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Chapter 1

Introduction

Intelligent mobile robots are becoming more and more common these days.
Independent moving and interacting robots do not just belong to science
fiction stories anymore. There are different situations imaginable in which
it is convenient to have autonomous mobile robots operating without human
interference, like tasks under dangerous conditions (for instance, working in
a mine field) or at hard—if not, impossible—to reach places for humans (like
missions to other planets [9]). To have them moving around autonomously
they need to be aware of their environment and their position in it to be
able to make the right decisions. When humans walk through a room they—
consciously or not—observe the area to know how the environment is struc-
tured. They need to form an idea of the environment in order to reason what
their position is. This is necessary to plan a path that is efficient and bump-
free. This is also the case for mobile robots. For them it is preferable that
they move around efficiently. This means that they need to move around
without useless time-consuming operations, for instance collision with other
robots or obstacles. To build up its idea of the world a robot does not
need to know every detail but a model of it containing essential information
would be sufficient—the so called appearance model. To create this model it
needs to look around in its environment. There are different kinds of sensors
available for this task. The one that works almost like the human eyes are
cameras.

To build up a model of its world a robot first needs to do some explo-
ration. It will first observe its environment by taking prototype images from
different locations with varying orientations and store these in a database.
When it needs to know its position it can consult this database to find the
prototype that matches the current image that has been acquired at the
time self-localization was requested. There are several ways to find the right
match. A common method is a correlation-based comparison of images.
Pixel-groups in the current image are compared to the pixel-groups of the
images in the database. The problem is that images taken from digital cam-
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2 CHAPTER 1. INTRODUCTION

eras can contain a huge amount of pixels. The images used in this thesis
are 320 x 240. This means that one image contains more than 76.000 pixels
and has to be compared with other images of the same size. Consequently,
this way it can take a considerable amount of time to find the right match.
In a real-time system we want to know our position as quickly as possible.

The images need to be described in a more compact way. As mentioned
before, we do not need details of the image but just a model with essential
information for the robot to localize itself. To achieve this a proper feature
set needs to be selected from the image. This feature set has to represent the
image in a compact but discriminative way such that fast lookup is possible.
Extracting features from an image can be regarded as a segmentation pro-
cess. The dimensionality will be reduced because parts of the image will be
grouped, and clusters that belong to the feature set we are looking for will be
filtered. This will contribute to the reduce of the dimension. In [4] several
segmentation methods to achieve this are discussed. One of the methods
that is similar to the one used in this thesis is called a divisive clustering.
The initial state is the complete image that represents one big cluster which
will be divided into smaller clusters in order to separate the feature from
the non-features. To decide whether a cluster is good enough—and dividing
is not necessary anymore—some criteria are needed. An example could be
color or texture.

1.1 Objectives

The research described in this thesis is a part of a larger project: the robot
soccer project of the University of Amsterdam (UvA). This concerns robots
of the Dutch team named Clockwork Orange. This project demonstrates AI
techniques in soccer playing robots with the help of annual soccer tourna-
ments between different teams [1]. To play soccer, this the robots need to
do several tasks autonomously among which self-localization [10]. Currently
several geometric vision-based methods are applied, for instance the Hough
transform which computes the (straight) lines in an image. These methods
take too much time to compute the robot’s position. What we need is a
method by which the robots localize themselves in a more simple yet quick
way. To get to this we can split this problem up into three subproblems:

• Decrease the dimensionality of the input (image) data. We need to
find an appropriate feature set that describes what we see in an image
such that it helps to localize the robot. Of course we also need a
method to extract this from the raw data and as a result will have
compact descriptions of each image (images in the database as well as
the ones taken real-time)

• Store the compacted images in a database such that fast lookup is pos-
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sible. This actually corresponds to building up the appearance model
of the world. Database construction has to be done in an efficient way
which makes fast lookup possible.

• A lookup method to find the image in the database corresponding to
the current position of the robot.

