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Abstract

In this thesis a probabilistic model for timing deviations in expressive music performances is
used to perform tempo tracking in realtime. A switching Kalman filter calculates the optimal
estimate of the tempo using the prediction from the model and the measurement from a
realtime performance. Using a particle filter various hypotheses are tested to determine what
interpretation of the score fits a given performance best. This allows us to perform tempo
tracking on a musical performance of which the score is not known in advance. The realtime
implementation of this approach is discussed and a number of tests is performed to determine
whether this approach qualifies for realtime processing.
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Chapter 1
Introduction

One of the most challenging topics in the field of computer music is that of interactive music
performance systems. These systems are able to ’listen’ to the actions of a musical performer
and generate responses in realtime. However, because of the diversity of the domain, for
example: different genres, polyphony, fluctuating tempo, this task has proved to be rather
difficult and has been split up in a number of subtasks. In this thesis we will explore one of
these subtasks known as tempo tracking, a challenging task in itself with a number of very
interesting applications.

In tempo tracking we try to determine the tempo of a piece of music. As this tempo is not
likely to be constant throughout a performance, the program follows or tracks the tempo as
the music progresses. Tempo refers to the speed at which a musical performance is played and
is often expressed as the number of beats per minute. This number corresponds to the rate
at which most people would tap or clap in time with the music. Another way to express the
tempo is as the time interval between beats, referred to as the inter-beat interval or period.
With the notion of beats in mind, tempo tracking can be seen as an inverted metronome.
A metronome is used to provide a performer with a constant tempo by playing clicks at the
time of the beat. In tempo tracking this process is reversed, the performer plays his piece
and the tempo tracking software listens to the performance in order to generate the clicks at
the matching tempo.

In this introduction we will first go over some basic music terminology in section 1.1 to
provide us with a language for discussing various musical concepts. To get a good understand-
ing of how tempo tracking works, an overview of related work will be explored in section 1.2,
we will look into various features that can be used for tempo tracking and several approaches
from other researchers. We will then go over possible applications in section 1.3, learning
how the results of tempo tracking can be used in interesting applications. In section 1.4 we
will formulate the problem to be discussed in this thesis and in section 1.5 we conclude the
chapter with an outline of the remainder of this thesis.

1.1 Music Terminology

Musicians use sheet music in order to read what they have to play. This sheet music consists
of notes and all sorts of other symbols expressing what actions the musician is to perform. In
more general terms we speak of a score, which is the sheet music showing all the instruments of
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a given performance. Although a large amount of actions can be expressed using the symbols
in sheet music, for the case of tempo tracking we are mainly interested in notes and rests. A
note expresses how long and at what pitch the performer should use his instrument, while a
rest simply indicates the musician should not do anything for a certain amount of time. An
example of a piece of score is given in figure 1.1, above this example little arrows indicate the
position of the beat. The beat is a basic time unit used by musicians to keep track of their
position in the music. As this example shows, not every note coincides with a beat and not
every beat coincides with a note either. We can therefore distinguish between the moment
in time a beat is played and the moment in time a note is played. The starting time of a
note is referred to as the onset time, while the time the note stops is called the offset time.
Using this terminology, we define the time between the onset time and the offset time as the
duration and the time between the onset times of two consecutive notes as the inter-onset
interval.

4
3

Figure 1.1: An example of a simple score, the arrows indicate the beats.

Music can either be monophonic or polyphonic, meaning either one note is played at a time
or several notes are played together. In either case, the music will have to be captured as data
input to allow a computer program to process it. One approach is to record the music using a
microphone, resulting in a raw audio signal. Because this signal in itself contains no abstract
information about the music, some preprocessing will need to be performed to extract such
information. Another approach is to use MIDI which stands for Musical Instrument Digital
Interface and is a standard communication protocol for instruments and computers. MIDI
does not transmit the audio signal itself, but instead transmits digital information about a
musical performance. As this MIDI data contains a lot of symbolic information, it is ideal for
use in the field of computer music.

1.2 Related Work

With the basic terminology of music explained we can look at various approaches of performing
tempo tracking. In this section we will first look at what features we can extract from MIDI
data and raw audio signal for the use of tempo tracking. We will then discuss a number of
methods used by other researchers to perform tempo tracking. [Gouyon2005]

1.2.1 Feature Extraction

The first step in developing software capable of tempo tracking is creating a feature list. In
other words, we need to decide on how to parse or filter the incoming data into a sequence
of features that will give us clues about the tempo. A wide range of features can be used for
performing tempo tracking. One of the most common features is the onset time, which is the
moment in time a note is played, indicating the start of a note. The extraction of onset times
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from MIDI data is very easy because of the availability of symbolic data. More complex is
the automatic extraction from audio signals, especially in the case of polyphonic music. An
overview of musical onset detection can be found in Bello(2003). In addition to onset times,
some systems also handle the duration of notes, like onset times durations can be easily parsed
from MIDI data, but cannot be computed reliably from audio data. Experiments done by
Snyder show that onsets and durations alone are sufficient for the perception of a beat in
ragtime music [Snyder2001].

Although the onset time and duration of a note provide enough information to perform
tempo tracking, other features can be included to achieve better performance. One such
feature is the relative amplitude which can be easily extracted from MIDI or audio data and
is used by some systems for weighting onsets (see [Smith1996], [Gasser1999] and [Dixon2001]).
Although the tempo in music is associated mainly with rhythmic features, Dixon uses pitch
to calculate the ’salience’ of musical events and is shown to improve the performance of their
system [Dixon2000]. Pitch can be easily obtained from MIDI data, but cannot be reliably
extracted from polyphonic audio. Finally, chords can be used as a feature in two ways:
by counting the number of simultaneous notes and using this as a measure of accentuation
[Rosenthal1992] or by detecting harmonic change as evidence of the start of a new measure
(see [Goto1999] and [Temperley1999]). Just like pitch, chords are easily readable in MIDI
data, but are much harder to derive from audio data.

There are some systems that do not focus on note onsets at all; these systems use a
lower abstraction level referred to as frames. A frame is a short chunk of audio (typically
about 10 milliseconds), from which both time and frequency domain features can be com-
puted. The simplest feature that can be extracted from these frames is the spectral energy,
which can be calculated either for the entire frame or for frequency sub-bands of the frame.
Using the assumption that low-frequency instruments provide much of the rhythmic informa-
tion, Alghoniemy focusses on energy in low-frequency components [Alghoniemy1999]. Others
decompose the signal into several sub-bands, for each of these sub-bands the energy is com-
puted and they are added back together (see [Vercoe1997] and [Tzanetakis2002]). Instead
of focussing on frame energy values, some systems measure the variation of energy between
consecutive frames, like Foote where the cosine distance between the magnitude spectra of
consecutive frames is used [Foote2001].

Each of these features can be used to provide a program with information about the tempo
of a performance. Whatever feature set is used, the actual power of a method lies in using
the features appropriately to determine the tempo.

1.2.2 Methods

A lot of different approaches have been used in the design of tempo trackers, still each of these
approaches can be described by a set of state variables and a set of actions manipulating this
state. The state variables are used to represent the inner state of the tracker and usually
include the tempo and some measure expressing the position of the current beat, the actions
dictate how this state should be altered when a set of features is observed.

In one of the most simple approaches known as adaptive oscillators, the next beat position
is predicted by taking the current beat position and adding the period (the time between two
consecutive beats). The closest observed feature to this prediction is then used to update the
state variables accordingly. This approach can be expanded by connecting several oscillators
in a network allowing them to interact in order to model several metrical levels jointly (see
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[Large1994] and [McAuley1995]).
Rule-based approaches use the period together with the first and current beat as the

state variables. A set of ’if-then’ rules adapts these variables as each feature is observed and
predicts the next beat (see [Longuet-Higgins1982] and [Desain1999]).

An agent based approach is used by Dixon, the state of an agent consists of the period and
the position of the beat. Furthermore, the agent maintains a history of beat times. Several
agents are used making the task a multiple-hypothesis search approach. Each agent does its
prediction and receives a score indicating the quality of its prediction, the agent with the
highest score is chosen [Dixon2001].

Finally Cemgil models tempo tracking using a dynamical system. The system uses the
period and time of the beat as hidden state variables, the transition from one state to another
is modeled by a set of state equations. To account for possible tempo variations a Gaussian
noise term is added to the model. The hidden state variables are estimated by combining the
observed features with the dynamical system using a Kalman filter [Cemgil2004].

1.3 Possible Applications

At the start of this chapter we noted that tempo tracking is a subtask of interactive music
performance systems. However, when performing tempo tracking by itself it can also be used
for generating some simple interactive music performances. With the tempo information
available in realtime it is possible to play a drum loop at the same speed as the performing
artist, providing him with a percussion background. Because tempo tracking does not take
things like pitch into account, it is not possible to generate matching chords automatically.
However, some musical genres such as the blues use a very simple and repetitive pattern for
chords, therefore it is possible to use such a pattern in a loop and simply tell the musical
performer to play the blues.

Tempo tracking can also be used to create score following systems. These systems are
able to listen to a performer and indicate at which position in the score the artist is playing.
This can be used to guide the artist through the score in a sort of karaoke manner, making
sure he knows which note to read at all times. Score following can also be used for teaching
purposes, as the application knows what is supposed to be played, it can work as a tutor
correcting the artist when not playing the precise notes the score dictates.

Finally, tempo tracking is also a subtask of a field known as automatic music transcription.
Here the goal is to automatically generate sheet music based on a given musical performance
without knowing anything about the performance in advance. This is a very challenging task
as musical performances allow various interpretations and even professional musicians do not
always agree with each other on such interpretations.

1.4 Problem Description

With the ultimate goal being the creation of an interactive music performance system, most
of the methods for tempo tracking discussed so far do not qualify to our needs. We need an
algorithm which can be used in realtime processing, providing us with accurate results and
being able to recover from errors in the past. All this has to be done in a reasonably short
timespan for the program to be able to respond to the incoming data.
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Cemgil uses a probabilistic generative model for timing deviations in expressive music
performances. A Kalman filter uses this model in combination with onset times to form an
estimation of the tempo. To determine the most probable interpretation, several methods
are applied and compared to determine which performs best. Although these comparisons
were made based on offline testing scenarios, the methods do allow an online implementation.
In performing tempo tracking the model also takes the rhythmic structure of the music into
account, it is able to determine the inter-onset intervals therefore providing us with more
information than just the tempo of a performance. Information about the rhythmic structure
can proof useful when the results of tempo tracking are combined with other tasks to form
an interactive music performance system [Cemgil2004].

In tests performed in the offline case the model performed best when using a particle filter
for processing. This method is capable of recovering from errors and provide us with accurate
results, the question is whether it will be fast enough for realtime processing.

1.5 Thesis Outline

In the following chapters we will explain the model taken from Cemgil piece by piece and will
determine if it qualifies for performing tempo tracking in realtime [Cemgil2004].

In chapter 2 we will discuss some basic mathematical principles that we will use throughout
this thesis. We will discuss probability theory, linear dynamical systems and the Kalman filter
and will elaborate on each of these by working out an example.

Chapter 3 introduces a mathematical model which allows us to perform calculations on
musical data. A number of variables are introduced and their relationship will be explained,
all this leads to a linear dynamical system model for the tempo in a musical performance.

Methods for performing tempo tracking are discussed in chapter 4. We start with a simple
case in which the score of a musical performance is known in advance. Once the difficulties
in this scenario have been explained we discuss how to perform tempo tracking when we are
dealing with an unknown score.

In chapter 5 we will discuss the architecture of the program created to perform tempo
tracking. Each module of the program will be discussed and some implementation choices
will be explained.

Chapter 6 reviews the results from several tests performed on the created program. To
determine if it is qualified for performing tempo tracking in realtime, the accuracy of the
implementation and the speed of the calculations are tested.

Finally we discuss the conclusions of all this in chapter 7 looking at future work and
improvements of the model.



Chapter 2
Basic theory

In this chapter we will discuss some basic mathematical principles that will be used to solve
the tempo tracking task. We will discuss these principles in their general form and then
illustrate them with a simple example. The application of these principles to the tempo
tracking case is discussed in later chapters.

