averaging the value of Ji;, (z) over a number of trials, we come to the following
on-line learning rule:

J(z; W) == J(z; W) + alJin(z) - J(z; W)] (3.9)

with a being the learning rate.

However, the question is how large n used in (3.9) should be. If Jisa good approximation of
J* then a small n would be fine. If that’s not the case then a large n must be used. Therefore,
for better performance using this method the value of n has to be changed during learning based
on how well J is learned.

Temporal Difference Learning

Sutton [24] suggested the popular learning method called temporal difference especially applicable
to learning of delayed rewards. This method uses an estimate of the sum in Eq. 3.1 based on
geometrically averaging J(”n) (z) from Section 3.4.1. We define J} as follows:

oo

Ti(@) = (1 =2 D AHI (@) (3.10)

n=1

with (1 — A) being a normalizing term and 0 < A < 1. Notice that the J(”n) terms with smaller
values for n are weighed more in the averaging process. This makes sense since the terms with a
large n rely more heavily on future data and therefore should be weighed less in the average. To
make the effect of A more clear let’s expand (3.10) using (3.7):

9(0) +7(1 = N)J(=(1); W) +
YA lg(1) + (1 =N J(2(2); W) + (3.11)

A [(2) + (1 = NI (z(3); W) +

Since ¢(0) = ¢(z,u(z)) we could rewrite (3.11) recursively as:
T3 (@) = q(e,u(@)) + (1 = X)J(2(1); W) + 73 (2(1)) (3.12)
with z(1) being the system state one time-step after z. Using (3.12) we get:

A=0 = J(z) = q(z,u(@) + I (@(1); W) = T ()
A=1 = Ji(z) = q(=,u(@) + 7711 (2(1) = J5)(2)

In other words, in order to calculate the discounted sum J*, J§' makes use of the immediate cost
within one time-step plus the approzimation of the rest of the sum. J}* on the other hand, relies
only on the actual costs to achieve the same goal. At the end of this section we will come back to
this discussion once more.

The learning method using J} is called T'D(X), with T'D being the short form for temporal
difference. In a while we will see the justification for the use of this name.
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Let’s first define the learning rule similar to the one in (3.9), now using J}:

~

J(@; W) == J(a; W) + a[Ji(z) — J(x; W)] (3.13)

To be able to use this learning rule we need a way of calculating J}(z) on-line, without requiring
a system model or costly operations for computing J¥(z). Next we explain a solution to this
problem which makes the on-line learning possible.

As we saw in (3.1), the evaluation function is defined as the discounted sum of the future costs.
We could easily derive the relation between two consecutive evaluations as:

J(x) = q(z,u(z)) +~J*(x(1)) (3.14)

with z(1) being the system state one time-step after z. But, the same relation should also hold for
the predictions of Jifitisa good approximation of J*. If that’s not the case then the difference
between these predictions could be used to adapt J. Now, we define ¢(.) the temporal difference
between two successive predictions of the evaluation function:

e(z) = [q(@, u(@)) + I (@(1); W)] = J(@; W) (3.15)

g(.) could be calculated using the temporal sequence of data available in each time-step. This
also justifies why this method is called temporal difference learning. Further expansion of (3.11)
results in:

A

R@) = q0) +7I(@(1); W) =72 (@ ( ) W)+
YA [a(1) +~J (z(2); W) A (z(2); W) +
A [q(2) +~J ((3); W) YA (z(3); W) +

= q(0) +7J(2(1); W) + ) (3.16)
(M) [a() + I (x(2); W) — J(2(1); W)] +
(VA2 [a(2) + 7 (2(3); W) — J(2(2); W)] +

Now we add —J(z; W) to both sides and use (3.15) knowing that ¢(0) = g(z,u(z)) to get the
following error term:

J(z) — J(z; W) = e(z) + (YA )e(z(1)) + (vA)%e(z(2)) + ... (3.17)

Eq.(3.17) defines the error to be used in the learning rule (3.13) as a weighted sum of the temporal
differences computed at each of the visited states. Temporal differences are weighed exponentially
with the earlier ones weighed more. Still, we could not use this value in the learning rule (3.13)
since the calculation of all the terms except the first one involves data only available in the future.
There are different ways to deal with this problem, two of which will be mentioned here.

1. In (3.17) we could truncate the terms on the right hand side to select only the first N terms.
This means that we calculate each term as the required information becomes available.
The function approximator J stays unchanged for NV time-steps till the required error is
accumulated, after which it will be used to update .J using (3.13).

2. Another approximation is to select A = 0 and therefore it will be called TD(0). The error
term in (3.17) is then reduced to its first term. Now we could update J at each step using
the temporal difference in (3.15). This is an extreme case of TD(A) learning in which we
continuously adapt J at each time-step using the error in consecutive predictions.

It is useful to mention another extreme case in which A = 1. As Sutton [24] shows, in this case
the adaptation is simply an equivalent of supervised learning method which uses the difference
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between the predictions of J and the actual outcome of the evaluation function J*. This will make
more sense if we assume that after a finite number of time-steps, the performed actions result in
the final state, and a reinforcement signal is provided by the environment. This reinforcement
is then the actual outcome of the evaluation function and could be used for adaptation. Taking
the infinite discounted sum of future costs as the outcome of the evaluation function is then a
generalization of this case, in which any intermediate state also produces a certain reinforcement
signal q(.,.).

The truncation method when combined with a proper A speeds up the learning procedure since
less updates take place. On the other hand, TD(0) slows down learning due to its updates per
time-step, but because of its simplicity it is widely used and could perform well by choosing an
appropriate a. However, choosing an appropriate A instead of simply A = 0 or A = 1 could improve
the computational efficiency a great deal (Sutton [24]). One method is to start with A = 1 and
decrease it to 0 as J improves its approximation.

The advantage of temporal-difference methods of learning lies in their sensitivity to temporal
changes between successive predictions of the evaluation function and not so much the actual error
between the predictions and the target-output. This is the reason why they are so well applicable
to delayed-RL tasks involving prediction problems.

Now we are going to discuss some popular designs of RL-Controllers.

3.5 Reinforcement Learning Methods

3.5.1 Adaptive Critic Method (discrete)

Adaptive critic was an early method of reinforcement learning presented by Barto, Sutton and
Anderson [4] which they used in their classic task of pole-balancing.

The adaptive critic learning systems contain two parts. The ’critic’ which has the task of
predicting future costs. And the ’actor’ which produces actions at each state z. It is assumed
that the state and action space are both finite, hence the term discrete in the title. Critic receives
the reinforcement signal and gives an estimate of the future cost, at the same time it adapts the
actor policy of selecting action for better performance next time. Figure(3.1) shows an adaptive
critic based reinforcement-learning control system. The critic is adapted by the method of TD(0)
explained earlier.

J

Critic =

T

I

T

Ir

y

u T

Actor System

Figure 3.1: Adaptive-critic reinforcement learning scheme. z represents the state of the system, J
the prediction of the future costs and u the selected action for the current state. Critic produces
the reinforcement signal r for the actor to adapt its policy.

Suppose that the action space contains m actions which we represent by ay, as,...a,,. Let
4(;;V) : X — R™ be the approximation of the actor’s selection policy u(.), with X being the
action space and V' the parameters of the approximator. z = i(z; V) gives a vector of merits of

the feasible m actions at state . Assume that z; denotes the k-th component of z corresponding
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to action ag. The idea is then to select an action a at a each state according to the max selector,

a = ay, where Zp = max z; (3.18)
1<i<m

After each action is selected, critic would produces an evaluation of the resulting state which
is then used to adapt the actor’s policy. If the critic is to give a good evaluation, the action
space should be explored well such that all the actions get a chance of being evaluated by the
environment. The max selector of (3.18) is in that case not a good choice, especially if the actor is
not trained enough to produce the optimal merits for each action. To make the exploration of the
action space possible, the action selection takes place according to a stochastic policy. A popular
stochastic action selector is based on the Boltzmann distribution,

exp(zi/T)
> exp(z;/T)

where T is a nonnegative real number (temperature) that controls the stochasticity of the action
selector. For large values of T all actions would be as probable to be chosen at a state z. As
T — 0 the stochastic action selector approaches the max selector.