Initially the field that is going to be explored is empty but during the game
the view may be (partly) occluded by other robots or the ball. During our
research we also have to keep occlusion in mind. In short we need to find a
feature extraction method such that a fast lookup is possible. The method
has to be robust enough against occlusion and other effects.

Finally a few remarks on handling colors in this project. It is known that
we are dealing with robots operating in a soccer field and which colors occur
in the observations. For instance we know that the field is green and the lines
are white, the ball is orange and the goals are blue and yellow. We want the
robots to operate at best in this soccer environment we used these colors.
Knowing what colors occur in an environment makes the search for the
features easier but still it will be hard to define the colors we are looking for.
Another problem to be considered when using color is that its appearance
is dependent on the lighting of the room or area. During the soccer-game
this problem is being suppressed by constant lighting conditions.

1.2 Layout of this thesis

This thesis is organized as follows. The second chapter explains the method
that is currently used in the Dutch team and its downsides. It will also
motivate why we have chosen for the method which is described in this
thesis. Initially different approaches were developed and tested, and led to
the approach which is described here. In chapter 3 we will explain the feature
extraction method: which feature is selected and why; how it is extracted
from the data; how it is stored and used for lookup. Chapter 4 describes the
set of experiments performed and the produced results. Conclusions and
future work will be discussed in chapter 5.
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Chapter 2

Robot Localization Methods

In real-time systems it is essential to get up-to-date information. Namely,
for mobile robots it is important to know their accurate position in the
environment in order to make the right decisions. The current localiza-
tion method used for the soccer team has its disadvantages. This chapter
describes shortly the localization method currently used and its downside.
This also will be the motivation of the research in this thesis. A more de-
tailed description of this method can be found in [2] and [3]. At the end of
this chapter the new approach will be discussed shortly.

2.1 A geometric approach

The localization method in [2] and [3] adopts a geometric two-tiered ap-
proach. This means it has a global search and a local search. The global
search detects the lines and transforms the found lines into robot coordi-
nates. With the use of a field model it generates candidate positions. The
local search tracks the robot’s position at real-time speed.

The localization method focuses on the field lines. In order to find them
two tools are used to detect them: a reliable line/field edge detector and
a line detector. In a earlier process a labelled image called image L is the
result of object detection. Based on its color the pixels in the image are
labelled according to the object(s) they belong to. This labelled image is
used to detect the lines by checking whether the pixels are classified as floor
or lines. The result is an edge image (E). A second edge detector will define
edges more specifically. In order to find the nearest edge it fits a second-
order polynomial to the first derivative’s distribution in a 5x3 neighborhood
(see Figure 2.1). Assuming that the extremes of the polynomial function
represent the white-green and green-white borders the edges can be found.

5



6 CHAPTER 2. ROBOT LOCALIZATION METHODS

Figure 2.1: The edge detector [2].

2.1.1 Global search

The goal of the global search is to determine the robot’s position without
any prior knowledge. It transforms measured lines in the image to robot
coordinates. To achieve this it first needs to detect the field lines. This is
done in two steps. First it will find line segments then next their positions
are determined.

The Hough transform is used but not on the total image because of lens
distortions and the presence of a center circle. To this end, the image is first
divided into sub-images which are small enough to assume that the lines are
mostly straight. Next the Hough transform is used to locate the positions of
the lines. A number of sub-pixel edge positions are found with a sub-pixel
edge detector. Now these edge positions are converted to calibrated camera
frame and then to robot coordinates.
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2.1.2 Local search

The local search matches the position of a given candidate with an image
in real-time. Four local methods have been implemented. They all take an
estimate of the robot’s position and calculate the corresponding field line
pattern using a CAD model to match the result with the measured lines.
These methods are called:

1. The Distance Transform Method
The bottom-line of this method is that it creates a template of the lines
for a certain robot position and matches this template with the image
real-time. This is done iteratively on the robots estimated position
parameters including a small deviation. The position with the smallest
distance (error) will be considered the best match. The new position
is found.