In section 2.1 we discuss some basic probability theory that we will use in our model.
Section 2.2 explains linear dynamical systems, as music is not static but progresses in time
we explain how linear dynamical systems provide a way to model the change of a system over
time. Finally in section 2.3 we discuss the Kalman filter, which provides us with an optimal
recursive method for filtering out noise.

2.1 Probability Theory

This section lays the foundation for a model of stochastic events and processes which deter-
ministic models cannot adequately describe. As no system is driven only by its own inputs,
but also by disturbances which we can neither control nor model deterministically, probabil-
ity theory provides a way to sufficiently include such disturbances. Also because sensors do
not provide perfect and complete data about a system we need probability theory to take
these shortcomings into account [Maybeck1979]. The topics in this section are taken from an
introductory text book on probability by Dimitri Bertsekas [Bertsekas2002].

2.1.1 Principles of Probability Theory

A probabilistic model has two main ingredients.

• The sample space Ω, which is the set of all possible outcomes of an experiment.

• The probability law which assigns to a set A of possible outcomes (also called an
event) a nonnegative number P (A) (called the probability of A) that encodes our knowl-
edge or belief about the collective ’likelihood’ of the elements of A.

The probability law has to satisfy the following axioms.

• (Nonnegativity) P (A) ≥ 0, for every event A.
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• (Additivity) If A and B are two disjoint events, then the probability of their union
satisfies

P (A ∪B) = P (A) + P (B)

• (Normalization) The probability of the entire sample space Ω is equal to 1, that is,
P (Ω) = 1.

2.1.2 Conditional Probability

Another important concept is conditional probability, which allows us to reason about the
outcome of an experiment based on partial information. We speak of the conditional proba-
bility of A given B, denoted by P (A | B). The conditional probability of an event A, given
an event B with P (B) > 0, is defined by

P (A | B) =
P (A ∩B)

P (B)
(2.1)

Conditional probabilities can also be viewed as a probability law on a new universe B.
So B can be viewed as a subuniverse of the entire sample space Ω. Now P (A | B) gives the
probability of A from the perspective of the subuniverse B.

2.1.3 Total Probability Theorem

The Total Probability Theorem states that if we have ω1, ..., ωn disjoint events that form a
partition of the entire sample space and assume that P (ωi) > 0, for all i. Then, for any event
x, we have

P (x) = P (ω1 ∩ x) + ... + P (ωn ∩ x)
= P (ω1)P (x | ω1) + ... + P (ωn)P (x | ωn).

(2.2)

As the formula shows, the probability for x is equivalent to the sum events ωi intersecting
with x. This is quite obvious as the union of the disjoint events ωi is ∪n

i=1ωi = Ω and the
intersection between x ∩ Ω = x.

2.1.4 Bayes’ Rule

An important theorem in probability theory is Bayes’ rule, it relates conditional probabilities
of the form P (ω | x) with conditional probabilities of the form P (x | ω), in which the order
of the conditioning is reversed. We take ω1, ..., ωn to be disjoint events that form a partition
of the sample space, and assume that P (ωi) > 0, for all i. Then, for any event x such that
P (x) > 0, we have

P (ωi | x) =
P (ωi)P (x | ωi)

P (x)
(2.3a)

=
P (ωi)P (x | ωi)

P (ω1)P (x | ω1) + ... + P (ωn)P (x | ωn)
(2.3b)
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Bayes’ rule is often used for inference. Say we have a task that requires us to classify
objects into a number of classes, when we observe an object, or rather a data point, we
wish to infer which class it belongs to. The events ω1, ..., ωn are various classes and x is a
data point. We call P (ωi) the prior probability as it reflects the background knowledge of
ωi before or prior to any observation, the term P (x | ωi) reflects the likelihood of the data
point x given class ωi, while P (ωi | x) is known as the posterior probability as it represents
the probability after the data point has been observed. In the inference task we wish to find
the most probable class ωi given data point x, in other words we wish to find the maximum
a posterior (MAP) probability [Mitchell1997].

2.1.5 Random Variables

So far we have discussed the probability of events, we can formulate collections of events of
interest and assign a probability to every one of them. Theoretically we could be finished.
However, we can deal with numerical representations of sets in a space more readily than with
the abstract subsets themselves. Therefore, for quantitative analysis, we need a mapping from
the sample space Ω to the real numbers. This is the reason we introduce the concept of a
random variable [Maybeck1979]. A random variable is a function that maps all points in
the sample space to real numbers. Most useful to our case is the use of continuous random
variables, for example the mapping of time to real numbers. For continuous random variables
the probability of any single event A is in fact 0, that is p(A) = 0. Instead we can only
evaluate probability of events within some interval. A function for representing the probability
of random variables is known as the cumulative distribution function:

FX(x) = p(−∞, x] (2.4)

This function represents the cumulative probability of the continuous random variable X
for all (uncountable) events up to and including x. Important properties of the cumulative
density function are

1. FX(x) → 0 as x → −∞

2. FX(x) → 1 as x → +∞

3. FX(x) is a non-decreasing function of x.

Even more commonly used than the cumulative distribution function is its derivative, known
as the probability density function:

fX(x) =
d

dx
FX(x) (2.5)

This function has the following properties:

1. fX(x) is a non-negative function

2.
∫∞
−∞ fX(x)dx = 1

Finally the probability over any interval [a, b] is defined as

pX [a, b] =
∫ b

a
fX(x)dx (2.6)

This section was taken from Welch(2001).
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2.1.6 Gaussian Random Variables

A particular random variable used often in modelling natural phenomena is known as the
Normal or Gaussian random variable. The random variable X is called Normal or Gaussian if
it can be described through a probability density function of the following form [Jordan2005].

fX(x) =
1

(2π)n/2 | Σ |1/2
exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}
(2.7)

Here µ represents the mean and Σ the covariance of the random variable. The normal
density function is completely specified by its mean and covariance, therefore a shorthand
notation is often used. The form X ∼ N(µ,Σ) means X is a normal random variable with
mean µ and covariance Σ [Brown1992]. A plot of the Gaussian density function is shown in
figure 2.1.

f
X

x( )

σ

x ∞x ∞– μ
x

0

Figure 2.1: The Normal or Gaussian density function. (Taken from [Welch2001])

2.1.7 Example

To illustrate the topics discussed in the previous sections we will go over an example. This
story like example is meant as an intuitive introduction to the concepts discussed, where nei-
ther messy data nor a complicated scenario distracts us from the mathematical idea. Imagine
we are standing in front of a small pond, the pond contains two types of fish that differ both
in size and color. One of the type of fish is known as little fish, while the other type is called
big fish. Quite a bit of research has been done on the fish in this pond and for both fish types
we know the mean and covariance of their size and color. We can therefore use a Gaussian
random variable X to map these two features to a Euclidean space as shown in figure 2.2.
We also know that there are in total 30 small fishes and a total of 10 big fishes in the pond.

What we would like to do is catch a fish and determine whether it is a little or a big fish.
We can do this by first determining the size and color of the fish we caught and storing its
values in a datapoint x. We can then calculate for which fish type this datapoint achieves the
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X   (size)1

X2

(color)

Figure 2.2: Distribution of little fish (circles) and big fish (diamonds)

maximum a posterior probability, which can be calculated by using Bayes’ rule. In formula
we write:

fishMAP ≡ argmax P (fish | x) (2.8)

= argmax
P (x | fish)P (fish)

P (x)
(2.9)

∝ argmax P (x | fish)P (fish) (2.10)

In the final step we drop the term P (x) because it is a constant independent of fish. The ∝
means ’proportional to’, as we are now no longer calculating the actual value of P (fish | x)
[Temperley2005]. We are left with just two terms, the term P (fish) is the prior probability,
the chance of the fish type before having observed any data point. We know we have a total of
40 fishes of which there are 30 little and 10 big fishes, therefore P (fish = little) = 30

40 = 3
4 and

P (fish = big) = 10
40 = 1

4 . Now all that is left to calculate is the likelihood term P (x | fish).
It can be calculated using the Gaussian density function, using the mean and covariance of
the fish type we want to calculate the likelihood for.

Having calculated the a posterior probability for both fish types, we can determine which
of the two types yields the highest and thus the maximum a posterior probability for the
given data point x. This approach would work just as well if there were more than two types
of fish, or of course in any other classification task.
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2.2 Linear Dynamical System

Linear dynamical systems are used to model the behavior of a process over time, this process
can be anything from the trajectory of an aircraft, to the number of fish each spring in a
pond. We will discuss a discrete time linear dynamical system, which means that we model
the change of the system from time t to time t+1, rather than modeling at a continuous rate
of change. A linear dynamical system consists of at least two components, the state vector
and the transition matrix. The state vector xt completely describes the system at time t as
shown below.

xt =


x1

t

x2
t
...

xn
t

 (2.11)

Each element x1
t , x

2
t , ..., x

n
t of the state vector holds some information regarding the current

state of the system. The transition matrix A is an n×n matrix which contains the information
to transform the state of the system at time t to the state of the system at time t + 1. This
is shown in formula 2.12 [Bretscher2001].

xt+1 = Axt (2.12)

So the elements of the transition matrix tell us how we need to combine the various elements
of the current state vector to get to the next state. The transition matrix is often chosen
constant, but can also change with each time step.

2.2.1 Example

To get a better understanding of the working of linear dynamical systems we continue our
example about the fishes. Being able to classify each fish we catch, we would like to study
the population of the two fishes over time. To do this we will create a linear dynamical
system which will tell us how the population changes each year because of new born fishes,
little fishes being eaten by big fishes and big fishes dying from starvation. First we will need
a state vector that holds all the information we want to monitor, as we are studying the
population of the fishes our state vector simply consists of the number of big fishes and the
number of little fishes, as shown below. For easy reference we shall refer to the big fishes as
β and the little fishes as α.

xt =
(

βt

αt

)
(2.13)

Now we need to define a transition matrix, which will tell us how the population of each type
of fish will grow each year. The big fishes grow each year according to the equation βt+1 =
0.9βt + 0.3αt, while the little fishes grow according to the equation αt+1 = −0.2βt + 1.6αt.
We can now enter these numbers in a transition matrix to arrive at the final form for our
linear dynamical system, as shown below.(

βt+1

αt+1

)
=

(
0.9 0.3
−0.2 1.6

) (
βt

αt

)
(2.14)
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Using this system we can project ahead, to predict the population of fishes in the years to
come. The results for this model based on the starting population of 10 big fishes and 30
little fishes are shown in table 2.1.

Table 2.1: Values of the predicted population of big fish (β) and little fish (α).
t 0 1 2 3 4
βt

αt

10
30

18
46

30
70

48
106

75
160

2.3 Kalman Filter

In the previous section we introduced linear dynamical systems to model the change of a
process over time. Using this model we were able to predict the future outcome of the
system. However, as no mathematical model is perfect, the predictions produced by this
model are likely to deviate somewhat from the actual value. To get more accurate results
we will include observations or measurements of the system we are modelling. Unfortunately
measurements are not perfect either. In other words, both the linear dynamical system model
and measurements are subject to noise. In this section we will discuss the Kalman filter, which
is an optimal recursive data processing algorithm that will combine both the noisy model and
noisy observations to estimate the actual state [Maybeck1979]. This estimation is done in a
cyclic form, the Kalman filter first uses the model to predict the future state, this prediction
is then corrected by incorporating the observation, finally the output from the correction is
again used as input for the next prediction. This process is shown graphically in figure 2.3.