The temporal difference e(z) as calculated in (3.15) is used to adapt the actor. Let a; be the
selected action at state . Then the following learning rule adapts the actor’s policy for action a;:

pi(z) = Prob{a = a;|z} = (3.19)

i (z; V) = G(z; V) + Be(z) (3.20)

where [ is the learning rule. Intuitively, we could say that the actor is punished if the generated
action a; has increased the cost and rewarded if it reduced the cost. Punishment and reward
would adapt the actor in the direction of respectively decreasing or increasing the probability of
action a; to be chosen in the future at state . This method closely resembles the 'Law of Effect’
of Thorndike from animal learning discussed earlier. The learning rule simply adapts the policy
by updating the probabilities for the selected actions based on their produced outcome. During
learning the actor learns which actions produce the least cost when selected at a certain state.
This method would initially generate actions randomly and approach an optimal action selector as
learning progresses. Look-up tables are the most common approach used to store the state-action
mappings.
In the next section we extend the method to include the continuous state and action spaces.

3.5.2 Adaptive Critic Method (continuous)

We assume that the functions approximating critic and actor are both differentiable. To optimize
a control process it is useful to have the derivative of the desired performance in respect with
the control action %, since then it is possible to change u in the direction of improving the
performance. Therefore the critic in this approach receives the control action at its input to be
able to obtain this derivative. We use TD(0) to find the error needed to update the critic at each
time-step, but we use a gradient based learning rule. The learning rule could be derived from
minimizing 3e*(z). Define

2

o %Ez(z) = 2| [a(z, u(e)) + vJ (2(1), u(z(1); W)] — J(z, u(z); W) (3.21)

Now we are going to use the method of gradient descent to adapt the parameters of the critic. The
adaptation takes place by changing the parameters by an amount proportional to the derivative
of E for the corresponding state with respect to each parameter:

OF OE dJ(z,u(z); W)
AW = —a—— = — = 3.22
W e W) oW (3.22)
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where « is the learning rate of the critic. The first part of the derivative could be calculated as

follows:
_OF _ 9.1, c(x) + dlg(z, u(z)) +7j($(})=u($(1) S W)] = J (@, u(z); W)
8J(z,u(z); W) 2 J(z,u(z); W)
= g(z)x(0+0-1)
= —e(x (3.23)

And finally, using (3.22) and (3.23) we get

~

aJ(z,u(z); W)

AW = ae(z) Bl

(3.24)

Now we can derive the learning rule that adapts the parameters of the critic in the direction of

minimizing E:

8J (z,u(z); W)
ow

Assuming that the critic is well-trained in predicting the future costs now we can calculate the

W =W + as(z) (3.25)

gradient of critic in respect with the control action in the direction of minimizing the critic’s
output and use it to update the actor. Suppose that actor is approximated by i(z; V). Then we
could find the amount of update for each actor’s parameter by:

8J (z, u(x); W) di(z; V)

AV =-5 du(z; V) v

(3.26)

where 3 is the learning rate of the actor. This would result in the following learning rule for
updating the parameters of the actor:

8J (x, u(x); W) di(; V)

V=V == Ei%

(3.27)

A more detailed discussion of gradient based methods is given in Werbos [29]. Sofge & White [30]
have successfully applied a gradient method to optimizing a manufacturing process.

3.5.3 Q-Learning

This method was first introduced by Watkins [27]. For a more detailed discussion of Q-learning
see also Watkins & Dayan [28].

In @-Learning unlike the adaptive critic approach we learn only one function. This function
is called @, or action value function. For a given state and action the optimal @)-function gives
the estimated future cost when that action is performed and the same policy is used in the future.
Using the notations we used in Section 3.4 we define the @-function as follows:

Q*(z,a) = q(z,a) +vJ"(y) (3.28)

where y is the state resulting from applying action a = u(z) to state z. Suppose Q* represents
the optimal @-function. It is clear to see that:

T (@) = aéﬂj&) Q*(x,a) (3.29)

where A(z) represents the possible actions at state z. Now we can define the optimal @-function
using (3.28 and 3.29):

Q*(z,a) = q(z,a) + vbglAi(r;) Q*(y,b) (3.30)
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In other words Q*(z, a) gives us the amount of future costs when action a is applied to the current
state z and the performance is optimal afterwards. In a while, we will say a bit more about action
selection at each state and the advantages of Q-function.

The goal is now to find an approximation Q(.,.;V) of Q*(.,.). We could use the methods
explained in Section 3.4.1 to do this by replacing J with Q. Using the TD(0) learning method we
define the following on-line learning rule for Q:

Qe,a;V) = Q@,a;V) +a |g(@,a) +7 min Qy,5V) - Qe,a;V) (3.31)

In the beginning the value of Q(, .; V) would be chosen at random for (state,action) pairs. Initially
an stochastic action selection policy could be used which makes the exploration of the action-space
possible. Multiple training trials should be done to make sure that all the actions and states are
visited frequently. And as the learning progresses the prediction would improve and the learning
rate is reduced to zero.

The advantage of the Q-Learning is that once the @ values are learned, we can simply find the
optimal actions at each state using the greedy policy in (3.32).

u(z) = arg agnAi&) Q(z,a;V) (3.32)

3.6 About Our Approach

The continuous mappings seemed the most appropriate to be used for the water vessel process
since a continuous action-space (inflow signals) would be the best choice to optimally control the
height. Therefore, the reinforcement learning method of continuous adaptive critic explained in
Section 3.5.2 has been used for our experiments.

Further we have used CMACs for approximating critic in both experiments and also for the
actor in the second approach. The setup for each experiment will be given in their corresponding
chapters.

It seemed appropriate to devote a complete section to the discussion of CMAC function ap-
proximator due to its importance in our project and in on-line control in general. This discussion
comes next.

3.7 CMAC

3.7.1 Introduction

CMAC (Cerebellar Model Articulation controller) is a type of neural network introduced by Al-
bus [1] to explain information-processing characteristics of the cerebellum in the brain, which is the
part of the brain controlling motor activities of the body. CMAC learns the association between
its multidimensional input and a single output value by using a kind of look-up table with local
interpolation. The fast convergence and high accuracy of the CMAC have proven it to be quite
successful when used in on-line learning controlling systems (Miller [16]). In Section 3.7.4 more of
these characteristics will be discussed. But we will start with explaining the CMAC’s structure in
some more detail.

3.7.2 Discrete CMAC

Let’s define a function f : RF — R. CMAC learns the function f(s) by mapping different input
vectors s to their corresponding output f(s). In the simplest case one could think of CMAC
having one weight for each possible value of input vector s. However, this is not usually done
for the following reason. Suppose that each element of the input vector could take on p different
values, then p* weights would be needed which in the case of large problems would require a lot

18



of memory. So often the input is mapped to a certain set of weights by methods such as hashing,
which reduces the number of weights required. Figure(3.2) shows how this is done. After the

Weights

wy

w2
S1 w3
So Welght
S3 Selection

Input Vector Output Value
s o
f(s)

Sk

Wn,

Figure 3.2: The standard CMAC structure of Albus. The weights represented by thick lines are
selected to calculate the output.

weight selection has taken place the output of the CMAC is calculated using the values of the
selected weights. In its simplest form the output of the CMAC is calculated by summing up the
values of the selected weights. Suppose that input s is mapped into m weights represented by
w;,i=1,2,...,m. The CMAC’s output f(s) could be calculated as:

fs) =) w (3.33)

We could simply use delta rule to adjust the selected weights. The error e is found using equation
below:

e = f(s) = f(s) (3.34)

Now the following equation could be used to update each of the selected weights:

wi(t + 1)=w,~(t)+a% for i=1,2,...,m (3.35)
with w(t) being the weight at time ¢ and « the learning rate.