2. Delta method
This method minimizes the distance between the lines generated from
the assumed position and lines found in the edge image (E). To calcu-
late the minimized distance a least squares approach has been adopted.

3. Delta2 method
Detlta2 method works the same as the delta method but without cre-
ating and using an edge image just to speed up the method. To find
the edges the horizontal and vertical edge detectors are operating on
the Y of the YUV images. Once the edges are found the distance
is—like the delta method—calculated by a least squares approach.

4. Average distance method
The average distance was implemented in [2] to see if it was possible
to give updates on the position purely based on global method data.
It uses the edge detectors which are also used by the delta2 method to
calculate the average distance between the measured and the model
lines. But differs from the delta2 because it is calculated in pixel space
instead.

2.1.3 Downsides

Of all the implemented local methods the delta2 method was preferred in [2]
because of its speed and accuracy. Yet this method has several limitations:

• The prediction error that grows rapidly with the error in the a priori
position estimate.

• Accuracy of the method

• When lines were partly or completely occluded the method would re-
turn a low matching score.
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2.2 Appearance model

The localization method discussed in the previous section uses a geometric
approach to determine the position of the robot. Based on the estimated
position and measured robot position the positions of the lines are calcu-
lated. The match is ranged by means of their differences. In this thesis
an appearance model will be used instead. The appearance based approach
uses a feature set as a measurement in its matching function. This approach
has already been studied in several applications, e.g. object recognition [8],
robot navigation and localization ([6] and [11]).

In [6] a probabilistic appearance-based approach was used to model the
environment. Eventually this model was used to localize the mobile robot.
Localization was done by the Markov localization method. This means that
we represent the position of the robot by a probability density p(x). The
Markov localization needs two probabilistic models to get a good position
estimate, namely a motion model and an observation model. The motion
model describes the effect a motion command has on the position of the
robot and can be represented by a conditional probability density

p(xt|u, xt−1)

which determines the distribution of xt, the position of the robot after the
motion command u at time t. The observation model describes how the
observation, robot’s location and parameters of the environment are related
to each other. The conditional distribution of the observation model can be
described as

p(z|x; θ)

where θ describes the distribution and represents the ‘underlying’ environ-
ment and z is the observation. Using the Bayes’ rule the location of the
robot after observation z can be estimated by the posterior distribution

p(xt|z) =
p(z|xt; θ)p(xt)∫
p(z|xt; θ)p(xt)dxt

2.2.1 Principal Component Analysis

Additionally, in [6] the dimensionality of the images (d) needs to be reduced.
This is done by means of Principle Component Analysis (PCA). The eigen-
vectors of an image set are calculated and used as a orthogonal basis for
representing individual images. The first q eigenvectors are only retained,
where q is smaller than d. These eigenvectors are vectors in d-dimensional
space and can be displayed as images which are known as eigenimages. Now
from the projection of the d-dimensional images z on the q-dimensional
eigenspace we get a feature vector y. We use this feature vector y for local-
ization, as above:

p(x|y) ∝ p(y|x; θ)p(x)
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The next step in [6] was to estimate the observation model p(y|x; θ)
from a dataset {xn, yn}, n = 1, .., N . Here a kernel density estimation or
a so called ‘Parzen’ estimator is used. The density function is estimated
by taking the sum of kernel functions around the N data points of the
training set. The width of the kernel and the training points themselves
are considered the parameters θ of the environment. Once the observation
model is known the estimation of the robot’s position is possible. Instead
of a Parzen method, a nearest-neighbor method can also be used, which is
faster to compute [11].

The experiments in [6] showed that localization with this method works
well. The experiments were done in an office environment but could also take
place somewhere else. However this method has not been tested on situations
with occlusion. It is known that PCA under occluded circumstances does
not work well [7]. PCA is a global feature extraction method which will cause
an error that will spread over the whole (reconstructed) image. Therefore
PCA is quite sensitive to occlusion.

Because of this in this thesis another feature extraction method will be
applied instead of PCA. Here in our proposed method occlusion will be taken
into account during the whole process, also in the extraction process.