Predict Correct

Figure 2.3: Kalman filter cycle, the filter predicts the upcoming state according to the linear
dynamical system model and corrects the state by incorporating the observation

The Kalman filter models both the noise of the model and the observation as Gaussian
white noise. Whiteness implies that the noise value is not correlated in time, while Gaussian
means that it is a Gaussian random vector. We call the noise that affects the linear dynamical
system model system noise and shall refer to it as w, its distribution has a mean of 0 and
covariance matrix Q, in short w ∼ N(0, Q). System noise occurs during a state transition,
when the system is going from one state to the other. The noise that affects the observation is
called measurement noise and is referred to as v. It is a Gaussian random vector with a mean
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of 0 and covariance R, in short v ∼ N(0, R). Measurement noise occurs during observations,
when measuring the input variables. With these noise terms defined we can include them
in the equation for the model and the observation. The model equation still describes the
transition of state xt to the next state, but now taking the noise into account. The observation
equation describes the observation yt as a linear combination of the observation matrix C and
the state xt. The observation matrix C describes which of the state variables can be observed.

xt+1 = Axt + wt (2.15)
yt = Cxt + vt (2.16)

The relationship between the states and the observations can be seen clearly in a graphical
model known as a Dynamic Bayesian Network. This graphical model, shown in figure 2.4,
represents the inner structure of the Kalman filter. The nodes in this graph represent Gaussian
random variables and the arcs represent conditional dependence relations [MurphyWeb1998].

X t X t +1

Yt Yt +1

State

Observation

Figure 2.4: Dynamic Bayesian Network representation of Kalman filter model. The ellipses
denote continuous nodes, where clear means hidden and shaded means observed.

To fully understand how and more importantly why the Kalman filter works, a derivation
of its equations is necessary. This derivation can be found in appendix A, in this section we
shall restrict ourselves to a simple description in words of how the filter works.

As mentioned earlier in this section, the filter works in a cyclic form where a prediction
step is followed by a correction step. The prediction step is simply the projection to the future
state by the linear dynamical system model as we saw in the previous section. The difference
lies in that we are now representing the state as a Gaussian random vector, therefore next to
the calculation of the next state the covariance of the next state is also calculated.

The true strength of the filter, however, lies in the correction step. Here the filter first
calculates the Kalman gain matrix K, which can be seen as a sort of ’trust’ matrix, expressing
to what degree the observation and the prediction from the model should be trusted. This
Kalman gain matrix is calculated by comparing the covariance of the observation with the
covariance of the model prediction, while minimizing the covariance of the resulting filtered
state [Welch2001].

The Kalman gain is used to correct the prediction of the model using the observation. All
this can be seen in formula, having the same cyclic form as seen earlier, in figure 2.5. This
figure also shows that the Kalman filter requires an initial state estimate to get it started.
This initial estimate is entered at the calculation of the Kalman gain, meaning the filter
starts its calculations at the correction step, correcting the initial estimate by incorporating
the observation.
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Enter a priori estimate x̂k | k− 1 and

its error covariance Pk | k− 1

Compute Kalman gain:

K k = Pk | k− 1C
T (CP k | k− 1C

T + R)− 1

Project ahead:

x̂k+1 | k = Ax̂k | k
Pk+1 | k = AP k | kA

T + Q

Update estimate with

measurement yk :

x̂k | k = x̂k | k− 1 + K k (yk − Cx̂k | k− 1)

Compute error covariance

for updated estimate:

Pk | k = Pk | k− 1 − K kCP k | k− 1

Figure 2.5: Kalman filter loop. (Taken from [Brown1992])

2.3.1 Example

We continue our example about the fish in the pond. In the previous section we saw how a
linear dynamical system could predict the population of the fish in the years to come. Now we
would like to use a Kalman filter to get more accurate results. Because the linear dynamical
system model can impossibly take every effect on the population into account, the actual
number of fish is likely to differ from what the model predicts. Therefore, we will each year
take measurements from the pond, counting the population of fish on sight. Unfortunately
the little fish are too small to count using this method, so we will only count the big fish and
have the Kalman filter figure out the rest. Also, because fish are quite active creatures the
measurement is not likely to be extremely accurate. We can enter all this information into
the Kalman filter to get an optimal estimate on the population each year. The values of the
variables in this example are shown in table 2.2, the observation yt represents the counted
number of big fish in year t, while the filtered estimates of the big fish and little fish are
represented by βt and αt respectively, these results are rounded to the nearest integer value.

Table 2.2: Values of the estimated population of big fish (β) and little fish (α).
t 0 1 2 3 4
yt 10 16 27 49 71
βt

αt

10
30

17
45

28
66

48
108

72
155

2.4 Summary

In this chapter we explored some basic mathematical principles and examined simple examples
to illustrate their working. We have discussed probability theory and have seen how we can
use Bayes’ rule for inference. We then looked at how we can use a linear dynamical system
to predict future states of a process being modelled. Finally we discussed how we can use the
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Kalman filter by combining a linear dynamical system with observations to get more accurate
results of the process being modelled. With these mathematical principles explained, we can
now introduce the variables needed for setting up a linear dynamical system to model the
tempo in music. This will be the focus of our next chapter, we will introduce the variables of
interest piece by piece ending up with a complete model that can be used for tempo tracking.



Chapter 3
Mathematical model

In this chapter we will introduce a model for tempo tracking using the mathematical principles
discussed in the previous chapter. In order to create such a model we first need to quantize
some features of music, this will allow us to perform calculations on them. We will introduce
various variables and show their relationship among each other, leading to a linear dynamical
system model. The basis of our quantization will be a piece of music score, this music score
is no different from sheet music that musicians use to know what notes they have to play and
how long they have to play them.

Our model will use the onset time of notes as input, therefore we are not interested in the
pitch of a note (the height of a note), making the examples in this chapter sound rather dull
when played on the piano. However, the sole purpose of these examples is to illustrate the
topic being discussed.

In sections 3.1 to 3.4 we will introduce various variables needed to create a mathematical
model for tempo tracking. Section 3.5 then explains how these variables are combined to form
a linear dynamical system. Finally, we introduce the notion of hidden variables in section 3.6
and explain what we can observe, completing our mathematical model for tempo tracking.

3.1 Score Positions

The piece of music score in figure 3.1 is the same score we saw in the introduction section.
However, it now includes the index of each note at the top, and the score positions of each
note at the bottom.
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k=
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Figure 3.1: A piece of music score with index and score positions

The score position of a note is basically the same as the count at which the note occurs,
but instead of starting over at 1 every time a measure ends, the counting continues. As we



3.2 Score Difference 17

are going to use terms such as the score position in mathematical equations, it is convenient
to introduce some symbols. We shall refer to the index of a note as k, where the first note
has the value of k = 0. The score position of a note is referred to as c [Cemgil2004]. For
example, in figure 3.1 we see that c0 = 1 and c10 = 73

4 . An important thing to notice in the
figure is that the rest in between the notes at k = 8 and k = 9 neither has an index nor a
score position, because there is no note being played at the start of a rest, there will not be
an input signal at this point either, therefore it is ignored by the model.

3.2 Score Difference

The next term we will introduce is the score difference, referred to as γ [Cemgil2004]. In
figure 3.2 again the index of each note is shown at the top, but now the score difference is
shown at the bottom, both index and score difference are shifted a little bit to the left to
clearly show the difference between which two notes we are using.
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Figure 3.2: A piece of music score with shifted index and score differences

As the term suggests, the score difference is the difference between two consecutive notes.
This means the score difference γk refers to the difference between the kth note and the k−1st
note. For this reason, the first note in a piece of score (k = 0) does not have a score difference
value. This approach is used because when we observe a note, we can only determine its
difference once the next note has been observed.

As the index and score difference in figure 3.2 are shifted to the left it is not entirely clear
which note matches with which index, we therefore show the same values shifted back to the
right in figure 3.3. This shows how the score differences are stored together with a certain
note, just keep in mind that the score difference is between the kth note and the k−1st note.
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Figure 3.3: A piece of music score with index and score differences

When looking closely at figure 3.3, it looks as if the score difference γk is the same as the
note duration for note k−1, where note duration refers to how long a note lasts. For example,
the note at k = 2 is a quarter note and thus its duration is one count. The score difference
value at note k = 3 is exactly this one count. As you can see this applies to almost all the
notes in the figure, except for the notes at k = 8 and k = 9. This is caused because of the rest,
because the rest is ignored by the model the difference between the two notes is bigger than
the note duration. This applies even more so when dealing with polyphonic music. When
comparing figure 3.1 with 3.3 we see that the score difference γ can be calculated from the
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score position c, namely by γk = ck − ck−1. We can illustrate this dependence relationship in
a graph as shown in figure 3.4. We will later expand this graph so that it will show our entire
model.

c0 c1 c2 . . . ck− 1 ck . . . Score Positions

γ1 γ2 . . . γk− 1 γk . . . Score Differences

Figure 3.4: Graphical model illustrating the dependence relationship between score position
c and score difference γ. (taken from [Cemgil2004])

3.3 Onset time

The terms of score position and score difference are discrete versions of what we are actually
dealing with, namely time. Everything happens at a certain moment in time, we call such a
moment a timestamp, expressed in seconds. The moment a note is played also has its own
timestamp, we refer to this particular timestamp as the onset time. Each note that is played
can be expressed using an onset time and an offset time, which is the time the note started
and the time it stopped, respectively. In our model for tempo tracking we will only use the
onset time of a note and shall refer to it as τ [Cemgil2004]. Figure 3.5 shows the piece of score
we have been using as an example thus far with computer generated onset times, meaning we
used a constant tempo and the onset times were generated with millisecond accuracy.
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Figure 3.5: A piece of music score with index and computer generated onset times

3.4 Period

Next we will want to introduce a term for tempo, as that is what we are after, tempo is often
denoted in beats per minute or bpm for short. Say we have a value of 60 bpm, then this
means there will be sixty beats within a minute, this is the same as saying that a single beat
occurs every second, or that the time between two consecutive beats lasts one second. The
time between two consecutive beats can also be referred to as the period, and that is the term
we will use, we will refer to the period as ∆ [Cemgil2004]. It should be noted that the period
is not the equivalent of score difference γ on a continuous scale. This is because the period is
always the time between two consecutive beats, not the time between two consecutive notes.
We could, however, calculate the time between two consecutive notes by combining both the
period ∆ and the score difference γ. If we then add the result of this calculation to the
previous onset time, we will have calculated the new onset time. In formula this gives:
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τk = τk−1 + γk∆k−1 (3.1)

It can be seen clearly that this formula works when looking at figure 3.6. The onset times
in this figure were generated using a constant period of 0.4 seconds, which is equivalent to 150
bpm. The arrows above the notes indicate the position of the beat, so we can clearly see the
time between two arrows always adds up to 0.4, while the time between two notes depends
on the value of the score difference.
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Figure 3.6: A piece of music score with index, computer generated onset times and score
difference

With these new terms defined we can expand our previous graphical model to include the
dependence relationships from our newly created formula 3.1, this gives a new graph shown
in figure 3.7.

c0 c1 c2 . . . ck− 1 ck . . . Score Positions

γ1 γ2 . . . γk− 1 γk . . . Score Difference

∆ 0 ∆ 1 ∆ 2
. . . ∆ k− 1 ∆ k

. . . Period

τ0 τ1 τ2 . . . τk− 1 τk . . . Onset times

Figure 3.7: Graphical model illustrating the dependence relationship between score position
c, score difference γ, period ∆ and onset time τ . The square nodes denote discrete random
variables and the oval nodes denote continuous random variables. (taken from [Cemgil2004])

3.5 Linear Dynamical System

We have now defined enough variables to be able to create a linear dynamical system. As
discussed in section 2.2, where we introduced linear dynamical systems as a mathematical
concept, we will first have to determine how to define our state vector x. A state vector
completely describes the system at a certain moment in time, as we are creating a generative
model for onset times, the state vector should include the onset time and the period. The
state vector will therefore be defined as follows:
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xk =
(

τk

∆k

)
(3.2)

To complete our linear dynamical system, we also have to define the values of the transition
matrix A. With the earlier defined formula τk = τk−1 + γk∆k−1 in mind, together with our
defined state vector, we can simply fill in the blanks. Assuming a constant tempo, our

transition matrix will be A =
(

1 γ
0 1

)
and thus we get the following model for our linear

dynamical system [Cemgil2004].