Analyzing the CMAC in Figure(3.2) is not easy since the relations between the input and the
weight-space are nontrivial mappings like hashing etc. So, we will introduce a weight selection
strategy which makes the use of CMAC’s local response and adjusting ability easier. We choose a
direct mapping between input and weight space, both having the same dimensions. In this case the
components of the input vector will be treated as coordinates to find a corresponding weight for
each input point in the weight space (an example will be given shortly). Further, since we usually
have a limited number of points to use for training, also to reduce the time needed for training the
CMAC we introduce the concept of generalization. Generalization simply states that not only the
weight corresponding to a particular input is adjusted but also a group of neighbouring weights.
This makes sense since similar inputs usually result in similar outputs and different inputs result
in different outputs. A generalization factor g is usually used to define a generalization region
having g weights in each dimension with the input point mapped at its center. The weights in the
generalization region are then used to produce the output. Let’s make this clear using an example.
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Figure 3.3: A 2-D discrete CMAC with g = 3. The point (z,y) represents the weight the input
(6.7,2.8) is mapped to, and f(z,y) is the CMAC’s corresponding output.

Example of a Discrete CMAC

Consider a CMAC used to learn the function f : R+? — R. Based on what we just discussed
we choose a 2-D CMAC. We take each dimension to have 10 weights as shown in Figure(3.3).
Also assume that our inputs are scaled such that each of the components has a value in the range
[1,10], this could be easily done provided we know the actual ranges for each of the coordinates.
This setup could be shown more precisely as follows:

Input Space: (s1,s2) where s1,s2 €[1,10]
Weight Space: w,, for z,y=1,2,...,10

The mapping procedure of input points to the weights of the CMAC could be then explained as
follows:

(s1,82) — way where z = ceiling(sy),y = ceiling(ss) (3.36)

with function ceiling(z) being defined as the smallest integer larger than z. Notice that when
the input is real-valued, weight selection is not possible because the weight-space is discrete.
According to (3.36) we have for instance (4,6) — wss. An example of a real-valued input is
(6.7,2.8) — wr3 as shown in Figure(3.3). The black cell is the actual weight to which the input
is mapped and the weights in the shaded area are the ones selected by generalization factor g = 3.
In general the output of the CMAC for an input mapped to the weight w,, is given by (3.37):

i,j=z+1,y+1

flz,y) = Z Wij for g=3 (3.37)

i,j=r—1,y—1

The major drawback to the mapping produced by this CMAC is that it contains numerous
step-functions. These step-functions will bring discontinuity in the mapping over the input-space,
resulting in a nondifferentiable mapping. We will explain shortly why a differentiable mapping is
necessary for our experiments. The proof of nondifferentiablity could be given using the definition
of the derivative of a function at a point. In order for f(z,y) to be partially differentiable with
respect to z at the point (z1,y1), it is necessary that the limit in (3.38) exists and is finite.

lim fl@ +hy) = fz, )
h—0 h

(3.38)
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It could be easily seen that this is not the case:

6f(m,y) _ [ undefined where =z €N
oz (1,91) = 0 otherwise (3.39)
since
limpyo f(z1 + hyy1) = fz1 + 1,y1) # Fz1,91)
3.36) and 2, e N = { M0 . 3.40
(3:36) and 21 { limppo f(21 + hyy1) = f(z1,91) (3.40)

from (3.40) we see that the limit in (3.38) takes on two different values limp o = oo # limppo =0
and the function is not continuous at z; € A therefore not differentiable.

The reason for this discontinuity lies in the fact that the real values at the input points are
stripped off their fractional parts by ceiling(.) and transformed into integers which results in
step-wise mapping of the discrete CMAC.

To use CMAC as critic in our adaptive critic system we need a differentiable mapping. Then
the derivative of CMAC could be calculated with respect to its input, the output of the controller,
such that we can propagate the error through the controller network for its adaptation. A CMAC
architecture with continuous differentiable mapping is introduced by Sofge & White [31] and
explained below.

3.7.3 Continuous CMAC

We could extend the localized mapping explained above in order to achieve real-valued mappings
in the weight space. To do this, we use the fractional values of the input points to select the cor-
responding weight without having to transform them to integers first. Let’s consider the example
given in Section 3.7.2. The mapping rule in (3.36) could be now rewritten as:

(s1,82) — Ws, s, (3.41)

So from now on we will use s; and s also as the coordinates of the selected weight in the weight
space. In Figure(3.4) the same mapping of Figure(3.3) is shown in a continuous CMAC with
g=3.

Now we have two types of weights in the shaded generalization area. The weights which are
fully located in the area are selected and updated fully and the ones which only overlap the
generalization area are fractionally selected and updated. The new generated mapping is more
accurate and uses the weights in a more effective way than the discrete approach explained above
did. It does so by making use of the actual real-valued inputs to select weights. Of course, the
main advantage is that as a result we have a continuous and differentiable mapping produced by
the CMAC.

This CMAC makes use of a response function R to calculate the fraction of each weight used
at each mapping, called response-value of each weight. We could define R as follows:

1 weight fully inside of the response area
R = { 0 weight fully outside of the response area (3.42)
z € (0,1) weight partially in the response area

The output of a continuous 2-D CMAC is then calculated as follows:

A . Z,B Rﬂ(31752)Wﬁ
f(sly 52) - Zﬁ Rﬂ(81,32)

where s; and sy are the input values, 3 represents the generalization area, and W and R are

(3.43)

resp. weights in the selected area 8 and their corresponding response-values. There are different
response functions available, Gaussian function is the one used in our case and is discussed next.
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Figure 3.4: The weight space of a 2-D continuous CMAC with g = 3. The point (s1, s2) represents
where the input (6.7, 2.8) is mapped to, and f(s1,s2) is the CMAC’s corresponding output. Notice
that the representations are changed to (s1, s2) since now the actual values of input are also used
in the weight space.

Gaussian CMAC

In this section we will discuss a learning method for a 2-D CMAC which uses a Gaussian response
function.

A Gaussian response function, when centered at the input point produces the response area
and the corresponding response-values for the neighbouring weights. Using a Gaussian response
function all the weights of the CMAC take part in calculating the output, with their response
increasing as they get closer to the mapped input.

To make this more clear let’s consider the following 2-D CMAC with NV weights in each dimen-
sion. It is used to approximate a function f : R+> — R. The output of the CMAC is calculated
by:

N
A~ P Ri-s,s * Wj4
f(s1,82) = 21,1_1\1{ (o1, 82) % wi (3.44)
Ez’,j:l Rij(s1,52)
where s; and s, are the input values. The Gaussian R function is defined as:
i 1TG—s)? | G =)
R;;(s1, = —= 3.45
J (Sl 52) o % Vs, Vs, * exp( 9 vzl + ’U22 ) ( )

vs, and v, are called variance terms. Each dimension has it’s own variance term which determines
the amount of generalization along that dimension (equivalent of generalization factor g discussed
before). Using adjustable variance terms we can determine how smooth the mapping takes place.
The smaller the variance terms the smaller the response area will be which results in a less smooth
mapping. In Figure(3.5) we see how different values of the variance terms change the form of the
response area in a 2-D CMAC with 20 weights in each dimension. Comparing both figures we see
that the larger variance terms enlarge the response area and at the same time reduce the amount
of share for each weight.