2.3 Motivation of our approach

The last limitation of the geometrical method mentioned in section 2.1.3
will be the focus of this thesis. We started a new localization method from
scratch and developed a new localization method with the aim to handle
occlusion. Occlusion seems to be an annoying but in practice unavoidable
occurring aspect. The key is to find a method which is simple and robust
enough.

In this thesis we will use an appearance based method. This localization
method depends on the selection of the right feature. Several features are
more logical to use than others. In the robot soccer field, the first feature
that comes to mind are the white lines. That was the feature which we used
in our first attempt.

The first idea was to divide the image in smaller patches of size, for
instance, 60x40 and count the white pixels per patch. The idea was that
we describe an image in the form of a series of numbers that represents the
distribution of the white pixels in the image. However, detecting the white
lines did not seem as easy as it appeared at the beginning. Because different
shades of white exists it was hard to define what we could consider as white.

Another problem that arises is due to the camera and how it registers the
lines. Lines nearby do not become a problem but lines that lie further away
become too small and too thin to detect. Their pixel values are tending to
be reddish or greenish. This results in a wrong detection of the white lines.
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Figure 2.2: Simple white line detector. In a simple white line detector the
pixels that meet the conditions for being white (thresholds on the red, green
and blue values) are painted red to see if it detects the white (lines) the
right way. As can be seen in this figure white lines that lie further away are
too small and not defined as white lines. What is supposed to be seen as a
solid line will be detected as a broken line.

A solid line is seen as a broken line (Figure 2.2).
Even if these problems did not occur it still would be the question if the

lines were the best choice or whether there would be another feature more
suitable for the localization task. When we look at an image of the soccer-
field it is obvious that relatively more green pixels than white pixels occur.
As can be seen in Figure 2.3 it is obvious that searching for something like
the green of the field can be easier found than the white lines. Because the
input data are complete images it is easier to start at image level and work
the way down to smaller subimages. Considering all this it seemed better to
choose as our feature the complement of the white lines, namely the green
of the field.

It is important to find the green patches in a fast way. The question
if color is necessary was raised. To detect the green in a color image three
histograms are needed (the red, green and blue histogram). It seemed that
it was possible to recognize green patches based on certain characteristics
of its intensity histogram of the grey level images. In this case just one
histogram is needed which is much simpler.

In the next chapter we describe in detail our feature extraction method.
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a)

b)

Small Patches

Big Patches

Figure 2.3: Size of patches. When selecting white lines as features, smaller
patches (a) are needed to find them. Patches that can identify green chunks
of the field (b) can be much larger. This means that green patches are easier
and faster to detect than white patches.
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Chapter 3

The Proposed Model

In this chapter the developed localization method will be explained. We will
describe how the feature extraction operates, how its result will be stored
and the image matching process.

For the robots in order to localize themselves they need to build some
reference. This will be the appearance model of the world. After an explo-
ration stage—which will result in an amount of pictures taken from different
location in the empty soccer-field—the dimensionality of the images have to
be reduced. This will be done by our feature extraction method. They will
take out the important parts of the image that characterizes the image. This
will result in a compact description of each images in a tree-form.

After this step these trees will be collected in a trie, which is a structure
that supports fast indexing. This trie will be our final appearance model
that will be used during the localization. It gives us the possibility to find
images quickly. These two steps are both done off-line. This has to be done
before a soccer-game begins.

In real-time, during the game the robot will use the trie as a lookup
database. The robot first takes a snapshot from which the features will be
extracted the same way as the images which were taken off-line. The result
will also be a tree like the images in the database. Once they have the same
format, it is easier to compare them with each other in order to find the best
match. The location where this images has been taken must be the same
location of the robot at that time.

For an overview of this method is showed in Figure 3.1. It will be de-
scribed in more detail in this chapter.