(
τk

∆k

)
=

(
1 γk

0 1

) (
τk−1

∆k−1

)
(3.3)

Using this model we can generate the onset times of notes produced by a certain score,
of course we would need to know the score difference between the notes and the initial state,
consisting of the onset time and period. However, this is actually not a very realistic model
for music as music is full of intentional and unintentional deviations from the actual score. For
example, a musician could decide to play a certain note just a little bit later than the score
dictates to create a rhythmic effect. On the other hand it is simply impossible for a human
being to play with such exact precision that every quarter note (or any other note) lasts
exactly the same number of milliseconds. These deviations cause effects in the music, which
can make it more alive and beautiful. However, as these deviations corrupt the exact data
that we are after, to us they are no more than noise. We should take this noise into account,
which is why we add system noise to our model. We learned about system noise in section
2.3 when we introduced the Kalman filter, it is Gaussian white noise with a distribution
w ∼ N(0, Q). This gives us the final model for generating onset times [Cemgil2004].

(
τk

∆k

)
=

(
1 γk

0 1

) (
τk−1

∆k−1

)
+ wk (3.4)

3.6 Hidden variables

When examining the model we have obtained thus far, it shows that we need both the onset
time τ and the period ∆ to be able to work with our model. However, as we will see in
this section both these variables are hidden variables, which means they cannot be observed
directly. We cannot observe the period directly because it is something which can only be
measured within a certain timespan. We cannot observe the actual onset time either, but we
can observe a noisy version of the onset time. This noise is called measurement noise, which we
discussed earlier in section 2.3, it is Gaussian white noise with a distribution v ∼ N(0, R). We
can describe the observation in a mathematical equation of the form yk = Cxk, where xk is the
state vector, C the observation matrix and yk the observation at time k [Murphy1998]. The
observation matrix holds the information on what variables in the state vector can actually
be observed. As in our case only the onset time is observed, for us this formula looks as
follows [Cemgil2004].
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yk =
(

1 0
) (

τk

∆k

)
+ vk (3.5)

This gives us our final version of our dependency graph, shown in figure 3.8 and completes
our mathematical model.

c0 c1 c2 . . . ck− 1 ck . . . Score Positions

γ1 γ2 . . . γk− 1 γk . . . Score Difference

∆ 0 ∆ 1 ∆ 2
. . . ∆ k− 1 ∆ k

. . . Period

τ0 τ1 τ2 . . . τk− 1 τk . . . Actual onset times

y0 y1 y2 . . . yk− 1 yk . . . Noisy onset times

Figure 3.8: Graphical model illustrating the dependence relationship between score position
c, score difference γ, period ∆, actual onset time τ and noisy onset time y. The square nodes
denote discrete random variables and the oval nodes denote continuous random variables,
where clear means hidden and shaded means observed. (taken from [Cemgil2004])

3.7 Summary

In this chapter we learned how we can use the score position c and the score difference γ to
describe the score of a musical piece. We then introduced the onset time τ and period ∆
and learned how we can combine the two to form a linear dynamical system for generating
onset times for a matching score. Finally, we saw that the onset time and period are actually
hidden variables, and how we can only observe a noisy version of the onset time which we
refer to as y.

Because we do want to know the actual onset time τ and the period ∆, we will use the
Kalman filter to get as good an estimate of those two values as possible. We have discussed
the principles of the Kalman filter in section 2.3. In the next chapter we will further expand
these principles and apply them to our mathematical model created. This will result in a
working algorithm for doing tempo tracking.



Chapter 4
Methods

In the previous chapter we created a linear dynamical system model for generating onset
times for a matching music score. We learned that the state vector of this model is hidden,
creating the need for us to estimate the value of the state. In this chapter we will describe
methods based on the Kalman filter to perform this estimation. We have already discussed
the basics of the Kalman filter that was introduced by R.E. Kalman in 1960 [Kalman1960].
However, his method requires some expansions in order to work for tempo tracking.

In this chapter we will discuss these expansions and will illustrate them with examples
of tempo tracking scenarios. In section 4.1 we will introduce the switching Kalman filter,
a method that allows us to combine a number of linear dynamical systems while still using
the Kalman filter for estimation. We will illustrate the use of the switching Kalman filter by
giving an example of tempo tracking on a musical performance of which the score is known
in advance. In section 4.2 we will introduce the particle filter, a method in which several
hypotheses, referred to as particles, are tested to determine which fits a certain scenario best.
With this method we will be able to perform tempo tracking on a musical performance with
unknown score, as will be shown in an example.

4.1 Switching Kalman filter

A restriction in applying the Kalman filter is that it operates only on linear models. Un-
fortunately, most systems are not linear and thus their state cannot be estimated using the
Kalman filter. One solution to this restriction is to use a piecewise linear model, the model as
a whole is not linear but the individual pieces that make up the model are. We will have to
create a list of the different linear models that make up the piecewise linear model and switch
between the different models as time progresses. To make this work in combination with the
Kalman filter, we will need a discrete switch variable St that specifies which model to use at
time t [Murphy1998]. Using this switch variable we can replace the model parameters in the
Kalman filter with the ones needed for that particular time step. This expanded form of the
Kalman filter is shown graphically in figure 4.1.
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S t S t +1

X t X t +1

Yt Yt +1

Switch

State

Observation

Figure 4.1: Dynamic Bayesian Network representation of switching Kalman filter model. The
circles denote continuous nodes, where clear means hidden and shaded means observed.

4.1.1 Applied to Tempo Tracking

The mathematical model that we created in the previous chapter actually lends itself perfectly
for a switching Kalman filter. Our linear dynamical system model uses a transition matrix
that contains a variable, namely the score difference γk. This means that depending on the
value of this score difference γk we will be using a different linear dynamical system model
every time this value changes. As score difference is something that can change with each
time step it is exactly the switching variable that we need. For clarities sake we show the
transition matrix A one more time below.

Ak =
(

1 γk

0 1

)
(4.1)

So in the case of our tempo tracking model the only thing that needs to be changed when
switching to a different linear model, is the transition matrix A. We can see this even more
clearly by mapping the graphical model of the switching Kalman filter to the graphical model
we created in the previous chapter, the result is shown in figure 4.2.

4.1.2 Example

Having discussed the switching Kalman filter and how it applies to tempo tracking, we can
have our first attempt at performing tempo tracking on actual human generated musical data.
In this section we will discuss how we apply the switching Kalman filter by going over each
step in detail and discuss the output that the filter generates.

Before Starting with this example we have to introduce a restriction. In using the switching
Kalman filter we need a switch variable, we already decided that the score difference γ would
make a good switch variable. However, this means that we will need to know the value of
the score difference in advance, otherwise we will not know which linear model to use. This
means that we will need to know the exact score of the piece we are doing the tempo tracking
on in advance, so we will have to manually input the score difference values before we can
start using the switching Kalman filter. The score for this example together with the noisy
onset time observations y and score difference γ are shown in figure 4.3.
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ck− 1 ck

γk− 1 γk

∆ k− 1 ∆ k

τk− 1 τk

yk− 1 yk

State X

Switch S

Observation Y

Figure 4.2: Mathematical model for tempo tracking with highlighted elements for a switching
Kalman filter model. The graph shows score position c, score difference γ, period ∆, actual
onset time τ and noisy onset time y. The square nodes denote discrete random variables and
the oval nodes denote continuous random variables, where clear means hidden and shaded
means observed.
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Figure 4.3: Known score with noisy onset time observations y and score difference γ

To be able to use the Kalman filter we need to initialize a number of parameters. We have
already defined the transition matrix A and the observation matrix C when we discussed the
mathematical model in chapter 3. What we still need to define is the error covariance matrix
Q for the system noise and the error covariance matrix R for the measurement noise, we will
use constant values for these matrices instead of having them change at every timestep. The
exact values for Q and R will be chosen somewhat ad hoc, they can be determined in a sensible
way using the Expectation-Maximization(EM) algorithm, but for this simple example it will
suffice to just use logical reasoning. The process noise covariance Q describes how certain we
are about the results of our model, setting this value to 0 would indicate absolute certainty,
while giving it a large number would indicate the model is close to just making random
guesses. Because we have a pretty strict model, we will choose a rather low value showing we
are quite certain but allow some fluctuation. This fluctuation is needed because the tempo
is modelled as a constant value in our model, which is obviously not the case. Because our
state vector consists of two variables (the onset time and period) our matrix Q will be a 2×2
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matrix.

Q =
(

0.001 0
0 0.001

)
(4.2)

The measurement noise covariance R describes how certain we are about the measure-
ment we have obtained. Our measurements were obtained using a MIDI keyboard, so the
measurement of the keypresses will be near perfect. However, because there was a human
being playing the keyboard we can assume there will be some deviations from the score, we
will therefore choose the value of R as 0.01.

Next to the covariance matrices we need to determine our initial a priori state vector and
covariance matrix, which is required for the Kalman filter as a starting point. As we are unable
to determine these for sure, we will assume music performances usually start immediately, so
at a timestamp of 0.0 seconds. For the period we will choose a value of 1.0, which is equivalent
to 60 bpm. Because we really do not know for sure what the initial state is, we will choose
a high value for the covariance matrix. We therefore get the following results for our initial
state.

x̂−0 =
(

τ̂−0
∆̂−

0

)
=

(
0
1

)
P−

0 =
(

1.0 0
0 1.0

)
When we are referring to the a priori state, which is the result of the prediction step, we write
x̂k|k−1, meaning we are referring to the estimate at point k given the previous state. The a
posteriori state, which is the result of the correction step, is referred to as x̂k|k, because after
having performed the correction step the observation at time k has been incorporated in the
result. For the initial state, shown above, we used a super minus sign to indicate it being the
a priori state, as it starts at time k = 0 and there is no previous state it is conditioned on.

We now have all the parameters initialized to start processing the noisy onset observations.
If a review of the inner working of the Kalman filter is required, please refer to figure 2.5,
which shows the cyclic form of the filter together with the formulas used in the algorithm.
We enter the filter at the correction step, which will correct our initial state by incorporating
the observation. When performing the necessary calculations, it will show that the result of
the correction step is as shown below.

x̂0|0 =
(

τ̂0|0
∆̂0|0

)
=

(
0.0712

1

)
P0|0 =

(
0.0099 0

0 1.0

)
We see from these results that the estimated onset time is now almost similar to the obser-
vation y0 which was 0.0719. This makes perfect sense as we gave our initial a priori state a
very high covariance, indicating we were not certain of its values at all. We also see that the
a posteriori covariance for the onset time has become a lot smaller, indicating a much higher
certainty regarding this value. On the other hand we see both the value of the period and
its covariance unchanged, this too makes perfect sense. It makes sense intuitively, because
the period is something which is measured within a certain timespan and so far we have only
observed one onset time. It also makes sense when examining the numbers, we initialized our
initial a priori covariance matrix P−

0 as a diagonal matrix, thus saying that the onset time
and period are uncorrelated, furthermore our observation matrix says we can only observe
the onset time and not the period, the Kalman filter therefore had no way of telling anything
about the period and had to rely fully on the initial value.
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Having obtained the filtered estimate for k = 0, we can continue to k = 1. The score
difference for this point is γ1 = 1, so we can switch to a linear dynamical system model in
which the transition matrix A1 is initialized with a value of γ1 = 1. Now we can start the
prediction step and calculate the projection to the next state according to our model, this
gives us the following a priori state with matching covariance.

x̂1|0 =
(

τ̂1|0
∆̂1|0

)
=

(
1.0712

1

)
P1|0 =

(
1.0109 1.0

1.0 1.001

)
As we entered the prediction step with a period of 1 it was simply added to the onset time,
just like our model says. Also, the model updated the covariance matrix now showing that the
onset time and period actually are correlated, continuing with these results to the correction
step, we get the filtered estimates for k = 1.

x̂1|1 =
(

τ̂1|1
∆̂1|1

)
=

(
0.6863
0.6193

)
P1|1 =

(
0.0099 0.0098
0.0098 0.0215

)
Again we see that the filtered onset time lies closely to the observed noisy onset y1 of 0.6825
and not close to the prediction that the model gave. However, this time the period was
updated as well because the filter was now able to tell how the onset time and period are
correlated. The covariance matrix also shows a lower covariance for the period indicating a
higher certainty.