Now lets define the update method used for the weights of the CMAC. We use the same
CMAC used in equation (3.44). The method of TD(0) learning explained in Section 3.4.1 is used
to calculate the error in order to update the weights of the CMAC. And we use the gradient
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Figure 3.5: The Gaussian sharing response centered at (10,10). On the left variance terms are

both 1 and on the right 3.

method explained in Section 3.5.2 for adjusting the weights of the CMAC when used as the critic.

Suppose that the temporal difference at time ¢ is represented by e(t) then we could adjust the
weights of the CMAC critic by:

Rij(s1(t), 52(t))

wis (¢ 4+ 1) = wis(£) + e 3.46
(t+1) (t) + ce(t) S Ruy(s1(0),52(0) (3.46)
Notice that .

0f(s1(1), 52(t)) _ NRij (51(t), 52(%)) (3.47)

Ow;;(t) D=1 Rij(s1(t), s2(1))

where « is the learning rate. So the amount of correction in a weight is dependent on the amount
of its R value. This way the weights with more significant effect on the output would undergo
more change.

3.7.4 CMAC and On-Line Control

When global learning methods such as backpropagation are used for learning a model, the order
of presentation of the training data to the network could often influence the convergence of the
network, learned mapping and whether it gets trapped in a local minima or not.

In on-line model learning the data is most likely nonrepeating and it may not always be
possible to control the ordering of inputs. Further, data may be unequally distributed in the input
space with some parts being represented with a higher density than others. For real-time control
purposes it is often required that the model is quickly built without having to wait for hundreds
or thousands of training samples to be presented to the network and therefore learning methods
that can learn fast with a relatively smaller training set are needed.

CMAC networks seem to be very suitable for on-line model learning. Unlike global learning
methods CMACs don’t cause global degradation of the network because the weight update takes
place locally. In global learning the repetitive adaptation for a localized part of the input space
causes global and mostly undesired changes to weights just to minimize the error for that region
of the input. Further CMACs avoid the local minima. The high complexity of the networks using
global learning methods usually results in error surfaces which contain a lot of ups and downs, and
in the process of minimizing the error the network could get trapped in a local minima. This is
not the case with CMAC since the output is simply in the linear form of )", ; Wij- When we choose
for a gradient method of adjusting the weights of the CMAC in order to minimize the squared
error, we will have an error surface of the second order which does not result in a local minimum.
Other advantages of CMACs is that they are not sensitive to the ordering and the distribution of
training data.
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All these characteristics make the local learning method used in CMAC networks ideal for
real-time learning purposes.
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Chapter 4

Experiments with the Linear
Controller

4.1 Introduction

This chapter presents the setup and the results of the experiments with the single water vessel
using different control methods. First, some aspects of the modeling of the single vessel are
discussed. Then the setup for each of the controllers used is explained in Section 4.3. Sections 4.5
and further will present the results of the experiments done with P-, PI- and RL-Controllers.
Finally in Section 4.8 the results will be discussed and compared.

4.2 A Model of The Process

Figure 4.1 shows the dimensions of the real system as they have been used in the simulations with
d; and d, denoting the diameters of the vessel at its top and exit.

hmaz = 10.0 cm

- d, =0.26 cm

Figure 4.1: The dimensions of the real vessel.

The following differential equation is used for the purpose of modeling the system as described

in Boom [7]: 1
dh = —(f,— f, 41

dh — (= 1.) (11)
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where h represents the height of the water in the vessel at time ¢t and A; the area of the vessel at
the top and f; and f, resp. the inflow and the outflow of the vessel. For calculating the outflow

we use:
fo=A0\/2hg (4.2)

with A, being the area of the vessel at the exit and g = 9.8 the gravity constant. A; and A, are
calculated by:

A= (=) x*m Ay = (2 *m (4.3)
Further, we have the followings:

e The maximum value of the flow of the pump is 38%.

e A; and A, are kept constant throughout the process.

e There is a variable delay involved in the process. That is, the time needed for the water
to run down the vessel’s wall in order to actually influence the height. This delay changes
depending on how much water is already in the vessel and is between 1 to 2 seconds at its
maximum. During the simulations a constant 2 second delay is used meaning:

fi(t) = fp(t = 2) (4.4)
where f;(t) represents the effective inflow at time ¢ and f, the flow of the pump.

e In the simulation we consider the presence of low-frequent disturbances on the outflow. This
disturbances represent the changes in the height of the water in an unexpected manner.
Suppose that something gets stuck in the exit and reduces the amount of outflow or that
there is a leak in the vessel such that it increases the outflow. The former is simulated by
making the exit smaller and the latter by making the exit larger. For this purpose a step
signal is used which changes the size of the exit as in Figure 4.2 during 500 seconds. First, it
is simulated that something is stuck in the exit and is gradually washed away. Afterwards,
a hole in the vessel is simulated which after sometimes is found and repaired! Notice that in
reality these intervals and types of disturbances might be different but we need somehow to
simulate them for these experiments.
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Figure 4.2: The area of the exit A, changing during 500 seconds.

The system will be tested under the following conditions:
1. No disturbance and no delay: in Section 4.5.
2. Delay: in Section 4.6.

3. Delay and disturbance: in Section 4.7.
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4.3 Setup of Controllers

In the following setup descriptions we use hy and h respectively to refer to the desired height
and the current height, e = hy — h is the error in height. e could therefore range from —100cm
to 100cm which in the negative region would cause the controllers to produce a negative output
meaning that some water should be pumped out. Since this is not an option for our pump we
limit the controller output to only positive values acceptable by the pump. Considering that the
pump also has a maximum flow, the control signal should always be set between 0 and 38% as

shown in Figure 4.3.
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Figure 4.3: Actual control signal as a function of controller output.
We will use u and f, to resp. represent the controller output and the control signal sent to the
pump.

4.3.1 P-Controller
This type of controller was discussed in Section 2.7.1. The complete vessel control system is shown

in Figure 4.4. The controller output is calculated by u = K, * e.

ha e Cou fp h
() IKP f Single Vessel

Figure 4.4: Single vessel controlled by a P-Controller.

4.3.2 PI-Controller
We discussed this class of controllers shortly in Section 2.7.3. Figure 4.5 shows the system when
PI-controller is used. The control output is calculated by u = K, x e + K * e,.

4.3.3 RL-Controller

Finally we come down to the experiments with the RL-Controller (see Section(3.3)). Figure 4.6

shows the resulting control system.
The controller output is calculated by u = w * e, with w being a gain value which is adapted

using the reinforcement signal r sent from the critic. The critic (see Section 3.7) used in the
simulations is implemented as a 2-dimensional CMAC with 10 weights in each dimension. The
inputs to the critic are the control signal sent to the pump f, and the error in height e. Critic
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Figure 4.6: Single vessel controlled by an RL-Controller.

produces a reinforcement signal which is an approximation of the expected value of the discounted
sum of future costs.

A

J(e(t),u(t),t) = Y ' q(i) (4.5)
i=t
where the immediate cost of the system ¢ is defined as the squared error in height.

q(t) = e(t)? (4.6)

It should be mentioned that critic is designed to work with positive errors only. To deal with
negative errors we define the controller output u as shown in Figure 4.7. This means that the
RL-Controller is not adapted for e < 0.

(4.7)

_ | exw where 0<e<100cm
“= 0 otherwise

Just to be able to do some general comparisons later, let us mention that the controller could
be also seen as a P-Controller with a variable gain which is its weight. The reinforcement signal
from the critic provides the controller with the information regarding how to adapt its weight.
The parameter set shown in Table 4.1 has been used for all simulations.