3.1 Feature extraction

The green of the field is selected as the feature used for segmentation. It
seemed to be possible to detect the green parts of the field by just using
the intensity histogram of a greylevel image. When using color images the

13
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Figure 3.1: Diagram of our proposed method.

colors are defined in terms of three values: the contribution of red, green
and blue. This means that histograms of these basic-colors would have to be
used, so three histograms in total. To keep it simple (which mostly means
‘fast’) a greylevel image with only its intensity histogram will be used. The
characteristics of a typical histogram of a green patch are determined in
advance and used as a measurement to detect if a patch just contains green
of the field or not. These characteristics are: the mean and the variance of
the intensity value, which values have to lie in a range of a minimum and
maximum. Once we know these characteristics it is possible to detect the
green patches.

We start by dividing the acquired image—which is transformed to a grey
image—into smaller patches dynamically. This means that we do not use a
static lattice but create smaller patches of the initial image by splitting it
up repeatedly until we got blocks that contain the part of the image that we
were searching for, namely the green patches. The division process will start
by dividing the image horizontally into two subimages (Figure 3.2(a)), the
next division will be done vertically on the two subimages which will result
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Figure 3.2: Partitioning process and the resulting tree.

in four subsubimages (Figure 3.2(b)), after that it will be horizontally again
on the previous resulted subsubimages (Figure 3.2(c)) and so on. These
sub(sub..)images will be referred to as patches in the rest of the thesis. This
process of dividing the patches horizontally and vertically will result in a set
of rectangularly shaped patches.

After each partitioning, the resulting patches will be labelled and checked
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whether we are dealing with a green patch or not. A green patch is a patch
which only contains the green of the field. If this is the case for the current
patch, it does not need to be divided any further. If a line runs through it or
any other object other than the green ‘grass’, the patch will not be detected
as a green patch. Instead, it needs to be divided further to find the green
and separate it from the non-green. The intensity histogram of the patch
should tell us if the patch is totally green or not by means of its mean and
variance, as we explained earlier in this section.

The labelling of the patches that result from the division process will be
as follows. After the first division of the initial image the resulting patches
will represent the upper part and the lower part of the image. These will be
labelled as 1 and 0 respectively. The next division will be done vertically
like stated before. The patches will result in two smaller patches. The parts
will be labelled like their parent-patch but with a 0 or 1 concatenated at the
end, for the left or right part respectively. For instance, the patch labelled
as 0 will have children called 00 (the left part of the patch) and 01 (the
right part of the patch). This kind of labelling provides us the ability to
create a binary tree of the resulting partitioning, as showed in Figure 3.2.
At the same time we are also labelling a ‘path’ in the tree that describes an
image. This way the image can be represented as a binary tree which will
be the result of the partition process. This process will be repeated until a
maximum of divisions have occurred. In our experiments we use maximum
depth of six. This maximum is applied to avoid generating patches that are
too small to contain useful information.

To summarize, every image is represented by a set of green patches,
forming a labelled binary tree, as showed in Figure 3.3. The label of a node
(patch) is given by the path from the root of the tree to this node. All
leaf nodes’ labels constitute the features of a given image. This modelling
provides us the ability to store the images in a compact way that supports
fast and robust lookup, as it will be described next.

3.2 Storing the features using a trie

Once the features are extracted from the images they need to be stored
such that a fast and robust lookup can be achieved. A lot of methods have
been developed to store data efficiently. Some examples are hash-tables and
inverse indices in relational databases.

The labels of the green patches that are detected by our method allow
us to store them in a tree-structure. Different kinds of trees have been
developed. A convenient one for our problem is the trie which is discussed
by Knuth in [5]. First we will explain what a trie is and how it works. Then
we will explain how we applied the idea of a trie in our method.
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Figure 3.3: Tree of image as a result of feature extraction. From the discov-
ered green patches in the image (a) a tree can be build which represents the
image in a compact way (b).

3.2.1 Trie

As described in [5] a trie is a way to efficiently store data based on the
representation of the data. A trie can compared to the thumb index on
dictionaries. The thumb index creates the possibility to find the pages where
words are grouped that starts with the same letter.