We can now proceed to k = 2, the score difference for this point is γ2 = 1
2 , we therefore

switch to a linear dynamical system model in which the transition matrix A2 is initialized
with a value γ2 = 1

2 . Because we switched to a different linear dynamical system model we
will go over the results from the filter in detail one more time, so we can clearly see the effect
of the switch. The results from the prediction step are as follows.

x̂2|1 =
(

τ̂2|1
∆̂2|1

)
=

(
0.9959
0.6193

)
P2|1 =

(
0.0261 0.0205
0.0205 0.0225

)
We see now that the onset time was updated with only half a period, as the score difference

for this timestep was γ2 = 1
2 . Also because the period was updated in the previous step, the

model prediction is a lot more accurate, as we will see after having performed the correction
step, whose results are listed below.

x̂2|2 =
(

τ̂2|2
∆̂2|2

)
=

(
0.9862
0.6116

)
P2|2 =

(
0.0072 0.0057
0.0057 0.0108

)
We see that the filtered onset time lies somewhat in between the predicted onset time and

the observed onset time y2 of 0.9825, meaning the filter is starting to trust the prediction
about as much as the observation. This is not that strange as the two values start to differ
less and less, in other words the results from the model start to agree more and more with
the observations meaning we must be on the right track, or tempo.

For the remaining steps we continue to initialize the transition matrix to the matching
γk for that step and process the measurement. The results can be found in table 4.1, only
the filtered state estimate is given and no longer the a priori estimate, as it is the filtered
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Table 4.1: Values of filtered state estimates for example with a known score
k 0 1 2 3 4 5 6 7
yk 0.0719 0.6825 0.9825 1.2750 2.1769 2.79 3.0719 3.3725
τ̂k|k
∆̂k|k

0.0712
1.0000

0.6863
0.6193

0.9862
0.6116

1.2814
0.6045

2.1794
0.6009

2.7866
0.6031

3.0798
0.6002

3.3765
0.5988

values that we are after. Furthermore a plot of the onset times and period together with their
covariance can be found in figure 4.4. The X axis denote the onset time, while the period is
plotted on the Y axis, the ellipses represent the covariance matrix at each timestep.

From the plot and the values in the table we can clearly see that the period quickly con-
verges to a value of around 0.6, the plot also shows how the initial period of 1.0 is adjusted
after one iteration. Furthermore, we see how the ellipses in the plot become smaller and
smaller, the ellipses represent the covariance matrices. The fact that the values of the covari-
ance matrix are decreasing means that the uncertainty is decreasing as well. Although the
performance in this example was done by a human being, the notes were played at a rather
constant tempo. The filter would, however, have no trouble tracking a more irregular tempo.
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Figure 4.4: Plot of filtered onset times (x axis) and period (y axis) together with covariance
for example with known score.
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4.2 Particle Filter

In the previous section we discussed the switching Kalman filter in which a switching variable
indicated which linear dynamical system should be used. We saw an example of tempo
tracking in which a switching Kalman filter was used to track the tempo of a performance of
which the score was known in advance. Because the score is not always known in advance,
we would also like to be able to do tempo tracking on a performance with unknown score.
In other words, we need a method that allows us to use the switching Kalman filter while
the switching variable is hidden. In this section we will discuss such a method known as the
particle filter.

A particle filter can be used to determine the value of the switch variable in a switching
Kalman filter, without the value of the switch variable we have no way of telling which
linear model to use and can therefore not perform the necessary calculations for the switching
Kalman filter. The approach that the particle filter takes in solving this problem is to simply
try all possible values as hypotheses for the switch variable, these hypothetical values are
referred to as particles. For each of these particles the calculations of the switching Kalman
filter will be performed, giving us a collection of potential states for the next timestep.

To differentiate between these states the likelihood of each of them is calculated, the likeli-
hood is a probabilistic term indicating how likely the observation is given that it is interpreted
using a particular switching variable. Next to the likelihood we can also include a prior proba-
bility, the prior probability indicates a preference for a certain switching variable independent
of the observation made. The use of a prior probability can be required as it is possible that
multiple solutions receive the same likelihood, the prior probability will allow use to differ-
entiate between those solutions. We can combine the likelihood and the prior probability by
using Bayes theorem giving us a result that is proportional to the posterior probability. We
can then determine which state has the highest proportional posterior probability and use it
to continue to the next timestep.

p(class | data) ∝ p(data | class)× P (class) (4.3)
posterior ∝ likelihood× prior (4.4)

Instead of just using the particle that resulted in the state with the highest posterior
probability, we would like to keep track of the other particles as well. A particle that seemed
plausible at first could turn out to result in a lot less likely particles after a few iterations. We
can use other particles as parents for a new iteration too, this results in a tree like structure
where each route through the tree is a sequence of switching variable values. But using all
particles means the tree grows exponentially with each iteration resulting in an explosion of
particles within a few of iterations, this will make the number of calculations too large and
thus the algorithm too slow, especially for realtime applications. Therefore, as a pruning
condition we will only use the n-best particles as parents for the new iteration, this will keep
the number of calculations constant while still maintaining an interesting set of particles.
Also, instead of using all possible values as hypotheses for the switching variable, we could
decide to select only a few values that seem to make sense, this could even be required as the
list of possible values can be very large or even infinite.

Using the particle filter we can get the estimation of the state as well as the value of the
switching variable, the method can be applied in offline and online scenarios and can thus be
used for realtime processing as well.
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4.2.1 Applied to Tempo Tracking

With the principles of the particle filter explained we can now discuss how to use it in tempo
tracking. We introduced the particle filter because in our previous approach we were restricted
to a scenario in which the score of a musical performance was known in advance. Using the
particle filter we will also be able to process performances with unknown score, we therefore
need to create a set of possible switch variables and define a method for calculating the
likelihood.

The model that we used when working with the switching Kalman filter in the previous
example still applies, this means that our switching variable is still the score difference. As
the score difference is not known, the particle filter will try every possible value to determine
which one works best. This means we need to know what possible values a score difference
can take and we need to come up with a calculation for the likelihood of such a value. The
list of possible score differences is basically infinite, a musician can have a note last as long
as he likes or as short as he likes, meaning the score difference can be almost any value from
0 to infinite. But because the score difference is a discrete random variable, it has to stick to
a certain grid of possible values. To be able to use the particle filter we will have to make a
selection from this infinite list of values, fortunately this is possible. Roughly put, when the
difference in time between two notes is very small we can ignore the very high score differences
as it very unlikely they will apply, similarly if the difference in time is very large we can ignore
the very small score differences.

Put more exact, we use the score difference to be able to get a prediction for the next
timestep from the linear model, however, we also have a measurement for the next timestep.
The difference between the measurement and the prediction from the model is referred to as
the residual ek, it is calculated by ek = yk − Cxk|k−1 and reflects the discrepancy between
the predicted estimate Cxk|k−1 and the measurement yk. Ideally this residual is equal to zero
meaning the model and observation are in complete agreement, we can calculate with which
score difference this residual will be zero by performing some simple algebra, as shown in the
following derivation.

ek = yk − Cxk|k−1 = 0

yk − CAxk−1|k−1 = 0

yk −
(

1 0
) (

1 γk

0 1

) (
τk−1

∆k−1

)
= 0

yk − τk−1 − γk∆k−1 = 0
yk − τk−1

∆k−1
= γk

According to this derivation the ideal score difference can be calculated by taking the difference
between the observation and the previous onset time and dividing it by the period. The result
from this calculation will be a real number, but because we are modelling the score difference
as a discrete random variable we will need to round this real number to the nearest value
on our grid of discrete values. To prevent working with really short notes we will choose a
smallest note representation, meaning we will choose a minimum value for the resolution of
our grid of discrete values. This idea is illustrated by a simple fictive example in figure 4.5,
say we have calculated that the ideal score difference is 1.34, we have chosen a grid resolution
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of 0.25 the score difference that will be used will be 1.25. Next to this value we can use a
number of its neighbouring grid values as well to get a list of potential score differences.

0 0.25 0.5 0.75 1.25 1.5 1.751 2

1.34

γ= 

Figure 4.5: Fictive example, calculated ideal score difference is 1.34 this is rounded to the
nearest position on a grid with a resolution of 0.25

Having developed a method to create a subset from the set of all score differences, our
next step is to find a method for calculating the likelihood of each of these values. The
ideal scenario is that the linear model and the observation are in complete agreement, we
have already seen that the residual is the difference between the prediction by the linear
model and the observation, so the residual would make a good basis for our calculation of
the likelihood. We will calculate the likelihood by sampling from a Gaussian distribution
N(0, covE). The mean of this distribution is 0 as the ideal residual is 0 as well, while the
covariance covE is calculated as covE = CPk|k−1C

T + R. The likelihood p(ek | µ,Σ) is
then calculated using the formula to calculate the probability of a sample from a Gaussian
distribution as discussed in section 2.1.6.

Next to the likelihood we could also define a prior probability, as mentioned before a
prior probability indicates a preference for a certain switching variable independent of the
observation made. As sometimes multiple solutions achieve the same likelihood, this prior
can be used to express a preference. In tempo tracking we are trying to determine both
the period and score difference of a musical performance, together these two values should
match the observed onset times. However, there are various combinations of the period and
score difference that give the same exact match, we can simply scale the two variables by a
certain factor. This can be seen clearly in the example shown in figure 4.6, we have a list
of onset times y and want to find the right combination of period ∆ and score difference γ.
Interpretation 1 models the notes as quarter notes with a period of 1.0 (which is equivalent
to 60 bpm), this gives a perfect match to the given list of onset times, which in turn would
result in the highest likelihood possible according to our just defined formula for calculating
the likelihood. Looking at interpretation 2 we see the notes are modeled as half notes with a
period of 0.5 (equivalent to 120 bpm), giving also a perfect match and thus the exact same
likelihood. As the figure shows, the two implementations simply differ by a scaling factor two
(score difference times two, period divided by two).

We could scale the solution in all sorts of ways as long as there is a score difference to
match it, this could give us very strange solutions with very uncommon score representations
as a result. To filter out these uncommon scores we can include a prior probability, we could
for example say we favor quarter notes over any other note by giving the quarter note a
higher prior probability than the other notes. The problem in music is that there is not
really a ground truth that holds for all musical genres, it is therefore difficult to define a prior
probability that will work well for every musical performance. A solution to this might be to
define several prior probabilities for different musical genres and have the user select a genre
in advance.
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Figure 4.6: Fictive example, two interpretations of one set of onset times

In the example we will now discuss we will not include the prior probability as the like-
lihood turns out to be sufficient to solve the example. However, as we will see in chapter 6,
when we discuss the results of performing tempo tracking in realtime, a prior probability is
required to get reliable results every time a performance is played.

4.2.2 Example

In this example we will perform tempo tracking on a performance with unknown score, figure
4.7 shows a list of onset times. As the question marks indicate the score, and thus the score
difference, is not known.
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Figure 4.7: Unknown score with noisy onset time observations y, because of the unknown
score the score differences are unknown too.

We will use the same parameters for the switching Kalman filter as we did in the example
of the previous section. The actual calculations of the switching Kalman filter in this example
are exactly the same as in the previous section, although this time the filter is used multiple
times within one time step. We will therefore not go over the calculations step by step, but
will simply list the final results. The values of the onset times τk|k and period ∆k|k in table
4.2 are the ones with the highest likelihood after processing the final note. Additionally the
score differences γk that were used and found best are displayed in the table.
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Table 4.2: Table with various values in for example with unknown score.
k 0 1 2 3 4 5 6 7
yk 0.0087 0.47 0.89 1.7756 3.532 3.96 4.43 5.3037
τ̂k|k
∆̂k|k

0.0086
1.0000

0.4714
0.9287

0.8978
0.8838

1.7766
0.8806

3.5329
0.8790

3.9654
0.8769

4.4163
0.8812

5.3009
0.8825

γk - 0.5 0.5 1.0 2.0 0.5 0.5 1.0

k 8 9 10 11 12 13 14
yk 7.043 7.66 7.893 8.781 10.49 11.147 11.387
τk|k
∆k|k

7.0490
0.8774

7.6804
0.8693

7.8957
0.8687

8.7732
0.8723

10.4973
0.8659

11.1469
0.8660

11.3736
0.8691

γk 2.0 0.75 0.25 1.0 2.0 0.75 0.25

Next to the values in the table, a plot of the results is shown in figure 4.8. The plot
includes some information that is not in the table. First of all, all the particles and their
connections to their parent particles are shown and colored cyan. Because of pruning some
of the routes in the plot result in a dead end, they simply turned out to be too unlikely.