4.4 Simulation Notes

In this section some general notes will be given on the setup of the simulations.

Matlab has been used as the simulation environment for all the experiments. In all the experi-
ments a step reference signal is used with 500 seconds duration for each step. This signal is shown
in Figure 4.7.

In Section 4.7.4 an improved method of learning is introduced for the RL-Controller using a
normal noise on the height which we call adaptation noise.
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Parameter Value
Critic learning rate 100.00
Critic Discount factor 0.95
Critic variance for e dimension 1.00
Critic variance for u dimension 6.00
Controller learning rate 300.00

Table 4.1: Linear RL-Controller parameter set.
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Figure 4.7: Reference signal used in all the experiments.

Since there will be a lot of plots to look at and compare, the following abbreviations will be
printed under each figure to show which case they belong to. I blame the rest of the readability
problems on IATEX.

D*,D~ For resp. system with and without delay.
LF*,LF~ For resp. system with and without low-frequent disturbances on the outflow.

ANT,AN~ For resp. system with and without adaptation noise.

4.4.1 Conventional Controllers

All the values for the proportional and integral gains have been found by trial and error. In case
of the proportional gain the chosen values are the maximum values for which the height does not
oscillate. For the integral gain a compromise is made between the amount of overshoot and the
faster decrease in the error.

4.4.2 RL-Controller

e The parameters as shown in Table 4.1 are set based on the behaviour of the system. The
current values seem to work fine with the single vessel process.

e When the training starts both controller and critic’s weights are initialized to zero. The
weights of both elements will be adapted every 1s till the reference signal ends. If the
training needs to be repeated the controller’s weight is initialized to zero again but critic
will use its already trained weights. Basically, the idea is to get the critic well-trained such
that it can produce good reinforcement for the adaptation of the controller.

e At the end of each Result-section an example is given in which the trained RL-Controller
finds the gain for a setpoint not previously present in the training.

¢ In the final case where both delay and the low-frequent disturbances are present in the
process an extra case is simulated in which the learning is improved by adding a normal
noise with mean zero and variance 2 cm to the destination height. It resulted in faster
learning and a more stable controller weight.
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4.5 No Disturbance and No Delay
4.5.1 Result of P-Controller

The value of the proportional gain was chosen as K,, = 6.0e — 3. The result is shown in Figure 4.8.

o] 500 1000 1500 2000 2500 3000
Time

Figure 4.8: D~ LF~: P-Controller.

Notice that the system becomes stable but the error is resting at a value unequal to zero. As
we discussed it before in Section 2.7.1 the steady state error is a known problem of P-Controllers.

4.5.2 Result of PI-Controller

In this case K, = 6.0e — 3 and K; = 4.0e — 5 were chosen. Figure 4.9 shows the result for this

case.

. . . . .
o] 500 1000 1500 2000 2500 3000
Time

Figure 4.9: D~ LF~: PI-Controller.

As we explained before the accumulation of the error at steady state drives the controller
towards the zero error state.

4.5.3 Result of RL-Controller

Figure 4.10 shows the result obtained by this controller.

As you notice there are large stationary errors for some of the setpoint. By training the critic
once more with the same reference signal we see that the controller improves its performance by
resulting in a smaller final error for each setpoint as in Figure 4.11.

The changes of the controller’s weight during the training is as in Figure 4.12.
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Figure 4.10: D~ LF~: RL-Controller first training.

1

. . . . .
o] 500 1000 1500 2000 2500 3000
Time

Figure 4.11: D~ LF~: RL-Controller second training.
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Figure 4.12: D~ LF~: The controller weight during the training.

The surface of the CMAC critic after the second training is shown in Figure 4.13.

Example of a new setpoint

Now using the trained critic of Figure 4.13 we will give an example of how the RL-Controller will
adapt its weight to bring the height to a specific setpoint. We will assume that the vessel is filled
till the height of 10 cm and we want to increase the level of water to 80 cm. Figures(4.14(a) and
(b)) show how the changes in the vessel and the RL-Controller take place such that the desired
height is reached.
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Figure 4.13: D~ LF~: The surface of the critic after the reference signal.
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Figure 4.14: D~ LF~:(a) The change of height and inflow in the vessel. (b) The change of critic

and controller.

The RL-Controller results in a stable state with the error unequal to zero. The inflow is almost
constant and the weight of the controller is converging very slowly. This is more obvious if we look
at the gradient value which is very close to zero. The reason for this is similar to what caused the
P-Controller to produce the stationary error. No matter how well our RL-Controller is adapted it
could never produce a zero error since that causes the control signal to become zero too.

To give you an idea how the surface of the critic changes, a plot of this surface is given in
Figure 4.15. Notice how the region corresponding to error = 7em increased its height. This
increase will help the critic to produce better gradients next time if a reference signal contains an
error around this value.
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Figure 4.15: D~ LF~: The surface of the critic after the example.

4.6 Delay
4.6.1 Result of P-Controller

First, the same parameters were used as in Section 4.5.1. But as the result in Figure 4.16 shows
the controller started oscillating.

1

0.9r
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Time

Figure 4.16: DY LF~: P-Controller oscillating.

To make the system less sensitive to the delay and produce a constant inflow we need to reduce
the proportional gain. The K, = 2.2e — 3 was used which resulted in Figure 4.17.
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Figure 4.17: DT LF~: P-Controller.

33



4.6.2 Result of PI-Controller

Now the P-Controller of the previous section was used (K, = 2.2e — 3) but to achieve the zero
error without too much overshoot the integral gain had to be reduced to adjust to the delay. The
K; = 1.0e — 5 was used. Figure 4.18 shows the result.
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Figure 4.18: DT LF~: PI-Controller.

4.6.3 Result of RL-Controller
By training the critic twice with the same signal we get the result shown in Figure 4.19.
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Figure 4.19: DY LF~: RL-Controller.

Let’s see how the controller’s weight changes during the training. As shown in Figure 4.20
the value of the weight reaches a maximum of 3.3e — 3 near the end of the training signal. This
is less than the maximum reached in Figure 4.12 when there was no delay in the system. In a
way, this tells us that the RL-Controller is adjusting itself to the delay and keeps the value of the
controller’s weight relatively small in order to avoid the oscillation of the height at the setpoint.
There is also another interesting point related to this weight change. As you see near to the end of
the training some oscillation occurs which is due to the increase of controller’s weight. The reason
for that is because the objective of the critic is to decrease the error and it does that by increasing
the inflow, in other words, the controller’s weight. However, this increase of the control signal
could cause the oscillation of height when the inflow is delayed. Of course, the oscillation does not
always have to increase the error, but if after sometime the critic finds out that the performance
is worsening then it produces a corresponding reinforcement to the controller such that it adjust
its weight value to improve performance (look at the weight reduction at the end).

The surface of the CMAC critic after the second training is shown in Figure 4.21.
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Figure 4.20: DY LF~: The controller weight during the training.
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Figure 4.21: DTLF~: The surface of the critic after the reference signal.

Example of a new setpoint

Now using the trained critic of Figure 4.21, we will test the same example from the previous
section. Figures(4.22(a) and (b)) show how the changes in the vessel and the RL-Controller take
place such that the desired height is reached.

A plot of the critic’s surface after this example is given in Figure 4.23.

4.7 Low-Frequent Disturbances

4.7.1 Result of P-Controller

The same parameters as the case with delay were used. Figure 4.24 is the result of using this
controller under disturbances on the outflow and delay.

4.7.2 Result of PI-Controller

The same parameters as the case with delay were used. Figure 4.25 has the result for this case.