A trie is an M -ary tree consisting of nodes that represent M -place vec-
tors. These vectors contain components that corresponds to digits or char-
acters. Each node on a level l represents the set of all keys that begin with
a certain sequence which is l characters long. This is called the prefix. The
nodes in its turn represent an M -way branch, depending on the (l+1)st
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Figure 3.4: Trie [5]

character/digit. An example of a trie which stores words is showed in Fig-
ure 3.4. These words are stored in a M -ary trie. The trie will be searched
starting from the top node downwards.

A special case is the binary trie. In this case M = 2. For this case two
kinds of methods exist. The first one is called the digital tree search. It
stores full keys in the nodes. But searching in the tree will be done with
pieces of the argument. Depending on the value of this piece of the argument
it is decided whether we have to take the left or the right branch. This tree
also contains KEY, LLINK and RLINK fields which indicates whether we
are dealing with a key, where the left and right link refers to respectively.

The other method is called ”Patricia” (Practical Algorithm To Retrieve
Information Coded In Alphanumeric). This is constructed such that it can
handle long keys like for instance phrases. Also the Patricia method needs
KEY, LLINK and RLINK, LTAG and RTAG, and SKIP fields. A specific
explanation about the working of these methods can be found in [5].

3.2.2 How we used a trie in our method

In our case we used a binary trie. Because we have chosen to represent our
feature set with binary digits that indicate its position in the image, we did
not need that many fields stored in the trie nodes.

Our trie is like in Figure 3.5. No additional fields are needed because
direction instructions are included in the label of the green patches. To
build up the trie the set of trees, which represents the images in terms of
the found green patches, are inserted in the trie. In Figure 3.3 an example
of a tree as a result from the feature extraction of the image is showed. In
the trie we will collect all trees like these which we got from the former stage
which was explained in the previous section.

In the off-line phase, each (image)tree will be inserted in the trie one by
one. Each node in the binary trie represents a possible green patch. If a
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Figure 3.5: The trie used in our method. The indices of the images that
contain the corresponding feature/patch are listed in brackets after the patch
label.

green patch is detected in an image an identification (like an index or pointer
to that particular image) will be added to a list in that node. Once the trie
has been build up, each node of it will contain a list with all the indices of
the images in which that particular patch was found. This resulting trie will
be like the one showed in Figure 3.5.

A trie facilitates searching with prefix-keys which makes matching of
images by lookup in the tree quickly. This matching process will be discussed
in the next section.

3.3 Fast lookup

In principle a trie allows for fast lookup as follows. We will look up each
patch from the root of the trie to that particular node. In each node the
images that contain that patch are stored. At each search these images are
retrieved.

In our case we need to find best matches for each patch label. The result
of one such green patch-search is a set of collected candidate images. One
of these images is probably the one we are looking for but to be sure we
need to lookup the other green patches the same way. This will result in
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Figure 3.6: Fast lookup with the trie. The green patch labelled 01101 was
found in the snapshot and will be looked up in the trie. To find the images
in which this green patch might occur, we work our way up towards the root
and collect all the candidates.

different sets of candidate images. Taking the intersection of these sets will
result in a set of best matching images. In case of a perfect match, the
matching image will show up in all the sets. It is not realistic to aim for
perfect matches. Therefore, our method counts the times a candidate shows
up in the retrieved sets. The one which occurs mostly during the lookup
is likely to be the one we are looking for. Alternatively, the first k-highest
matches give us the first k neighbors in the appearance space.

Because the depth of the trie is small (6) for simplicity in our experiments
we just stored all O(26) patches in an array, together with the images they
came from. This way the leaves of the trees (green patches) can be found
directly without going through the path from the root of the trie toward the
node. However for larger tries this would be inefficient.
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3.4 Handling occlusion

Our method can handle occlusion because of the way the features of the
images are represented in a tree-form. As explained above, for each green
patch we search for its corresponding node in the trie. That node holds a list
of all the images that contain such a patch. Then we go one level up in the
trie to the parent node. Note that this parent is labelled like its child, for
example 01101 but without the last digit. So the parents label is 0110. We
also gather the images that can be found in its list. This way we proceed
upward towards the root and gather all the candidate images we find on
our way (Figure 3.6). The result of one such green patch-search is a set of
collected candidate images as above.