The onset times and periods that achieved the highest probability (the ones that are also
in the table) are connected by a dark blue line and the covariance for the points are given as
green ellipses.

Finally, the dashed red line shows which particle achieved the highest likelihood at each
timestep. As we can see the program first decided on a different period then it ended up
choosing. However, looking closely at the values of the periods we see the route the red
dashed line followed at first has a period of around 1.7, while the value it ended up choosing
has a value of 0.87, which is approximately half its value. This makes perfect sense, as the
period is twice as big, the score differences need to be twice as small to achieve the same onset
times. The reason the algorithm decided to choose the smaller period in the end is because it
ran into a sixteenth note, the score difference resolution used in this scenario was set to 0.25,
as the upper line had already used this value to represent the eighth note, it did not have a
lower value to represent the sixteenth note and failed to further accurately describe the onset
times, this is why a switch was made to the other route.

We can check the score differences the algorithm chose by looking at the original score
that was used to produce the onset times in this scenario. The original score, which was
not known beforehand, was created by taking the first few notes of the song Sailing by Rod
Stewart [Baker2001] and is shown in figure 4.9. When comparing the values, we see there is a
perfect match. We could have even produced this score from the score difference information
(except for the pitch of the notes), assuming there are no rests or overlapping notes throughout
the song.

4.3 Summary

In this chapter we discussed methods for estimating the state of a linear dynamical system. We
introduced the switching Kalman filter which allowed us to estimate the state of a piecewise
linear model, based on a switching variable. In an example we saw how the switching Kalman
filter can be used to perform tempo tracking on a musical performance of which the score was
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Figure 4.8: Plot of filtered onset times (x axis) and periods (y axis) together with their
covariance.

 

0

0.5

1

0.5

2

2

4

1

3

0.5

5 6

0.5 1

7

2

8

0.75

9

0.25

10

2

12

1

11

0.75

13

0.25

14k=

γ=

Figure 4.9: Original score used to produce onset times for scenario 3
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known in advance. We then discussed the particle filter, a method for using the switching
Kalman filter even when the switching variable is hidden, this allows us to perform tempo
tracking on a performance with unknown score, which we discussed in the final example.

Having discussed a method that allows us to perform tempo tracking in a realtime scenario,
we can implement this method in the form of a computer program, this will be the focus of
our next chapter. As we want to do tempo tracking in realtime a fast implementation is
required, we will discuss implementation choices and explain the architecture of the software.



Chapter 5
Implementation

With the method for doing tempo tracking explained in the previous chapter, we can now
focus on creating a program to perform the actual calculations. In this chapter we will go over
the design of the program and will discuss some issues encountered during implementation. A
first implementation of this program was done in Matlab, as Matlab is a scripting language it
allows for easy debugging, making it ideal to get a good understanding of how to implement
an algorithm. The final implementation, however, was done in C++ using the win32 API to
create the graphical user interface. Because we want to perform tempo tracking in realtime
the speed of the program is very important, programs written in C++ produce very little
overhead making the software run fast enough for realtime performance.

In section 5.1 we will explain the underlying architecture of the program and explain
how this architecture allows flexibility in design and expansion of the program. Section 5.2
discusses what types of input the program can handle and how these inputs are processed.
Of the realtime inputs both MIDI and raw audio data are discussed, however, only MIDI
has been implemented. Then in section 5.3 we discuss some technical details regarding the
implementation of the Kalman filter in C++, as the algorithm itself has been explained
thoroughly we will not go into too many details in this section. Finally, in section 5.4 we
discuss how we can use the tempo information, to create some interesting output. We will
discuss how to generate beats and how a drum loop can be played, while somebody is playing
music.

5.1 Architecture

When creating computer software, it is important to think of a good architecture for the
layout of your program, a good architecture allows flexibility in altering your software as you
write it. This program should process music being played and do something useful with the
results, this means we can divide the program into three modules. We start with an input
module which will focus on collecting the necessary data from an input device. Examples of
input devices can be MIDI input, a microphone or even manual or computer generated input,
which might be useful for testing the application. The data from the input device might have
to be parsed for it to become useful, it can then be handed over to the processing module,
which is the next module in our design. The processing module will perform the necessary
calculations as discussed in the previous chapter. The processed data will be useful for our
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output module, which is the final module. In the output module the data can be examined
and used for some meaningful output, for example playing a clicking sound at the beat or
playing a drumloop at the right tempo. This architecture is shown in a diagram in figure 5.1.

OutputInput

Onset time State estimate

- Generated

- Midi

- Microphone

- Manual

- Kalman

      filter

- Beat

- Drum loop

Processing

Figure 5.1: Diagram to illustrate the architecture of the tempo tracking software, italic words
denote messages between various threads, while the words inside the boxes represent choices.

Each of the modules will be run in an individual thread, this will allows the program to
act in time even when another thread is taking a bit longer than required. As the diagram
shows, the threads communicate through messages, the nice thing about this design is that
when you want to add an extra input option, you just have to make sure that it produces
onset times and the rest of the program will be able to handle it. The same applies for the
processing and output thread, making it very easy to add features to the program, such as
trying different processing techniques or output methods. With the architecture explained
we can go over each module more thoroughly.

5.2 Input

The task of the input module is to obtain the onset time and pass it to the processing module.
In this section we discuss different forms of input and how we obtain the onset time for each
of these forms.

5.2.1 MIDI

The term MIDI is an acronym for Musical Instrument Digital Interface, it is a communication
standard that allows musical instruments and computers to talk to each other using a set of
messages. These messages contain symbolic information representing the instruments action.
For example, there is a note on message to indicate a certain note was played and a note off
message to indicate it stopped. Unfortunately most instruments do not come with a MIDI
connector, as most instruments are not electric, but for almost every instrument there is either
a MIDI equivalent or MIDI kit available allowing it to produce MIDI messages [Guerin2002].

To allow the program to handle MIDI messages the PortMIDI library was used, which is
a cross-platform, open source library available at the Carnegie Mellon website. The library is
able to read from and write to a MIDI port, making it possible to use the library for receiving
MIDI messages as well as MIDI playback. Because each MIDI message is accompanied by a
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timestamp, we only need to filter for note on messages in order to get the onset time. After
passing this onset time to the processing module the task for the input module is done.

5.2.2 Microphone (not implemented)

Although not implemented, it is also possible to use a microphone as input device. Because
the data from a microphone is raw audio data, we will need to further process this data to
obtain the onset times. The raw audio data can be obtained by using the PortAudio library,
this is the raw audio equivalent of the PortMIDI library. We can then apply a wavelet analysis
on the data using the wave++ library, which is a C++ library for performing wavelet analysis,
time-frequency analysis and Fourier analysis. For monophonic music it might suffice to detect
frequency changes and use that as a basis for finding onset times, however, as this is quite
a complicated task this has not been implemented and has therefore not been tested. An
overview of onset detection techniques in polyphonic music can be found in Bello (2003).

5.2.3 Generated and Manual

Because tempo tracking is a task still being researched, it could be useful to try certain
scenarios to see how the algorithm performs. It is for this reason that both computer gen-
erated input and manual input have been added to the program. Computer generated input
generates noisy onset times according to a number of parameters such as the tempo and a
noise covariance matrix. The manual input option can be used to enter onset times by hand,
this can be handy to try a certain scenario over and over, using different parameters for the
processing step.

5.3 Processing

The task of the processing module is to take the incoming noisy onset time and produce an
estimate of the actual onset time and period. Although all sorts of processing techniques can
be used, only the particle filter has been implemented. We have discussed the details of both
the particle filter and the switching Kalman filter in the previous chapter, so we will not go
over too much programming details here. The implementation of the matrix calculations,
needed for using the switching Kalman filter, have been written out to a scalar level for a two
element state vector. This severely limits the reusability of the switching Kalman filter code,
but allows for a very simple and fast implementation. As we are going to process realtime data
this approach was chosen. The calculations of the particle filter are pretty straight forward,
a C++ standard template library multimap was used to store the particles at each timestep,
this way the particles are automatically sorted by likelihood making it very easy to use the
n-best results. Next to the state estimate with the highest likelihood, the score position is
also sent to the output thread, as we will see in the next section this information is required
for getting some interesting output.

5.4 Output

In the output thread the tempo information obtained from the processing module is used
to produce interesting output. Timing is very important when it comes to output, so to
make sure everything happens on time the output thread uses two functions. One function
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continuously monitors the clock to see if it is time to output an event, once an event has been
played it calculates the timestamp for a new event and prepares it. Another function handles
the incoming data from the processing module, updating any timestamps based on this data.
This structure guarantees on the one hand that output is always played on time, while on the
other hand guarantees that the most recent results have been used to get as accurate timing
information as possible.

5.4.1 Beat

The beat is a pulse that occurs on the basic time unit in music, when one taps along his foot
each tap is a beat. The moment a beat is played depends purely on the tempo, a fast tempo
means beats are played at a fast pace too. In outputting the beat it is important to constantly
incorporate the tempo made available by the processing module to maintain accurate beat
times. Generating a beat while playing music gives a good indication whether the tempo
tracking was performed successfully, an incorrectly played beat is very easy to notice.

The processing module provides the output module with the onset time, the period and
the score position of the processed note. To find the timestamp for a beat we simply need to
round the score position to the nearest highest integer value, this gives us the score position
of the beat. We can then calculate the score difference between the note and the beat and
use that value to calculate the timestamp of the beat. These calculations are performed every
time the processing thread provides the output module with new tempo information. Another
function continuously checks whether the calculated beat time has been reached and outputs
the beat if so, it then calculates the timestamp of the next beat. This way a beat is always
played, using the latest tempo information available.

5.4.2 Drum loop

A drum loop is a sequence of drum MIDI events that can be played in a repeating fashion to
simulate a background drummer. The time at which each of the individual drum events are
played depends on the tempo of the music. To calculate these times we first need to load the
drum events from a MIDI file and determine the score position of each individual drum event,
this can be obtained from the information in the file. With the tempo information obtained
from the processing module, together with the score position of every drum event, we can
calculate the timestamp of each event in a similar matter as with the calculation of the beat
time. We can then use an index to indicate which drum event needs to be played next and
reset the index at the end of the sequence to create the looping effect. The same structure
is used as with the beats, in that the drum loop in continuously played and timestamps
accurately updated using the latest tempo information available.

5.5 Summary

In this chapter we discussed how tempo tracking can be implemented in a computer program,
we used an approach in which the program is divided into three modules, an input, processing
and output module. Each of these modules can be used in different ways, allowing us to try
different configurations and giving us a tool to perform tempo tracking in all sorts of scenarios.
Using this tool we can perform various tests to determine the accuracy, speed and ability to
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recover from errors of the implementation, in the next chapter we will introduce various
testing methods and discuss the results produced from these tests.



Chapter 6
Results

Having created a tool to perform tempo tracking we can now determine if our implementation
qualifies for a realtime scenario. In section 6.1 we will use a dataset, used more often in tempo
tracking, to test the accuracy of our method. We will then test the speed of the application
in section 6.2, comparing an implementation in C++ with one in Matlab. Finally, we will
discuss how the program performs in a realtime scenario in section 6.3, learning how various
parameters affect the behavior of the program..

6.1 Accuracy

One of the most important results in testing an algorithm is its accuracy, without a high
accuracy things like speed become less and less relevant as nobody needs a fast algorithm
that completely messes up a task. In this section we discuss how we test the accuracy of our
program and compare the results with another implementation.

The model we used is taken from Cemgil, in his thesis he also discusses a number of
tests performed on his model, however, his tests are done only offline [Cemgil2004]. In offline
processing all observations are available beforehand, therefore one can determine which inter-
pretations fits best taking all observations into consideration, additionally Kalman smoothing
can be performed to get even better results. The difference in our approach is that we are deal-
ing with a realtime implementation of the model. This means that events that have already
been processed can no longer be altered, therefore we expect the accuracy to be somewhat
lower than in the offline case.