4.7.3 Result of RL-Controller

This time we trained the critic three times in order to get the result shown in Figure 4.26. The
RL-Controller does seem to deal well with these disturbances on the outflow and the height stays
reasonably close to the setpoint despite the changes in the outflow. There is however the oscillation
of the height at the set point that we already discussed in Section4.6.3.
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Figure 4.22: DY LF~:(a) The change of height and inflow in the vessel. (b) The change of critic
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Figure 4.23: DY LF~: The surface of the critic after the example.

The changes of the controller’s weight during the training is as in Figure 4.27. The weight seems
to have become more stable due to the added noise. This stabilization is a result of the better
exploration of the critic’s surface caused by the noise. We will discuss this more in Section 4.8.

The surface of the CMAC critic after the third training is shown in Figure 4.28.

Example of a new setpoint

Now using the trained critic of Figure 4.28 we will test the same example from the previous section.
Figures(4.29(a) and (b)) show how the changes in the vessel and the RL-Controller take place such
that the desired height is reached.

A plot of the critic’s surface after this example is given in Figure 4.30.
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Figure 4.26: DY LF+AN—: RL-Controller.

4.7.4 Result of RL-Controller With Improved Learning

In this section we will see how the convergence of the controller’s weight could be improved by
adding a normal noise with mean zero and variance 2 cm to the destination height. In Section 4.8
we will discuss this issue a bit more. This time the critic was trained two times, to produce the
results shown in Figure 4.31, so it is faster than the case in Section 4.7.3.

The changes of the controller’s weight during the training is as in Figure 4.32. Comparing this
changes to Figure 4.27 we notice an improvement in the stabilization of the controller’s weight
due to the adaptation noise. This will become more clear when we consider the example of a new
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Figure 4.27: DY LF+AN~: The controller weight during the training.
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Figure 4.28: DY LF+AN~: The surface of the critic after the reference signal.

setpoint next.
The surface of the CMAC critic after the second training is shown in Figure 4.33.

Example of a new setpoint

Now using the trained critic of Figure 4.28 we will test the same example from the previous section.
Figures(4.34(a) and (b)) show how the changes in the vessel and the RL-Controller take place such
that the desired height is reached. Notice that the weight of the controller stays stable comparing
to the previous case, and further it is set to a higher value which could reduce the final error even
more.

A plot of the critic surface after this example is given in Figure 4.35. Comparing this to the
critic of Figure 4.30 shows us that the region around the zero error line is almost flat which in
other words means that the gradient of the critic with respect to u is zero in that region. This is
also why the controller weight stays stable in this case.
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Figure 4.29: DYLF+AN~:(a) The change of height and inflow in the vessel.
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Figure 4.31: DYLEFTAN*: RL-Controller.
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Figure 4.32: DY LF+AN™: The controller weight during the training.
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Figure 4.33: DYLF+ANT: The surface of the critic after the reference signal.
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Figure 4.34: DYLF*AN™:(a) The change of height and inflow in the vessel. (b) The change of

critic and controller.

40



Figure 4.35: DY LF+ANT: The surface of the critic after the example.
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4.8 Conclusion

Tables 4.2, 4.3 and 4.4 contain the RMS (root of the mean squared) height error for all three
different cases under which the simulations took place. Looking at the overall performances we

Controller | RMS
P 0.1052
PI 0.1051
RL 0.1053

Table 4.2: D~ LF~: RMS height errors.

Controller | RMS
P 0.1085
PI 0.1084
RL 0.1084

Table 4.3: DT LF~: RMS height errors.

Controller | RMS

P 0.1086
PI 0.1085
RL(LF) 0.1088

RL(LF,AN) | 0.1087

Table 4.4: DYLF*+: RMS height errors.

can conclude that the variable gained RL-Controller is performing more or less at the same level
of it’s equivalent P-Controller. PI-Controller shows the best performance since it can reduce the
final error to zero.

The adaptive RL-Controller could adjust its weights by itself for all cases to achieve almost the
same results as the conventional controllers. On the other hand, the gain values for the conventional
controllers needed to be adjusted manually (by an expert!) in order to get reasonable results under
delay and disturbance on the outflow.

Naturally the performance of all three controllers is affected by adding the disturbance, but
we can notice a small improvement in the performance of RL-Controller by doing so. Comparing
Figures(4.22) and (4.29) shows us that in the latter case the controller’s weight is more stable
than the former caused by the presence of the disturbance. In a while we explain why that is.
Of course we could not expect that the RMS error would become smaller too, since adding the
system noise would cause some increase in the RMS error anyway.

Also some improvement was achieved when we added the extra adaptation noise to the height.
We need less training of the critic, also the controller’s weight seems to converge faster. It might
be more clear if we compare the Figures(4.29) and (4.34). The weight of the controller is more
stable in the latter case where the adaptation noise was added to train the critic.

The reason for the improved performance by adding disturbance on the outflow and noise could
be explained as follows. The adaptation of the controller weight in the RL-Controller depends on
the reinforcement signal produced by the critic. The critic’s learning on the other hand depends
on how well its surface is being explored. Adding the outflow-disturbance and noise to the system
utilizes the exploration process of the critic and as a result the produced reinforcement signal will
be better.
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To draw the final conclusion it should be added that the important issue here is not whether
the RL-Controller is producing a smaller RMS error than the conventional P-Controller or not.
You could actually see that the conventional controller is performing better than the RL one in
two out of three cases. This results are based on a limited set of tests and are by no means the
proof for better performance.

However, an important result is that the RL-Controller is adaptive (needing a bit of training)
and can find a reasonable value for the controller gain by itself under each of the simulated cases.
The conventional controllers required adjustments of their parameters by a supervisor to perform
well.
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Chapter 5

Experiments with the Nonlinear
Controller

5.1 Introduction

In the previous chapter we showed how a RL-Controller with one variable weight could produce
control signals in order for the system to follow a certain reference signal. The output of the linear
RL-Controller was calculated by u = e * w. However, one major problem was that this controller
would never achieve zero error since that would also mean that the control action would be zero
which is not desired in the water vessel process. To overcome the problem two other solutions
were considered. We could either add a bias term to the linear controller u = exw + bias or design
a nonlinear controller where for example the control action will be a function of the error and the
destination height u = f(e, hy). Looking at the vessel’s differential equation and the nonlinear
behaviour of the outflow, the latter design was chosen for the implementation. In this chapter we
are going to see how such a controller performs when used to control the inflow.

It should be added that this controller was designed as the final part of my project and due
to shortage of time is not yet fully studied. But still it does show that such a controller could
be trained to control the single vessel process. Hopefully the results could shed some light on the
further research of this problem.

5.2 RL-Controller

A schematic representation of the control system when the nonlinear RL-Controller is used is given
in Figure 5.1.

ha : f
Cu P h
LY j Single Vessel

Figure 5.1: Single vessel controlled by a nonlinear RL-Controller.
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The critic was chosen to be a 3-dimensional 6x6x6 CMAC. Its inputs are system error e,
destination height hq and the control action f,. The controller is a 2-dimensional 7x7 CMAC.
The controller output is a function of e and hg. Using hg as an input to the controller, we expect
to improve the performance of the system since the outflow increases with height. An increase
in height causes an increase in the outflow, according to f, = A,1/2hg (previous chapter). This
would simply mean that the inflow should increase too if we are to keep the height constant at its
level since h' = A%.(fi — fo)-

In the linear approach we reduced the range of e to only its positive values to avoid problems
with the critic that was designed only for positive errors. But, now we use a different range for e
and we define the controller output u as shown in Figure 5.1. This means that the RL-Controller
is not trained for e < —10cm.

f(e,hg) where —10cm < e < 100cm
u= ;
0 otherwise

(5.1)

Increasing the error range to include some negative values is expected to improve the performance
of the controller when the error is negative. The controller could actually start producing inflow
when approaching hy from a higher height. A well-trained controller would then be able to find
the correct inflow before the water level has dropped below the destination.