Note that we are not only retrieving the specific node but all its ancestors.
When an image is occluded, a green patch is blocked by some object which
can be a robot or the ball. These objects are not green and will not pass the
green-test. If the patch is partly occluded then as a result the patch which
normally would be considered as green will be further partitioned, while it
has not reached its minimum size yet. Now a green patch will be detected
at a later stage as shown in Figure 3.7. The patches 10011 and 0011 are
occluded and will be divided into smaller patches in the snapshot, namely
100111 and, 00111 and 00110 respectively. We note that these patches are
the children of the ones which we want to retrieve. The nodes which will be
retrieved are from a lower level in the trie. Because we are not just collecting
the images listed in that node but also the ones listed in its ancestors the
right green patch will also be collected like in Figure 3.8. This way the
method is robust to handle occlusion.

3.5 Localization

The observations of the robots are raw images which are high dimensional.
Our proposed method which is described in this thesis reduces this to more
compact descriptions of the images. At the end they only contain the core
information which is needed for localization. In this case it is reduced to
how the green is structured in the images.

Now to localize the robots, the reduction will be such that a fast lookup
is possible and quickly a set of candidates are selected. The final result
of the method will be a ranked list of images from the database and their
matching scores according to the method.

This ranking of these images will be passed to the particle filter. The
particle filter will use this information to filter out the right location. This
will be done by reasoning from the initial state of the robot through a
sequence of observations. In combination with the scores given by our model
it should find the right location throughout the soccer-game. For more
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Figure 3.7: Occlusion handling. An occluded snapshot and the same image
without occlusion. The branches of the trees are also shown. The two images
are alike but the snapshot contains an occlusion. This has consequences for
several patches and the structure of its corresponding tree. Case (a) and (b)
show the difference in the branches that are caused by occlusion.

information on particle filters we refer to [11].
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Figure 3.8: Occlusion handled by the trie approach. An unoccluded image,
the same image with occlusion and their path in the trie.
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Chapter 4

Experiments

4.1 Test setup

The experiments are done on a database of 25 images. This test database
is created by taking pictures at a 5 x 5 grid of the soccerfield as showed in
Figure 4.1. These test images were taken with the same orientation. They
all are facing the blue goal. These images were taken while the soccerfield
was empty because they have to have a model of the world without any
occlusion.

Next to those 25 images, also some test snapshots were taken. These
are typical images that can occur during the game. To simulate occlusion
of robots we took black plastic caps instead. Twelve of these snapshots are
taken from different positions. Some were taken at an exact position as
one of the 25 images taken beforehand, with and without occlusion to see
whether there will be a difference in performance and how it differs. Others
were taken from off-grid locations and with (slightly) different orientations.

4.2 Test Results

The first test was done with a snapshot taken from the center of the field
facing the blue goal. This result in a match with the image that was also
taken from that same place and with same orientation. Figure 4.2 shows
the snapshot and its matching results. Because the snapshot was taken at
the same position and orientation as image 2 it should be a perfect match
with that image. Figure 4.2 shows that this is indeed the case.

The next one was a snapshot that was taken from the same location as
the previous one but this time with occlusion. Here the occlusion does not
really derange the matching process and results in a best match with the
image taken from the same location but also selects another image from a
different position as shown in Figure 4.3.

Also snapshots with differing orientations and off-the-grid locations were

25
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Figure 4.1: Exploring the field. How the test images are taken. They are
taken on a 5x5 grid, 2 meters apart from each other and about half a meter
from the sideboards. The orientation is towards the blue goal.

taken. However these sometimes had more trouble finding the right match.
In Figure 4.4 a snapshot was taken with the same orientation near the
location of image 16. The scoring, however, says that it could be more likely
image 22, 18, 8 or 13 which are not located near the snapshot-location.
However, if we include the first 5 (or more) hits, then image 21 is also
included (with score 12) which is very near the correct location. Similarly,
Figure 4.5 shows an example of an off-grid snapshot where the best match
(image 22) is near the correct position.