The data set we will use to test the accuracy is the beatles data set, this is the same data
set that was used to test the offline implementation. The beatles data set consists of MIDI
recorded piano performances by twelve different pianists playing Michelle and Yesterday by
the Beatles. Of the twelve pianists there are four professional jazz players, five professional
classical players and three amateur players. The performances of the pieces were done in three
different tempo conditions, namely slow, normal and fast, it was left to the players to decide
how to interpret these different tempos. For each tempo condition a total of three repetitions
were recorded, all this results in a total of 216 performances (= 12 pianists × 3 tempi × 3
repetitions × 2 pieces). The data set can be found at http://www.nici.kun.nl/mmm/ under
download and then data archive.

Given the true score differences γtrue
1:K we are able to measure the quality of a solution
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by calculating the edit distance e(γ1:K). The edit distance compares the true score differ-
ences with the score differences found by the algorithm and counts the number of incorrectly
identified notes. In formula we write

e(γ1:K) =
K∑

k=1

(1− δ(γk − γtrue
k ))

where the δ function is a boolean function giving 1 when the score differences are equal and
0 when not [Cemgil2004].

The percentage of misclassified notes is shown in table 6.1, for both the model as used in
Cemgil and our realtime implementation. The tests have been performed keeping the n-best
particles, for various values of n.

Table 6.1: Table showing the percentage of edit distance (lower is better), tests were performed
using various values for the n-best particles. Both the results of Cemgils offline tests and our
realtime tests are included.

n 1 10 20 50
Cemgil 8.8 7 5.2 5.1

Realtime 19.48 17.15 17.00 16.98

These results show that the offline implementation (referred to as Cemgil), does the task a
lot better than the realtime implementation. This was expected as the offline implementation
is able to take all observations into account and perform Kalman smoothing.

The results for the realtime implementation might seem rather high, making it question-
able whether the realtime implementation is accurate enough. However, from studying the
results it appears that most of the errors are clustered together in a sequence. This means
that the algorithm has trouble with a certain part of the piano performance, but is able to
pick up the right track afterwards. In a realtime performance, the program will give incorrect
output for a while and then continue giving the right output, which is a lot less frustrating
than continuously giving a few incorrect outputs throughout the entire performance.

To determine whether the accuracy lives up to our requirements we will simply have to
try the program in realtime ourselves, the experiences of these trials are discussed in a later
section of this chapter.

6.2 Speed

Because we want to perform tempo tracking in realtime it is important that the application
is capable of performing the necessary calculations in a reasonable timespan. In this section
we will discuss a test done to measure the speed of the application and determine whether
it will be fast enough to perform tempo tracking in realtime. In the previous chapter we
discussed the implementation of the program, and argued that an implementation in C++
would be required for realtime processing as an implementation in Matlab would produce too
slow results. Because the algorithm has been implemented both in C++ and in Matlab we
are able to test this theory by measuring the calculation time of both implementations. Our
algorithm uses a particle filter which uses the n-best results in each iteration, the higher the
value of n the more particles will be used and thus the more calculations are required.
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For this test we used one of the performances from the beatles data set, the performance
consists of 293 MIDI events meaning the particle filter will go over 293 iterations. To clearly
show the difference in calculation times we tested both implementations for various values of
n, table 6.2 shows the time in seconds both implementations needed to process the entire file.

Table 6.2: Time in seconds the algorithm needs keeping n particles at each iteration.
n 1 10 25 50 100 250 500 1000

C++ 2.9 s 3.0 s 3.2 s 3.4 s 3.4 s 4.4 s 6.3 s 12.4 s
Matlab 4.7 s 25.1 s 60.6 s 113.8 s 229.5 s 702.3 s - -

As the values in the table show, the C++ implementation is a lot faster than the Matlab
implementation, the time for Matlab to process the file with n = 500 and n = 1000 have
not even been included because Matlab crashed after crunching numbers for over 15 minutes.
Looking at the times for the C++ implementation, we see that for n = 100 and lower, the
program needs around 3 seconds to process the entire file. As the file consists of 293 MIDI
events it takes an average of around 10 milliseconds for the program to process one event.
This means the program will be able to generate output based on information that is 10
milliseconds old. As it seems unlikely to have very strong changes in tempo in such a short
timespan, the program should be fast enough for realtime processing. Also, with a processing
time of 10 milliseconds per event, the program will be capable of processing 100 events in one
second. This seems more than enough for any type of performance a human being can give.

6.3 Realtime Experience

Although the accuracy is pretty good and the program is rather fast at processing input, we
will not know how well it does in realtime until we actually try it. In this section we will
explain how the program reacts to various performances played on a MIDI keyboard and
discuss how different parameters affect the programs response.

We have already discussed including prior probabilities to differentiate between different
interpretations, it turns out these prior probabilities are very important in getting the results
we are after. In various attempts playing the piano without the use of prior probabilities, the
program appears to have a mind of its own and plays beats at times that do not match the
tapping of the performer at all. Listening more carefully, the speed at which the beats are
played does increase with the increasing speed the performer plays at, they just do not match
the performers tapping. When analyzing the data afterwards, it turns out the algorithm
simply interprets some notes incorrectly making it shift the entire performance, as a result
the algorithm continues to have a shifted beat track. This is shown graphically in figure 6.1,
the values above the line are the score positions c and the values below the score differences
γ. As the example shows even though only two score differences in the filtered result are
different from the actual values, the rest of the track suffers from this error as everything gets
shifted in time. The figure also shows how the beat (indicated by the arrows) gets shifted as
a result of this, making the program respond incorrectly to the performance.

This example shows that, because the program continues to select the right score difference
for the incoming onset times, it has no reason to correct the error made in the past, leaving
the score position shifted. We can avoid this kind of shifting behaviour by introducing a
prior probability saying we prefer integer score positions, meaning we would rather have



6.3 Realtime Experience 43

0.0 1.0 2.0

0.0

0.5 1.5 1.75

0.5 0.83

0.75

1.16 1.66 1.91 2.16

Actual

Filtered

c=

c=

0.5 0.25 0.25 0.5 0.25 0.25γ=

γ= 0.5 0.33 0.33 0.5 0.25 0.25

Figure 6.1: Fictive example, the filtered score positions cfiltered are shifted compared to the
actual score positions cactual, therefore the beat (indicated by the arrow) is shifted as well
and played at the wrong moment in time.

an interpretation in which some notes coincide with a beat. Using such a prior will cause a
scenario with the shifting behaviour to become less and less attractive as more and more notes
fail to coincide with the beat. Because we are working with a particle filter, we continue to
track certain alternative solutions, eventually the algorithm will switch to a different solution,
correcting the error made in the past. Because we are working in realtime the effect of the
error will already have been outputted, however, for the newly processed notes the output
will now be as expected.

By providing the program with more information through the use of prior probabilities,
we are able to make it react more precisely to our needs. However, by incorporating more
information about a performance being played, we are also restricting the programs flexibility.
The problem here is that it is difficult to find prior probabilities that apply to all possible
musical performances. Because the range of music genres is so wide, almost every assumption
made about the music in advance rules out a certain other genre. One solution could be to
have the user select a certain genre in advance, so that the program will know which set of
prior probabilities to use. This would make the program very accurate, while maintaining its
flexibility.

Next to the prior probabilities we can also use different values for various parameters of
the Kalman filter. Two parameters that affect the behaviour of the algorithm quite strongly
are the process noise covariance Q and the measurement noise covariance R. The process
noise covariance expresses our belief in the results of the model, while the measurement
noise covariance expresses our belief in the observations. As our model assumes a constant
tempo the process noise should not be too low, to allow the algorithm to incorporate tempo
fluctuations. On the other hand the measurement noise should not be too low either, as a
human performer is not able to play with a very high accuracy on a millisecond level.

When using the beat as output, it gives the best results when using a process noise
covariance that is not too low. This way the tempo tracker is able to track every fluctuation
in tempo the performer makes, making the beat coincide perfectly with the notes. However,
using the same value for the covariance when playing the drumloop, the effect is somewhat
unrealistic. Because a drummer normally produces a rhythm in a rather constant tempo, it
sounds rather strange to hear a drum loop change tempo slightly at every beat. By choosing
a process noise covariance that is somewhat lower, we request a more constant tempo. This
difference can be seen clearly in figures 6.2 and 6.3, where the tempo curve is plotted using the
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high and low covariance, respectively. We see that the tempo curve using the lower covariance
gives a much smoother result, which is preferable for a drum loop.
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Figure 6.2: Tempo curve using high
covariance, making it very sensitive to
change (x-axis: time, y-axis: period)
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Figure 6.3: Tempo curve using low covari-
ance, making it less sensitive to change (x-
axis: time, y-axis: period)

The measure noise covariance appears to be less flexible in assigning a value. Choosing
a value that is too low makes the algorithm very strict in judging the notes that pass by.
When only a single note is played with a tiny delay, either because of error or rhythmic effect,
the algorithm switches to an alternative interpretation. When choosing a value that is too
high, it takes too long for the algorithm to incorporate the effect of a tempo change in the
performance. This makes it chase the performance in a delayed fashion all of the time.

Overall, when knowing how to properly use the parameters of the program, it gives very
good results in giving a realtime response to a performance. Setting the proper priors to
match a specific genre and choosing the right covariances for the selected output makes the
program a fun and useful tool for musical experiments.

6.4 Summary

In this section we measured the accuracy and calculation time of our implementation to
determine whether is qualifies for realtime processing. By comparing the accuracy with the
offline implementation, we get a good impression of its performance. And by comparing the
calculation time with the implementation in Matlab, the choice for C++ as a programming
language seems justified. The program responds very well to performances played, given that
the right settings are chosen.
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Conclusion

In developing a program for realtime tempo tracking, a number of criteria are important;
the program has to by quick at processing input, must give a good accuracy and must be
able to recover from errors. In this thesis we first explained a model for tempo tracking
proposed by Cemgil, we then learned how we can use the particle filter to find the most
probable interpretation of a given performance [Cemgil2004]. After that we discussed the
implementation of the particle filter in C++ and were able to perform various tests using
this implementation. As a result the program turns out to be very fast at processing input,
give a good accuracy and has no trouble recovering from errors. It therefore fits the criteria
required for a realtime implementation very well, giving us a powerful tool for doing tempo
tracking.

The tempo tracking approach used in this thesis is a very flexible one, meaning it can
be used for practically any type of musical setting as long as the right parameters (such as
prior probabilities, set of score difference and Kalman settings) are used. In choosing these
parameters it is important not to restrict the program to one type of performance, making it
necessary to alter it every time a different type of music needs to be processed. The trick here
is to use those parameters that apply to a broad class of musical genres, however, it turns out
to be rather difficult to find those parameters. For example, in using prior probabilities it is
difficult to find a set of priors that applies to every type of music. A study into what features
different musical genres share, would allow us to express preference for such features. This
would make the program more accurate while maintaining its flexibility.

With respect to the settings of the Kalman filter (such as the values of the noise covari-
ances) a learning algorithm could be used to find the optimal values. A large collection of
performances from different musical genres could be used as a training set. If it turns out
that no single set of values can be used for all possible performances, a collection of sets could
be formed and included in the particle filter as hypotheses. That way the particle filter can
figure out which set works best for a particular performance.

Next to finding the ideal parameters, some improvements to the model can also be con-
sidered. The model currently only takes timing information into account to base its decision
on, however, things like pitch, chords, the duration of notes and the relative amplitude have
shown to improve results in other studies. Furthermore, the model currently treats each onset
time as equally relevant to the task of tempo tracking. But when processing multiple instru-
ments, the percussion instruments are likely to provide stronger cues regarding the tempo
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than for example a flute [Cemgil2004].
Finally, to allow the program to process every type of musical instrument, the processing

of raw audio data should be incorporated. Although almost every instrument has a MIDI
capable equivalent, it is preferable to use a microphone for recording a musical performance.
This takes away an important restriction, because it would allow a performer to use his own
instrument. Next to using a microphone, the processing of audio files such as mp3 or wav
could also be implemented. Of course, in order to process raw audio data a pre-processing
step should be performed to extract the onset times from the performance. Because the
algorithm strongly depends on those onset times, extraction of them should be done with
great accuracy, making it a very difficult and challenging task.