5.3 Training

In the previous chapter we used the reference signal shown in Figure 4.7 to train and test the
linear RL-Controller. This signal was presented to the control system a number of times till we
finally had a trained critic which could find the optimal value for the controller’s weight when
initialized to zero.

The nonlinear controller CMAC can memorize the control signals for different system states.
For this reason a different training method was used that makes use of this ability. The controller
is only initialized once to zero and then trained together with the critic for all times. The training
procedure is explained next.

We train both critic and controller by letting the system track a set of reference points. This
differs a bit from the training of the linear RL-Controller of the previous chapter. As Figure 4.7
shows, in that approach when a new reference point was presented to the system, the initial height
was set to the height of the water at that time. However, in the new approach the initial height
is determined by the training points and might be different from the height of the water at the
start of the training. The training points are pairs of (e, hq). When the point (3, 8) is presented to
the system, the initial height should be 5¢m and the destination height 8cm. When a real water
vessel is involved and not a simulation, it could mean that a supervisor has to change the height of
the water manually such that the initial height is 5¢m, and then start the training for this point.
Point (—4,2), would then require the initial height to be 6¢m and the destination height 2cm and
etc.

Although this method might look inefficient at first, but it speeds up the learning of the
controller’s surface a great deal since the training points could be selected by the supervisor where
necessary. And besides, this happens only for the training and once the controller is trained
the system will be left untouched to track the reference points as it receives them. It should
be mentioned that using the signal in Figure 4.7 for the training is also possible, but then the
controller would be learnt partially. To avoid this we would have to include more reference points
in the signal to let the controller explore as many different situations as possible. That would take
relatively more time than the method just explained.

Figure 5.2 shows which points of the controller surface are presented to the system as samples.
Each sample was represented to the system for a maximum of 800s. The controller and critic were
adapted every 1s. The system status was monitored every 50s and the training for each sample was
stopped when the controller either achieved the zero error or the changes in height became very
small while still not at destination. Notice that the latter could happen since the RL-Controller
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is not yet trained to reach the setpoint as fast as possible. It should also be mentioned that by
zero error we mean a very small error which is continuously decreasing.

After the system was trained once with all the samples, it was presented for the second time
with the ones for which it had failed to find the correct control signal the first time.
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Figure 5.2: Samples used to train the nonlinear RL-Controller.

5.4 Simulation Notes

The parameter set shown in Table 5.1 has been used for all simulations.

Parameter Value
Critic learning rate 0.9
Critic variance for e dimension 0.2
Critic variance for u dimension 0.4
Critic variance for hg dimension 0.2
Critic discount factor 0.9
Controller learning rate (training) 0.8
Controller learning rate (testing) 0.01
Controller variance for e dimension 0.3
Controller variance for hg dimension 0.2

Table 5.1: Nonlinear RL-Controller parameter set.

Further we have the following:

o We decrease the learning rate of the controller after the the training is finished. Although
keeping the same learning rate worked fine for most of the consecutive tests, still for some
cases the inflow became instable around the zero error which resulted in a final stationary
error. This problem is caused by the critic’s gradient information which the controller uses
to adapt its weights. In the stable system this gradient is zero (or very close to zero). The
high learning rate could move the critic out of its flat surface to a neighbouring region. As a
result the gradient changes which causes the unstable inflow. Now if this new region is also
flat then the inflow would become stable with the stationary error in the system. Choosing a
smaller learning rate after the training resulted in good performance since the changes were
not large enough to result into this unwanted gradient values. The results showed that the
controller however, will continue adapting its weights, where needed, using a small learning
rate.
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e Remember that in the previous chapter we introduced a normal adaptation noise which when
used during the training utilized the learning and caused the controller’s weight to become
stable. However, the nonlinear RL-Controller seems to be able to produce a stable inflow
and there was no need to use the extra adaptation noise. But, we could also consider this
noise as a simulation of an error caused by the measurement of height. In that case the
results of the tests with such noise are given in Section 5.7.1.

5.5 No Disturbance and No Delay

The surface of the controller after the training is shown in Figure 5.3.

Control Signal

Figure 5.3: D~ LF~: The surface of the controller after the training. The z axis denotes the error
with Ocm at ¢ = 4. The y axis denotes the destination height with 100cm at y =7

Notice that the surface of the controller is clearly divided into two parts, one for positive and
one for negative errors. Table 5.2 shows how the controller parameters are scaled to fit in each
dimension of the cmac. The scaling is as you notice different for positive and negative errors. The
reason for this is discussed in Section 5.8.

e(cm) | z ha(cm) |y

-10 | 0 00
0|4 50 | 3.5

100 | 7 100 | 7

Table 5.2: The scaling of the controller parameters.

Now let’s see what this surface exactly means. The part corresponding to negative error is
almost flat and close to zero showing that no water should be pumped in when the water level is
high above the desired height, letting the height decrease fast, as long as possible. On the other
hand the part for which the error is positive, results in large inflows when the water level is far
below the desired height. On the positive side there is also a region that could never be trained.
These are the set of impossible states where e is greater than hg. Further, looking at the zero
error-line (z = 4) we see that the controller produces, as expected, larger desired inflows as the
desired height increases.

The result of the test with the reference signal is shown in Figure 5.4.

5.6 Delay

By training the controller as explained in Section 5.3 we get the surface in Figure 5.5.
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Figure 5.4: D~ LF~: RL-Controller following the reference signal.

Control Signal

Figure 5.5: DY LF~: The surface of the controller after the training.

We already explained in the previous section what each part of the surface meant. But by
looking closely at this surface we could see that it is slightly different from the trained controller
with no delay, shown in Figure 5.3. First, the controller produces relatively larger inflows when
the error is positive. The controller receives the delayed information about the change in the level
of water. As a result it increases the inflow to increase the height, which due to delay it assumes to
be low. Second, as the error gets closer to zero we see that relatively smaller inflows are produced
comparing to the case without delay. This could be interpreted as the controller being aware of
the delay and producing relatively smaller inflows as a result. This avoids the oscillation of the
water level around the setpoint.

The result of the test with the reference signal is shown in Figure 5.6.

The results showed that although the controller might avoid the oscillation for some time by
keeping the inflow low, on the other hand it will gradually increase the inflow to decrease the error
which at some point would result in oscillation. In turns, oscillation increases the error and causes
the inflow to decrease and etc. ...

5.7 Low-Frequent Disturbances

Now we add the disturbances on the outflow to the system of the trained controller with delay
to see how it performs. The result of the test with the reference signal is shown in Figure 5.7.
The system seems to be responding fast to the changes on the inflow. This shows that the surface
of the controller is smooth enough to be able to react well to such variations on outflow. As the
learning goes on the system is expected to improve its performance even more.
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Figure 5.6: DT LF~: RL-Controller following the reference signal.

1

0.9r-

0.8r

0.7r

Height
o
ua
T

. . . . .
o] 500 1000 1500 2000 2500 3000
Time

Figure 5.7: DY LF*+: RL-Controller following the reference signal.

5.7.1 Adaptation Noise

As mentioned before in Section 5.4 we assume that a normal noise is presented on the destination
height. The result of the test with the reference signal is shown in Figure 5.8. The height is kept
close to the setpoint and the system stays stable when the noise is added to the height, resulting
in a good tracking performance.
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Figure 5.8: DT LF+AN*: RL-Controller following the reference signal.
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5.8 Scaling Problem

During the experiments it became clear that the local update of the weights of the controller is
causing problems with generating optimal inflow signals. As a result of the local update of the
weights on the positive error region also the weights on the negative error region close to zero
error-line are changed, which is not always desirable. If these weights are increased too much,
they would force the pump to start pumping water into the vessel when the error is negative and
the height of the water is still high above the setpoint. Notice that optimally the inflow should
stay zero as long as possible in a situation like this, allowing the water level to decrease in a faster
speed. This early and high inflow was at some points so much that the height became stable
somewhere on top of the desired setpoint.
Two natural solution to this problem could be:

1. Increasing the resolution of the CMACs to reduce this local update effect. An increase in
the resolution of the CMACs enough to solve the problem would result in a large network
taking too much time for the simulations.