From these preliminary experiments we conclude that our method seems
to work well under occlusion. On the other hand, the method gives some-
times suboptimal results with off-grid locations and/or varying orientations.
This might be due to the fact that we used a very simple and restricted
environment—only 25 images on a field of 9x5m with fixed orientation.
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Figure 4.2: Scores for snapshot without occlusion and taken from the middle
of the field. Position marked with x is the location where the snapshot was
taken.
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Figure 4.3: Scores of snapshot with occlusion from the middle of the field.
Position marked with x is the location where the snapshot was taken.
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Figure 4.4: Matching of off-grid taken snapshot. Position marked with x is
the location where the snapshot was taken.
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Figure 4.5: Matching scores of the images after comparison with off-grid
snapshot. Position marked with x is the location where the snapshot was
taken.



Chapter 5

Conclusions and Future
Work

In this chapter the results of the experiment will be discussed. The strength
and weakness of our method will be pointed out and a final conclusion will
be drawn from them. Finally future work will be discussed, like how the
proposed model can be improved to fix the minor points of it.

The aim was to develop a localization method that was quick and also
robust enough against occlusion. To achieve this we used an appearance
model as our reference. This appearance model was created by observations
taken by the robot. This was done by taking pictures of its environment.
Because these pictures contain high dimensional information which is hard
to cope with, we needed to extract essential information that can be useful
for the localization of the robots. The feature extraction method converts
the high dimensional pictures to simple binary trees which represent the
green in the field as it is structured in the picture. These trees are our
reference of the world. These all are gathered in a trie which is basically a
database structured as a binary tree.

When a robot during the game wants to know its position it takes a
snapshot and searches the trie for an image that matches the best. The
positions from where the first best matching images were taken will form
the set of candidate locations of the robot. This set can be further pruned
by using, e.g. a particle filter technique [11].

During the experiments it seemed that the method works quite well. The
conditions were simplified but once there was an occlusion it was handled
well. On the other hand, because of the simplified conditions (small amount
of pictures and single orientation) suboptimal results were obtained when
pictures were taken off-grid and/or had a deviating orientation. The off-grid
problem could be solved by taking a larger grid, for example, a grid of 20x20.
Finding the location could then be done more detailed.

As future work, it would be interesting to see whether our method can be

31
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applied in other robot localization settings, for instance, for office robots. We
believe that the proposed tree-based appearance model is general enough,
and can be used in several other settings where ample texture is available
(e.g., brick walls, tiled floors, etc.). Moreover, the tree-based matching
operation by using a trie [5] allows for robustness against occlusion and other
effects. More detailed experiments are however needed for measuring the
sensitivity of the method against large occlusion and orientation mismatch.
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[6] B.J.A. Kröse, N. Vlassis, R. Bunschoten, and Y. Motomura. A proba-
bilistic model for appearance-based robot localization. Image and Vi-
sion Computing, 19(6):381–391, April 2001.

[7] Ales Leonardis and Horst Bischof. Robust recognition using eigenim-
ages. Computer Vision and Image Understanding: CVIU, 78(1):99–118,
2000.

[8] H. Murase and S. K. Nayar. Visual learning and recognition of 3-d
objects from appearance. Int. Journal of Computer Vision, 14:5–24,
1995.

[9] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C.
Williams. Remote agent: To boldly go where no AI system has gone
before. Artificial Intelligence, 103(1-2):5–47, 1998.

[10] M. Spaan. Team play among soccer robots. Master’s
thesis, Informatics Institute, University of Amsterdam, 2002.
www.science.uva.nl/research/ias.

[11] N. Vlassis, B. Terwijn, and B. Kröse. Auxiliary particle filter robot
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