All these improvements should lead to a very accurate and widely applicable tempo
tracker, making it perfectly suitable for use in applications such as an Interactive Music
Performance System.



Appendix A
Kalman filter derivation

The derivation in this section was established by combining parts from [Brown1992] and
[Maybeck1979]. We start by stating the model for a linear dynamical system. In general form
this model is

xk+1 = Akxk + wk (A.1)

The observation of the process is given as

yk = Ckxk + vk (A.2)

For clarities sake we will go over each of these elements one more time:

xk = (n× 1) process state vector

Ak = (n× n) transition matrix, relating xk to xk+1

wk = (n× 1) system noise vector, assumed to be white and Gaussian

Qk = (n× n) covariance matrix for wk

yk = (m× 1) measurement vector

Ck = (m× n) observation matrix, giving the noiseless connection between the measurement
and the state vector

vk = (m× 1) measurement error, assumed to have zero crosscorrelation with wk, white and
Gaussian

Rk = (m×m) covariance matrix for vk

The goal in using the Kalman filter is to estimate the next state of a system, given the
previous state. In doing so it should filter out as much noise as possible while incorporating
the observation made. The state of the filter is represented by two variables, the state estimate
x̂ and the corresponding error covariance matrix P . As can be seen from this notation, we
will use a hat to indicate we are dealing with an estimate of the state.
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The Kalman filter is a set of equations that can be summarized into two steps. The first
step is called the prediction step, which predicts the value of the new state that the system
will arrive in. The second step is called the correction step, as it corrects the prediction that
was made by incorporating information gained from an observation. Each of these steps gives
us a state estimate, however, the different steps produce different versions of the state.

The prediction step gives us the a priori state estimate as it incorporates all knowledge
before or prior to the current point k, we will denote the variables in this state as x̂k|k−1 and
Pk|k−1. This notation indicates we are dealing with variable x̂ at time k given the state at
k− 1, as the Kalman filter is a recursive filter the state at k− 1 incorporates the information
of the states before that point.

The correction step gives us the posteriori state as it is the state after the observation has
been made. Therefore, the posteriori state incorporates all knowledge up to the current point
k, and is denoted as x̂k|k and Pk|k. The a priori estimate is our best estimate of x̂k prior to
incorporating the observation at point k. The posteriori state is the optimal estimate that
the Kalman filter produces.

We assume that we have an initial estimate x̂k|k−1 and covariance Pk|k−1 of the process at
some point in time k and that this estimate is based on all our knowledge about the process
prior to point k. This initial estimate is an a priori estimate which means that the iterations
of the Kalman filter will start at the correction step.

Having explained the notation that we will use for the filter, we will now proceed to the
derivation. Because in the prediction step we calculate the prediction that our model gives,
we can derive the equations for this step by taking the expected value and covariance of our
model equations.

A.1 Prediction step

Model Equation:

xk+1 = Axk + wk (A.3)

Expected value:

〈xk+1〉 = 〈Axk + wk〉 (A.4)
= A〈xk〉+ 〈wk〉 (A.5)

Because the mean of the error wk is zero, the expected value is zero too:

〈xk+1〉 = A〈xk〉+ 0 (A.6)
= A〈xk〉 (A.7)

Because 〈x〉 = x̂ the formula for the prediction step becomes:

x̂k+1|k = Ax̂k|k (A.8)

Note that this is the a priori state, which can be seen by the subscript of x̂, this a priori
state vector gives us the predicted value of the state before any observation was made. We
shall now proceed to calculating the a priori error covariance matrix Pk|k−1. The covariance
is calculated by P = 〈x2〉 − 〈x〉2, we will therefore first simplify these individual terms to
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make the derivation more readable. To improve readability even further, we will first state
formulas with their subscript, but will hide the subscript for the remainder of the derivation.

Because 〈x2〉 6= 〈x〉2 we have to calculate 〈x2〉 separately, first we calculate x2:

xk+1.x
T
k+1 = (Axk + wk)(xT

k AT + wT
k ) (A.9)

= AxxT AT + wxT AT + AxwT + wwT (A.10)

We can now drop two terms as the expected value of w is zero:

〈xk+1.x
T
k+1〉 = 〈Axkx

T
k AT + wkx

T
k AT + Axkw

T
k + wkw

T
k 〉 (A.11)

= A〈xxT 〉AT + 〈w〉〈xT 〉AT + A〈x〉〈wT 〉+ 〈wwT 〉 (A.12)

= A〈xxT 〉AT + 0〈xT 〉AT + A〈x〉0 + 〈wwT 〉 (A.13)

= A〈xxT 〉AT + 〈wwT 〉 (A.14)

To further simplify this formula we first have to calculate the covariance of wk:

cov(wk) = 〈w2
k〉 − 〈wk〉2 (A.15)

= 〈wwT 〉 − 0 (A.16)

= 〈wwT 〉 (A.17)

We see that the term 〈wwT 〉 is equivalent to the covariance of the error term wk which is
Q, therefore we get:

〈xk+1.x
T
k+1〉 = A〈xkx

T
k 〉AT + 〈wwT 〉 (A.18)

= A〈xkx
T
k 〉AT + Q (A.19)

(A.20)

Now we proceed to calculating the covariance:

Pk+1 = 〈x2
k+1〉 − 〈xk+1〉2 (A.21)

= 〈xk+1.x
T
k+1〉 − 〈xk+1〉〈xk+1〉T (A.22)

= A〈xkx
T
k 〉AT + Q−A〈xk〉〈xk〉T AT (A.23)

We can take the two equations surrounded by the A matrices together to arrive at the
final form:

Pk+1 = A(〈xkx
T
k 〉 − 〈xk〉〈xk〉T )AT + Q (A.24)

As the term in between the brackets is equivalent to the covariance of the previous state
our formula for the a priori error covariance is:

Pk+1|k = APk|kA
T + Q (A.25)
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A.2 Correction step

With the formulas for the a priori estimate x̂k+1|k and covariance Pk+1|k we have all the
formulas of the prediction step. Now we want to proceed to the correction step in which we
use the measurement yk to improve the a priori estimate. This is done by a linear blending
of the noisy measurement and the a priori estimate.

x̂k|k = x̂k|k−1 + Kk(yk −Cx̂k|k−1) (A.26)

where C is the observation matrix as used in formula A.2 and Kk is the blending factor,
that is yet to be determined. The difference (yk − Cxk|k−1) in this function is called the
residual. The residual reflects the discrepancy between the predicted estimate Cxk|k−1 and
the measurement yk. A residual of zero means that the two are in complete agreement. The
blending factor Kk determines to what degree the residual should be used to update the a
priori estimate xk|k−1. So our task now is to find that value of Kk that yields an optimal
updated estimate. We will derive the formula of Kk by first deriving the formula for Pk|k.

Calculate covariance according to P = 〈(x− x̂)(x− x̂)〉, for readability we will first write
this as P = cov(x− x̂)

Pk|k = cov(xk − x̂k|k) (A.27)

We now substitute x̂k|k with the formulas we have obtained so far and work out the
brackets.

Pk|k = cov(xk − (x̂k|k−1 + Kk(yk − Cx̂k|k−1))) (A.28)

= cov(xk − (x̂k|k−1 + Kk(Cxk + vk − Cx̂k|k−1))) (A.29)

= cov(xk − (x̂k|k−1 + KkCxk + Kkvk −KkCx̂k|k−1)) (A.30)

= cov(xk − x̂k|k−1 −KkCxk −Kkvk + KkCx̂k|k−1) (A.31)

Now we group the xk − x̂k|k−1 terms together.

Pk|k = cov((I −KkC)(xk − x̂k|k−1)−Kkvk) (A.32)

As vk is not correlated with the rest, we can move it outside the brackets

Pk|k = cov((I −KkC)(xk − x̂k|k−1)) + cov(Kkvk) (A.33)

We can now move the constants outside the covariance terms as well

Pk|k = (I −KkC)cov(xk − x̂k|k−1)(I −KkC)T + Kkcov(vk)KT
k (A.34)

Now we see we actually ended up with the covariance Pk|k−1 and the covariance of vk

which is R.

Pk|k = (I −KkC)Pk|k−1(I −KkC)T + KkRKT
k (A.35)

This formula is valid for every value of Kk (also non optimal ones). However, we wish to
find that value for Kk that optimizes the formula. We will see later that once we have found
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the formula to calculate the optimal value of Kk, we can further simplify our function for Pk|k.
What we mean when we say we are looking for the value of Kk that optimizes Pk|k, is that
we are looking for that particular Kk that minimizes the individual terms along the major
diagonal of Pk|k, as these terms represent the estimation error variances for the elements of
the state vector being estimated. Therefore this minimization is equivalent to minimizing the
trace of Pk|k. Because the trace of a matrix is defined the sum of the elements on the main
diagonal (the diagonal from the upper left to the lower right). So taking again the formula
of Pk|k we ended up so far and working out the brackets.

Pk|k = (I −KkC)Pk|k−1(I −KkC)T + KkRKT
k (A.36)

= (Pk|k−1 −KkCPk|k−1)(I −KkC)T + KkRKT
k (A.37)

= Pk|k−1 −KkCPk|k−1 − Pk|k−1C
T KT

k + KkCPk|k−1C
T KT

k + KkRKT
k (A.38)

Now we group the two terms surrounded by Kk and introduce a temporary variable for
that term

Pk|k = Pk|k−1 −KkCPk|k−1 − Pk|k−1C
T KT

k + Kk(CPk|k−1C
T + R)KT

k (A.39)

= Pk|k−1 −KkCPk|k−1 − Pk|k−1C
T KT

k + KkSKT
k (A.40)

Now we have worked out the formula to such a degree that we can take the derivative of
the trace and equal it to zero. We will first introduce some standard formulas for derivatives
of traces taken from [Roweis1999] and [Brown1992].

∂Tr[XT A]
∂X

=
∂Tr[AXT ]

∂X
= AT (A.41)

∂Tr[XAXT ]
∂X

= 2XA (A.42)

Now we apply these rules to our formula and equal it to zero.

∂Tr[Pk|k]
∂Kk

= −2(CPk|k−1)
T + 2KkS = 0 (A.43)

We can now solve this formula for Kk.

2KkS = 2(CPk|k−1)
T (A.44)

KkS = (CPk|k−1)
T (A.45)

KkS = Pk|k−1C
T (A.46)

Kk = Pk|k−1C
T S−1 (A.47)

Substituting the value for S we get the final form for Kk known as the optimal Kalman
gain.

Kk = Pk|k−1C
T(CPk|k−1C

T + R)−1 (A.48)

Now that we have the formula for the optimal value of Kk we can return to our formula
for calculating the covariance Pk|k. Remember, the formula we had derived for Pk|k so far
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was valid for every value of Kk. We shall now use the formula for the optimal value of Kk to
further simplify the formula of Pk|k. We start by restating our optimal formula for Kk using
the substituted variable S.

Kk = Pk|k−1C
T S−1 (A.49)

Now multiplying both sides with SKT
k we get:

KkSKT
k = Pk|k−1C

T KT
k (A.50)

Now we continue with the formula for Pk|k we had so far, we can substitute the formula
for the kalman gain in the covariance formula.

Pk|k = Pk|k−1 −KkCPk|k−1 − Pk|k−1C
T KT

k + KkSKT
k (A.51)

= Pk|k−1 −KkCPk|k−1 − Pk|k−1C
T KT

k + Pk|k−1C
T KT

k (A.52)

= Pk|k−1 −KkCPk|k−1 (A.53)

Bringing the a priori covariance outside the brackets we get the final form for the formula.

Pk|k = (I−KkC)Pk|k−1 (A.54)

A.3 Summary

To summarize the algorithm we state all the formulas for the Kalman filter one last time.
Prediction Step:

x̂k+1|k = Ax̂k|k (A.55)

Pk+1|k = APk|kA
T + Q (A.56)

Correction Step:

Kk = Pk|k−1C
T (CPk|k−1C

T + R)−1 (A.57)

x̂k|k = x̂k|k−1 + Kk(yk − Cx̂k|k−1) (A.58)

Pk|k = (I −KkC)Pk|k−1 (A.59)
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