2. Reducing the variance terms of the Gaussian share function (Section 3.7.3) along the error
dimension to reduce this local update effect. This variance reduction would also result in
slow learning since then a lot of training is needed. Besides, the local learning ability of the

CMAC is then almost lost.

However, the limited time that was available to end the research of the nonlinear controller forced
a different solution to the problem. Scaling positive and negative errors differently, giving the
negative errors more weights than the positive ones. This did solve the problem of local update
noise. Next the result of a sample experiment is presented with the equal scaling of errors of both
signs.

Just to satisfy the curiosity, near the end of the project a small test was done to explore the
possibilities of the first solution mentioned above. It was assumed that no delay or disturbances
were present. The resolutions of critic and controller were both increased to 11 weights in each
dimension. Now the error could be scaled such that each 10cm gets one weight and the range
—10cm < e < 100cm was used for the input error. We used the same parameter set as in Table 5.1
except for the learning rate of the controller which was increased to 5.0. After a long and slow
training the controller surface was as shown in Figure 5.9.

Control Signal

Figure 5.9: The surface of the controller after the training. The z axis denotes the error with Ocm
at £ = 1. The y axis denotes the destination height with 100cm at y = 11

Since the variance terms of the Gaussian share function are relatively small for this resolution,

the surface is not very smooth. This also means that generalization would be poor in this case.
Based on the previous experiments this problem could probably be solved by adjusting these terms.
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5.9 Conclusion

Tables 5.3, 5.4 and 5.5 contain the RMS (root of the mean squared) height error for all three
different cases under which the simulations took place. A simple comparison of these results

Controller RMS

P 0.1052
PI 0.1051
RL (linear) 0.1053

RL (nonlinear) | 0.1052

Table 5.3: D~LF~: RMS height errors.

Controller RMS

P 0.1085
PI 0.1084
RL (linear) 0.1084

RL (nonlinear) | 0.1088

Table 5.4: DT LF~: RMS height errors.

Controller RMS
P 0.1086
PI 0.1085
RL(LF) (linear) 0.1088
RL(LF,AN) (linear) 0.1087
RL(LF) (nonlinear) 0.1086
RL(LF,AN) (nonlinear) | 0.1087

Table 5.5: DY LF*+: RMS height errors.

shows us that the nonlinear RL-Controller is able to perform at least as good as the linear RL-
Controller and the P-Controller. Of course, as it was the case with the linear controller, these
RMS errors could not be used as good basis for drawing conclusions about the performance of
each type of controller. These just represent the performance over a limited testset.

What is probably safe to conclude is that a nonlinear controller could be designed that using
an initial set of parameters as in Table 5.1 was able to adapt itself to different conditions such as
delay and noise by adjusting those parameters by itself.

By looking at the controller surfaces in Figures(5.3,5.5) we could also see that local learning
ability of the CMAC has made it possible for the controller to be generalizing well for the system
states that it has never been in before resulting in a smooth surface.

Further, the simulations showed that the nonlinear RL-Controller improves its performance
each time a setpoint is presented to it. This means a more optimal tracking of the reference signal
under different conditions.
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Chapter 6

Conclusion

6.1 Conclusion

We studied how a single water vessel system could be controlled using different RL-Controllers
based on adaptive critic method of learning. The function approximations were all done using
CMAC neural networks. We used RMS error in height to compare the results of different con-
trollers.

First, we experienced with a simple RL-Controller in Section 4 in which the controller had
only one weight. We saw that a trained critic could adjust the weight of the controller when
initialized to zero. It was also shown that the RL-Controller is able to generalize to produce
control signals for the parts of the state space not presented to it during training. Comparisons
with the conventional controllers showed that the RL-Controller performed as well as P-Controller,
but worse than PI-Controller. PI-Controller had the best results of all three controllers because it
was able to achieve the zero error by summing up the error near the setpoint. Another important
result was that the RL-Controller could adjust its parameters to adapt to conditions like delay,
unlike the conventional controllers which had to be manually adjusted for each case.

Secondly, a nonlinear RL-Controller was designed, since the relationship between the control
parameters and the water vessel state is also a nonlinear one. The critic and the controller were
both trained together and then tested with a reference signal. The RL-Controller was able to
adjust its weights to adapt to delay in order to avoid the oscillation of the water level around the
setpoint. It was also shown that the zero error could be achieved by this nonlinear controller,
assuming that the zero error is considered as a very small error which is continuously decreasing.
A smooth surface of the trained controller also made generalization in the state space possible.

These results do indicate that reinforcement learning is a promising method of controlling the
water vessel process. However, the research is still in its early stages and to prove the superiority
of the RL-methods over the conventional controllers a lot more research and tests must be done.
Some of the possible future work based on the results of these research will be mentioned next.

6.2 Future Work

Of course the final goal of the water vessel project is to study the design of a neurocontroller for
the dual cascaded water vessel system shown in Figure 1.1 using reinforcement learning. In order
to do this, future work could be put into three different categories.

1. Single Vessel: Looking back at the experiments there are some things that could be tried
out for the single vessel process.

e In Section 5.8 we already discussed how the unequal scaling of the error in the nonlinear
RL-Controller could be avoided by changing the resolution of the CMAC or selecting
other values for the variance terms of the Gaussian share function.
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e A totally different approach would be to exclude the negative errors from the controller

as we did in the linear controller of Section 4. Then we follow the common sense
solution of setting the pump activity to O when the error is negative. This idea is easier
to implement and does not have the scaling problem.
However, this approach might cause problems when small overshoots result in negative
errors around the setpoint. The small increases of the inflow around the setpoint could
cause the error to become negative, setting inflow to zero. The system then waits till
the error becomes positive. But, then it might produce the same inflow that caused the
overshoot before and etc. If the controller does not decrease the inflow, it will result in
the oscillation of the water level around the setpoint,

2. Intermediate System: Once the control problem with the single vessel is done, it will be
a good idea to make the problem only a bit harder and not make a big step to the dual
cascaded system. In this case we could experiment on a system consisting of two vessels, one
on top of another, such that the outflow of the top vessel is the inflow of the vessel under it.
The goal will then be to control the level of water in the lower vessel. The functions critic
and controller could then take the following forms:

critic = J(e, hgesired, Ptop, u), controller = u(e, hgesired, Ptop)

htop is the height of water in the top vessel and is used since it is an indication of the amount
of inflow to the lower vessel.

3. Dual Cascaded System: When the dual system of vessels is also controlled optimally we
could get to the real business of dual cascaded system. Solutions could be grouped into two
categories:

Parallel Control in which two controllers could be designed for each pump. These con-
trollers will be then sharing one critic which views the whole system and provides both
controllers with the information they need to improve their performances. This is more
like a case in which a teacher is looking at the whole system and coordinating the
behaviour of each pump accordingly.

Distributed Control in which each pump has its own critic and controller. The controllers
will be then trying to become experts in their tasks and at the same time cooperate
with each other through the reinforcement signals they receive.

The former is more of a coordinated control and the latter cooperated control. In a recent
work, Crites & Barto [6] showed that the parallel control results in better performance when
applied to an elevator dispatching problem.

In many real-world tasks involving real people, coordination is usually regarded more im-
portant than cooperation, but is it also the case with the autonomous agents?
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